
QIMSI
QL INTERFACE

USER MANUAL

Version 01/2024

Chapter 1: Overview

Introduction

The name “QIMSI” stands for “QL Intelligent Mouse and Storage Interface”. The similarity to “QIMI”, the
traditional QL mouse interface, is intended. This interface fits into the standard QL ROM Port and requires
no modifications to the QL case or motherboard for its basic functionality. It thus is especially suitable for
users who prefer to keep their QL in its original form.

Key Features

QIMSI is based on a specialized chip (FPGA) which includes various QL interfaces, a CPU and some
ROM/RAM on a single integrated circuit.

The basic QIMSI functions for the Sinclair QL home computer are PS/2 mouse and mass storage inter-
faces, a PS/2 keyboard interface and an optional sampled sound interface.

microSD Card Interface
QIMSI offers an SDHC card interface for the QL, supporting one microSD card slot. It works like a hard
drive for the QL and can be accessed via „WIN1_” for example. Function-wise this interface is compatible
to the internal QL-SD interface originally designed by Peter Graf.

Mouse Interface
QIMSI comes with a PS/2 mouse interface for the QL, compatible with the Pointer Environment. The
mouse scrollwheel is supported by the interface, but may lack driver software support.

Keyboard Interface
QIMSI also offers a PS/2 keyboard interface for the QL. Currently software support it is available for
Minerva. Also under SMSQ/E where it requires a Gold Card or a Super Gold Card.

Sound Interface
QIMSI includes a sampled sound interface for the QL’s internal speaker. Connecting the speaker requires
a small modification of the QL’s mother board.

ROM
QIMSI provides a 16 KB ROM area for the QL in the address range $C000 … $FEC8. The ROM contains
the driver for the microSD card interface. The driver is compatible to the internal QL-SD interface.

Other Specifications

Internal CPU (MiniQ68)
QIMSI has an internal microprocessor, which is code compatible to the 68000, and runs at 40 MHz clock
rate. It is not directly accessible from the QL side, but can load and run code from SDHC card or a serial
port. The CPU is compatible to the one used by the Q68 computer and is surrounded by a similar, but re -
duced infrastructure. This system may also be referred to as „MiniQ68“ in this document. For the basic
QIMSI functions, the MiniQ68 can be ignored. Due to memory limitations, no operating system is provided
for the MiniQ68.

Internal ROM/RAM
The QIMSI has two small ROM/RAM areas of 32 KB and 12 KB size for the internal CPU, running without
waitstates. They are part of the MiniQ68 and not accessible from the QL side.

QL-MiniQ68 Link
QIMSI provides a bidirectional fast data link between the QL and the MiniQ68. It is buffered with two 512
Bytes hardware FIFOs, one for each direction.

Serial Port
The MiniQ68 has access to a primitive serial port with up to 115200 Baud. This port is not directly accessi-
ble from the QL side.

I/O Port
The MiniQ68 has access to a single wire I/O port. It is also not directly accessible from the QL side.

Board Size
The QIMSI board has a small size of 53 x 35 mm.

Power Supply
The QIMSI is powered by the QL 5V supply available on the ROM port.

Setup

The QIMSI interface fits into the ROM port of the Sinclair QL. Before plugging it in, please make sure to
power-down the QL. Take care to attach all add-ons (Mouse, Keyboard and SD-Card) before power-up.

When attaching any components to the board, please pay attention to the correct orientation.

QIMSI should be recognized on the boot screen and also SD-card initialization should be displayed, if a
card is inserted.

Figure 1: Boot screen with QIMSI properly recognized and SD card initialised

Important notice: Before using QIMSI, please detach all other hardware devices which also use the
same address space, namely the ROM area between $C000 to $FFFF.

As a special exception, QL-SD with CPLD logic version 0.92 (jumperable) can coexist with QIMSI, if the
QLROMEXT board of QL-SD is jumpered to IO3+IO4. In that case, please do not insert a microSD card
into the QIMSI socket.

Chapter 2: Hardware

Board Overview

The connectors of the QIMSI interface are located according to the following figure:

Figure 2: Connector Locations

MicroSD Card
The card slot accepts a standard micro SD card. The card should be an SDHC type card and must be
FAT32 formatted. While QIMSI is electrically capable of hot-swapping the card during QL operation, this is
not recommended to avoid mechanical fluctuation of the QIMSI board.

Mouse
A PS/2 compatible mouse can be connected to the right hand side micro USB port. Nowadays many of
these mice are dual function, supporting PS/2 as well as USB, and are terminated in a USB connector. To
connect the USB Type A connector you need an “USB on the go” (OTG) adaptor for micro USB, not USB-
C. These adapters are cheap and easily available in different variants. One type is shown in the picture
below for your reference. (For a traditional PS/2 mouse, a passive PS/2 to USB adaptor can be added.)

Figure 3: Typical micro USB on the go (OTG) adaptor

Figure 4: Typical passive PS/2 to USB adaptor

Many different mice were tested successfully. Nevertheless, due to the wide range on the market, it may
happen that some types of mice are not compatible. You may contact the QL forum for suggested mice
known to be compatible.

Please note that, whilst a micro USB connector is fitted, only the PS/2 protocol is currently supported by
QIMSI – i.e. QIMSI does not provide actual USB support and only ‘pure’ PS/2 or PS/2/USB ‘combi’ mice
are compatible.

Keyboard
A PS/2-USB combo keyboard can be connected to the left hand side micro USB port. Like for the mouse,
an OTG adaptor is required. Plus a passive PS/2 to USB adaptor, if a traditional PS/2 keyboard is to be
used. A software driver is currently abvailable only for SMSQ/E.

LED
A dual color LED indicates QIMSI operation:

Red color signals an ongoing micro SD card access.

Green color single flash during power-up signals detection of a Standard PS/2 mouse.

Green color double flash during power-up signals detection of an extended PS/2 mouse with scrollwheel.

After the first QL-side access to SD card, the green LED lights up continually.

The green LED can be user-programmed afterwards. A byte-wide read access to address 65238 switches
the green LED off (e.g. PRINT PEEK (65238)), and to address 65239 switches the green LED on (e.g.
PRINT PEEK (65239)).

Sound Output
A mono sampled sound output is also provided and can be connected to the internal QL speaker. As there
is no dedicated sound signal connection on the standard QL ROM port, a small hardware modification is
necessary to route the sound output signal to the internal QL speaker. This modification will be now be ex-
plained in detail.

The QIMSI sound output is provided at the last „large“ right hand bottom side pin, which is QL ROM port
pin A1 as described in the QL User Guide. This pin is normally unconnected to the QL mother board, but
may be linked to +5V on some boards. To connect the QIMSI sound output to the QL speaker, the user
needs to first cut the connection from the ROM port socket to the QL mother board. The following picture
shows in detail where to cut the pin.

Figure 5: ROM port modification

Solder a wire to the right hand bottom
side pin of the ROM port connector

Cut here and check that there is no
more connection to the mainboard

Solder a length of insulated wire to the pin side on the ROM port socket thus establishing a connection to
the QIMSI PCB. Be careful when doing this modification, soldering skills are necessary.
The other end of the wire must be attached / soldered to the QL speaker pin header. As there are several
different QL mainboard configurations, this manual only gives partial advice on how to do this.

On some QL mainboards (Issue 6) the speaker pin header is beneath the big heat sink of the 5V regulator
7805. The heatsink must be carefully removed before the pin header can be accessed. Figure 6 shows a
QL mainboard with removed heatsink and the dedicated pin header.

Figure 6: Speaker pin header modification (Issue 6)

One pin of the pin header is ground, the other one is speaker output. The flying wire must be connected to
the speaker output. Do not connect it to ground! If you are unsure which pin is ground, please use a
multimeter to check the resistance of the pins to mainboard ground, which can be easily accessed by the
modulator housing.

Figure 7 shows a different QL mainboard (Issue 5) where the speaker pin header is just at the right hand
side of the ZX8302 chip, near the lower left corner of the modulator. It is more easily accessible compared
to the one above, the heatsink does not have to be removed.

Figure 7: Speaker pin header modification (Issue 5)

On those mainboards, the flying wire must be connected to the bottom pin of the QL speaker pin header.
There might be further mainboard variants, where the location differs from the two examples shown here.
Before powering on the QL, please double check all solder joints and modifications so as to not have any
shorts, e.g. by solder splash. Test that your modification works as expected.

There are example sound files „catwalk_ub“, „forgotten_ub“ and „western_ub“ that can be played using a
simple demo sound player called PLAYSS, which are both provided. Please note that PLAYSS is imple-
mented without a realtime driver, so if other jobs are running, they might lead to disrupted playback. You
can list the running jobs with the Toolkit 2 Basic command JOBS.

E.g. try EX playss;catwalk_ub. Without further commandline parameter, PLAYSS tries to reduce the so-
called SLAVE buffering of the operating system, because it slows down read access to mass storage a
lot. In order to reduce SLAVEing, PLAYSS temporarily allocates most free memory of the machine. If this
is not desired, please use commandline option -s, for example EX playss;“-s catwalk_ub“, to keep SLA-
VEing active. If sound data is short enough, it could be loaded it to a ramdisk before playing with the -s op-
tion.

Connect the flying wire from the QL
ROM port to the top pin of the header.
Note: Colors of the wires may vary.
Don't be confused, if ground is
connected to a red wire.

Flying wires connecting the QL mainboard to the
speaker, as per the standard design.

Additional wire from modified ROM port connected to the
bottom pin of QL speaker header. Note: the connection is
in parallel to the existing wire. There is no need to remove
the QL speaker wires from the QL mainboard.

Do not connect the ROM port pin to the speaker without first cutting the ROM port pin as descri-
bed above! This modification comes at your own risk! No responsibility can be taken if your QL or
QIMSI is damaged. If you are unsure, please consider to not do the modification.

Note: There is a protection diode on the QIMSI board. This means: If you do not want to use the sound
capabilities there is no need for any modification. The QIMSI cannot be harmed by just putting it into the
ROM port.

QL ROM Port
QIMSI is connected to the QL bus on the ROM port with an 8 bit data bus and 16 bit address bus. In the
QL memory map, the extension bus is located at $0000 ... $FFFF, of which $C000 ... $FFFF are used by
QIMSI. For a decription of the signals, please refer to the QL User Guide.

Deviant from the QL User Guide, QIMSI provides a sound output on the „unused“ QL ROM port pin A1.
This output is protected against the 5V voltage found on pin A1 of some QL mainboards.

Serial Port
This 3 pin header provides an RS-232 like port for the internal MiniQ68. While the input is fully RS-232
compliant, the output works with a reduced voltage swing. It is tested to work with QL, Q40/Q60, Q68 and
PCs, if the cable length is kept below 2 m.

Pin Description

1 Ground (marked by rectangular pad)
2 Transmit Date (TxD) Output
3 Receive Data (RxD) Input

I/O Port
This 3 pin header allows to connect an I/O signal to the internal MiniQ68 or to access the 5V power sup -
ply.

Pin Description

1 Ground (marked by rectangular pad)
2 +5V Power connected to QL ROM Port
3 I/O Signal with 47 Ω series resistor and clamp diode to 3.3V

JTAG
This connector is for manufacturing use only.

Chapter 3: Software

Mass Storage

QIMSI relies on SDHC memory cards for mass storage. For use with QIMSI, they must be partitioned and
the first primary partition must be in FAT32 format.

The files used for QIMSI must the be put into that FAT32 partition, which should be possible by copying
from any Linux, Windows or MAC machine. However, make sure to understand the special precautions
for these files as described in the following chapter.

QIMSI Container Files

The QIMSI is a QL-native hardware device, and files in the FAT32 partition serve only as containers for di-
rect lowlevel access by QL-native drivers.

To access these containers efficiently, QIMSI expects the container files not to be fragmented in the
FAT32 file structure. Once QIMSI has found the beginning of a container file, it assumes the rest of that
container file lies in continuous sectors on the card. Moreover, these container files must be located within
the first 16 root directory entries of the FAT32 partition.

The best way to achieve this, is to make sure that before writing the the container files, the card is freshly
formatted. Then write each container file immediately after formatting the card.

The container files follow a specific naming scheme. The file name of a container file must have 1 to 8
characters, followed by a decimal point and a three letter extension.

Preparing an SDHC Card

This cannot be done on the QIMSI itself yet. To prepare a new card, the following procedure is recom-
mended:

• Linux: Use gparted or the command-line version parted.
Then format the entire disk as FAT32, or at least the first partition if you have more.

• Windows: Download and install the SD Association's Formatting tool from:
https://www.sdcard.org/downloads/formatter/sd-memory-card-formatter-for-windows-download/
Then open the installed tool, set "Format Size Adjustment“ to „On“ and click „Format“

• MAC: Download and install the SD Association's Formatting tool from:
https://www.sdcard.org/downloads/formatter/sd-memory-card-formatter-for-mac-download/
Then open the installed tool, select "Overwrite Format“ and click „Format“

Now you are ready to write the container files. All QL side files are stored within a container file named
QLWA.WIN or further containers. This means that on your PC, you can only see the container file(s). The
container file system format is QLWA and can be read and created with most common QL emulators. Ple-
ase note that the larger the size of the container file, the more QL memory will be used by the driver. On
QL setups that are tight on memory, it is better to go for a modest container size of 32 or 64 MB. Or even
3 MB on an unexpanded QL - but it is not recommended to use QIMSI without any memory expansion.

Important reminder: The container file must not be fragmented. You will experience data loss if the file is
fragmented. Therefore it is recommended to have only the container file(s) on this card and not to delete
files from this card, unless a fresh format is done. Also do not have any other (PC) files on this card. If you
have ordered a microSD card along with QIMSI, you will already find a container file on the card and you
are ready to go. The default assignment of QL WIN drives and container filenames is depicted below.

WIN1_ QLWA.WIN
WIN2_ QLWA2.WIN
… …
WIN8_ QLWA8.WIN

Always have a backup of your container file(s)!

Using Directory Structures

A directory is where the system expects to find a file. On small QL storage devices like microdrive or flop-
py disk, this was often as simple as the name of a device, like FLP1_.
But the QIMSI interface, just like QL-SD, offers much more disk space and it is therefore useful to organi-
se files into subdirectories. QL Toolkit 2 or the SMSQ/E operation system come with a number of com-
mands to use directory structures. A few are briefly covered as follows:

MAKE_DIR

The command MAKE_DIR is included in the Gold Card, Super Gold Card, SMSQ/E and newer versions of
Toolkit 2. It takes a string argument with the name of a level 2 subdirectory to be created. That subdirecto-
ry allows a group of files to be regarded as one unit when the contents of a medium is listed. When a di-
rectory listing is shown with the DIR command, they are marked with „->“. Empty level 2 directories can be
deleted with the DELETE command. Please note: A QL path name is restricted to 36 bytes of length.

DUP

The command DUP moves up the directory tree by one level.

DDOWN

The command DDOWN takes a string argument and moves down the directory tree to the specified sub-
directory.

PROG_USE

The command PROG_USE takes a string argument and sets the default program directory accordingly.
The default directory is then is used to find program files for EX, EXEC, EW, EXEC_W.

DATA_USE

The command DATA_USE takes a string argument and sets the default data directory accordingly. The
DATA_USE default is used for most filing system commands in Toolkit 2 or SMSQ/E.

Initializing a card

An SD card is automatically initialized at boot time or before the first access.

Swapping cards

Theoretically, cards can be swapped in and out, even when the system is running - but this is not a recom-
mended practice. If you insist on doing this, you must be aware of the following:

1. The QIMSI board must sit firmly inside the QL ROM port connector. It must not be mechanically
moved while the card is swapped.

2. Do not remove a card when there are files still open and certainly not whilst the machine is rea-
ding/writing to a card. If you remove a card while there are still files open or files being written,
data loss will occur.

BASIC commands for WIN drives

The BASIC commands related to WIN drives are as follows:

WIN_DRIVE drive, card, filename$

Assigns a container file on a card to become a drive. Where

drive is the WIN drive number (1... 8) to be assigned,

card is the SDHC card on which the file can be found (always 1 on QIMSI) and

file_name$ is the name of the container file. The file name MUST be in "8.3" format, i.e. a name of one to
8 characters, a decimal point and an extension of up to three letters. The extension, if present, must be
separated from the name by a period.

WIN_USE device

Allows to assign another three letter device name to the device driver. If no device is specified, the device
name is returned to the default „win“.

This command is also useful, if a different device, e.g. floppy contains a BOOT file. In that case, the WIN
drive might not be found unless a WIN_USE command is given.

WIN_CHECK drive

Checks whether a WIN container file on the card is indeed in continuous sectors on the card, where drive
is the container file containing the WIN drive in question. If the command does not return an error, the
container file corresponding to the drive is okay.

Mouse

During the QL boot process you need to load the required mouse driver. After having activated Toolkit II
and loaded the Pointer Environment, you can load the driver by adding “LRESPR WIN1_mouse_bin” to
your boot file. Please note that the current driver requires the Pointer Environment and can not work other-
wise.

If you intend to use the QIMSI mouse driver, please make sure that other mouse interfaces are either de-
tached or disabled in their respective driver software. For example, if you have QIMI installed, please con-
figure SMSQ/E to ignore QIMI.

Keyboard

Currently, only a drivers for SMSQ/E and Minerva are available. SMSQ/E version 3.39 and later has inbuilt
driver support. After booting your QL you boot into SMSQ/E, e.g. by LRESPR WIN1_SMSQE.

Once SMSQ/E is booted you can activate the PS/2 keyboard by using the command “KBD_PS2”. You can
change the keyboard language by “KBD_TABLE_PS2 x”, where x is your country code (e.g. UK = 44,
Germany = 49). When the PS2 keuboard is active, the QL keyboard no longer works, and vice-versa. You
can switch back to the QL keyboard by “KBD_QL”. Only the Minerva ROM supports auto start, so this is
required to fully omit the QL keyboard. Also Gold Card or Super Gold Card is mandatory for SMSQ/E.

For the Minerva operating system, a driver is provided at https://github.com/janbredenbeek/QIMSI-KBD,
where you can also find more information about using QIMSI as keyboard interface. The Minerva driver
also supports the KBD_PS2, KBD_QL and KBD_TABLE_PS2 commands.

Register Map

In addition to the SD card interface registers, which are fully compatible to the internal QL-SD device and
therefore not described here, QIMSI provides the following registers:

Address(hex) Address(decimal) Name

FED0 65232 QL_SND_STATUS

FED1 65233 QL_SND_WRITE

FED2 65234 QL_LINK_TXDATA0

FED3 65235 QL_LINK_TXDATA1

FED4 65236 QL_LINK_RXDATA

FED5 65237 QL_LINK_STATUS

FED6 65238 QL_LED_OFF

FED7 65239 QL_LED_ON

FED8 65240 QL_KEYOUT_DATA0

FED9 65241 QL_KEYOUT_DATA1

FEDA 65242 QL_KEY_CODE

FEDB 65243 QL_KEY_UNLOCK

FEDC 65244 QL_KEY_STATUS

FEDD 65245 QL_MOUSE_CODE

FEDE 65246 QL_MOUSE_UNLOCK

FEDF 65247 QL_MOUSE_STATUS

FF00...FFFF 65280...65535 QL_SND_DATA*

* This area is shared with the SD card interface and requires special care not to interfere with the SD card
operation.

https://github.com/janbredenbeek/QIMSI-KBD

All QIMSI registers can only be accessed with read operations, as the QL ROM port does not support wri-
ting. However, some of the QIMSI registers transfer data from the QL to QIMSI by reading a specific ad-
dress. Specific documentation of register operation is beyond the scope of this document.

Chapter 4: MiniQ68

The MiniQ68 inside QIMSI has a 32 KB ROM area at the start of the address range, and a 12 KB RAM
area at $19000. Both areas have a double usage. At power-up, they are first used by the internal hard-
ware, containing a small firmware, mainly initializing the PS/2 mouse. Presence of a PS/2 mouse is che-
cked and the result displayed on the green LED. This firmware can then, as a second step, load a binary
from SDHC card into an emulated ROM area at the same location.

The emulated ROM behaves like a physical ROM, and is booted by an actual hardware reset. It could
execute non QL-specific 68000 code.

As peripherals, the MiniQ68 can access the serial port, the LED, the I/O port and the QL-MiniQ68 commu-
nication link. Initially. it can can also access a microSD card, keyboard and mouse, but only as long as
they were not accessed from the QL side before. Any access from QL side will put the microSD card,
mouse and keyboard interfaces into an inactive state for the MiniQ68.

Booting from ROM image
If a file named „Q68_ROM.SYS“ is present on the SDHC card, it will be loaded at address $0 into the
MiniQ68 ROM emulation area. The maximum allowed ROM length is 32 KB.

After the ROM image was loaded, the CPU will automatically be restarted by a 68000 hardware reset.
Therefore, like a physical ROM, the image file must contain the 68000 vector table, especially the initial
supervisor stackpointer at address 0 and the initial program sounter at address 4.

Booting from serial port
If no ROM image is found, or no valid SDHC card is present, QIMSI will attempt to boot from serial port. A
fixed baudrate of 115200, no parity, no hardware handshake is expected.

The remote station must first send a header of 4 bytes to the MiniQ68 which contains the length of the fol -
lowing data stream as a big endian 32 bit unsigned integer. Then it sends the data. If the MiniQ68 recei-
ves the data correctly, it will respond with a byte containing the ASCII code 'Q', otherwise the ASCII code
'E' for error. During the transfer, QIMSI’s green LED will blink.

The serial data stream will be loaded at address $0 to QIMSI ROM area and started by a hardware reset
like a ROM image from SDHC card.

Using the QL-MiniQ68 Link
On the QL side, the QL-MiniQ68 link is accessed by the follwing registers:

$FED2 65234 QL_LINK_TXDATA0
$FED3 65235 QL_LINK_TXDATA1
$FED4 65236 QL_LINK_RXDATA
$FED5 65237 QL_LINK_STATUS

The status register QL_LINK_STATUS is compatible to the Q68 UART:

Bit 0: Tx Empty (Still room inside send FIFO)
Bit 1: Rx Empty (Receive FIFO is empty)
Bit 2: 0
Bit 3: Rx Overrun (Receive FIFO overrun)
Bit 4..7: 0

The read-only registers TXDATA0 and TXDATA1 are used to write a byte into the send FIFO, in a
bit-wise fashion. This mechanism is used, because the QL ROM area does not allow a direct write. Rea-
ding TXDATA0 writes a bit=0 and TXDATA1 writes a bit=1. The least significant bit comes first. After 8
read accesses, the byte is complete and will be written into the send FIFO. (As a side effect, reading
QL_LINK_STATUS will reset the internal bit counter of this mechanism, so an accidental access to
QL_LINK_TXDATA0 or QL_LINK_TXDATA1 can not lead to a permanent, unintended bit shift. Normally,

it is not required to read the status register to reset the internal bit counter. It is automatically reset after 8
consecutive read accesses.)

The receive data register QL_LINK_RXDATA is compatibel to the Q68 UART and reads one byte from the
receive FIFO.

On the MiniQ68 side, the QL-MiniQ68 link is accessed by the follwing registers:
LINK_TXDATA $1C260
LINK_RXDATA $1C264
LINK_STATUS $1C268

These are also compatible to the Q68 UART. The only difference to the QL side is, that the send FIFO
data can be written directly by a byte wide write access to LINK_TXDATA.

MiniQ68 Memory map
Below you can see the QIMSI internal memory map as an overview of the physical locations. These are
not accessible from the QL side. More detailed documentation for developers is also available on request,
but is not included in this User's Manual.

Address(hex) QIMSI

0000 0000

0000 BFFF

ROM 32K
(Normal operation: ROM image from SDHC card or SER.
 Powerup: 4K Flash)

0001 8000
0001 8FFF

Internal I/O 4K
(QL style registers)

0001 9000
0001 BFFF

RAM 12K
(Powerup: 12K Flash)

0001 C000
0001 CFFF

Internal I/O 4K
(LED, PS/2, I²C, SER, SDHC, Sound)

FF00 0000
FFFF FFFF

Internal I/O 16384K

Chapter 5: Copyright and disclaimer

The QIMSI hardware design, programmable logic, bootloader firmware and mouse driver software are Co-
pyright Peter Graf. The programmable logic also contains the TG68K.C core, which is Copyright Tobias
Gubener under the terms of the GNU Lesser General Public License as published by the Free Software
Foundation.

The SD card driver provided by the QIMSI ROM is copyright Tony Tebby, Wolfgang Lenerz and Marcel
Kilgus. It is free software under the terms of the SMSQ/E license and the source code is part of the
SMSQ/E distribution. The definitive version of the licence is contained in the SMSQ/E source code, provi-
ded at the official SMSQ/E website www.wlenerz.com/smsqe

Example music is from Ronald Kah, website ronaldkah.de

QIMSI is a hobby project intended for retro-computing and fun purposes, not to process important data. It
is distributed in the hope that it will be useful, but without any warranty of merchantability or fitness for any
particular purpose. No responsibility is accepted for the loss of data or consequent damage of any kind re-
sulting from the use of this design, hardware and/or software.

All specifications are subject to change without notice. No responsibility is assumed for inaccuracies or er-
rors.

	Chapter 1: Overview
	Introduction
	Key Features
	microSD Card Interface
	Mouse Interface
	Keyboard Interface
	ROM

	Other Specifications
	Internal CPU (MiniQ68)
	Internal ROM/RAM
	QL-MiniQ68 Link
	Serial Port
	I/O Port
	Board Size
	Power Supply

	Setup

	Chapter 2: Hardware
	Board Overview
	MicroSD Card
	Mouse
	Keyboard
	LED
	Sound Output
	QL ROM Port
	Serial Port
	I/O Port
	JTAG

	Chapter 3: Software
	Mass Storage
	QIMSI Container Files
	Preparing an SDHC Card
	Using Directory Structures
	Initializing a card
	Swapping cards
	BASIC commands for WIN drives

	Mouse
	Keyboard
	Register Map

	Chapter 4: MiniQ68
	Booting from ROM image
	Booting from serial port
	Using the QL-MiniQ68 Link
	MiniQ68 Memory map

	Chapter 5: Copyright and disclaimer

