The IP Network Device Driver

The IP Network Device Driver provides a QL style network, allowing you to network together
multiple PC’s running QL emulators on a Local Area Network, or multiple QL emulators running
on one PC. It will also work when paired with the QoE Ethernet driver on a Q68 computer

The IP Network Device Driver can operate in two mode. When you start the driver, you choose
whether you what it to be an external driver, where you can network multiple PC’s on a Local
Area Network, or an internal driver, where you can network multiple QL emulators on one PC.

If you want to communicate between an internal and an external Network, you will require the IP
Network Driver Router program.

This driver based on the TCP/IP device drivers by Jonathan Hudson & Richard Zidlicky.

The driver supports all the usual QL network commands, including the file server, FSERVE, and
the NFS_USE command.

With a few differences -
There is no broadcast station (0).

Stations numbers are no longer limited to 64, you can have up to 254 stations on the
network (1 to 254).

You cannot send/receive, to/from your own station number.

The driver is based on the Network Device driver from the SMSQ/E source code (version 3.16)
by Tony Tebby (see licence notice at the end of this document).

The IP Network device driver was developed for use with QPC2. However it should operate on
other emulators which support the TCP/IP device driver. See the compatibility section below.

Martin Head Version 1.15

Driver configuration

Version 1.15 introduces a configuration block, allowing you to reconfigure the operation of the
driver to suit your system.

The default configuration is for normal driver names, and with UQLX/sQLux support off. So you
only need to configure the program if you want to change the command and device names, or
enable UQLX/sQLux support.

Available configuration items are:

1. All the commands and device names may be changed to an alternate set. This
allows you to run the driver alongside the original QL Network on a Q68.

2. The driver may be configured to work with the UQLX/sQLux emulators.

Configuration of the driver is performed with the standard 'Menuconfig' program.

M i1 4
B IF Hetwork driver configurotion pU1.15 <@1:

1 URLx Configuration 1,15 <@l

There are two configuration options. The first allows you to change the command and device
names. And the second is for support for UQLX/sQLux.

Command and device names

o1
H Curtent Selection. =F Origingl BL driwver nomes

This shows the current configuration. Selecting it shows the available options

5 ESC ==SELECT=— 0K
B Original OL driver nomes]
1 Alternote driver nomes

UQLX/sQLux support

1 ESC = SElElT 0FF—07F1—=— Kk
H Curtent Selectior. =¢ UGLY Support is off
b7

This shows the current configuration. Selecting it shows the available options

= SELECT = 0K
Support is off
2817 Socket nomesy
2818 Sockel nomes

This allows you to select compatibility with either UQLX 2017, or UQLX 2018.
For sQLux, select UQLX 2018

The default configuration is normal driver names, and with UQLX/sQLux support off.

Installing the Driver
Two versions of the driver are supplied. A RAM based one, and a 16K byte ROM image.

To load the RAM based version of the driver, load the driver into memory and call it.

example: i. LRESPR flp1_NetDriver_bin

ii. x=RESPR(8990) {if you don’t have Toolkit 2, or equivalent}
LBYTES flp1_NetDriver_bin,x
CALL x

An installation message, and a version number will be displayed in #0

To load the ROM based version, see the user instructions of your emulator. For example in
QPC2 use the command:

EPROM_LOAD flp1_NetDriver_rom

Note: You may need to disable your firewall, or give your QL emulators permissions for using
your network.

Compatibility
SMSQemulator Compatible. Requires version 2.21 or above.

Qemulator Mostly compatible. There is a problem with the FSERVE & NASERVE
commands that causes SuperBASIC to appear to stop working, and Qemulator
appears to crash with 'Not Responding' when you try to click on Qemulator’'s
menu bar.

Qemulator and SuperBASIC are still working, and if you try to make a remote
access from another computer to the one running FSERVE or NASERVE, the
remote access will work OK.

This is due to one of the IP device driver commands (IP_ACCEPT) working
differently between QPC2 and Qemulator. In Qemulator it stops the emulated
QL until a network connection is made.

This can also cause a problem when using the NETIL_ device. If you use NETI_
and no other computer uses a corresponding NETO_ You will not be able to
use BREAK to abort the NETI_ command, and it will also not timeout.

QPC2 Compatible. If you use the NETI_ device, BREAK may not work. QPC2 does
not scan the keyboard during a channel open. The keyboard scan can be
reinstated in version 4 of QPC2, in the Configuration screen, under the
Keyboard setting, when changed to SMSQ/E.

However the timeout will still work.

uQLX Requires configuration.

sQlux Requires configuration. Select UQLX 2018 configuration. Note in sQLux version
version 1.0.6 there is a similar problem as in Qemulator above.

Q68 Requires the QoE Ethernet device driver. Configuration is required to run the
driver alongside the NDQG68 driver which supports the original QL Network on
the Q68.

Using the Driver

The alternate names are to allow the driver to work alongside a real QL network on a Q68.

To try to avoid confusion over the normal and alternate command and device names, | have
split this manual in two parts. In the first | will describe the normal commands and devices, then

| will repeat the instructions with the alternate commands and devices.

Operation of the driver in both modes is identical. Just the names have been changed as
follows:

BASIC extensions:

Original name Alternate name
Devices:

N |

NET IPN

NSV ISV

NET_START INET_START
FNET_START FINET_START
NET_RESTART INET_RESTART
FSERVE IFSERVE
NASERVE INASERVE
NAS_SHARE INAS_SHARE
NAS_UNSHARE INAS_UNSHARE
NAS_SHARED INAS_SHARED
MAP_N MAP_I
NFS_USE INFS_USE
NFS_SET INFS_SET
FNET_RESTART FINET_RESTART
FNAS_SHARE FINAS_SHARE
FNAS_UNSHARE FINAS_UNSHARE
NET_ADD$ INET_ADD$
NET_VERS$ INET_VER$
MAP_LIST IMAP_LIST
NET_NUM INET_NUM
NFS_USES$ INFS_USES$
NFS_TYPE INFS_TYPE

File server job name:
Server IPserv

Getting started

Before you can use the IP Network device driver, you need to tell it the kind of network driver
you want with the NET_START command.

The type of parameter you supply to the NET_START command determines how the driver will
start. If you supply a number it will start as an internal Network driver. If you supply the IP
address of the computer as a string, it will start as an external Network driver.

NET_START network station number, or "ipaddress"
{where ipaddress, is the IP address of the computer}

example: NET_START "192.168.0.5"

In this example, The driver will set itself up for networking over multiple PC’s. The device driver
will use "192.168.0" as the network and the QL network station number will be "5"

So if you have a LAN, with two PC's running QL emulators. One with an IP address of
192.168.0.5 and one with an IP address of 192.168.0.8

You can use commands like SAVE NETO_8, and LOAD NETI_5 to copy the basic program in
the computer with IP address 192.168.0.5 to the computer with IP address 192.168.0.8

example: NET_START 3

In this example, The driver will set itself up for networking multiple QL emulators on one PC.
And this will be QL network station number 3

So if you have two QL emulators running. One started with NET_START 3, and one started with
NET_START 8.

You can use commands like SAVE NETO_8, and LOAD NETI_3 to copy the basic program in
the emulator with network station number 5 to the emulator with network station number 8.

The following is an edited and updated extract from the Toolkit 2 manual (c) Tony Tebby
The IP Network Driver

Network Improvements

Each QL emulator connected to a network should have a unique 'station number' in the range 1
to 254. This is set using the NET_START command.

NET_START "IPaddress" or NET_START station number
Where "IPaddress" is the IP address of the network adapter to use

e.g. NET_START "192.168.0.5" In this case the 'station number' will be 5
The device names for the network are:

NETO_ primary station number_secondary station number
The primary station number, is the network station number you wish to send to.

The secondary station number is for use when accessing the IP Network Driver Router. If you
are not using the IP Network Driver Router, then ignore this parameter, it will default to 0.

For example
i SAVE neto_6 Save the program in memory to network
station 6
ii OPEN#4,neto_6 Open a channel to network station 6

i COPY flp1_fred TO neto_2 Copy a file on flp1_ to network station 2

When a network output channel is closed, then (as with the QL network driver) the network
driver will keep trying to send the last buffer for approximately 20 seconds in case the receiving
station is busy.

The IP Network driver will, after about 5 seconds, start checking for a BREAK.

NETI_primary station number_secondary station number_timeout
The primary station number, is the network station number you wish to receive from.
The secondary station number is for use when accessing the IP Network Driver Router. If you
are not using the IP Network Router, then it will default to 0, unless you are going to set a

station timeout. In which case it must be set to 0.

The timeout is the number of seconds (default 2 minutes) that NETI will wait for a connection
request before returning with a ‘Not Complete’ error.

The maximum timeout is 32767 seconds (about 9 hours). And a timeout of 0 is treated as wait
forever.

For example
i LOAD neti_4 Wait for up to 2 minutes to load a program
from network station 4
ii LOAD neti_4_0_30 Wait for up to 30 seconds to load a program

from network station 4
i COPY neti_1 TO ram1_test Copy a file from network station 1 to ram1_

NET_ADDS$ is a function that will return the IP Address entered in the NET_START command
for an external network, or the string, “127.0.0.1° for an internal network.

PRINT NET_ADD$ display the IP Address
NET_NUM is a function that will return the network station number.
PRINT NET_NUM display the network station number

NET_VERS is a function that returns the version number of the program, or the network type
(internal or external)

PRINT NET_VERS$ display the program version number
PRINT NET_VER$(1) display 0 for an external network, or
minus 1 for an internal network

File Servers

There are now two file servers available. The original FSERVE and the new NASERVE.

FSERVE allows free remote access to all of the servers devices and files, whereas NASERVE
provides access controls to the sharing of it's devices and files.

Usage of the two file servers is similar. The use of FSERVE will be described first, then the
added features of NASERVE will be described.

FSERVE

The file server provided in the IP Network device driver, is a program which allows 1/0
resources attached to one QL to be accessed from another QL. This means that, for example,
disk drives attached to just one QL can be accessed from several different QL’s. The file server
only needs to be running on the QL with the shared I/O resource. The I/O resources may be
pure serial devices (such as modems or printers) or windows on the QL display as well as file
system devices (such as disk drives).

FSERVE invokes the 'file server'
A client QL may only access up to 8 network file servers at any one time.
It is possible that files opened across the network may be left open. This can occur if a remote
QL is removed from the network, is turned off or is reset. To correct this condition, wait until all
other remote QLs have finished their operations on this QL, then remove the file server and

restart with the commands

RJOB SERVER
FSERVE

Alternatively abandoned Server child jobs (ServCH) can be removed with RJOB

Accessing the File Server

The network file servers are accessed from remote QL'’s using a compound device name:

Nstation number_lO device the name of a remote I/O device (e.g.
N2_FLP1_ is floppy 1 on network
station 2)

For example

LOAD n2_flp1_fred loads file 'fred' from floppy 1 on network
station 2

OPEN_IN #3,n1_flp2_myfile opens 'myfile’ on floppy 2 on network station 1

OPEN #3,n1_con_120x20a0x0 opens a 20 column 2 row window on net
station 2

The use of directory default names makes this rather simpler. For example
PROG_USE n1_win1_progs by default all programs will be loaded from

directory 'progs' on Winchester disk 1 on
network station 1

SPL_USE n1_ser set the default spooler destination to SER1 on
network station 1

Note: There is a problem in Toolkit 2 and SMSQ/E up to version 3.32, with the N8_ device.
If the Server is Network station 8, and on a remote station you try to do a directory of a
device on the server. e.g. DIR n8_flp1_

You will not receive a list of the files on flp1_, just the medium name and the sector
counts. The problem also affects all the wildcard commands like WCOPY and WSTAT.

The problem does not effect normal loading and saving, So LOAD n8_flp1_program
will operate correctly.

You can get around the problem with the NFS_USE command. for example
NFS_USE mdv,n8_flp1_

DIR mdv1_ will now give the directory of n8_flp1_
The station numbers for remote access devices are limited to network station numbers 1 to 8.
If the network station number of the file server is greater than 8. Use the MAP_N command to
re-map a N station number, to the required network station number.

For example

If the computer running FSERVE has an IP address of 192.168.0.150 so it's network
station number is 150.

A remote station cannot access a network station with n150_
Using MAP_N 1,150 will re-map the n1_ device to now access network station 150

There is a function MAP_LIST that allows you to interrogate the assignments made with the
MAP_N command. Using the above example.

PRINT MAP_LIST(1) returns 150

It is possible to hide the network from applications by setting a special name for a network file
server.

NFS_USE name, network names sets the network file server name

The 'network names' should be complete directory names, and up to eight network names may
be given in the command. Each one of these network names is associated with one of the eight
possible directory devices ('name'1 to 'name’8).

For example

NFS_USE mdv,n2_flp1_,n2_flp2_ sets the network file server name so that any
reference to 'mdv1' on this remote QL, will be
taken to be a reference flp1 on net station 2,
likewise 'mdv2' will be taken to be flp2 on net
station 2

OPEN_NEW #3,mdv2_fred now this will open file 'fred' on floppy 2 on
network station 2

The network names will normally just be a network number followed by a device name as above
and will end with an underscore to indicate that the name is a directory. Indeed if the network
file server name is to be used with the wild card file maintenance commands, this is the only
acceptable form. QUILL, however, tends to open a file with the name DEF_TMP on mdv2_.
Clearly, there will be problems if more than one copy of QUILL is run across the network at any
one time. This can be avoided if the network name for mdv2_ is set to be a directory:

NFS_USE mdv,n1_flp1_,n1_flp2_fred_
DEF_TMP opened on mdv2_ will now appear
in directory 'fred' on flp2_ on network station 1

FLP_USE FLP is invoked after reset so if FLP is to be used as the device name in the
NFS_USE command remember to include FLP_USE XXX.
This will stop the emulator from trying to access its own disk port instead of the network.

FLP_USE xyz set device name for floppies to xyz

NFS_USE flp,n1_flp1_,n1_flp2_ any reference to 'flp1' on this QL will access
flp1 on net station 1, etc.

NFS_USES$ is a function that will return the network file server name, and the network names
set using the NFS_USE command.

PRINT NFS_USE$(0) returns the network file server name

PRINT NFS_USE$(2) returns the second network name

NFS_SET is a command that allows you individually set the network names for NFS_USE
without having to reset all of them as with the NFS_USE command.

NFS_SET 2,n1_win1_ just sets the second network name without
Affecting the others

NFS_TYPE is a function that will return the type of file server that is running. If no file server is
running, it will return zero. For FSERVE it will return 1. And for NASERVE it will return minus 1

PRINT NFS_TYPE return the file server type

Messaging

The IP Network device driver network facilities may also be used for messaging. A window may
be opened, a message sent, and a reply read using a simple SuperBASIC program. If
particularly pretty messages are required, then the graphics facilities of SuperBASIC may also
be used. The only standard I/O facilities not available across the network are SD.EXTOP
(extended operations) and SD.FOUNT (setting the founts).

For example
ch = FOPEN (n2_con_150x10a0x0): CLS #ch
INPUT #ch,'Do you want coffee? ';rep$

IF 'y' INSTR rep$ =1 : PRINT 'Fred wants coffee’
CLS #ch: CLOSE #ch

10 1.15

NASERVE

While FSERVE allows all network stations full access to the devices and files on the file server.
NASERVE (Network Access SERVETr) will by default, block all other network stations access to
it's devices and files.

Devices and files on the Network Access Server must be specifically shared, either globally
across the network, or on an individual station by station basis.

Devices and files on the Network Access Server are shared using the NAS_SHARE command,
and unshared by the NAS_UNSHARE command. Additionally a list of the currently set shared
devices and files can be displayed with the NAS_SHARED command.

The NAS_SHARE command can have an additional parameter added to set a directory device,
a file, or a sub-directory as read only to the remote network stations.

While it is possible to flag non directory devices as read only, it does not always make sense
and should be avoided.

Care should be taken when entering a list of network shares, as NASERVE checks network
share requests in the order in which the NAS_SHARE commands were entered.

For example:

Suppose you want to share the file servers win1_shared_ directory with everyone, except for
network station 4, which will have read only access.

If you enter

NAS_SHARE 0,win1_shared_
NAS_SHARE 4,win1_shared_,1

This would allow network station 4 to write to win1_shared_ Because when NASERVE checks
the OPEN command from network station 4, it will first see the share 0,win1_shared_ . Network
station 4 comes under everyone, so it will allow network station 4 to write to win1_shared_

However if you enter:

NAS_SHARE 4,win1_shared_,1
NAS_SHARE 0,win1_shared_

Then NASERVE will first check the share 4,win1_shared_ which will match, and it will give
network station 4 the read only access required.

Note also that the DEV device could also cause possible problems.
If you enter

DEV_USE 6,ram1_
NAS_SHARE 2,ram1_,1
NAS_SHARE 0,ram1_
NAS_SHARE 0,dev6_

So that ram1_ is shared with full access to all stations, except station 2, which is read only.
However, station 2 will have full access to ram1_ via dev6_

You would need to add an extra NAS_SHARE to stop station 2 writing to dev6_

DEV_USE 6,ram1_
NAS_SHARE 2,ram1_,1
NAS_SHARE 0,ram1_
NAS_SHARE 2,dev6_,1
NAS_SHARE 0,dev6_

When using the Network Access Sever and the IP Network Driver Router, There is a compound
form of the NAS_SHARE command used. Where the share station number is 265 times the
Router station number, plus the station number on the other network that you wish to share
with.

NAS_SHARE 256*8+2,win1_

Share my win1_ with network station number 2, on the other network, which is accessed via the
Router station number 8.

The same applies to the NAS_UNSHARE command, and the following will remove the above
sharing.

NAS_UNSHARE 256*8+2,win1_

Note: IP Network Driver Router version 1.02 or above will be required for NAS_SHARE to
operate correctly.

When a remote network station tries to open a device or file. The order that NASERVE checks
the requested OPEN command against each of the share entries, is as follows:

1. The requesters station number, unless the share entries station number is 0

2. Compares the names

3. Checks the read only status
The only OPEN commands that NASERVE will allow through for a read only access device or

file, is OPEN_IN and OPEN_DIR

Operation of the FSERVE fileserver is unaffected, however FSERVE and NASERVE may not
be used at the same time. If you attempt to start one server type, while the other type is already
running, you will receive an ‘is in use’ error.

12 1.15

NET_START
FNET_START

The NET_START command is used to determine the type of network driver to use, and then
starts the driver. It set the IP address to be used and/or the network station number used by this
QL.

FNET_START is a function version of NET_START that returns zero, or an error code, without
stopping the running program.

NET_START should only be used once. Just after installing the driver. If you try to use the
command again, you will receive an ‘already exists’ error.

If an IP Address string is supplied, The driver will set itself up as an external Network to use the
Local Area Network of the computer. If a network station number is supplied, The driver will set
itself up as an internal Network, to network between multiple QL emulators on the same
computer.

syntax: ip_address := string_expression
station_number : = numeric_expression {1 to 254}

NET_START ip_address | station_number
FNET_START (ip_address | station_number)

example: i. NET_START “192.168.0.5”
i. NET_START 4
iii. result=FNET_START(2)

comment: All QL emulators on a Local Area Network must have the first three octets the same.
The network station number used, will be the last octet. In the first example, the
network station number of this QL will be will be 5

NET_RESTART
FNET_RESTART

The NET_RESTART command is used to re-assign the network station number/IP Address of
the driver after the NET_START command has been used. You can restart the driver as either
an internal, or external network. Using NET_RESTART will not effect any NFS_USE or MAP_N
settings which have previously been set up.

FNET_RESTART is a function version of NET_RESTART that returns zero, or an error code,
without stopping the running program.

syntax: ip_address := string_expression
station_number : = numeric_expression {1 to 254}

NET_RESTART (ip_address | station_number)
FNET_RESTART (ip_address | station_number)

example: i. NET_RESTART “192.168.0.5”
ii. NET_RESTART 4
iii. result=FNET_RESTART(2)

NET_ADD$
NET_ADDS$ is a function which returns the IP Address used by the IP Network device driver as
a string.

If the driver is operating in internal mode it will return the string ‘127.0.0.1°. If it is operating in
external mode, it will return the IP Address string entered in the NET_START command.

syntax: NET_ADDS$

example: PRINT NET_ADD$

NET_NUM

NET_NUM is a function which returns the network station number as an integer.

If the driver is operating in internal mode it will return the station number entered in the
NET_START command. If it is operating in external mode, it will return the last octet of the IP
Address string entered in the NET_START command.

syntax: NET_NUM

example: myStationNumber = NET_NUM

NET_VER$

NET_VERS is a function which returns a string, containing version information of the network
device driver.

NET_VERS$ with a parameter of 0 (default) returns the programs version number. With a
parameter of 1, it will return the current type of the network driver. 0 for an internal network, and
-1 for an external network.

syntax: type := numeric_expression {0 or 1}

NET_VERS [type]

example: version$ = NET_VERS$

FSERVE

The FSERVE command is used to start the file server.
syntax: FSERVE

example: FSERVE

NASERVE

The NASERVE command is used to start the share file server.

If you attempt to start NASERVE while FSERVE is already running, you will receive an
‘is in use’ error.

If FSERVE is running it may be stopped with a RJOB SERVER command
syntax: NASERVE

example: NASERVE

14 1.15

NAS_SHARE
FNAS_SHARE

The NAS_SHARE command is used to add a device or file to the list of shared resources.

A network station number defines the station that can use this device or file, Specifying a station
number of 0, shares the resource for all users.

An optional access type defines whether the device or file has read/write or read only access.
0 (the default) defines that the device or file has read/write access, and a positive number
defines the device or file has read only access.

Note that a read only protected device or file can only be accessed by an OPEN_IN or an
OPEN_DIR

If you just want to change a shared device or file access type, it is not necessary to unshare,
and then re-share the device or file again. Just share it again with the same network station
number and device/file name.

When using the Network Access Sever and the IP Network Driver Router, There is a compound
form of the NAS_SHARE command used. Where the share station number is 265 times the
Router station number, plus the station number on the other network that you wish to share
with.

FNAS_SHARE is a function version of NAS_SHARE that returns zero, or an error code, without
stopping the running program.

syntax: station_number := numeric_expression {0 to 254}
resource := device/file name
access_type := numeric_expression

NAS_SHARE station_number,resource,[access_type]
FNAS_SHARE (station_number,resource,[access_type])

example: i. NAS_SHARE 0,ram1_ {share ram1_ with everybody}
ii. NAS_SHARE 1,win1_shared_ {share win1_shared_ with net 1}
ii. NAS_SHARE 1,win1_shared_,1 {make win1_shared_ read only to net 1}
iv. NAS_SHARE 3,con_ {allow net 3 to open consoles}
v. NAS_SHARE 2,ser1 {allow net 2 use my ser1 port}
vi. result=FNAS_SHARE (2,flp1_) {allow net 2 to use my flp1_}
vii. NAS_SHARE 256*8+2,win1_ {share win1_ with net 2 via the Router 8}

Note: When NAS_SHARE is used. Entries are added in the order that they are supplied.
Unless you are changing the access type of an existing entry.

NAS_UNSHARE
FNAS_UNSHARE

The NAS_UNSHARE command will remove a shared device or file from the share list.
NAS_UNSHARE without parameters will remove all the shared permissions.

FNAS_UNSHARE is a function version of NAS_UNSHARE that returns zero, or an error code,
without stopping the running program.

syntax: station_number := numeric_expression {0 to 254}
resource := device/file name

NAS_UNSHARE station_number,resource
FNAS_UNSHARE (station_number,resource)

example: i. NAS_UNSHARE 1,win1_shared_ {stop sharing win1_shared_ with net 1}
ii. NAS_UNSHARE 0,ram1_ {stop sharing ram1_ with everybodys}
ii. NAS_UNSHARE {remove all shares}
iv. result=FNAS_UNSHARE(2,flp1_) {stop sharing flp1_ with net 2}
v. NAS_UNSHARE 256*8+2,win1_ {stop sharing win1_ with net 2 via the
Router 8}

Comment: Un-sharing a device or file which already has an open channel, will have no effect on
that connected channel as sharing rights are only tested during OPENSs.

NAS_SHARED

The NAS_SHARED command is used to display a list of the currently shared resources.

It will display a list in the format of Router station number, Network station number, Resource
name, Access type. Where the access type is 0 for read/write access, and 1 for read only
access.

An optional Basic channel number may be specified. With channel #1 being the default.
syntax: channel_number := numeric_expression

NAS_SHARED [#channel_number]

example: i. NAS_SHARED {send shared list to Basic channel 1}
ii. NAS_SHARED#2 {send shared list to Basic channel 2}

MAP_N

The MAP_N command is used to re-assign the network station number used by one of the 8 N
devices.

The comma separator may be replaced with TO to aid readability.

Using MAP_N without parameters will reset the assignments back to the default settings of the
N devices n1_ to use network station 1, n2_to use network station 2 etc.

syntax: Ndevice _number := numeric_expression {1 to 8}
station_number := numeric_expression {1 to 254}

MAP_N [Ndevice_number, station_number]

example: i. MAP_N 1,150 {n1_ will access network station 150}
i. MAP_N 3 TO 50
DIR n3_flp1_ {do a directory of flp1_ on network station 50}
ii. MAP_N {mappings reset to defaults}

16 1.15

MAP_LIST

MAP_LIST is a function that returns the station number associated to the re-assignments made
with the MAP_N command.

syntax: Ndevice _number := numeric_expression {110 8}

MAP_LIST (Ndevice_number)

example: i. PRINT MAP_LIST(1) {get station number associated with n1_}
i. MAP_N 3,50
PRINT MAP_LIST(3) {prints 50}
NFS_USE

The NFS_USE command sets the network file servers name, so that any reference to the
supplied 3 letter device name on this remote QL, will be taken to be a reference to one of the
supplied server devices.

The network names should be complete directory names, and up to eight network names may
be given in the command. Each one of these network names is associated with one of the eight
possible directory devices (name1_ to name8_).

syntax: name = 3 _letter_device _name
network_name = server_device

NFS_USE name, network_names {up to 8 network names}

example: i. NFS_USE mdv,n2_flp1_,n2_flp2_ {mdv1_ will reference n2_flp1_and
mdv2_ will reference n2_flp2_}
ii. NFS_USE mdv,n1_win1_,n2_flp1_,n1_ram1_
COPY mdv2_fred TO mdv3_fred {copy the file fred from flp1_ of server
2, to ram1_ of server 1}

comment: The network names will normally just be a network number followed by a device
name, and will end with an underscore to indicate that the name is a directory.
Indeed if the network file server name is to be used with the wild card file
maintenance commands, this is the only acceptable form. QUILL, however, tends to
open a file with the name DEF_TMP on mdv2_. Clearly, there will be problems if
more than one copy of QUILL is run across the network at any one time. This can be
avoided if the network name for mdv2__is set to be a directory:

NFS_USE mdv,n1_flp1_,n1_flp2_fred_

DEF_TMP opened on mdv2_ will now appear in directory 'fred' on flp2_ on network
station 1

NFS_USES$
NFS_USES$ is a function which returns the name, or the network names entered in a NFS_USE
command.

The entry number parameter determines which network name is returned, with entry number 0
being the NFS_USE name.

If the name, or the required network name is missing. NFS_USES$ will return an empty string.

syntax: entry_no := numeric_expression
NFS_USE$(entry_no) {0 -8}

example: i. PRINT NFS_USE$(0) {the NFS_USE name will be displayed}
ii. a$=NFS_USE(2) {a$ is set to the second network name}

comment: If the command NFS_USE mdv,n1_win1_,n2_flp1_,n1_ram1_ has been used, then
example (i) above will return ‘mdv’. And example (ii) will return ‘N2_flp1_".

NFS_SET

The NFS_SET command allows any of the eight network names set by the NFS_USE
command to be individually changed without having to reset all of the network names at the
same time with as with NFS_USE command.

syntax: entry_no := numeric_expression {1-28}
network_name := server_device

NFS_SET entry_no, network_name
example: NFS_SET 2,n2_flp2_ {change the second entry that was set with NFS_USE}

comment: If you wish to change the device name used by NFS_USE, just use the NFS_USE
command with one parameter e.g. NFS_USE nfa.

NFS_TYPE

NFS_TYPE is a function that will return the type of file server that is running.

If no file server is running, it will return zero. For FSERVE it will return 1. And for NASERVE it
will return minus 1

syntax: NFS_TYPE

example: PRINT NFS_TYPE

18 1.15

Alternate command and device names
Network Improvements

Each QL emulator connected to a network should have a unique 'station number' in the range 1
to 254. This is set using the INET_START command.

INET_START "IPaddress" or INET_START station number
Where "IPaddress" is the IP address of the network adapter to use

e.g. INET_START "192.168.0.5" In this case the 'station number' will be 5
The device names for the network are:

IPNO_ primary station number_secondary station number
The primary station number, is the network station number you wish to send to.

The secondary station number is for use when accessing the IP Network Driver Router. If you
are not using the IP Network Driver Router, then ignore this parameter, it will default to 0.

For example
i SAVE ipno_6 Save the program in memory to network
station 6
ii OPEN#4,ipno_6 Open a channel to network station 6

i COPY flp1_fred TO ipno_2 Copy a file on flp1_ to network station 2

When a network output channel is closed, then (as with the QL network driver) the network
driver will keep trying to send the last buffer for approximately 20 seconds in case the receiving
station is busy.

The IP Network driver will, after about 5 seconds, start checking for a BREAK.

IPNI_primary station number_secondary station number_timeout
The primary station number, is the network station number you wish to receive from.
The secondary station number is for use when accessing the IP Network Driver Router. If you
are not using the IP Network Router, then it will default to 0, unless you are going to set a

station timeout. In which case it must be set to 0.

The timeout is the number of seconds (default 2 minutes) that IPNI will wait for a connection
request before returning with a ‘Not Complete’ error.

The maximum timeout is 32767 seconds (about 9 hours). And a timeout of 0 is treated as wait
forever.

For example
i LOAD neti_4 Wait for up to 2 minutes to load a program
from network station 4
i LOAD neti_4_0_30 Wait for up to 30 seconds to load a program
from network station 4
i COPY neti_1 TO ram1_test Copy a file from network station 1 to ram1_

INET_ADDS$ is a function that will return the IP Address entered in the INET_START command
for an external network, or the string, “127.0.0.1° for an internal network.

PRINT INET_ADDS$ display the IP Address
INET_NUM is a function that will return the network station number.
PRINT INET_NUM display the network station number

INET_VERS$ is a function that returns the version number of the program, or the network type
(internal or external)

PRINT INET_VERS$ display the program version number
PRINT INET_VERS$(1) display 0 for an external network, or
minus 1 for an internal network

File Servers

There are now two file servers available. The original IFSERVE and the new INASERVE.

IFSERVE allows free remote access to all of the servers devices and files, whereas INASERVE
provides access controls to the sharing of it's devices and files.

Usage of the two file servers is similar. The use of IFSERVE will be described first, then the
added features of INASERVE will be described.

IFSERVE

The file server provided in the IP Network device driver, is a program which allows 1/0
resources attached to one QL to be accessed from another QL. This means that, for example,
disk drives attached to just one QL can be accessed from several different QL’s. The file server
only needs to be running on the QL with the shared I/O resource. The I/O resources may be
pure serial devices (such as modems or printers) or windows on the QL display as well as file
system devices (such as disk drives).

IFSERVE invokes the file server 'IPserv'
A client QL may only access up to 8 network file servers at any one time.
It is possible that files opened across the network may be left open. This can occur if a remote
QL is removed from the network, is turned off or is reset. To correct this condition, wait until all
other remote QLs have finished their operations on this QL, then remove the file server and

restart with the commands

RJOB IPserv
IFSERVE

Alternatively abandoned Server child jobs (ServCH) can be removed with RJOB

20 1.15

Accessing the File Server

The network file servers are accessed from remote QL'’s using a compound device name:

Istation number_IO device the name of a remote I/O device (e.g.
12_FLP1_ is floppy 1 on network
station 2)

For example

LOAD i2_flp1_fred loads file 'fred' from floppy 1 on network
station 2

OPEN_IN #3,i1_flp2_myfile opens 'myfile’ on floppy 2 on network station 1

OPEN #3,i1_con_120x20a0x0 opens a 20 column 2 row window on net
station 2

The use of directory default names makes this rather simpler. For example

PROG_USE i1_win1_progs by default all programs will be loaded from
directory 'progs' on Winchester disk 1 on
network station 1

SPL_USE i1_ser set the default spooler destination to SER1 on
network station 1

Note: There is a problem in Toolkit 2 and SMSQ/E up to version 3.32, with the 18_ device.
If the Server is Network station 8, and on a remote station you try to do a directory of a
device on the server. e.g. DIR i8_flp1_

You will not receive a list of the files on flp1_, just the medium name and the sector
counts. The problem also affects all the wildcard commands like WCOPY and WSTAT.

The problem does not effect normal loading and saving, So LOAD i8_flp1_program
will operate correctly.

You can get around the problem with the INFS_USE command. for example
INFS_USE mdv,i8_fip1_

DIR mdv1_ will now give the directory of i8_flp1_
The station numbers for remote access devices are limited to network station numbers 1 to 8.
If the network station number of the file server is greater than 8. Use the MAP_I command to re-
map a | station number, to the required network station number.
For example

If the computer running IFSERVE has an IP address of 192.168.0.150 so it's
network

station number is 150.

A remote station cannot access a network station with n150_

Using MAP_I 1,150 will re-map the i1_ device to now access network station 150

There is a function IMAP_LIST that allows you to interrogate the assignments made with the
MAP_I command. Using the above example.

PRINT IMAP_LIST(1) returns 150

It is possible to hide the network from applications by setting a special name for a network file
server.

INFS_USE name, network names sets the network file server name

The 'network names' should be complete directory names, and up to eight network names may
be given in the command. Each one of these network names is associated with one of the eight
possible directory devices ('name'1 to 'name’8).

For example

INFS_USE mdv,i2_flp1_,i2_flp2_ sets the network file server name so that any
reference to 'mdv1' on this remote QL, will be
taken to be a reference flp1 on net station 2,
likewise 'mdv2' will be taken to be flp2 on net
station 2

OPEN_NEW #3,mdv2_fred now this will open file 'fred' on floppy 2 on
network station 2

The network names will normally just be a network number followed by a device name as above
and will end with an underscore to indicate that the name is a directory. Indeed if the network
file server name is to be used with the wild card file maintenance commands, this is the only
acceptable form. QUILL, however, tends to open a file with the name DEF_TMP on mdv2_.
Clearly, there will be problems if more than one copy of QUILL is run across the network at any
one time. This can be avoided if the network name for mdv2_ is set to be a directory:

INFS_USE mdv,i1_flp1_,i1_flp2_fred_

DEF_TMP opened on mdv2_ will now appear
in directory 'fred' on flp2_ on network station 1

FLP_USE FLP is invoked after reset so if FLP is to be used as the device name in the

INFS_USE command remember to include FLP_USE XXX.

This will stop the emulator from trying to access its own disk port instead of the network.
FLP_USE xyz set device name for floppies to xyz

INFS_USE flp,i1_flp1_,i1_flp2_ any reference to 'flp1' on this QL will access
flp1 on net station 1, etc.

22 1.15

INFS_USES$ is a function that will return the network file server name, and the network names
set using the NFS_USE command.

PRINT INFS_USES$(0) returns the network file server name

PRINT INFS_USE$(2) returns the second network name

INFS_SET is a command that allows you individually set the network names for INFS_USE
without having to reset all of them as with the INFS_USE command.

INFS_SET 2,i1_win1_ just sets the second network name without
Affecting the others

INFS_TYPE is a function that will return the type of file server that is running. If no file server is
running, it will return zero. For IFSERVE it will return 1. And for INASERVE it will return minus 1

PRINT INFS_TYPE return the file server type

Messaging

The IP Network device driver network facilities may also be used for messaging. A window may
be opened, a message sent, and a reply read using a simple SuperBASIC program. If
particularly pretty messages are required, then the graphics facilities of SuperBASIC may also
be used. The only standard I/O facilities not available across the network are SD.EXTOP
(extended operations) and SD.FOUNT (setting the founts).

For example

ch = FOPEN (i2_con_150x10a0x0): CLS #ch
INPUT #ch,'Do you want coffee? ';rep$

IF 'y' INSTR rep$ =1 : PRINT 'Fred wants coffee’
CLS #ch: CLOSE #ch

INASERVE

While IFSERVE allows all network stations full access to the devices and files on the file server.
INASERVE (Network Access SERVETr) will by default, block all other network stations access to
it's devices and files.

Devices and files on the Network Access Server must be specifically shared, either globally
across the network, or on an individual station by station basis.

Devices and files on the Network Access Server are shared using the INAS_SHARE command,
and unshared by the INAS_UNSHARE command. Additionally a list of the currently set shared
devices and files can be displayed with the INAS_SHARED command.

The INAS_SHARE command can have an additional parameter added to set a directory device,
a file, or a sub-directory as read only to the remote network stations.

While it is possible to flag non directory devices as read only, it does not always make sense
and should be avoided.

Care should be taken when entering a list of network shares, as INASERVE checks network
share requests in the order in which the INAS_SHARE commands were entered.

For example:

Suppose you want to share the file servers win1_shared_ directory with everyone, except for
network station 4, which will have read only access.

If you enter

INAS_SHARE 0,win1_shared_
INAS_SHARE 4,win1_shared_,1

This would allow network station 4 to write to win1_shared_ Because when INASERVE checks
the OPEN command from network station 4, it will first see the share 0,win1_shared_ . Network
station 4 comes under everyone, so it will allow network station 4 to write to win1_shared_

However if you enter:

INAS_SHARE 4,win1_shared_,1
INAS_SHARE 0,win1_shared_

Then INASERVE will first check the share 4,win1_shared_ which will match, and it will give
network station 4 the read only access required.

Note also that the DEV device could also cause possible problems.
If you enter

DEV_USE 6,ram1_
INAS_SHARE 2,ram1_,1
INAS_SHARE 0,ram1_
INAS_SHARE 0,dev6_

So that ram1_ is shared with full access to all stations, except station 2, which is read only.
However, station 2 will have full access to ram1_ via dev6_

You would need to add an extra INAS_SHARE to stop station 2 writing to dev6_

DEV_USE 6,ram1_
INAS_SHARE 2,ram1_,1
INAS_SHARE 0,ram1_
INAS_SHARE 2,dev6_,1
INAS_SHARE 0,dev6_

24 1.15

When using the Network Access Sever and the IP Network Driver Router, There is a compound
form of the INAS_SHARE command used. Where the share station number is 265 times the
Router station number, plus the station number on the other network that you wish to share
with.

INAS_SHARE 256*8+2,win1_

Share my win1_ with network station number 2, on the other network, which is accessed via the
Router station number 8.

The same applies to the INAS_UNSHARE command, and the following will remove the above
sharing.

INAS_UNSHARE 256*8+2,win1_

Note: IP Network Driver Router version 1.02 or above will be required for INAS_SHARE to
operate correctly.

When a remote network station tries to open a device or file. The order that INASERVE checks
the requested OPEN command against each of the share entries, is as follows:

2. The requesters station number, unless the share entries station number is 0

2. Compares the names

3. Checks the read only status
The only OPEN commands that INASERVE will allow through for a read only access device or

file, is OPEN_IN and OPEN_DIR

Operation of the IFSERVE fileserver is unaffected, however IFSERVE and INASERVE may not
be used at the same time. If you attempt to start one server type, while the other type is already
running, you will receive an ‘is in use’ error.

INET_START
IFNET_START

The INET_START command is used to determine the type of network driver to use, and then
starts the driver. It set the IP address to be used and/or the network station number used by this
QL.

IFNET_START is a function version of INET_START that returns zero, or an error code, without
stopping the running program.

INET_START should only be used once. Just after installing the driver. If you try to use the
command again, you will receive an ‘already exists’ error.

If an IP Address string is supplied, The driver will set itself up as an external Network to use the
Local Area Network of the computer. If a network station number is supplied, The driver will set
itself up as an internal Network, to network between multiple QL emulators on the same
computer.

syntax: ip_address := string_expression
station_number : = numeric_expression {1 to 254}

INET_START ip_address | station_number
IFNET_START (ip_address | station_number)

example: i. INET_START “192.168.0.5”
i. INET_START 4
iii. result=IFNET_START(2)

comment: All QL emulators on a Local Area Network must have the first three octets the same.
The network station number used, will be the last octet. In the first example, the
network station number of this QL will be will be 5

INET_RESTART
IFNET_RESTART

The INET_RESTART command is used to re-assign the network station number/IP Address of

the driver after the INET_START command has been used. You can restart the driver as either
an internal, or external network. Using INET_RESTART will not effect any INFS_USE or MAP_I
settings which have previously been set up.

IFNET_RESTART is a function version of INET_RESTART that returns zero, or an error code,
without stopping the running program.

syntax: ip_address := string_expression
station_number : = numeric_expression {1 to 254}

INET_RESTART (ip_address | station_number)
IFNET_RESTART (ip_address | station_number)

example: i. INET_RESTART “192.168.0.5”

i. INET_RESTART 4
iii. result=IFNET_RESTART(2)

26 1.15

INET_ADDS$
INET_ADDS$ is a function which returns the IP Address used by the IP Network device driver as
a string.

If the driver is operating in internal mode it will return the string ‘127.0.0.1°. If it is operating in
external mode, it will return the IP Address string entered in the INET_START command.

syntax: INET_ADD$

example: PRINT INET_ADD$

INET_NUM

INET_NUM is a function which returns the network station number as an integer.

If the driver is operating in internal mode it will return the station number entered in the
INET_START command. If it is operating in external mode, it will return the last octet of the IP
Address string entered in the INET_START command.

syntax: INET_NUM

example: myStationNumber = INET_NUM

INET_VERS$

INET_VERS$ is a function which returns a string, containing version information of the network
device driver.

INET_VERS$ with a parameter of 0 (default) returns the programs version number. With a
parameter of 1, it will return the current type of the network driver. 0 for an internal network, and
-1 for an external network.

syntax: type := numeric_expression {0 or 1}

INET_VERS [type]

example: version$ = INET_VER$

IFSERVE

The IFSERVE command is used to start the file server.
syntax: IFSERVE

example: IFSERVE

INASERVE

The INASERVE command is used to start the share file server.

If you attempt to start INASERVE while IFSERVE is already running, you will receive an
‘is in use’ error.

If IFSERVE is running it may be stopped with a RJOB IPserv command
syntax: INASERVE

example: INASERVE

1.15 27

INAS_SHARE
IFNAS_SHARE

The INET_SHARE command is used to add a device or file to the list of shared resources.

A network station number defines the station that can use this device or file, Specifying a station
number of 0, shares the resource for all users.

An optional access type defines whether the device or file has read/write or read only access.
0 (the default) defines that the device or file has read/write access, and a positive number
defines the device or file has read only access.

Note that a read only protected device or file can only be accessed by an OPEN_IN or an
OPEN_DIR

If you just want to change a shared device or file access type, it is not necessary to unshare,
and then re-share the device or file again. Just share it again with the same network station
number and device/file name.

When using the Network Access Sever and the IP Network Driver Router, There is a compound
form of the INET_SHARE command used. Where the share station number is 265 times the
Router station number, plus the station number on the other network that you wish to share
with.

IFNAS_SHARE is a function version of INET_SHARE that returns zero, or an error code,
without stopping the running program.

syntax: station_number := numeric_expression {0 to 254}
resource := device/file name
access_type := numeric_expression

INET_SHARE station_number,resource,[access_type]
IFNAS_SHARE (station_number,resource,[access_type])

example: i. INET_SHARE 0,ram1_ {share ram1_ with everybody}
i. INET_SHARE 1,win1_shared_ {share win1_shared_ with net 1}
iii. INET_SHARE 1,win1_shared_,1 {make win1_shared_ read only to net 1}
iv. INET_SHARE 3,con_ {allow net 3 to open consoles}
v. INET_SHARE 2,ser1 {allow net 2 use my ser1 port}
vi. result=IFNAS_SHARE (2,flp1_) {allow net 2 to use my flp1_}
vii. INET_SHARE 256*8+2,win1_ {share win1_ with net 2 via the Router 8}

Note: When INET_SHARE is used. Entries are added in the order that they are supplied.
Unless you are changing the access type of an existing entry.

28 1.15

INAS_UNSHARE
IFNAS_UNSHARE

The INET_UNSHARE command will remove a shared device or file from the share list.
INET_UNSHARE without parameters will remove all the shared permissions.

IFNAS_UNSHARE is a function version of INET_UNSHARE that returns zero, or an error code,
without stopping the running program.

syntax: station_number := numeric_expression {0 to 254}
resource := device/file name

INET_UNSHARE station_number,resource
IFNAS_UNSHARE (station_number,resource)

example: i. INET_UNSHARE 1,win1_shared_ {stop sharing win1_shared_ with net 1}
ii. INET_UNSHARE 0,ram1_ {stop sharing ram1_ with everybodys}
ii. INET_UNSHARE {remove all shares}
iv. result=IFNAS_UNSHARE(2,flp1_) {stop sharing flp1_ with net 2}
v. INET_UNSHARE 256*8+2,win1_ {stop sharing win1_ with net 2 via the
Router 8}

Comment: Un-sharing a device or file which already has an open channel, will have no effect on
that connected channel as sharing rights are only tested during OPENSs.

INAS_SHARED

The INET_SHARED command is used to display a list of the currently shared resources.

It will display a list in the format of Router station number, Network station number, Resource
name, Access type. Where the access type is 0 for read/write access, and 1 for read only
access.

An optional Basic channel number may be specified. With channel #1 being the default.
syntax: channel_number := numeric_expression

INET_SHARED [#channel _number]

example: i. INET_SHARED {send shared list to Basic channel 1}
i. INET_SHARED#2 {send shared list to Basic channel 2}

MAP_|

The MAP_I command is used to re-assign the network station number used by one of the 8 |
devices.

The comma separator may be replaced with TO to aid readability.

Using MAP_I without parameters will reset the assignments back to the default settings of the |
devices i1_ to use network station 1, i2_to use network station 2 etc.

syntax: Idevice_number := numeric_expression {1 to 8}
station_number := numeric_expression {1 to 254}

MAP_I [/device_number, station_number]

example: i. MAP_I 1,150 {n1_ will access network station 150}
i. MAP_I3TO 50
DIR i3_flp1_ {do a directory of flp1_ on network station 50}
iii. MAP_I {mappings reset to defaults}

IMAP_LIST

IMAP_LIST is a function that returns the station number associated to the re-assignments made
with the MAP_I command.

syntax: Idevice_number := numeric_expression {110 8}

IMAP_LIST (Idevice_number)

example: i. PRINT IMAP_LIST(1) {get station number associated with n1_}
i. MAP_I 3,50
PRINT IMAP_LIST(3) {prints 50}
INFS_USE

The INFS_USE command sets the network file servers name, so that any reference to the
supplied 3 letter device name on this remote QL, will be taken to be a reference to one of the
supplied server devices.

The network names should be complete directory names, and up to eight network names may
be given in the command. Each one of these network names is associated with one of the eight
possible directory devices (name1_ to name8_).

syntax: name = 3 _letter_device _name
network_name = server_device

INFS_USE name, network_names {up to 8 network names}

example: i. INFS_USE mdv,i2_flp1_,i2_flp2_ {mdv1_ will reference n2_flp1_and
mdv2_ will reference n2_flp2_}
ii. INFS_USE mdv,i1_win1_,i2_flp1_,i1_ram1_
COPY mdv2_fred TO mdv3_fred {copy the file fred from flp1_ of server
2, to ram1_ of server 1}

comment: The network names will normally just be a network number followed by a device
name, and will end with an underscore to indicate that the name is a directory.
Indeed if the network file server name is to be used with the wild card file
maintenance commands, this is the only acceptable form. QUILL, however, tends to
open a file with the name DEF_TMP on mdv2_. Clearly, there will be problems if
more than one copy of QUILL is run across the network at any one time. This can be
avoided if the network name for mdv2__is set to be a directory:

INFS_USE mdv,i1_flp1_,i1_flp2_fred_

DEF_TMP opened on mdv2_ will now appear in directory 'fred' on flp2_ on network
station 1

30 1.15

INFS_USE$

INFS_USES$ is a function which returns the name, or the network names entered in a
INFS_USE command.

The entry number parameter determines which network name is returned, with entry number 0
being the INFS_USE name.

If the name, or the required network name is missing. INFS_USE$ will return an empty string.

syntax: entry_no := numeric_expression
INFS_USE$(entry_no) {0 -8}

example: i. PRINT INFS_USE$(0) {the INFS_USE name will be displayed}
ii. a$=INFS_USE(2) {a$ is set to the second network name}

comment: If the command INFS_USE mdv,i1_win1_,i2_flp1_,i1_ram1_ has been used, then
example (i) above will return ‘mdv’. And example (ii) will return ‘12_flp1_".

INFS_SET

The INFS_SET command allows any of the eight network names set by the INFS_USE
command to be individually changed without having to reset all of the network names at the
same time with as with INFS_USE command.

syntax: entry_no := numeric_expression {1-28}
network_name := server_device

INFS_SET entry_no, network_name
example: INFS_SET 2,n2_flp2_ {change the second entry that was set with INFS_USE}

comment: If you wish to change the device name used by INFS_USE, just use the INFS_USE
command with one parameter e.g. INFS_USE nfa.

INFS_TYPE

INFS_TYPE is a function that will return the type of file server that is running.

If no file server is running, it will return zero. For IFSERVE it will return 1. And for INASERVE it
will return minus 1

syntax: INFS_TYPE

example: PRINT INFS_TYPE

IP Network Protocols

The device driver uses the TCP protocol

The external device driver use two port numbers 7001 & 7002. While the internal driver uses
ports 53248 + station number & 53504 + station number.

Port 7001 & 53248 (plus station number) is used by the NETI_/ NETO_ device.
Port 7002 & 53504 (plus station number) is used by the remote file server, the Nx device.

Each data packet sent across the network is comprised of a header and a data block section.

The header is ten bytes long in the following format:

00 Packet length (2 bytes)
02 Destination station number
03 Sending station number
04 Block number (high byte)
05 Block number (low byte)
06 Block type (0 normal, 1=last block of file) NETI/O
(DO for a Trap call, 255=block request, 254=supplied block) Nx
07 Number of bytes in block (0 to 255) NETI/O
((0 to 255)*4) Nx

08 Final destination station number (NETO device Router)

Originator station number (Nx device with Router)
09 Originator station number (NETI device with Router)

If the number of bytes in a block is 0, 256 data bytes are actually sent.

IP Network Server Protocol

The IP Network server protocol is physically the same as the Standard QL protocol, but the
header has been slightly changed allow blocks of up to 1000 bytes to be sent. A server packet
can not be confused with a standard packet, as a different port number is used.

Acknowledgements

| would like to thank Urs Koenig, Wolfgang Lenerz and Giorgio Garabello for their suggestions,
advice, and help in the development and testing of IPNet, IPLocalNet and IPNet Router.

32 1.15

Copyright and Disclaimer

This driver should not cause any problems, damage, or loss of data. However by using this
device driver, you do so at your own risk, and | do not accept responsibility for any damage, or
loss of data.

Licence for SMSQ/E

Copyright (c) 1989-2012, by

Tony Tebby
Marcel Kilgus
Bruno Coativy
Fabrizio Diversi
Phoebus Dokos
Thierry Godefroy
Jérdbme Grimbert
George Gwilt
John Hall

Mark Swift

Per Witte
Wolfgang Lenerz

collectively called the "COPYRIGHT HOLDERS".
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Index

A
Acknowledgements...........cccceerircrenennieeneneenene, 32
Alternate command and device names.............. 19
Compatibility......c.cccvevvieierrieieriieienie e 3
Copyright and Disclaimer................cccoeeevennnen. 33
D
Driver configuration...........cccceeeveeieeiereenieenneenns 2
F
File Servers.....ooouiiviiveeiiiieee e 7,20
FSERVE.....ciiiiiiiieeee e 7
IFSERVE......oiiiiiiiieeeeee e 20
INASERVE......ooiiiiiieeeeeeeeeeeen 24
MESSAZING. ...cnveeneeeieeeeeieieeieee e 10, 23
NASERVE......oooiiiiiiiiieeeceeeeeeeee e 11
FNAS SHARE.......cccootiiiieineiieieieieieieneeen 15
FNAS UNSHARE........ccoovereieieieieiereereee 16
FNET RESTART.....oooveeeeeesereeeeseeeeereeens 13
FNET START...ooiiiiieieieeee e 13
FSERVE.....ooiiiiiiieeeeee e 14
G
Getting started...........oooeveeeinieiinieie e 5
|
IFNAS SHARE.....cooiiiiiteeeeeee, 28
IFNAS UNSHARE........ccooeiiieiecie e 29
IFNET _RESTART ..o 26
IENET _START....cocoviieieieieieieeee e 26
IFSERVE. ... 27
IMAP _LIST ..ot 30
INAS SHARE.......cooiiiiiiieieieeee e 28
INAS SHARED......cocctiiiiiiiieeeeeeee 29
INAS UNSHARE......cociiiiiiinteee e 29
INASERVE......ooiiiiiieeeeeee e 27
INET _ADDS ..ottt 27
INET NUM....ooiiiieieieieieteee e 27
INET _RESTART.....coooieieieieieieieeeee e 26
INET START....ccooiiiiiiiiieeceeeeee e 26
INET VERS.....cocioiiiiieeeeeeeeeeeevee e 27
INFS SET...ooiiiiiiieiee et 31
INFS TYPE. ..o 31
INFS USE...oiieieeeeeeeeeeee e 30
INFS _USES..cieeeeeeeeeeeeeeeee e 31
Installing the DIiver.........ccoccveevercveeeriieeriee e 3
IP Network Protocols...........ooeveeeeeeeeeeeeeeeeennnns 32
M
MAP Lottt 29
MAP _LIST....oooioiiiiieieeeeeeeeeeeeee e 17

34

MAP Nttt 16
N

NAS SHARE......ccooiiiiieeeceeeeeerees 15
NAS SHARED.......ccooivieicieieceeecee e 16
NAS UNSHARE......cccoiiiiiiriitreree e 16
NASERVE.....cooiiiieeee e 14
NET _ADDS ..ot 14
NET NUM...ooiiiiiiteiieeeeee e 14
NET RESTART.....ccoioieiiieeceeee e 13
NET START...ooiieieeteeee e 13
NET VERS....cooiiiiiieieceeeeeee e 14
NFS SET ..ottt 18
NFS TYPE...ciiiiiiiieeeeeeeeeeee 18
NFS USE. .ot 17
NFS USES....ooeieeeieieeeeeee e 18
T

The IP Network DIiver......cccceevevveivieeeiieieenennnn. 6
U

UsIng the DIIVeT.......coccvirinenenciciceceenecneee 4

1.15

35

