
IPBasic

This is a reference guide to IPBasic, Which is a S*Basic interface for the IP device driver by
Jonathan Hudson & Richard Zidlicky, as used in UQLX, QPC2, and Qemulator.

The IPBasic interface for the IP device drivers implements most of the functions provided in
Qlsocket v1.05 (a socket library for ‘C68’). And has been developed and mainly tested in QPC2.
I have highlighted areas where I have found differences between the implementations of the IP
device drivers between the different emulators.

Where the IP device driver system calls do not work in QPC2, I have tried to implement them.
But I have not been able to test them. So I cannot be sure that these IPBasic commands will
work correctly on other systems.

One of the main problems I encountered during my investigations into the IP device drivers, is
with UDP connections. In QPC2 they don’t always seem to work as expected, and I have never
been able to get the IP_SENDTO and IP_RECVFM functions to work, which are essential for
connectionless communications in UDP. Also Qemulator seems to have problems even opening
UDP sockets.

These problems may be due to me not understanding how to use them, or doing something
incorrectly.

Just about everything I know about using sockets, and the IP device drivers, I have picked up as
I have been playing with them. So don’t take anything I say in this document as gospel. I may
have got it all wrong!

The Keyword section gives a brief explanation of the keywords function, followed by a loose
definition of the syntax and examples of usage.

The Data Structure section details the IPBasic implementation of the data structures as used in
the IP device driver.

The Error code section is a list of ‘C’ error codes used in Linux. I don’t know how accurate they
are for the IP device driver.

Martin Head

Release V1.00

2 05/16

OPEN, FOPEN
OPEN_IN, FOP_IN
OPEN_NEW, FOP_NEW sockets
OPEN, OPEN_IN, and OPEN_NEW are used to open IP sockets and link them to SuperBASIC
channels.

Each of the three commands will open a socket of the specified type, and may also perform a
IP_CONNECT, or an IP_BIND operation.

OPEN just creates a socket of the requested type/protocol. A host & port not required.

OPEN_IN creates a socket of the requested type/protocol. It opens a connection for TCP, or
sets the peer address for UDP sockets by performing an IP_CONNECT operation. The Host
and Port must be specified.

OPEN_NEW creates a socket of the requested type/protocol. It opens a connection for TCP, or
sets host address for UDP sockets. And if a Host and Port are supplied, performs a IP_BIND
operation.

There are five new devices added to QDOS with the IP drivers, to provide network connections.

SCK A generic socket that can be used for accepting connections.
UDP A datagram socket for the Internet domain
TCP A stream socket for the Internet domain
UXD A datagram socket for the Unix domain
UXS A stream socket for the Unix domain

syntax: channel_number := numeric_expression
socket_type := SCK_ | UDP_ | TCP_ | UXD_ | UXS_
IP_address := IP Address in IPv4 numbers-and-dots notation
port := Integer between 0 and 65535
url := Internet Universal Resource Locator
IP_specifier := socket_type_IP_address:port | socket_type_url

OPEN#channel_number,socket_type
OPEN_IN#channel_number,IP_specifier
OPEN_NEW#channel_number,IP_specifier

FOPEN([#channel_number,]socket_type)
FOP_IN([#channel_number,]IP_specifier)
FOP_NEW([#channel_number,]IP_specifier)

example: i. OPEN#4,SCK_
 ii. OPEN_IN#5,”TCP_news.uni-stuttgart.de.nntp” {same as 129.69.1.59:119}

iii. OPEN_NEW#ch,”UDP_192.168.0.5:5800”

05/16 3

Note: I do not know the exact rules which govern whether or not the OPEN commands succeed
or fails for a given host and port. But here is a list made from my observations.

UDP

IP Address | OPEN | OPEN_IN | OPEN_NEW
0.0.0.0 | I X I | X X X | I X I
127.0.0.1 | I X I | I X I | I X I
127.0.0.10 | I X I | I X I | I X I
172.16.0.6 | I X I | X X I | X X I
172.16.0.10 | I X I | X X I | X X X
192.168.0.5 | I X I | X X X | X X X
255.255.255.255 | I X I | X X I | X X X

TCP

IP Address | OPEN | OPEN_IN | OPEN_NEW
0.0.0.0 | I I I | I I I | I X I
127.0.0.1 | I I I | I I I | I X I
127.0.0.10 | I I I | I I I | I X I
172.16.0.6 | I I I | I I I | X X I
172.16.0.10 | I I I | I I I | X X X
192.168.0.5 | I I I | I I I | X X X
255.255.255.255 | I I I | I I I | X X X

I = Succeed
X = Failed

Host IP address of the computer making the tests was 172.16.0.6,
Using port 5900.

First column (Black) QPC2, Not connected to a Network
Second column (Red) Qemulator, Not connected to a Network
Third column (Green) QPC2 connected to a Network with another

computer having an IP address of 172.16.0.10

Note the way UDP ports don’t seem to ever open in Qemulator, I don’t know if this is a problem
in Qemulator, or something I was doing wrong.
There are also discrepancies in TCP opens with OPEN_NEW

This is the program I used to obtain these results.

100 RESTORE
110 READ n
120 port$=":5900"
130 FOR x=1 TO n
140 READ ad$
150 ch=FOP_NEW("udp_" & ad$ & port$)
160 IF ch>0 THEN
170 PRINT ad$;" Opened OK"
180 CLOSE#ch
190 ELSE
200 PRINT ad$;" Not OK"
210 END IF
220 END FOR x
230 DATA 7,"0.0.0.0","127.0.0.1","127.0.0.10",

 "172.16.0.6"
240 DATA "172.16.0.10","192.168.0.5",

 "255.255.255.255"

Change line 150 for the required Open type, and Socket type.

4 05/16

IP_LISTEN sockets
IP_LISTEN will set the number of connect requests that are queued for IP_ACCEPT on a
socket that has been bound during open or explicitly with IP_BIND. Additional requests will not
be handled and clients receive a protocol specific error or retry will be initiated.

The IP_LISTEN call applies only to sockets of type TCP_ (stream sockets).

If you don't want to connect to a remote host. You must wait for incoming connections and
handle them in some way. The process is two step: first you use IP_LISTEN, then you use
IP_ACCEPT.

IP_BIND must be used before you can use IP_LISTEN so that the server is running on a
specific port.

The optional queue_size sets the size of the backlog queue, The default being 5.

syntax: channel_number := numeric_expression
queue_size := numeric_expression

IP_LISTEN#channel_number[,queue_size]

example: i. IP_LISTEN#4
 ii. IP_LISTEN#ch,7

IP_BIND sockets
IP_BIND is used to associate a local IP address and Port with a socket .

This is required on an unconnected TCP socket before subsequent use of the IP_LISTEN
command. It is normally used to bind to either connection-oriented (stream, TCP) or
connectionless (datagram UDP) sockets. IP_BIND may also be used to bind to a raw socket
(SCK_).

IP_BIND may also be used on an unconnected socket before subsequent calls to the
IP_CONNECT command before send operations.

Note – IP_BIND may fail if you use the real IP Address of the local host, when the computer is
not connected to a Network.

The optional family sets the address family, The default being 2 for Internet.

syntax: channel_number := numeric_expression
port := numeric_expression
IP_address := string_expression [in IPv4 numbers-and-dots notation]
family := numeric_expression

IP_BIND#channel_number,port,IP_address[,family]
IP_BIND#channel_number,sockAddr

example: i. IP_BIND#4,5800,”192.168.0.5”
 ii. IP_BIND#4,sa$
 iii. IP_BIND#ch,port,IPAdd$
 iv. IP_BIND#4,5800,”192.168.0.5”,2

05/16 5

IP_CONNECT sockets
IP_CONNECT is used to attempt to connect to another socket .

If the socket is of type UDP_ (Datagram), this command specifies the peer with which the
socket is to be associated; this address is that to which datagrams are to be sent, and the only
address from which datagrams are to be received.

If the socket is of type TCP_(Stream), this call attempts to make a connection to another socket.
That is waiting to accept a connection.

Generally, TCP stream sockets may successfully connect only once; UDP datagram sockets
may use IP_CONNECT multiple times to change their association. Datagram sockets may
dissolve the association by connecting to an invalid address, such as a null address.(0.0.0.0)

If IP_CONNECT finds no one is listening for a connection on the specified IP address and Port,
then IP_CONNECT will return with a QDOS ‘Transmission error’.

Note – On UDP connections, IP_CONNECT may fail if you use the anything other than IP
Address 127.0.0.x, when the computer is not connected to a Network. And when on a Network
only the local network IP Addresses, and 255.255.255.255

The optional family sets the address family, The default being 2 for Internet.

syntax: channel_number := numeric_expression
port := numeric_expression
IP_address := string_expression [in Ipv4 numbers-and-dots notation]
family := numeric_expression

IP_CONNECT#channel_number,port,IP_address[,family]
IP_CONNECT#channel_number,sockAddr

example: i. IP_ CONNECT #4,5800,”192.168.0.5”
 ii. IP_ CONNECT #4,sa$
 iii. IP_ CONNECT #ch,port,IPAdd$
 iv. IP_ CONNECT #4,5800,”192.168.0.5”,2

Note – In QPC2 with UDP channels. If OPEN is used then IP_CONNECT, you do not receive
any error, but trying to use IP_SEND will fail with an ‘End of File’ error. However if you use
OPEN_IN instead, then IP_SEND will work.

6 05/16

IP_ACCEPT sockets
The function IP_ACCEPT is used to accept TCP(stream) connection requests from the
specified channel number. And will return a new S*Basic channel number when a connection is
accepted.

The new S*Basic channel number should then be used for all further commands relating to this
connection.

IP_ACCEPT is used in the Server side of Client/Server connections.

The channel number argument is a socket that has been previously created with OPEN, bound
to an address with IP_BIND, and is listening with IP_LISTEN for connections.

The IP_ACCEPT function extracts the first connection request on the listening queue, of
pending connections, then creates a new S*Basic channel with the same properties as the
supplied channel number, and allocates a new channel number for the new socket.

IP_ACCEPT returns the error ‘Not Complete’ if there are no pending connection requests and
can't complete immediately. (See note 1 below)

To accept a new connection request IP_ACCEPT should be in a loop so that it is constantly
being called while it returns the QDOS error ‘Not Complete’ (-1).

When IP_ACCEPT, returns without error, (a non negative number) then a remote connection
has been has been accepted, and the returned value will be the channel number of the new
connection. That is the next free, S*Basic channel number starting from #3. (See note 2 below)

The new channel number may not be used to accept more connections. However the supplied
channel number argument remains open, and can be used to accept further connection
requests.

syntax: channel_number := numeric_expression

IP_ACCEPT(#channel_number)

example: i. ch=IP_ ACCEPT(#4)
 ii. ch=IP_ ACCEPT(#channel)

The following program sample will open a TCP socket, then wait for a connection.
When a successful connection is established, the variable ch will be the S*Basic channel
number of a newly created TCP channel.

100 OPEN#8,"TCP_"
110 IP_BIND#8,5800,"172.16.0.6"
120 IP_LISTEN#8
130 REPeat loop
140 ch=IP_ACCEPT(#8)
150 IF ch>0 THEN EXIT loop
160 IF ch<>-1 THEN
170 PRINT "Error during ACCEPT - ";
180 STOP
190 END IF
200 END REPeat loop

Note 1 – Qemulator does not return immediately with ‘Not Complete’. It waits until a connection
request arrives. This means that SuperBASIC will stop when it executes an IP_ACCEPT
command. And you will not be able to BREAK into the program. Also Qemulator tends to ‘hang’
with a ‘Not Responding’ error. The only way to regain control, is to send a connection request so
that IP_ACCEPT returns, or close Qemulator completely.

Note 2 – IP_ACCEPT will not extend the S*Basic channel table, and will return with an ‘Out of
Memory’ error if there is no more room in the table. To avoid this problem ensure there are
some unused channels. In the above example IP_ACCEPT will be able to choose from between
#3 to #7, and #9 to the end of the available channel table.

05/16 7

IP_FCNTL sockets
IP_FCTNL is used to perform operations on the open IP channel.

This function is typically used to do file locking and other file-oriented stuff, but it also has a
couple socket-related functions that you might see or use from time to time.

The value argument is the bitwise OR of zero, or more or the following commands.

4 O_NONBLOCK Set the socket to be non-blocking.

64 O_ASYNC Set the socket to do asynchronous I/O. When data is ready to be recv'd
on the socket, the signal SIGIO will be raised. This is rare to see, and beyond the scope of the
guide. And I think it's only available on certain systems.

syntax: channel_number := numeric_expression
value := numeric_expression

IP_FCNTL#channel_number,value

example: i. IP_ FCNTL#4,68 {set socket to be non-blocking and asynchronous}
ii. IP_ FCNTL#4,0 {reset socket}

Note 1 –In QPC2 this function gives a ‘Not Implemented’ error. I have included the function in
case it is implemented in other emulators. However I have not been able to test the function, So
I don’t know if it will work.

Note 2 – To quote Richard Zidlicky “An awful hack for now don't use it unless you have to.”

IP_SHUTDWN sockets
IP_SHUTDWN is used to shut down all or part of a full-duplex connection on the socket
associated with channel number.

The supplied argument determines which receptions, or transmissions will be disallowed.

0 Disable receive
1 Disable send
2 Disable send and receive

syntax: channel_number := numeric_expression
how := numeric_expression

IP_SHUTDWN#channel_number,how

example: IP_ SHUTDWN#4,1 {shut down send}

Note – In QPC2, returns QDOS error ‘End of file’. IP error 57, ‘Invalid slot’

I have included the function in case it is implemented in other emulators. However I have not
been able to test the function, So I don’t know if it will work.

8 05/16

IP_SEND sockets
The function IP_SEND is used to send a message, or an area of memory to another socket.

IP_SEND may be used only when the socket is in a connected state (so that the intended
recipient is known).

IP_SEND differs from PRINT in that it is message oriented and allows sending of packets longer
than 32k.

It returns the length sent of the message on successful completion. The message is found in the
buffer at the start address and has a size of length.

If the message is too long to pass atomically through the underlying protocol, the IP error
EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a
QDOS error return.

The optional flag argument is the bitwise OR of zero or more of the following flags.

1 MSG_OOB Sends out-of-band data on sockets that support this notion
(e.g., of type TCP (SOCK_STREAM)); the underlying protocol must also support out-of-band
data.

4 MSG_DONTROUTE Don't use a gateway to send out the packet, send to hosts only
on directly connected networks. This is only usually used by diagnostic or routing programs.
This is defined only for protocol families that route; packet sockets don't.

The default value of flag is 0 (none).

syntax: channel_number := numeric_expression
start_address := numeric_expression
length := numeric_expression
flag := numeric_expression

IP_SEND(#channel_number,start_address,length[,flag])

example: i. sent = IP_SEND(#4,start,length)
ii. sent = IP_SEND(#ch,start,length,4) {flag MSG_DONOTROUTE}

05/16 9

IP_SENDTO sockets
The function IP_SENDTO is used to send a message, or an area of memory to another socket.

IP_SENDTO is used to transmit a message to an unconnected Datagram (UDP) socket.

If IP_SENDTO is used on a connection-mode (TCP stream) socket, the sockAddr string is
ignored, and IP errors may occur.

The target for the IP_SENDTO function is defined in the sockAddr string (which must be
supplied), and which must be 16 bytes long.

When the message does not fit into the send buffer of the socket, IP_SENDTO normally blocks,
unless the socket has been placed in non-blocking I/O mode. In non-blocking mode it would fail
with the IP error EAGAIN or EWOULDBLOCK in this case.

It returns the length sent of the message on successful completion. The message is found in the
buffer at the start address and has a size of length.

If the message is too long to pass atomically through the underlying protocol, the IP error
EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a
QDOS error return.

The optional flag argument is the bitwise OR of zero or more of the following flags.

1 MSG_OOB Sends out-of-band data on sockets that support this notion
(e.g., of type TCP (SOCK_STREAM)); the underlying protocol must also support out-of-band
data.

4 MSG_DONTROUTE Don't use a gateway to send out the packet, send to hosts only
on directly connected networks. This is only usually used by diagnostic or routing programs.
This is defined only for protocol families that route; packet sockets don't.

The default value of flag is 0 (none).

syntax: channel_number := numeric_expression
start_address := numeric_expression
length := numeric_expression
socket_address := string_expressione
flag := numeric_expression

IP_SENDTO(#channel_number,start_address,length,socket_addresss[,flag])

example: i. sent = IP_SENDTO(#4,start,length,sa$)
ii. sent = IP_SENDTO(#ch,start,length,sa$,4) {flag MSG_DONOTROUTE}

Note – I have never been able to get IP_SENDTO to work in QPC2. It returns the QDOS error
‘Bad parameter’, IP error 14 ‘Bad Address’.

I have included the function in case it is implemented in other emulators. However I have not
been able to test the function, So I don’t know if it will work.

10 05/16

IP_RECV sockets
The function IP_RECV is used to receive messages from a socket.

It is used to receive data on both connectionless (UDP) and connection-oriented (TCP) sockets.

IP_RECV differs from INPUT in that it is message oriented and allows receving of packets
longer than 32k.

It returns the length of the message on successful completion. If a message is too long to fit in
the supplied buffer, excess bytes may be discarded depending on the type of socket the
message is received from.

If no messages are available at the socket, IP_RECV waits for a message to arrive, unless the
socket is nonblocking (see IP_FCNTL), in which case the value -1 is returned and the external
variable from IP_ERRNO is set to EAGAIN or EWOULDBLOCK. The receive calls normally
return any data available, up to the requested amount, rather than waiting for receipt of the full
amount requested.

The flags argument is the bitwise OR of zero or more of the following flags.

1 MSG_OOB Request receipt of out-of-band data that would not be received in the normal
data stream. Some protocols place expedited data at the head of the normal data queue,
and thus this flag cannot be used with such protocols.

2 MSG_PEEK Cause the receive operation to return data from the beginning of the receive
queue without removing that data from the queue. Thus, a subsequent receive call will return
the same data.

64 MSG_WAITALL Request that the operation block until the full request is satisfied.
However, the call may still return less data than requested if a signal is caught, an error or
disconnect occurs, or the next data to be received is of a different type than that returned.

The default value of flag is 0 (none).

syntax: channel_number := numeric_expression
start_address := numeric_expression
buffer_size := numeric_expression
flag := numeric_expression

IP_RECV(#channel_number,start_address,buffer_size[,flag])

example: i. got = IP_RECV(#4,start,length)
ii. got = IP_RECV(#ch,start,length,2) {flag MSG_PEEK}

05/16 11

IP_RECVFM sockets
The function IP_RECVFM is used to receive messages from a socket.

It is used to receive data on both connectionless (UDP) and connection-oriented (TCP) sockets.

On a successful completion, the sender details are placed in the sockAddr string (which must be
supplied), and which must be 16 bytes long.

The function returns the length of the message on successful completion. If a message is too
long to fit in the supplied buffer, excess bytes may be discarded depending on the type of
socket the message is received from.

If no messages are available at the socket, IP_RECVFM waits for a message to arrive, unless
the socket is nonblocking (see IP_FCNTL), in which case the value -1 is returned and the
external variable from IP_ERRNO is set to EAGAIN or EWOULDBLOCK. The receive calls
normally return any data available, up to the requested amount, rather than waiting for receipt of
the full amount requested.

The flags argument is the bitwise OR of zero or more of the following flags.

1 MSG_OOB Request receipt of out-of-band data that would not be received in the normal
data stream. Some protocols place expedited data at the head of the normal data queue,
and thus this flag cannot be used with such protocols.

2 MSG_PEEK Cause the receive operation to return data from the beginning of the receive
queue without removing that data from the queue. Thus, a subsequent receive call will return
the same data.

64 MSG_WAITALL Request that the operation block until the full request is satisfied.
However, the call may still return less data than requested if a signal is caught, an error or
disconnect occurs, or the next data to be received is of a different type than that returned.

The default value of flag is 0 (none).

syntax: channel_number := numeric_expression
start_address := numeric_expression
buffer_size := numeric_expression
socket_address := string_variable
flag := numeric_expression

IP_RECVFM(#channel_number,start_address,buffer_size,socket_address[,flag])

example: i. got = IP_RECVFM(#4,start,length,sa$)
ii. got = IP_RECVFM(#ch,start,length,sa$,2) {flag MSG_PEEK}

Note 1 – socket_address must be a string variable.

Note 2 – I have never been able to get IP_RECVFM to work in QPC2. It returns the QDOS error
‘Bad parameter’, IP error 14 ‘Bad Address’.

I have included the function in case it is implemented in other emulators. However I have not
been able to test the function, So I don’t know if it will work.

12 05/16

IP_GETHOSTNAME$ sockets
The function IP_GETHOSTNAME$ will return a string containing the name of the host computer
that your program is running on.

The name can then be used by IP_GETHOSTBYNAME to determine the IP address of your
local machine.

syntax: IP_GETHOSTNAME$

example: i. PRINT = IP_GETHOSTNAME$ {prints something like ‘p4-main-system’}
ii. name$ = IP_GETHOSTNAME$

Note If this command is used in a daughter, sBasic job in QPC2. It will fail with a ‘Bad
parameter’ error.

IP_GETSOCKNAME$ sockets
The function IP_GETSOCKNAME$ will return a Socket Address structure as a string.

This structure will contain the current IP address and port to which the sockets channel number
is bound to. The optional length argument should be set to indicate the size of the Socket
Address to return. The default value being 16 characters.

The returned Socket Address structure is truncated if the supplied length argument is too small.

syntax: channel_number := numeric_expression
length := numeric_expression

IP_GETSOCKNAME$(#channel_number[,length])

example: sa$ = IP_GETSOCKNAME$(#4)

Note In Qemulator this function gives a ‘Not Implemented’ error.

IP_GETPEERNAME$ sockets
The function IP_GETPEERNAME$ will return a Socket Address structure as a string.

This structure will contain the current IP address and port to which the sockets channel number
is connected to (the peer). The optional length argument should be set to indicate the size of the
Socket Address to return. The default value being 16 characters.

The returned Socket Address structure is truncated if the supplied length argument is too small.

Once you have either IP_ACCEPTed a remote connection, or IP_CONNECTed to a server, you
now have what is known as a peer. The peer is simply the computer you're connected to,
identified by an IP address and a port. So...

IP_GETPEERNAME$ simply returns a sockaddr structure filled with information about the
machine you're connected to.

syntax: channel_number := numeric_expression
length := numeric_expression

IP_GETPEERNAME$(#channel_number[,length])

example: sa$ = IP_GETPEERNAME$(#4)

Note If no Peer exists, IP_GETPEERNAME$ returns the QDOS error ‘End of file’.
In Qemulator this function gives a ‘Not Implemented’ error.

05/16 13

IP_GETHOSTBYNAME$ sockets
The function IP_GETHOSTBYNAME$ will return a Host Entry structure as a string, for the
supplied host name.

The host name is either a hostname (e.g. “Tower-System”, or “www.google.com”), or an IPv4
address in standard dot notation.

If the host name is an IPv4 address, no lookup is performed and IP_GETHOSTBYNAME$
simply copies name into the hostent’s Name field and its struct in_addr equivalent into the
hostent’s Addrlist field.

IP_GETHOSTBYNAME$ and IP_GETHOSTBYADDR$ map back and forth between host
names and IP addresses. For instance, if you have "www.example.com", you can use
IP_GETHOSTBYNAME$ to get its IP address.

IP_GETHOSTBYNAME$ takes a string like "www.yahoo.com", and returns a hostent string
which contains information, including the IP address. (Other information is the official host
name, a list of aliases, the address type, the length of the addresses, and the list of addresses.)

syntax: host_name := string_expression
IP_address := string_expression

IP_GETHOSTBYNAME$(host_name)
IP_GETHOSTBYNAME$(IP_address)

example: i. hostEnt$ = IP_GETHOSTBYNAME$(“www.yahoo.com”)
ii. hostEnt$ = IP_GETHOSTBYNAME$(“134.16.0.15”)
iii. hostEnt$ = IP_GETHOSTBYNAME$(“Tower-System”)

Note This function may crash Qemulator.

IP_GETHOSTBYADDR$ sockets
The function IP_GETHOSTBYADDR$ will return a Host Entry structure as a string, for the
supplied Ipv4 Address in Network byte order.

The optional type argument should be set to indicate the address type. The default being 2, for
Internet.

IP_GETHOSTBYADDR$ and IP_GETHOSTBYNAME$ map back and forth between host
names and IP addresses.

syntax: IP_address := numeric_expression
type := numeric_expression

IP_GETHOSTBYADDR$(IP_address[,type])

example: i. hostEnt$ = IP_GETHOSTBYNAME$($C0A80005) {192.168.0.5 in
 Network byte order}

ii. hostEnt$ = IP_GETHOSTBYNAME$(ip,2)

Note In Qemulator this function gives a ‘Not Implemented’ error.

14 05/16

IP_GETNETBYNAME$ sockets
The function IP_GETNETBYNAME$ will return a Net Entry structure from the database as a
string, for the supplied network name.

syntax: network_name := string_expression

IP_GETNETBYNAME$(network_name)

example: netEnt$ = IP_GETNETBYNAME$(“loopback”)

NOTE: In QPC2 and Qemulator, this function gives a ‘Not Implemented’ error. I have included
the function in case it is implemented in other emulators. However I have not been able to test
the function, So I don’t know if it will work.

IP_GETNETBYADDR$ sockets
The function IP_GETNETBYADDR$ will return a Net Entry structure from the database as a
string, for the supplied network number in Network byte order.

The optional type argument should be set to indicate the address type. The default being 2, for
Internet.

syntax: IP_address := numeric_expression
type := numeric_expression

IP_GETNETBYADDR$(IP_address[,type])

example: i. netEnt$ = IP_GETNETBYADDR$($C0A80000) {192.168.0.x in
 Network byte order}

ii. netEnt$ = IP_GETNETBYADDR$(ip,2)

NOTE: In QPC2 and Qemulator, this function gives a ‘Not Implemented’ error

IP_GETPROTOBYNAME$ sockets
The function IP_GETPROTOBYNAME$ will return a Protocol Entry structure from the database
as a string, for the supplied protocol name.

The Protocol Entry string will contain information (including it’s protocol number) on the supplied
protocol name.

A connection is opened to the database if necessary.

syntax: protocol_name := string_expression

IP_GETPROTOBYNAME$(protocol_name)

example: netEnt$ = IP_GETPROTOBYNAME$(“tcp”) {tcp is protocol number 6}

Note In Qemulator this function gives a ‘Not Implemented’ error.

05/16 15

IP_GETPROTOBYNUMBER$ sockets
The function IP_GETPROTOBYNUMBER$ will return a Protocol Entry structure from the
database as a string, for the supplied protocol number.

The Protocol Entry string will contain information (including it’s protocol name) on the supplied
protocol number.

A connection is opened to the database if necessary.

syntax: protocol_number := numeric_expression

IP_GETPROTOBYNUMBER$(protocol_number)

example: netEnt$ = IP_GETPROTOBYNUMBER$(6) {tcp is protocol number 6}

Note In Qemulator this function gives a ‘Not Implemented’ error.

IP_GETSERVBYNAME$ sockets
The function IP_GETSERVBYNAME$ will return a Server Entry structure from the database as
a string, for the supplied protocol name.

The Server Entry string will contain information (including it’s port number and protocol) on the
supplied server name.

A connection is opened to the database if necessary.

syntax: server_name := string_expression
protocol := string_expression

IP_GETSERVBYNAME$(server_name[,protocol])

example: i. servEnt$ = IP_GETSERVBYNAME$(“pop3”) {pop3 is the server name for
port 110, with TCP protocol}

ii. servEnt$ = IP_GETSERVBYNAME$(“http”,”tcp”)

Note In QPC2 this function gives a ‘Bad Parameter’ error. And in Qemulator a ‘Error in
Expression’ error.

IP_GETSERVBYPORT$ sockets
The function IP_GETSERVBYPORT$ will return a Server Entry structure from the database as
a string, for the supplied port number.

The Server Entry string will contain information (including it’s port number and protocol) on the
supplied server name.

A connection is opened to the database if necessary.

syntax: port_number := numeric_expression
protocol := string_expression

IP_GETSERVBYPORT$(protocol_number[,protocol])

example: i. servEnt$ = IP_GETSERVBYPORT$(110) {pop3 is the server name for
port 110, with TCP protocol}

ii. servEnt$ = IP_GETSERVBYPORT$(80,”tcp”)

Note In QPC2 this function gives a ‘Bad Parameter’ error. And in Qemulator a ‘Not
Implemented’ error.

16 05/16

IP_INET_ATON internet
The function IP_INET_ATON will convert an IPv4, IP Address string in dots and numbers format
into a number in network byte order.

The IP Address supplied in can have one of the following forms:

a.b.c.d Each of the four numeric parts specifies a byte of the
 address; the bytes are assigned in left-to-right order to
 produce the binary address.

a.b.c Parts a and b specify the first two bytes of the binary address.
 Part c is interpreted as a 16-bit value that defines the
 rightmost two bytes of the binary address. This notation is
 suitable for specifying (outmoded) Class B network
 addresses.

a.b Part a specifies the first byte of the binary address. Part b is
 interpreted as a 24-bit value that defines the rightmost three
 bytes of the binary address. This notation is suitable for
 specifying (outmoded) Class A network addresses.

a The value a is interpreted as a 32-bit value that is stored
 directly into the binary address without any byte
 rearrangement.

In all of the above forms, components of the dotted address can be specified in decimal, octal
(with a leading 0), or hexadecimal, with a leading 0X). Addresses in any of these forms are
collectively termed IPV4 numbers-and-dots notation. The form that uses exactly four decimal
numbers is referred to as IPv4 dotted-decimal notation (or sometimes: IPv4 dotted-quad
notation).

syntax: IP_address := string_expression

IP_INET_ATON(IP_address)

example: i. address = IP_INET_ATON(“192.168.0.5”)
ii. address = IP_INET_ATON(“192.168.5”)
iii. address = IP_INET_ATON(“192.11010053”)
iv. address = IP_INET_ATON(“3232235525”)

comment: The above four examples are all the same, showing the four formats.

Note In Qemulator this function gives a ‘Not Implemented’ error.

IP_INET_NETWORK internet
The function IP_INET_NETWORK will convert an IPv4, IP Address string in dots and numbers
format into a number in network byte order.

syntax: IP_address := string_expression

IP_INET_NETWORK(IP_address)

example: address = IP_INET_NETWORK(“192.168.0.5”)

Note In Qemulator this function may return an incorrect address.

05/16 17

IP_INET_NTOA$ internet
The function IP_INET_NTOA$ will convert an IP Address in network byte order, to a string in
dots and numbers format.

syntax: IP_address := numeric_expression

IP_INET_NTOA$(IP_address)

example: address$ = IP_INET_NTOA$($C0A80005)

Note In Qemulator this function gives a ‘Not Implemented’ error.

IP_INET_MAKEADDR internet
The function IP_INETMAKEADDR will return an Internet host address in network byte order,
created by combining the network number with the local address host, both in host byte order.

The host address is the computer number, and the network is the number of the network that
the computer is on. e.g. a computer with an IP Address of 192.168.0.12 would be computer 12
on the 192.168.0 network.

The exact split, between the network, and the host is determined by the sub-net mask

The IP_INET_MAKEADDR function is the converse of IP_INET_NETOF and IP_INET_LNAOF.

This is a legacy functions that assume they are dealing with classful network addresses.
Classful networking divides IPv4 network addresses into host and network components at byte
boundaries, as follows:

Class A This address type is indicated by the value 0 in the most significant bit of the (network
 byte ordered) address. The network address is contained in the most significant byte,

 and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in the most significant two bits of
 the address. The network address is contained in the two most significant bytes, and

 the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in the most significant three bits
 of the address. The network address is contained in the three most significant bytes,

 and the host address occupies the remaining byte.

syntax: network_number := numeric_expression
host_number := numeric_expression

IP_INET_MAKEADDR(network_number,host_number)

example: address = IP_INET_MAKEADDR($C0A80000,$0000000C)

comment: $C0A80000 is equivalent to the 192.168.0 and $0000000C is equivalent to the 12

Note In QPC2 and Qemulator, this function gives a ‘Not Implemented’ error.

18 05/16

IP_INET_LNAOF internet
The function IP_INET_LNAOF will return the host address part of the Internet address supplied
in network byte order.

This is a legacy functions that assume they are dealing with classful network addresses.
Classful networking divides IPv4 network addresses into host and network components at byte
boundaries, as follows:

Class A This address type is indicated by the value 0 in the most significant bit of the (network
 byte ordered) address. The network address is contained in the most significant byte,

 and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in the most significant two bits of
 the address. The network address is contained in the two most significant bytes, and

 the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in the most significant three bits
 of the address. The network address is contained in the three most significant bytes,

 and the host address occupies the remaining byte.

syntax: IP_address := numeric_expression

IP_INET_LNAOF(IP_address)

example: address = IP_INET_LNAOF($C0A8000C) {will return 12 ($C)}

Note In QPC2 and Qemulator, this function gives a ‘Not Implemented’ error.

IP_INET_NETOF internet
The function IP_INET_NETOF will return the network number part of the internet address
supplied in network byte order.

This is a legacy functions that assume they are dealing with classful network addresses.
Classful networking divides IPv4 network addresses into host and network components at byte
boundaries, as follows:

Class A This address type is indicated by the value 0 in the most significant bit of the (network
 byte ordered) address. The network address is contained in the most significant byte,

 and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in the most significant two bits of
 the address. The network address is contained in the two most significant bytes, and

 the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in the most significant three bits
 of the address. The network address is contained in the three most significant bytes,

 and the host address occupies the remaining byte.

syntax: IP_address := numeric_expression

IP_INET_NETOF(IP_address)

example: address = IP_INET_NETOF($C0A8000C) {will return 3232235520 ($C0A80000)}

Note In QPC2 and Qemulator, this function gives a ‘Not Implemented’ error.

05/16 19

IP_GETDOMAIN$ hosts
The function IP_GETDOMAIN$ will return as a string, the domain name of the host system.

If the domain name is longer than 64 bytes, it will be truncated to 64 bytes.

syntax: IP_GETDOMAIN$

example: domain$ = IP_GETDOMAIN$

Note In QPC2 this function returns the string ‘unsupported’. And in Qemulator a ‘Not
Implemented’ error.

IP_H_STRERROR$ hosts
The function IP_H_STRERROR$ will return a string that describes the error code passed in the
supplied error number argument. (For example, if the IP error number is 22 (EINVAL), the
returned description will be "Invalid argument".)

If the error description is longer than 64 bytes, it will be truncated to 64 bytes.

syntax: error_number := numeric_expression

IP_H_STRERROR$(error_number)

example: i. errnName$ = IP_H_STRERROR$(22) {22 is IP error Invalid Argument}
ii. errnName$ = IP_H_STRERROR$(IP_ERRNO(#ch))

Note In QPC2 I have only ever seen this function return the string ‘Unknown error’.
In Qemulator this function gives a ‘Not Implemented’ error. I have included the function in case it
is implemented correctly in other emulators. See IPERROR$

IPERROR$ hosts
The function IPERROR$ will return a string that describes the error code passed in the supplied
error number argument. Using the list of Linux error codes in the Error code section.

This function is intended as a replacement for IP_H_STRERROR$ when it does not work.

syntax: error_number := numeric_expression

IPERROR$(error_number)

example: i. errnName$ = IPERROR$(22) {22 is IP error Invalid Argument}
ii. errnName$ = IPERROR$(IP_ERRNO(#ch))

20 05/16

IP_ERRNO hosts
The function IP_ERRNO will return the last IP error number to occur. (not a QDOS error
number)

The optional channel number should be the channel number that was used by the IPBasic
command which failed.

syntax: channel_number := numeric_expression

IP_ERRNO([#channel_number])

example: i. errno = IP_ERRNO(#4)
ii. errno = IP_ERRNO

comment: When one of the IP_ commands, which do not require a channel number,
encounters an error. The error is stored, and IP_ERRNO picks that up when a channel number
is not supplied.

SA_MAKE$ data structures
The function SA_MAKE$ will return a 16 byte socket address string.

The optional family argument will default to 2 for Internet.

syntax: port := numeric_expression
IP_address := numeric_expression

 := string_expression [in Ipv4 numbers-and-dots notation]
family := numeric_expression

SA_MAKE$(port,IP_address[,family])

example: i. sa$ = SA_MAKE(5800,$C0A80005) {192.168.0.5 in network byte order}
ii. sa$ = SA_MAKE(5800,”192.168.0.5”)
iii. sa$ = SA_MAKE(5800,”192.168.0.5”,2)

SA_PORT data structures
The function SA_PORT will return the port number from the supplied 16 byte socket address
string.

syntax: sockAddr := string_expression

SA_PORT(sockAddr)

example: port = SA_PORT(sa$)

SA_FAMILY data structures
The function SA_FAMILY will return the family number from the supplied 16 byte socket
address string.

syntax: sockAddr := string_expression

SA_FAMILY(sockAddr)

example: family = SA_FAMILY(sa$)

05/16 21

SA_IPADDR data structures
The function SA_IPADDR will return the IP address in network byte order, from the supplied 16
byte socket address string.

syntax: sockAddr := string_expression

SA_IPADDR(sockAddr)

example: family = SA_IPADDR(sa$)

22 05/16

Data Structures

The IP device driver is implemented in the ‘C’ programming language, and so uses some of
those data structures. IPBasic converts these memory based structures into equivalent strings.

Sockaddr – Socket Address – 16 byte string

Index Size Description
--
 1 Word Family (usually 2)
 3 Word Port number
 5 Long IP address
 9 Long Zero
13 Long Zero

Hostent – Host Entry

Index Size Name Description
--
 1 Long Name Pointer to Addrlist index
 5 Long Aliases Pointer to a list of Long IP addresses terminated with a Null

Long word
 9 Long Addtype Connection type (usually 2 (AF_INET) internet)
13 Long Length Number of nodes in IP address (usually 4 (IPV4))
17 Long Addrlist Pointer to a list of pointers terminated with a Null Long word.

 Each of these pointers point to a list of Long word IP ddresses,
 terminated with a Null Long word

Servent – Service entry
Index Size Name Description
--
 1 Long Name Pointer to a Null terminated string of the official service name.
 5 Long Aliases Pointer to a list of strings terminated with a Null byte. And the list is

 terminated with a long Null.
 9 Long Port Associated port number.
13 Long Proto Pointer to a Null terminated string

Netent – Network entry

Index Size Name Description
--
 1 Long Name Pointer to a Null terminated string of the official network name.
 5 Long Aliases Pointer to a list of strings terminated with a Null byte. And the list is

 terminated with a long Null.
 9 Long Addtype Network address type
13 Long Net Network number

Protoent – Protocol entry

Index Size Name Description
--
 1 Long Name Pointer to a Null terminated string of the protocol name.
 5 Long Aliases Pointer to a list of strings terminated with a Null byte. And the list is

 terminated with a long Null.
 9 Long Ports Protocol number.

05/16 23

Error Codes

This is a list of the error codes that are returned by IPERROR$

Err no Linux Error name Description

 1 EPERM Operation not permitted
 2 ENOENT No such file or directory
 3 ESRCH No such process
 4 EINTR Interrupted system call
 5 EIO I/O error
 6 ENXIO No such device or address
 7 E2BIG Argument list too long
 8 ENOEXEC Exec format error
 9 EBADF Bad file number
 10 ECHILD No child processes
 11 EAGAIN Try again
 12 ENOMEM Out of memory
 13 EACCES Permission denied
 14 EFAULT Bad address
 15 ENOTBLK Block device required
 16 EBUSY Device or resource busy
 17 EEXIST File exists
 18 EXDEV Cross-device link
 19 ENODEV No such device
 20 ENOTDIR Not a directory
 21 EISDIR Is a directory
 22 EINVAL Invalid argument
 23 ENFILE File table overflow
 24 EMFILE Too many open files
 25 ENOTTY Not a typewriter
 26 ETXTBSY Text file busy
 27 EFBIG File too large
 28 ENOSPC No space left on device
 29 ESPIPE Illegal seek
 30 EROFS Read-only file system
 31 EMLINK Too many links
 32 EPIPE Broken pipe
 33 EDOM Math argument out of domain of func
 34 ERANGE Math result not representable
 35 EDEADLK Resource deadlock would occur
 36 ENAMETOOLONG File name too long
 37 ENOLCK No record locks available
 38 ENOSYS Function not implemented
 39 ENOTEMPTY Directory not empty
 40 ELOOP Too many symbolic links encountered
 41 EWOULDBLOCK Operation would block
 42 ENOMSG No message of desired type
 43 EIDRM Identifier removed
 44 ECHRNG Channel number out of range
 45 EL2NSYNC Level 2 not synchronized
 46 EL3HLT Level 3 halted
 47 EL3RST Level 3 reset
 48 ELNRNG Link number out of range
 49 EUNATCH Protocol driver not attached
 50 ENOCSI No CSI structure available
 51 EL2HLT Level 2 halted
 52 EBADE Invalid exchange
 53 EBADR Invalid request descriptor
 54 EXFULL Exchange full
 55 ENOANO No anode
 56 EBADRQC Invalid request code
 57 EBADSLT Invalid slot
 58 EDEADLOCK Deadlock

24 05/16

 Err no Linux Error name Description

 59 EBFONT Bad font file format
 60 ENOSTR Device not a stream
 61 ENODATA No data available
 62 ETIME Timer expired
 63 ENOSR Out of streams resources
 64 ENONET Machine is not on the network
 65 ENOPKG Package not installed
 66 EREMOTE Object is remote
 67 ENOLINK Link has been severed
 68 EADV Advertise error
 69 ESRMNT Srmount error
 70 ECOMM Communication error on send
 71 EPROTO Protocol error
 72 EMULTIHOP Multihop attempted
 73 EDOTDOT RFS specific error
 74 EBADMSG Not a data message
 75 EOVERFLOW Value too large for defined data type
 76 ENOTUNIQ Name not unique on network
 77 EBADFD File descriptor in bad state
 78 EREMCHG Remote address changed
 79 ELIBACC Can not access a needed shared library
 80 ELIBBAD Accessing a corrupted shared library
 81 ELIBSCN .lib section in a.out corrupted
 82 ELIBMAX Attempting to link in too many shared libraries
 83 ELIBEXEC Cannot exec a shared library directly
 84 EILSEQ Illegal byte sequence
 85 ERESTART Interrupted system call should be restarted
 86 ESTRPIPE Streams pipe error
 87 EUSERS Too many users
 88 ENOTSOCK Socket operation on non-socket
 89 EDESTADDRREQ Destination address required
 90 EMSGSIZE Message too long
 91 EPROTOTYPE Protocol wrong type for socket
 92 ENOPROTOOPT Protocol not available
 93 EPROTONOSUPPORT Protocol not supported
 94 ESOCKTNOSUPPORT Socket type not supported
 95 EOPNOTSUPP Operation not supported on transport endpoint
 96 EPFNOSUPPORT Protocol family not supported
 97 EAFNOSUPPORT Address family not supported by protocol
 98 EADDRINUSE Address already in use
 99 EADDRNOTAVAIL Cannot assign requested address
100 ENETDOWN Network is down
101 ENETUNREACH Network is unreachable
102 ENETRESET Network dropped connection because of reset
103 ECONNABORTED Software caused connection abort
104 ECONNRESET Connection reset by peer
105 ENOBUFS No buffer space available
106 EISCONN Transport endpoint is already connected
107 ENOTCONN Transport endpoint is not connected
108 ESHUTDOWN Cannot send after transport endpoint shutdown
109 ETOOMANYREFS Too many references: cannot splice
110 ETIMEDOUT Connection timed out
111 ECONNREFUSED Connection refused
112 EHOSTDOWN Host is down
113 EHOSTUNREACH No route to host
114 EALREADY Operation already in progress
115 EINPROGRESS Operation now in progress
116 ESTALE Stale NFS file handle
117 EUCLEAN Structure needs cleaning
118 ENOTNAM Not a XENIX named type file
119 ENAVAIL No XENIX semaphores available
120 EISNAM Is a named type file

05/16 25

Err no Linux Error name Description

121 EREMOTEIO Remote I/O error
122 EDQUOT Quota exceeded
123 ENOMEDIUM No medium found
124 EMEDIUMTYPE Wrong medium type
125 ECANCELED Operation Canceled
126 ENOKEY Required key not available
127 EKEYEXPIRED Key has expired
128 EKEYREVOKED Key has been revoked
129 EKEYREJECTED Key was rejected by service
130 EOWNERDEAD Owner died
131 ENOTRECOVERABLE State not recoverable

26 05/16

	UDP
	TCP
	160 IF ch<>-1 THEN

