
QDOS TCP/IP and Socket functionality

By Martin Head

12/01/16

Based on information by Richard Zidlicky

Introduction (Richard Zidlicky)

This document implements TCP/IP as implemented in UQLX. The implementation is due to Jonathan Hudson and is free, the hope is that native QDOS implementations can be kept compatible with it.

Notes (Martin Head)

This document is for using the QDOS TCP/IP interface from assembler programming.

A lot of the information is cobbled together from information on using Sockets in the C language (which I don’t speak) from the Internet, and by trial and error. As I don’t know anything about socket programming, I am learning as I go along, So…

Don’t take anything written here as gospel.

The characteristics of the implementation:

TCP/IP interface as device drivers.

Most of TCP functionality useable from SBasic. Full functionality

with SBasic and some available toolkits.

Implementation of BSD compatible socket library for c68 available

The general design of the interface is chosen so that features more to be used from Assembler/Basic follow QDOS interfacing conventions, those used from C/Unix like applications follow conventions that make it easier to interface for such programs.

Error Handling

The IP traps return a normal QDOS error code in D0.

A more useful error code for the last IP error may be obtained from IP_ERRNO. See the end of this document for a list of IP errors.

Opening IP channels

The Following new devices are available for the Trap#2 Operating system open calls.

SCK_
A generic socket that can be used for accepting connections, or for

netdb access.

Internet Domain

TCP_host:port

Stream Socket

UDP_host:port

Datagram Socket

Unix Domain

UXS_host:port

Stream Socket

UXD_host:port

Datagram Socket

Host and Port parameters are both optional.

Note, UDP and UXD sockets are usable from BASIC

Host and Port, can be both given either by numerical value or name.

E.g. "129.69.1.59:119" or "news.uni-stuttgart.de:nntp"

Note

With the exception of IP_OPEN and IP_ACCEPT. Most of the system calls that expect or return strings, do not use the usual QDOS Word sized length followed by a sequence of characters.

The length of the string is either specified in one of the calls parameters, or the end of the string is terminated in a zero (NULL) byte.

Open call summary (standard QDOS Trap#2 calls)

IP_OPEN

$01

IP_ACCEPT

$01

IO_CLOSE

$02 Standard QDOS Close

I do not know the exact rules which govern whether or not the IP_OPEN command succeeds or fails for a given host and port. But here is a list from my observations.

UDP

IP Address
|Open D3=0
|Open_in D3=1
|Open_new D3=2

0.0.0.0

| I X I
| X X X
| I X I
127.0.0.1
| I X I
| I X I
| I X I
127.0.0.10
| I X I
| I X I
| I X I
172.16.0.6
| I X I
| X X I
| X X I
172.16.0.10
| I X I
| X X I
| X X X
192.168.0.5
| I X I
| X X X
| X X X
255.255.255.255
| I X I
| X X I
| X X X
TCP

IP Address
|Open D3=0
|Open_in D3=1
|Open_new D3=2

0.0.0.0

| I I I
| I I I
| I X I
127.0.0.1
| I I I
| I I I
| I X I
127.0.0.10
| I I I
| I I I
| I X I
172.16.0.6
| I I I
| I I I
| X X I
172.16.0.10
| I I I
| I I I
| X X X
192.168.0.5
| I I I
| I I I
| X X X
255.255.255.255
| I I I
| I I I
| X X X
I = Succeed

X = Fail

Host IP address of the computer making the tests was 172.16.0.6,

Using port 5900.

First column (Black)
QPC2, Not connected to a Network

Second column (Red)
Qemulator, Not connected to a Network

Third column (Green)
QPC2 connected to a Network with another

computer having an IP address of 172.16.0.10

Note the way UDP ports don’t seem to ever open in Qemulator, I don’t know if this is a problem in Qemulator, or something I was doing wrong.

There are also discrepancies in TCP opens with D3=2

This is the program I used to obtain these results.

100 RESTORE

110 READ n

120 port$=":5900"

130 FOR x=1 TO n

140 READ ad$

150 ch=FOP_NEW("udp_" & ad$ & port$)

160 IF ch>0 THEN

170 PRINT ad$;" Opened OK"

180 CLOSE#ch

190 ELSE

200 PRINT ad$;" Not OK"

210 END IF

220 END FOR x

230 DATA 7,"0.0.0.0","127.0.0.1","127.0.0.10",

 "172.16.0.6"

240 DATA "172.16.0.10","192.168.0.5",

 "255.255.255.255"

Change line 150 for the required Open type, and Socket type.

IP_OPEN

TRAP#2

D0=1

Opens a channel.
Input

D1.L
Job ID

D3.L
code see below

A0
Address of channel name

Output

D0.L
result (0 if OK)

D1.L
Job ID

A0
channel ID

Description:

Opens an IP channel for a TCP, UDP, UXS or a UXD connection

The type of the open is defined by the value supplied in D3 where

0 = Creates a socket of requested type/protocol. Host & port not required

 (does a C socket() command)

1 = Host and Port must be specified.

 Opens a connection for TCP, or sets peer address for UDP sockets.

 Returns without error if connection can't be completed within

 1-2/50s, internally the connection buildup continues. Every I/O

 operation will be blocked until the connection succeeds or fails.

 (does a C socket() command, then a C connect() command)

2 = bind TCP or UDP socket to an address. Such sockets can be used for

 accepting incoming connections.

 (does a C socket() command, then if a Host and Port are supplied,

 does a C bind() command)

SuperBASIC equivalents to the D3 values are, 0=OPEN, 1=OPEN_IN, and 2=OPEN_NEW.

IP_ACCEPT

TRAP#2

D0=1

Provides accept(2) functionality.
Input

D1.L
Job ID

D3.L
channel ID, see below

A0
Address of channel name

Output

D0.L
-1 (Not Complete) when no waiting connection

D1.L
Job ID

A0
channel ID

Description:

Accept a connection for socket specified by the channel ID supplied in D3.

The channel name pointed to by A0 should be for a socket of the form ‘SCK_’
The argument in D3 is a socket that has been previously created with IP_OPEN, bound to an address with IP_BIND, and is listening with IP_LISTEN for connections.

The IP_ACCEPT function extracts the first connection request on the

Queue, of pending connections, then creates a new socket with the same properties of the supplied channel ID and allocates a new channel ID for the new socket.

IP_ACCEPT returns the error ‘Not Complete’ if there are no pending connection requests and can't complete immediately.

To accept a new connection request IP_ACCEPT should be in a loop so that it is constantly being called while it returns the QDOS error ‘Not Complete’ (-1).

When IP_ACCEPT, returns 0 in D0, then a remote connection has been has been accepted, and A0 will be the channel ID of the new connection.

Use code along the following lines

; Accept a new connection. D7 is the channel ID of the previously

; opened channel

accept
moveq
#$1,d0
 ;IP_ACCEPT

moveq
#-1,d1
 ;owned by this job

move.l
d7,d3
 ;channel ID

lea
socket,a0 ;point at SCK_

trap
#2

move.l
a0,a5
 ;A5 is now the possible new socket

 ;channel ID

cmp.l
-1,d0
 ;error Not Complete

beq.s
accept
 ;..yes, run round in a loop until open is

 ;successful, or another error

tst.l
d0
 ;any other error

beq.s
…….
 ;..no, continue

bra
…….
 ;…yes, deal with error

socket
dc.w 4

dc.b "SCK_"

Note the old channel ID that is supplied to D3 should be saved before IP_ACCEPT is called. As it may be required for further IP_ACCEPT calls, and for closing the channel.

If you require the socket address structure that the C accept(2) function would normally create. After the IP_ACCEPT command has completed successfully, use the IP_GETPEERNAME function to create it.

The accepted socket may not be used to accept more connections. And the original socket remains open.

This command should be part of the I/O operations, but as it is a Trap #2 instruction, it is included here

I/O Operations

Many operations typically not regarded as IO were provided by trap#3 calls to gain flexibility.

Basic IO operations (D0=0 - 7) are defined for connected TCP sockets. They may work for UDP sockets when peer address is set, however this use is strongly discouraged. Trap#3,[$48,$49] also work but it is not clear whether they are meaningful and thus may not be supported.

Generally, TCP/IP aware software should probably use the socket specific IO functions - SEND, RECV, SENDTO, RECVFROM.

When a trap#3 returns with an error, An additional C confirming error code may be queried by IP_ERRNO, IP_H_ERRNO and IP_H_STRERROR operations. This code is valid unless -1.

Basic IO operations

These are compatible to QDOS. The only questionable issue here is whether IO.FSTRG should always fill its buffer before returning as it does now, or rather mimic the behaviour of recv/recvfrom. Since the number of received characters will be in D1 anyway, this should not disturb any QDOS applications.

Input/Output Utilisation

Serial I/O call summary (standard QDOS Trap#3 calls)

IO_PEND

$00

IO_FBYTE

$01

IO_FLINE

$02

IO_FSTRG

$03

IO_SBYTE

$05

IO_SSTRG

$07

IP Trap I/O call summary (Extended Trap #3 calls)

IP_LISTEN

$50

IP_ACCEPT

See the Open section

IP_SEND

$51

IP_SENDTO

$52

IP_RECV

$53

IP_RECVFM

$54

IP_GETOPT

$55

IP_SETOPT

$56

IP_SHUTDWN

$57

IP_BIND

$58

IP_CONNECT

$59

IP_FCNTL

$5a

IP_GETHOSTNAME

$5b

IP_GETSOCKNAME

$5c

IP_GETPEERNAME

$5d

IP_GETHOSTBYNAME

$5e

IP_GETHOSTBYADDR

$5f

IP_SETHOSTENT

$60

IP_ENDHOSTENT

$61

IP_H_ERRNO

$62

IP_GETSERVENT

$63

IP_GETSERVBYNAME

$64

IP_GETSERVBYPORT

$65

IP_SETSERVENT

$66

IP_ENDSERVENT

$67

IP_GETNETENT

$68

IP_GETNETBYNAME

$69

IP_GETNETBYADDR

$6a

IP_SETNETENT

$6b

IP_ENDNETENT

$6c

IP_GETPROTOENT

$6d

IP_GETPROTOBYNAME

$6e

IP_GETPROTOBYNUMBER
$6f

IP_SETPROTOENT

$70

IP_ENDPROTOENT

$71

IP_INET_ATON

$72

IP_INET_ADDR

$73

IP_INET_NETWORK

$74

IP_INET_NTOA

$75

IP_INET_MAKEADDR

$76

IP_INET_LNAOF

$77

IP_INET_NETOF

$78

IP_IOCTL

$79

IP_GETDOMAIN

$7a

IP_H_STRERROR

$7b

IP_H_ERRNO

$7c

The following constants and data types are a mix from AmiTCP/IP and Linux definitions. Not all of them are meaningful or supported on every implementation.

Some definitions may useful for socket(), bind() and connect() calls and their trap#2/#3 equivalents, when trying to convert C code into the QDOS machine code calls.

SOCK_STREAM
1
stream socket - TCP

SOCK_DGRAM

2
datagram socket - UDP

SOCK_RAW

3
raw-protocol interface – SCK ?

SOCK_RDM

4
reliably-delivered message

SOCK_SEQPACKET
5
sequenced packet stream

AF_UNSPEC

0
unspecified address family

AF_INET

2
internet: UDP, TCP, etc.

PF_UNSPEC

AF_UNSPEC
aliases

PF_INET

AF_INET

Constants for getsockopt()/setsockopt()

SOL_SOCKET

1
options for socket level

SO_DEBUG

1

SO_REUSEADDR
2

SO_TYPE

3

SO_ERROR

4

SO_DONTROUTE
5

SO_BROADCAST
6

SO_SNDBUF

7

SO_RCVBUF

8

SO_KEEPALIVE
9

SO_OOBINLINE
10

SO_NO_CHECK

11

SO_PRIORITY

12

SO_LINGER

13
ignored, doesn't seem practicable in

QDOS

SO_BSDCOMPAT
14

Data Structures

Many of the Trap #3 commands require, or return data in a particular set organisation, or order.

Parameter Block – For a sockaddr structure

Offset
Size
Description

--

$00
Long
Pointer to a sockaddr structure

$04
Long
Length of sockaddr structure (usually 16)

The parameter block may be initialised as follows

lea
parmblk,a2
;point at start of parameter block

lea
sockaddr,a1
;point at sockaddr

move.l
a1,(a2)

;set pointer to sockaddr in

;parameter block

move.l
#16,4(a2)
;length of socket address in

;parameter block
Sockaddr – Socket Address

Offset
Size
Description

--

$00
Word
Family (usually 2)

$02
Word
Port number

$04
Long
IP address

$08
Long
Zero

$0C
Long
Zero

In_addr

Offset
Size
Description

--

$00
Long
IP address.

Hostent – Host Entry

Offset
Size
Name
Description

--

$00
Long
Name
Pointer to Addrlist

$04
Long
Aliases
Pointer to a list of Long IP addresses terminated

with a Null Long word

$08
Long
Addtype
Connection type (usually 2 (AF_INET))

$0C
Long
Length
Number of nodes in IP address (usually 4

(IPV4))

$10
Long
Addrlist
Pointer to a list of pointers terminated with a

Null Long word.

Each of these pointers point to a list of Long

word IP addresses, terminated with a Null Long

word

For example a hostent structures Addrlist could be -

Addrlist----(
pointer 1-----(
IP address

IP address

IP address

Null

pointer 2--(
IP address

IP address

Null

pointer 3--(
IP address

IP address

IP address

Null

Null

Note – Some of the pointer and addresses returned may not be on Word boundaries (odd addresses). Be careful when reading them

Servent – Server entry

Offset
Size
Name
Description

--

$00
Long
Name
Pointer to a Null terminated string

$04
Long
Aliases
Pointer to a list of Long word pointers

terminated with a Null Long word. Each pointer,

points to a list of Long word IP addresses

terminated with a Null Long word.

$08
Long
Port
Associated port number.

$0C
Long
Proto
Pointer to a Null terminated string

Netent – Network entry

Offset
Size
Name
Description

--

$00
Long
Name
Pointer to a Null terminated string

$04
Long
Aliases
Pointer to a list of Long word pointers

terminated with a Null Long word. Each pointer,

points to a list of Long word IP addresses

terminated with a Null Long word.

Protoent – Protocol entry

Offset
Size
Name
Description

--

$00
Long
Name
Pointer to a Null terminated string

$04
Long
Aliases
Pointer to a list of Long IP addresses terminated

with a Null Long word

$08
Long
Ports
Protocol number.

IP_LISTEN

TRAP#3

D0=$50

Provides listen(2) functionality.
Input

D1.L
size of backlog queue – (usually 5)

D3.W
timeout

A0
channel ID

Output

D0 = result (0 if OK)

Description:

For a socket that has been bound during open or explicitly with IP_BIND, this will set the number of connect requests that are queued for IP_ACCEPT. Additional requests will not be handled and clients receive a protocol specific error or retry will be initiated.

The IP_LISTEN call applies only to sockets of type TCP_ (stream sockets)

If you don't want to connect to a remote host. You want to wait for incoming connections and handle them in some way. The process is two step: first you IP_LISTEN, then you IP_ACCEPT
You need to call IP_BIND before you can call IP_LISTEN so that the server is running on a specific port.

IP_BIND

TRAP#3

D0=$58

Provides bind(2) functionality

Input

D1.L
length of sockaddr structure

D3.W
timeout

A0
channel ID

A2
pointer to a sockaddr structure

Output

D0 = result

Description:

Associates a local address with a socket.

The IP_BIND function is required on an unconnected socket before subsequent calls to the IP_LISTEN function. It is normally used to bind to either connection-oriented (stream, TCP) or connectionless (datagram UDP) sockets. The IP_BIND function may also be used to bind to a raw socket (the socket was created by opening the channel with “SCK_” only?).

The bind function may also be used on an unconnected socket before subsequent calls to the IP_CONNECT function before send operations.

Note – IP_BIND may fail if you use the real IP Address of the local host, when the computer is not connected to a Network.

IP_CONNECT

TRAP#3

D0=$59

Provides connect(2) functionality

Input

D1.L
length of sockaddr structure

D3.W
timeout

A0
channel ID

A2
pointer to a sockaddr structure

Output

D0 = result

Description:

The channel ID is
a socket. If it is of type UDP (Datagram), this call specifies the peer with which the socket is to be associated; this address is that to which datagrams are to be sent, and the only address from which datagrams are to be received.

If the socket is of type TCP(Stream), this call attempts to make a connection to another socket. The other socket is specified by sockaddr, which is an address in the communications space of the socket. Each communications space interprets the sockaddr, parameter in its own way.

Generally, stream sockets may successfully connect only once; datagram sockets may use connect multiple times to change their association. Datagram sockets may dissolve the association by connecting to an invalid address, such as a null address.

Regardless of the timeout specified, the socket will remain blocked (any IO will timeout or be delayed) until the connection build up succeeded or failed.

Note – On UDP connections, IP_CONNECT may fail if you use the anything other than IP Address 127.0.0.x, when the computer is not connected to a Network. And when on a Network only the local network IP Addresses, and 255.255.255.255

IP_FCNTL

TRAP#3

D0=$5A

Provides fcntl(2) (manipulate file descriptor) functionality for IPDEV sockets only.

Input

D1.L
cmd

D2.L
arg

D3.W
timeout

A0
channel ID

Output

D0 = result

An awful hack for now don't use it unless you have to.

Description:

Performs operations on the open IP channel. The operation is determined by cmd.

This function is typically used to do file locking and other file-oriented stuff, but it also has a couple socket-related functions that you might see or use from time to time.

cmd should be set to F_SETFL (4), and arg can be one of the following commands.

O_NONBLOCK (4)
Set the socket to be non-blocking

O_ASYNC (64)

Set the socket to do asynchronous I/O. When

data is ready to be recv()'d on the socket, the

signal SIGIO will be raised. This is rare to see,

and beyond the scope of the guide. And I think

it's only available on certain systems.

IP_GETOPT

TRAP#3

D0=$55

Provides (some) getsockopt functionality
get options on sockets

Input

D1.L
optlen

D2.L
level

D3.W
timeout

A0
channel ID

A1
pointer to optval address

A2
optname

Output

D0 = result

D1.L
optlen

Description:

Manipulate options for the socket referred to by the IP channel ID. Options may exist at multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of the option must be specified. To manipulate options at the sockets level,Level is specified as 1 (SOL_SOCKET). To manipulate options at any other level the protocol number of the appropriate protocol controlling the option is supplied. For example, to indicate that an option is to be interpreted by the TCP protocol, level should be set to the protocol number of TCP; see IP_GETPROTOENT.

The arguments optval and optlen are used to identify a buffer in which the value for the requested option(s) are to be returned.

optlen is a value-result argument, initially containing the size of the buffer pointed to by optval, and modified on return to indicate the actual size of the value returned. If no option value is to be supplied or returned, optval may be NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol module for interpretation. Definitions for socket level options, are described below. Options at other protocol levels vary in format and name.

 Most socket-level options utilize an int argument for optval.

The following options are recognized at the socket level. Except as noted, each may be examined with IP_GETOPT and set with IP_SETOPT.
1
SO_DEBUG

enables recording of debugging information

2
SO_REUSEADDR
enables local address reuse

3
SO_TYPE

get the type of the socket (get only)

4
SO_ERROR

get and clear error on the socket (get only)

5
SO_DONTROUTE
enables routing bypass for outgoing messages

6
SO_BROADCAST
enables permission to transmit broadcast

messages

7
SO_SNDBUF

set buffer size for output

8
SO_RCVBUF

set buffer size for input

9
SO_KEEPALIVE
enables keep connections alive

10
SO_OOBINLINE
enables reception of out-of-band data in band

11
SO_NO_CHECK

12
SO_PRIORITY

13
SO_LINGER

linger on close if data present, ignored in QDOS

14
SO_BSDCOMP
IP_SETOPT

TRAP#3

D0=$56

Provides (some) setsockopt functionality

set options on sockets

Input

D1.L
optlen

D2.L
level

D3.W
timeout

A0
channel ID

A1
pointer to optval address

A2
optname

Output

D0 = result

Description:

Manipulate options for the socket referred to by the IP channel ID. Options may exist at multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of the option must be specified. To manipulate options at the sockets API level, level is specified as 1 (SOL_SOCKET). To manipulate options at any other level the protocol number of the appropriate protocol controlling the option is supplied. For example, to indicate that an option is to be interpreted by the TCP protocol, level should be set to the protocol number of TCP; see IP_GETPROTOENT.

The arguments optval and optlen are used to access option values for setopt.

Optname and any specified options are passed uninterpreted to the appropriate protocol module for interpretation. Definitions for socket level options, are described in IP_GETOPT above. Options at other protocol levels vary in format and name; consult the appropriate entries in section 4 of the manual.

 Most socket-level options utilize an int argument for optval. For IP_SETOPT, the argument should be nonzero to enable a boolean option, or zero if the option is to be disabled.
IP_SHUTDWN

TRAP#3

D0=$57

Provides shutdown(2) functionality

Input

D1.L
how

D3.W
timeout

A0
channel ID

Output

D0 = result

Description:

Causes all or part of a full-duplex connection on the socket associated with channel ID to be shut down.

The value how, determines which receptions, or transmissions will be disallowed.

D1= 0, Disable receive

D1= 1, Disable send

D1= 2, Disable send and receive

Socket specific IO

IP_SEND and IP_RECV differ from IO.SSTRG and IO.FSTRG in that they message oriented and allow chunks longer than 32k.

IP_RECV and IP_RECVFM return immediately when data is available, or after the first message arrives.

IP_SEND and IP_RECV can be (unlike IP_SENDTO and IP_RECVFM for UDP) applied only to sockets that have been connected previously.

Note – That at the time of writing, I have not been able to get IP_SENDTO and IP_RECVFM to work

IP_SEND

TRAP#3

D0=$51

Provides send(2) functionality

Input

D1.L
flag

D2.L
len

D3.W
timeout

A0
channel ID

A1
pointer to buffer

Output

D0 = result

D1.L
bytes written

A1
buffer address + bytes written

Description:

Used to transmit a message to another socket.

The IP_SEND call may be used only when the socket is in a connected state (so that the intended recipient is known).

Also, IP_SEND is equivalent to IP_SENDTO with the A2 parameter block NULL and 0
The message is found in buffer and has length len.

If the message is too long to pass automically through the underlying protocol, the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a return value of -1.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB Sends out-of-band data on sockets that support this notion (e.g., of type TCP (SOCK_STREAM)); the underlying protocol must also support out-of-band data.

$4 MSG_DONTROUTE
 Don't use a gateway to send out the packet, send to hosts only on directly connected networks. This is only usually used by diagnostic or routing programs. This is defined only for protocol families that route; packet sockets don't.
IP_SENDTO

TRAP#3

D0=$52

Provides sendto(2) functionality

Input

D1.L
flag

D2.L
len

D3.W
timeout

A0
channel ID

A1
pointer to buffer

A2
pointer to a parameter block (2 long words)

params[0].L = pointer to sockaddr structure, (to)

params[1].L = length of sockaddr structure, (tolen)

Output

D0 = result

+ve => number of bytes sent

-ve => error code

Description:

Used to transmit a message to an unconnected Datagram (UDP) socket.

If IP_SENDTO is used on a connection-mode (TCP (SOCK_STREAM) socket, the arguments in the parameter block are ignored (and the error EISCONN may be returned when they are not NULL and 0), and the error ENOTCONN is returned when the socket was not actually connected. Otherwise, the address of the target is given by parameter block values.

The message to send is found in buffer and has length of len.

If the message is too long to pass automically through the underlying protocol, the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a return value of -1.

When the message does not fit into the send buffer of the socket, send normally blocks, unless the socket has been placed in nonblocking I/O mode. In nonblocking mode it would fail with the error EAGAIN or EWOULDBLOCK in this case.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB Sends out-of-band data on sockets that support this notion (e.g., of type TCP (SOCK_STREAM)); the underlying protocol must also support out-of-band data.

$4 MSG_DONTROUTE Don't use a gateway to send out the packet, send to hosts only on directly connected networks. This is only usually used by diagnostic or routing programs. This is defined only for protocol families that route; packet sockets don't.

IP_RECV

TRAP#3

D0=$53

Provides recv(2) functionality

Input

D1.L
flag

D2.L
buffer size

D3.W
timeout

A0
channel ID

A1
pointer to buffer

Output

D0 = result code

D1.L
bytes read

Description:

Used to receive messages from a socket. Used to receive data on both connectionless (UDP) and connection-oriented (TCP) sockets.

Returns the length of the message on successful completion. If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending on the type of socket the message is received from.

If no messages are available at the socket before D3 times out, IP_RECV waits for a message to arrive, unless the socket is nonblocking (see IP_FCNTL), in which case the value -1 is returned and the external variable from IP_ERRNO is set to EAGAIN or EWOULDBLOCK. The receive calls normally return any data available, up to the requested amount, rather than waiting for receipt of the full amount requested.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB
Rquest receipt of out-of-band data that would not be received in the normal data stream.
Some protocols place expedited data at the head of the normal data queue, and thus this flag cannot be
used with such protocols.

$2 MSG_PEEK
 Cause the receive operation to return data from the beginning of the receive queue without removing that data from the queue. Thus, a subsequent receive call will return the same data.

$40 MSG_WAITALL
Request that the operation block until the full request is satisfied. However, the call may still return less data than requested if a signal is caught, an error or disconnect occurs, or the next data to be received is of a different type than that returned.

IP_RECVFM

TRAP#3

D0=$54

Provides recvfrom(2) functionality

D1.L
flag

D2.L
buffer size

D3.W
timeout

A0
channel ID

A1
pointer to buffer

A2
pointer to a parameter block (2 long words)

params[0].L = pointer to sockaddr structure, (from)

params[1].L = length of sockaddr structure, (fromlen)

Output

D0 = result

+ve => number of bytes sent

-ve => error code

D1.L
size of returned sockaddr structure

Description:

Used to receive messages from a socket. Used to receive data on both connectionless and connection-oriented sockets.

Returns the length of the message on successful completion. If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending on the type of socket the message is received from.

If no messages are available at the socket before D3 times out, IP_RECVFM waits for a message to arrive, unless the socket is nonblocking (see IP_FCNTL), in which case the value -1 is returned and the external variable from IP_ERRNO is set to EAGAIN or EWOULDBLOCK. The receive calls normally return any data available, up to the requested amount, rather than waiting for receipt of the full amount requested.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB
Rquest receipt of out-of-band data that would not be received in the normal data stream.
Some protocols place expedited data at the head of the normal data queue, and thus this flag cannot be
used with such protocols.

$2 MSG_PEEK
 Cause the receive operation to return data from the beginning of the receive queue without removing that data from the queue. Thus, a subsequent receive call will return the same data.

$40 MSG_WAITALL
Request that the operation block until the full request is satisfied. However, the call may still return less data than requested if a signal is caught, an error or disconnect occurs, or the next data to be received is of a different type than that returned.

Netdb functions

IP_GETHOSTNAME
TRAP#3

D0=$5B

Provides gethostname(2) functionality

Input

D2.L
name buffer length

D3.W
timeout

A0
channel ID

A1
pointer to name buffer

Output

D0 = result

Description:

Returns in the name buffer, the name of the host computer as a string terminated with a NULL (0) byte

It returns the name of the computer that your program is running on. The name can then be used by IP_GETHOSTBYNAME, below, to determine the IP address of your local machine.

The arguments are simple: name buffer is a pointer to an area of memory that will contain the hostname upon the function's return, and name buffer length, is the length in bytes of the available buffer.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_GETSOCKNAME
TRAP#3

D0=$5C

Provides getsockname(2) functionality

Input

D2.L
len

D3.W
timeout

A0
channel ID

A1
pointer to an empty sockaddr structure

Output

D0 = result

D1.L
length of created, or required sockaddr structure

Description:

Returns a sockaddr structure containing the current IP address and port to which the socket channel ID is bound to. The len argument should be initialised to indicate the amount of space available for the sockaddr structure. On return D1 contains the actual size of the socket address returned.

The returned address is truncated if the buffer provided is too small; in this case, D1 will return a value greater than was supplied to the call.

IP_GETPEERNAME
TRAP#3

D0=$5D

Provides getpeername(2) functionality

Input

D2.L
len

D3.W
timeout

A0
channel ID

A1
pointer to an empty sockaddr structure

Output

D0 = result

D1.L
addrlen

Description:

Returns a sockaddr structure containing the current IP address and port to which the socket channel ID is connected to (the peer). The len argument should be initialised to indicate the amount of space available for the sockaddr structure. On return D1 contains the actual size of the socket address returned.

The returned address is truncated if the buffer provided is too small; in this case, D1 will return a value greater than was supplied to the call in D1.

Once you have either IP_ACCEPTed a remote connection, or IP_CONNECTed to a server, you now have what is known as a peer. The peer is simply the computer you're connected to, identified by an IP address and a port. So...

IP_GETPEERNAME simply returns a sockaddr structure filled with information about the machine you're connected to.

IP_GETHOSTBYNAME TRAP#3

D0=$5E

Provides gethostbyname(2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a name buffer containing the host name

 (terminated with a NULL)

A2
pointer to a hostent structure buffer of 1024 bytes

The buffer pointed to by A2 must be large enough to hold the largest hostent structure that may be returned (minimum of 500 bytes).

D0 = result

Description:

Returns a hostent structure for the given host name. The host name is either a hostname (e.g. “Tower-System”, or “www.google.com”), or an IPv4 address in standard dot notation.

If name is an IPv4 address, no lookup is performed and IP_GETHOSTBYNAME simply copies name into the hostent’s Name field and its struct in_addr equivalent into the hostent’s Addlist[0] field.

IP_GETHOSTBYNAME and IP_GETHOSTBYADDR map back and forth between host names and IP addresses. For instance, if you have "www.example.com", you can use IP_GETHOSTBYNAME to get its IP address and store it in a struct in_addr.

IP_GETHOSTBYNAME takes a string like "www.yahoo.com", and returns a struct hostent which contains tons of information, including the IP address. (Other information is the official host name, a list of aliases, the address type, the length of the addresses, and the list of addresses—it's a general-purpose structure that's pretty easy to use once you see how.)

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_GETHOSTBYADDR TRAP#3

D0=$5F

Provides gethostbyaddr(2) functionality

Input

D1.L
addrlen

D2.L
type (usually 2)

D3.W
timeout

A0
channel ID

A1
pointer to addr buffer

A2
pointer to a hostent structure buffer

The buffer pointed to by A2 must be large enough to hold the largest hostent structure that may be returned (minimum of 500 bytes).

D0 = result

Description:

Returns a hostent structure for the given host address addr of length addrlen and address type type. Valid address type is AF_INET (2).

If you have a struct in_addr or a struct in6_addr, you can use IP_GETHOSTBYADDR to get the hostname back.

IP_GETHOSHBYADDR takes a struct in_addr or struct in6_addr and brings you up a corresponding host name (if there is one), so it's sort of the reverse of IP_GETHOSTBYNAME.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_SETHOSTENT
TRAP#3

D0=$60

IP_SETSERVENT
TRAP#3

D0=$66

IP_SETNETENT
TRAP#3

D0=$6B

IP_SETPROTOENT
TRAP#3

D0=$70
Provides set*ent(2) functionality

Input

D1.L
stayopen

D3.W
timeout

A0
channel ID

Output

D0 = result

Description:

The IP_SETHOSTENT function specifies, if stayopen is true (1), that a connected TCP socket should be used for the name server queries and that the connection should remain open during successive queries. Otherwise, name server queries will use UDP datagrams
The IP_SETSERVENT function opens a connection to the database, and sets the next entry to the first entry. If stayopen is nonzero, then the connection to the database will not be closed between calls to one of the IP_GETSERV* functions.
The IP_SETNETENT function opens a connection to the database, and sets the next entry to the first entry. If stayopen is nonzero, then the connection to the database will not be closed between calls to one of the IP_GETNET* functions.

The IP_SETPROTOENT function opens a connection to the database, and sets the next entry to the first entry. If stayopen is nonzero, then the connection to the database will not be closed between calls to one of the IP_GETPROTO* functions.

IP_ENDHOSTENT
TRAP#3

D0=$61

IP_ENDSERVENT
TRAP#3

D0=$67

IP_ENDNETENT
TRAP#3

D0=$6C

IP_ENDPROTOENT
TRAP#3

D0=$71
Provides end*ent(2) functionality

Input

D3.W
timeout

A0
channel ID

Output

D0 = result

Description:

The IP_ENDHOSTENT function ends the use of a TCP connection for name server queries.

The IP_ENDSERVENT function closes the connection to the database.

The IP_ENDNETENT function closes the connection to the database.

The IP_ENDPROTOENT function closes the connection to the database.

IP_GETNETENT
TRAP#3

D0=$68
Provides getnetent(2) functionality

Input

D3.W
timeout

A0
channel ID

A2
pointer to a buffer

// cast as necessary

Output

D0 = result

Description:

The IP_GETNETENT function reads the next entry from the networks database and returns a netent structure containing the broken-out fields from the entry. A connection is opened to the database if necessary.

IP_GETNETBYNAME TRAP#3

D0=$69

Provides getnetbyname(2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer holding a network name

A2
pointer to a netent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a netent structure (or EOF) for the entry from the database that matches the network name pointed to by A1.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_GETNETBYADDR
 TRAP#3

D0=$6A

Provides getnetbyname(2) functionality

Input

D1.L
net

D2.L
type

D3.W
timeout

A0
channel ID

A2
pointer to a netent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a netent structure (or EOF) for the entry from the database that matches the network number net. Type should be 2 (AF_INET).

The net argument must be in host byte order.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_GETPROTOENT
TRAP#3

D0=$6D
Provides getprotoent(2) functionality

Input

D3.W
timeout

A0
channel ID

A2
pointer to a buffer

// cast as necessary

Output

D0 = result

Description:

The IP_GETPROTOENT function reads the next entry from the protocols database and returns a protoent structure containing the broken-out fields from the entry. A connection is opened to the database if necessary.

IP_GETPROTOBYNAME TRAP#3
D0=$6E

Provides getprotobyname(2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer containing a name

A2
pointer to a protoent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a protoent structure for the entry from the database that matches the protocol name name. A connection is opened to the database if necessary.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_GETPROTOBYNUMBER TRAP#3
D0=$6F

Provides getprotobynumber(2) functionality

Input

D1.L
number

D3.W
timeout

A0
channel ID

A2
pointer to a protoent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a protoent structure for the entry from the database that matches the protocol number number. A connection is opened to the database if necessary.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_GETSERVENT
TRAP#3

D0=$63
Provides getservent(2) functionality

Input

D1.L
number

D3.W
timeout

A0
channel ID

A2
pointer to a buffer

// cast as necessary

Output

D0 = result

Description:

The IP_GETSERVENT function reads the next entry from the services database and returns a servent structure containing the broken-out fields from the entry. A connection is opened to the database if necessary.

IP_GETSERVBYNAME TRAP#3

D0=$64
Provides getservbyname(2) functionality

Input

D1.L
number

D3.W
timeout

A0
channel ID

A1
pointer to a buffer containing a proto

A2
pointer to a buffer of 1024 bytes

Output

D0 = result

Description:

The IP_GETSERVBYNAME function returns a servent structure for the entry from the database that matches the service name using protocol proto. If proto is NULL, any protocol will be matched. A connection is opened to the database if necessary.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_GETSERVBYPORT TRAP#3

D0=$65
Provides getservbyport(2) functionality

Input

D1.L
port

D3.W
timeout

A0
channel ID

A2
pointer to a buffer of 1024 bytes

A3
pointer to a buffer containing a proto

Output

D0 = result

Description:

The IP_GETSERVBYPORT function returns a servent structure for the entry from the database that matches the port port (given in network byte order) using protocol proto. If proto is NULL, any protocol will be matched. A connection is opened to the database if necessary.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_INET_ATON

TRAP#3

D0=$72

Provides inet_aton(2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer, name containing an IP address

A2
pointer to a in_addr structure, inaddr

Output

D0

D1.L
-1 if successful, 0 if not

Description:

Converts the Internet host address pointer at by A1 from the IPv4 numbers-and-dots notation into binary form (in network byte order) and stores it in the structure that inaddr points to. IP_INET_ATON returns nonzero if the address is valid, zero if not. The address supplied in A1 can have one of the following forms:

a.b.c.d Each of the four numeric parts specifies a byte of the

 address; the bytes are assigned in left-to-right order to

 produce the binary address.

a.b.c Parts a and b specify the first two bytes of the binary address.

 Part c is interpreted as a 16-bit value that defines the

 rightmost two bytes of the binary address. This notation is

 suitable for specifying (outmoded) Class B network

 addresses.

a.b Part a specifies the first byte of the binary address. Part b is

 interpreted as a 24-bit value that defines the rightmost three

 bytes of the binary address. This notation is suitable for

 specifying (outmoded) Class A network addresses.

a The value a is interpreted as a 32-bit value that is stored

 directly into the binary address without any byte

 rearrangement.

In all of the above forms, components of the dotted address can be specified in decimal, octal (with a leading 0), or hexadecimal, with a leading 0X). Addresses in any of these forms are collectively termed IPV4 numbers-and-dots notation. The form that uses exactly four decimal numbers is referred to as IPv4 dotted-decimal notation (or sometimes: IPv4 dotted-quad notation).

All of these functions convert from a struct in_addr (part of your struct sockaddr_in, most likely) to a string in dots-and-numbers format (e.g. "192.168.5.10") and vice-versa. If you have an IP address passed on the command line or something, this is the easiest way to get a struct in_addr to connect() to, or whatever. If you need more power, try some of the DNS functions like gethostbyname() or attempt a coup d'État in your local country.

The function IP_INET_ATON converts from a NULL terminated dots-and-numbers string into a long word in memory pointed to by A2.

IP_INET_ATON returns 1 if the supplied string was successfully interpreted, or 0 if the string is invalid (errno is not set on error).

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_INET_ADDR

TRAP#3

D0=$73

Provides inet_addr(2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer, name containing an IP address

Output

D0

D1.L
IP Address, or -1 if invalid

Description:

Converts the NULL terminated Internet host address pointed to by A1 from IPv4 numbers-and-dots notation into binary data in network byte order in D1.

 If the input is invalid, -1 is returned. Use of this function is problematic because -1 is a valid address (255.255.255.255). Avoid its use in favour of IP_INET_ATON.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_INET_NETWORK
TRAP#3

D0=$74

Provides inet_network(2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer, name containing an IP address

Output

D0 = result

D1.L
IP Address, or -1 if invalid

Description:

Converts a NULL terminated string of IPv4 numbers-and-dots notation pointed at by A1, into a number in host byte order suitable for use as an Internet network address. On success, the converted address is returned in D1. If the input is invalid, -1 is returned.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_INET_NTOA

TRAP#3

D0=$75

Provides (2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer

A2
pointer to a result buffer

Output

D0 = result

Description:

Converts the Internet net address pointed to by A1, given in network byte order, to a string in IPv4 dotted-decimal notation. The NULL terminated string is returned in the buffer pointed to by A2.

The "n" in "ntoa" stands for network, and the "a" stands for ASCII for historical reasons (so it's "Network To ASCII"—the "toa" suffix has an analogous friend in the C library called atoi() which converts an ASCII string to an integer.)

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_INET_MAKEADDR TRAP#3

D0=$76

Provides (2) functionality

Input

D1.L
network number

D2.L
host address

D3.W
timeout

A0
channel ID

A2
pointer to a result buffer

Output

D0 = result

Description:

The IP_INET_MAKEADDR function is the converse of IP_INET_NETOF and IP_INET_LNAOF. It returns an Internet host address in network byte order, created by combining the network number with the local address host, both in host byte order.

The host address is the computer number, and the network is the number of the network that the computer is on. e.g. a computer with an IP Address of 192.168.0.12 would be computer 12 on the 192.168.0 network.

The exact split, between the network, and the host is determined by the sub-net mask

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_INET_LNAOF
TRAP#3

D0=$77

Provides inet_lnaof (2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer containing a long word IP Address

Output

D0 = result

D1.L
host address

Description:

Returns the host address part of the Internet address pointed to by A1. The returned value in D1is in host byte order.

These are legacy functions that assume they are dealing with classful network addresses. Classful networking divides IPv4 network addresses into host and network components at byte boundaries, as follows:

Class A This address type is indicated by the value 0 in the most

 significant bit of the (network byte ordered) address. The

 network address is contained in the most significant byte,

 and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in

 the most significant two bits of the address. The network

 address is contained in the two most significant bytes, and

 the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in

 the most significant three bits of the address. The network

 address is contained in the three most significant bytes,

 and the host address occupies the remaining byte.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_INET_NETOF
TRAP#3

D0=$78

Provides inet_netof(2) functionality

Input

D3.W
timeout

A0
channel ID

A1
pointer to a buffer containing a long word IP Address

Output

D0 = result

D1.L
network number

Description:

Returns the network number part of the Internet address pointed to by A1. The returned value in D1is in host byte order.

These are legacy functions that assume they are dealing with classful network addresses. Classful networking divides IPv4 network addresses into host and network components at byte boundaries, as follows:

Class A This address type is indicated by the value 0 in the most

 significant bit of the (network byte ordered) address. The

 network address is contained in the most significant byte,

 and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in

 the most significant two bits of the address. The network

 address is contained in the two most significant bytes, and

 the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in

 the most significant three bits of the address. The network

 address is contained in the three most significant bytes,

 and the host address occupies the remaining byte.

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_IOCTL

TRAP#3

D0=$79

Provides ioctl(2) functionality

Input

D1.L
request, action

D3.W
timeout (-1)

A0
Channel ID

A1
pointer to string of character arguments

Output

D0 = result

Description:

The IP_IOCTL function manipulates the underlying device parameters of special files. In particular, many operating characteristics of character special files (e.g. terminals) may be controlled with IP_IOCTL requests.

The channel ID supplied in A0 must be an open file descriptor.

Used for device specific input/output operations. request, is a device specific command. e.g. tell a CD ROM drive to open it’s tray.

The codes are system specific.

***** Needs further looking into ******

IP_GETDOMAIN
TRAP#3

D0=$7A

Provides getdomainname(2) functionality

Input

D2.L
len

D3.W
timeout

A0
channel ID

A1
pointer to a buffer, name

Output

D0 = result

Description:

Used to access or to change the NIS domain name of the host system.

Returns the null-terminated domain name in the buffer, name, which has a length of len bytes. If the null-terminated domain name requires more than len bytes, IP_GETDOMAIN returns the first len bytes

Note – The open channel does not need to be connected or bound to anything, just an open “SCK_” will do.

IP_H_ERRNO

TRAP#3

D0=$62

Provides h_errno (2) functionality

Input

D3.W
timeout

A0
channel ID

Output

D0 = result

D1.L
h_errno

Description:

The IP_GETHOSTBYNAME and IP_GETHOSTBYADDR functions indicate an error condition by returning a null pointer and setting the external integer h_errno to indicate the error return status.

When IP_GETHOSTBYNAME or IP_GETHOSTBYADDR returns an error status, IP_H_ERRNO, which is very similar to IP_ERRNO, can be checked to determine whether the error is the result of a temporary failure or an invalid or unknown host.

Use the IP_H_STRERROR routine to print the error message describing the failure. If the argument string to herror is not NULL, it is printed, followed by a colon (:) and a space. The error message is printed with a trailing new-line character.

IP_H_STRERROR
TRAP#3

D0=$7B

Provides special functionality to return the text for h_errno

Input

D1.L
error no

D2.L
length of buffer

D3.W
timeout

A0
channel ID

A1
pointer to buffer for text

Output

D0 = result

A1
pointer to buffer with text

Description:

The IP_H_STRERROR function returns a pointer to a string that describes the error code passed in the argument error no. (For example, if error no is EINVAL, the returned description will be "Invalid argument".) This string must not be modified by the application, but may be modified by a subsequent call to IP_H_STRERROR.

In a nutshell, this function takes an error no values, like ECONNRESET, and prints them nicely, like "Connection reset by peer."

The function IP_H_STRERROR returns a pointer to the error message string for a given value (you usually pass in the variable error no.)

Note - At least that’s what it’s supposed to do, In testing I have only ever seen “Unknown error” returned.

IP_ERRNO

TRAP#3

D0=$7C

Provides (2) functionality

Input

D3.W
timeout

A0
channel ID

Output

D0 = result

D1.L
h_errno

Description:
This function will return in D1 the last IP error number (not the QDOS error number), from the last IP command.

IP_H_STRERROR may be used to get a human-readable version of the error.

IP Error codes
This is a list of C Error Codes in Linux, I don’t know how many of them may appear from the QDOS IP calls

Err no
Error name
Description

--

1
EPERM

Operation not permitted

2
ENOENT
No such file or directory

3
ESRCH

No such process

4
EINTR

Interrupted system call

5
EIO

I/O error

6
ENXIO

No such device or address

7
E2BIG

Argument list too long

8
ENOEXEC
Exec format error

9
EBADF

Bad file number

10
ECHILD
No child processes

11
EAGAIN
Try again

12
ENOMEM
Out of memory

13
EACCES
Permission denied

14
EFAULT
Bad address

15
ENOTBLK
Block device required

16
EBUSY

Device or resource busy

17
EEXIST

File exists

18
EXDEV

Cross-device link

19
ENODEV
No such device

20
ENOTDIR
Not a directory

21
EISDIR

Is a directory

22
EINVAL
Invalid argument

23
ENFILE

File table overflow

24
EMFILE
Too many open files

25
ENOTTY
Not a typewriter

26
ETXTBSY
Text file busy

27
EFBIG

File too large

28
ENOSPC
No space left on device

29
ESPIPE

Illegal seek

30
EROFS

Read-only file system

31
EMLINK
Too many links

32
EPIPE

Broken pipe

33
EDOM

Math argument out of domain of func

34
ERANGE
Math result not representable

35
EDEADLK
Resource deadlock would occur

36
ENAMETOOLONG
File name too long

37
ENOLCK
No record locks available

Err no
Error name
Description

38
ENOSYS
Function not implemented

39
ENOTEMPTY
Directory not empty

40
ELOOP

Too many symbolic links encountered

EWOULDBLOCK
 EAGAIN Operation would block

42
ENOMSG
No message of desired type

43
EIDRM

Identifier removed

44
ECHRNG
Channel number out of range

45
EL2NSYNC
Level 2 not synchronized

46
EL3HLT
Level 3 halted

47
EL3RST

Level 3 reset

48
ELNRNG
Link number out of range

49
EUNATCH
Protocol driver not attached

50
ENOCSI
No CSI structure available

51
EL2HLT
Level 2 halted

52
EBADE

Invalid exchange

53
EBADR

Invalid request descriptor

54
EXFULL
Exchange full

55
ENOANO
No anode

56
EBADRQC
Invalid request code

57
EBADSLT
Invalid slot

EDEADLOCK
EDEADLK

59
EBFONT
Bad font file format

60
ENOSTR
Device not a stream

61
ENODATA
No data available

62
ETIME

Timer expired

63
ENOSR

Out of streams resources

64
ENONET
Machine is not on the network

65
ENOPKG
Package not installed

66
EREMOTE
Object is remote

67
ENOLINK
Link has been severed

68
EADV

Advertise error

69
ESRMNT
Srmount error

70
ECOMM
Communication error on send

71
EPROTO
Protocol error

72
EMULTIHOP
Multihop attempted

73
EDOTDOT
RFS specific error

74
EBADMSG
Not a data message

75
EOVERFLOW
Value too large for defined data type

76
ENOTUNIQ
Name not unique on network

77
EBADFD
File descriptor in bad state

78
EREMCHG
Remote address changed

79
ELIBACC
Can not access a needed shared library

80
ELIBBAD
Accessing a corrupted shared library

81
ELIBSCN
.lib section in a.out corrupted

Err no
Error name
Description

82
ELIBMAX
Attempting to link in too many shared libraries

83
ELIBEXEC
Cannot exec a shared library directly

84
EILSEQ

Illegal byte sequence

85
ERESTART
Interrupted system call should be restarted

86
ESTRPIPE
Streams pipe error

87
EUSERS
Too many users

88
ENOTSOCK
Socket operation on non-socket

89
EDESTADDRREQ
Destination address required

90
EMSGSIZE
Message too long

91
EPROTOTYPE
Protocol wrong type for socket

92
ENOPROTOOPT
Protocol not available

93
EPROTONOSUPPORT
Protocol not supported

94
ESOCKTNOSUPPORT
Socket type not supported

95
EOPNOTSUPP
Operation not supported on transport endpoint

96
EPFNOSUPPORT
Protocol family not supported

97
EAFNOSUPPORT
Address family not supported by

 protocol

98
EADDRINUSE

Address already in use

99
EADDRNOTAVAIL
Cannot assign requested address

100
ENETDOWN
Network is down

101
ENETUNREACH
Network is unreachable

102
ENETRESET
Network dropped connection because of reset

103
ECONNABORTED
Software caused connection abort

104
ECONNRESET
Connection reset by peer

105
ENOBUFS
No buffer space available

106
EISCONN
Transport endpoint is already connected

107
ENOTCONN
Transport endpoint is not connected

108
ESHUTDOWN
Cannot send after transport endpoint shutdown

109
ETOOMANYREFS
Too many references: cannot splice

110
ETIMEDOUT
Connection timed out

111
ECONNREFUSED
Connection refused

112
EHOSTDOWN
Host is down

113
EHOSTUNREACH
No route to host

114
EALREADY
Operation already in progress

115
EINPROGRESS
Operation now in progress

116
ESTALE
Stale NFS file handle

117
EUCLEAN
Structure needs cleaning

118
ENOTNAM
Not a XENIX named type file

119
ENAVAIL
No XENIX semaphores available

120
EISNAM
Is a named type file

121
EREMOTEIO
Remote I/O error

122
EDQUOT
Quota exceeded

123
ENOMEDIUM

No medium found

124
EMEDIUMTYPE
Wrong medium type

Err no
Error name
Description

125
ECANCELED

Operation Canceled

126
ENOKEY

Required key not available

127
EKEYEXPIRED

Key has expired

128
EKEYREVOKED
Key has been revoked

129
EKEYREJECTED
Key was rejected by service

For robust mutexes

130
EOWNERDEAD

Owner died

131
ENOTRECOVERABLE
State not recoverable

64
63

