

1

Contents

 INTRODUCTION

 QVIEW History... 4
 Stuart McKnight... 4
 Jonathan Oakley .. 5
 Laurence Reeves ... 5
 Technical Help 6
 Wish List .. 6
 Credits .. 6
 Contact Information ... 7

 INCOMPATIBILITIES ERM.

 Problems... 7
 Bodger routines…………………………………7
 Liberator Runtimes... 8
 Hotkey System 2 v2.06 8
 QLOAD/QLRUN .. 9
 SuperBASIC compilers 9
 Turbo Toolkit/"EXTRAS"................................ 10
 MS.DOS FORMAT .. 10
 Trumpcard SDUMP ... 10
 Hatemail!.. 11

 CONCEPTS

 Startup and Ramtest... 11
 Auto start on timeout ... 12
 Keyboard changes ... 12
 Compose characters... 13
 Dual Screens.. 13
 Screen Tweaks... 14
 Screen Graphics .. 14
 MDV date stamping... 14
 Network Broadcast .. 15
 Scheduler .. 15
 Serial driver ... 15
 Foreign Keyboards .. 16
 ABC Keyboard Interface Driver.................................. 16
 ATARI QL Emulator... 16
 MINERVA versions .. 16

2

 SuperBASIC ... 17

 ABS……... .. 17
 ATAN-AUTO-BLOCK-DATE................................... 18
 FILL-MODE ... 19
 OPEN-PAUSE-PEEK-POKE 21
 PEEK/POKE(Rel) .. 22
 RENUM .. 23
 RESPR-SBYTES-SEXEC .. 23
 SCALE-SEL-VER$-WINDOW.................................. 24
 WHEN ERRor... 25
 WHEN Variable ... 26
 Speed ... 27
 Graphics ... 28
 Strings .. 28
 Tracing SuperBASIC .. 28
 Integer/String SELEct ... 29
 Integer tokens ... 29
 SuperBASIC Parser .. 30
 MultiBASIC ... 31

 ASSEMBLER... 33

 Rom-scan-Exceptions ... 35
 TRAP calls .. 35
 RI.Vectors ... 36
 MT.DMODE .. 36
 SuperBASIC Trace.. 38
 MT.RERES ... 39
 IO EDLIN ... 39
 BV.CHxxx .. 39
 BV.NAME .. 40
 Device Drivers .. 40
 FS.RENAME ... 40

 New MINERVA vectors.. 41
 UT.ISTR ($13C) .. 41
 GO.NEW ($13E) ... 41
 BP.CHAN ($140)/BP.CHAND ($142) 42
 BP.CHNID ($144)/BP.CHNEW ($146) 42
 BP.FNAME ($148) .. 43
 CA.CNVRT ($14A) .. 43
 CA.OPEXE ($14C).. 43
 CA.EVAL ($14E) .. 43
 IP.KBRD ($150) .. 44

3

 IP.KBEND ($152).. 44
 SB.START ($154) .. 45

 Move Memory vectors .. 45
 MM.MOVE ($158) ... 46
 MM.MRTOA-MM.MATOR-MM.MRTOR.... 47
 Memory Clear vectors... 47
 MM.CLEAR ($168)-MM.CLRR ($16A)......... 47
 System Extensions .. 48
 CASE-ITRAN-OTRAN-DRIV 49
 KBENC-TRN-MSG-F0/F1.............................. 50
 DSPM-EVENT .. 50
 FSTAT-QDOS-BASIC 51
 QDOS-BASIC-IPCRTN 51
 Ram based linkage pointers...................................... 52

MINERVA MKII RTC (clock/12C bus) .. 53

Fitting instructions for MKI... 62

Thanks are due to Dilwyn Jones for spending days over the May bank holiday weekend
proofreading this document (and getting into trouble for not mowing the lawn!).

4

INTRODUCTION

First of all thank you for expressing your support for the QL and the many hours of
work we have put into MINERVA! Originally it was intended to be a pet project
amongst ourselves but brief public exposure soon showed that there were other QL us-
ers who had also been wanting the same features as us. Being a friendly bunch of people
we decided to give up our normal evening lives in pursuit of bringing the results of our
labour of love to others less fortunate than ourselves

So who are QVIEW anyway, and why are they affectionately known as the International
Mega Corporation? These and other difficult questions will be answered in the follow-
ing few paragraphs. It you already know or don't care then feel free to fast forward to
the fitting instructions and play with your new toy; you can come back to us later.

QVIEW came into being a couple of years ago when two avid QL users who were into
comms, modems and staying awake all night happened into each other. Laurence
Reeves and I (Stuart McKnight) had been developing Viewdata Bulletin board systems
to run on a QL, each unaware of the other's activities. It was a chance phone call from
Lau that brought us together and we decided to pool our efforts and produce a system
which we hoped was better that the sum of the parts. About that time the mind bending
QPTR Toolkit documentation from QJUMP was released, and somehow I found myself
volunteering to write the page editor in QRAM style pull down windows while Lau got
the difficult bits of getting the modem to answer the phone. What's so difficult about
that you say? Well did you ever try to get an early Astracom modem to behave as it said
it ought to (the current models are vastly improved thanks to Tony Price and Tony
Firshman's spade work on the original code!).

A few other comms fanatics got to hear of our activities and wanted to run similar
boards so our first non-commercial venture was born and other QL run bulletin boards
appeared while we continued staying awake through the early hours of the morning ei-
ther phoning around looking at them or writing updates to the software Which is how
we sort of roped Jonathan in as he was the QPTR expert, well if he didn't understand his
own manual then what chance did I stand? In true QVIEW lunatic tradition, Jonathan
found himself idly staring at an LED, a transistor and a couple of resistors and invented
the fiendish CAPSLED device to indicate when CAPSLOCK and Screen Freeze had
been enabled. I liked it, decided I wanted one for my machine and then in a mad state of
philanthropy wondered how many other people might like the additional LED in restful
green. It was a rock-bottom price kit at £5.00 and we were pleased to know that despite
our instructions, nobody had corpsed their machine as a result of fitting it.

So the QVIEW team are, in no particular order of importance...........

Stuart MCKNIGHT, not actually a programmer or anything to do with computers in
his daytime life, apart from the fact that they take up sizeable areas of his flat. A termi-

5

nal Goon Show junkie he has by now seriously infected the other two with this manic
form of humour as anybody who has heard us re-enacting certain favoured episodes will
testify. He and Lau also share a sneaking admiration for A Very Peculiar Practice to
which Jonathan as yet remains immune but we're working on it. Any dealings with
QVIEW will usually be via Stuart as he's the one who volunteered to answer the phone,
open all the mail, sort it, answer it, answer the phone, mail out MINERVAE, answer the
phone, organise visits to QUANTA workshops and by the way is the kettle on yet....yes,
catering is also on his duty roster. He is currently trying to close the Terry Pratchett gap
so that he can figure out why Lau and Jon fall about laughing for reasons he doesn't yet
understand (something to do with strangely named camels performing complex arith-
metical calculations...?11?1?1?1)

Jonathan OAKLEY found his daytime activities of designing PCBs for odd little giz-
mos, chasing component suppliers and criticising other people's software somewhat
dull, so he joined forces with the Mega Corp and now spends his evenings and week-
ends designing odd little PCBs, chasing components and criticizing other people's soft-
ware. His other main activity is visiting Stuart for Sunday lunch in an attempt to gain
entry to the Guinness Book of Records for having eaten the same meal every Sunday
lunchtime for a year or two....(or should I change the menu Jon?) (yes Stu you should:
by the way the phone's ringing. And where's the tea? - Jon)

Laurence (Lau) REEVES a.k.a. The Grand Wizard is usually to be found amid a pile
of ashtrays of incinerated Gauloise Disque Bleu cigarettes, deep in thought at the key-
board, in total command of the three hundred odd MINERVA source files on the Mi-
raculous Winnie looking for some new devious twist to add to an existing QDOS rou-
tine, to make it wondrously useful, totally incomprehensible, or both (wait 'till you see
the new MODE Commands). He claims most of his best ideas happen when he's in the
bath, or waking up; we suspect that some of his real brainsmashers have occurred while
he was doing both (but not whistling). Other known hobbies include eating cake, mak-
ing sense of The Prisoner and counting the nuns. His one luxury marooned on a desert
island would be a video of the film ‘Dark Star’

The MINERVA operating system, named after the Roman Goddess of Wisdom, has
been a year in the making. Our intention was to extend the possibilities of an already
fine operating system and cure some of the more dangerous bugs that have come to light
in the five or six years since QDOS first appeared. Originally produced purely for our
own amusement, we were eventually persuaded to share it with fellow QL users.

In our travels through other people's software we have discovered an occasional lapse
into complacency & a few software writers have convinced themselves that the last
ROM issue was either MG or JS and that these contained specific routines in specific
locations.

Whilst some were moderately excusable due to there being no safe and documented
Trap or Vector to access them, there were others which seemed lust plain silly - notably

6

one product (no names, no pack drill) which always assumed that an RTE instruction
could be found at a particular location.

Where the infringement was excusable on the grounds of the routine being un-vectored,
then we have tried to accommodate these products by making the ROM look as the
software expected.

Please note that using the two-screen facility causes a lot of software a lot of problems:
the very first thing to try if a package gives trouble is to run it in one-screen mode. Note
also that the various memory-cut routines available often make assumptions about the
ROM contents: see ASSEMBLER for details of the built-in memory cut routine, which
can be used to replace most others.

We have tried many different software packages with MINERVA: if you find you are
having problems with a particular piece of software then we would be grateful if you
could provide as much data as possible to help us work out where the problem arises. If
it is a legitimate system call that is now failing due to an alteration in the way that MI-
NERVA works, we shall do our best to correct it.

Technical Help

The best way of getting a quick fix to this sort of problem is to supply us with a copy of
the offending software, with adequate instructions on how to reproduce the problem - a
suitable BOOT file and a list of key-strokes is best. It's also useful to know what hard-
ware you have. When we've fixed the problem, we'll return your medium, possibly with
a patched version of the software on it. If convenient, it can be useful to try the same
thing on an Official ROM version - sometimes we find that an apparent MINERVA bug
occurs in JS as well.

Wish List

If you have any ideas on future improvements, the wish-lists are still open - we don't
implement every idea (I HATE screen savers, so don't suggest them!), but everything is
considered. We tend to prefer ideas which add to the extendibility of the system, rather
than extend it in their own right: the SuperBASIC TRACE hook is a good example of
this. Don't assume "somebody else must have thought of that idea", or try to work out in
detail how we could do something - if you work out the what we'll attend to the how
(assuming the idea gets past the why!).

Credits

Thanks as ever to Tony Tebby of QJUMP for his comments, Ian Stewart and Adrian
Soundy of Liberation Software for their help with the workings of QLiberator and
QLOAD and for producing a new version of QLiberator which supports some of the
extra MINERVA features; the members of QMAS the local QUANTA sub-group for

7

throwing their collective software libraries at each new version of MINERVA for test-
ing purposes and you for supporting our efforts to keep the QL alive. Thanks also to
those who contributed to the wish-list via ATAVACHRON, other bulletin boards, letter,
'phone and carrier pigeon...

QVIEW may be contacted at:

TF Services, 29 Longfield Road, TRING, Herts, HP23 4DG.
Tel: 01442-828254
Fax: 01442 828255
tony@firshman.co.uk
http://www.firshman.co.uk

Incompatibilities

Problems

Remarkably few considering the range of changes we have introduced, but nothing is
perfect and here are a few of our past problems some of which may not appear in the
version of MINERVA you have! Any revisions to the current state of compatibility will
be found in the updates_doc file on the MINERVA Technical Disk supplied with your
ROM.

Bodges

Some programs and extensions have bugs in them, which previous versions of QDOS
let slip through. Minerva being somewhat fussier can expose these bugs, and we have
therefore provided a series of bodges to correct some of them. These are in the form of
SuperBASIC programs, in files of the form bodge_program_name. Inspection of the
program will show the file it's expecting to operate on, and the expected length: if these
are different from the version you have, the bodge program may not work. It's worth a
try, though - just alter the name and length to suit, and try it! ON A BACKUPI

To bodge an offending program, load in the corresponding bodger program, put the of-
fender in the drive expected (usually flp1_) or alter the bodger to suit you (eg to use a
RAM disc), and run the bodger. Progress is reported, and the result written back to the
source medium with _bodged appended. Try using this instead of the original, you
should find the specified problems have been fixed. If not, please send us your version
of the software and instructions on how to reproduce the problem - we'll return your me-
dium with a new bodger and a suitably bodged version of the software you sent.

Note: the bodger programs are pretty slow in operation, don't worry about this, you'll
only be doing it once. You can compile them if you like, unless your compiler won't
cope or it's the compiler you want to bodge...

8

We at QView have a policy of informing the author or publisher of a program about any
bugs we find. The majority of them will, in time, fix such bugs and provide updates for
their customers. This may take some time, as most people like to collect at least a
month's worth of bugs before doing any fixes, especially if the software's quite old. The
advice here is be patient, polite, but persistent. Also, be very clear about which bug it is
you need fixed - otherwise you may end up with a more recent version which is still no
good to you.

To the bodges.....

QLiberator Runtimes & QLiberated Software

Some commercially available software, eg 4Matter and Locksmithe, has been compiled
using a Version of QLiberator which is now slightly out of date - the Runtime routines
which are often built into the program at compile time make assumptions about the po-
sition of certain routines within the QL ROM. Most of the problem programs will also
fail on an MG ROM issue as the way the ROM handled data in its registers was
changed from the earlier issues. The long term solution is to obtain a more recent ver-
sion of the software which should have been compiled with a more recent version of the
Liberator Runtimes. As a short term measure, we have included a compiled program
QLibodge_obj which will unlink any Runtimes which have been built in. When a QLIB
program cannot see the Runtime code within itself, it looks for it elsewhere in the ma-
chine. You should RESPR and CALL, or LRESPR if you have TK2, your most recent
Liberator Runtimes. If you do not have this file (why not?) then use the Runtimes that
are supplied to run QLibodge obj.

A typical bodged boot program might therefore become:

 10 b=RESPR (10064): LBYTES 'flpl QLIB_run',b:CALL b
 15 b=RESPR (cde_size) : LBYTES 'flp1_extensions',b:CALL b
 20 EXEC 'flpl_a_program_obj_bodged'

If you try and execute a 'bodged' Liberator program without the Runtimes being present
in the machine then you will get the error message:

Runtimes Missing!

In most of the programs we have tried this cures the problem with only a slight side-
effect that each of the problem compiled programs is carrying a dead weight of about
8K of code, hence it is really a short term measure.

Qjump Hotkey System 2

Hotkey system 2.06 and possibly some of the earlier versions give a problem with the

9

extension HOT_LOAD, due to a missing '#' in the code, on MINERVA ROMS the stack
will be over-wound causing the machine to collapse either immediately or when some-
thing serious is attempted. The program bodge_hotkey2 can be used to correct this to
function correctly QJUMP have been informed and it is unlikely that versions later than 2
06 will have problems.

Qload/Qrun

In some cases we have found an intermittent problem with QLOAD when followed by
RUN or QLRUN. The symptoms vary between hanging the machine or some spurious
error message. Liberation are working on a revised QLOAD set of routines and in the
meantime we provide mload_bin which provides the QLOAD/QLRUN extensions. It does
not support QSAVE as we do not intend to deprive Liberation of QLOAD sales. If you do
experience problems we suggest you LBYTES and CALL or LRESPR the MLOAD_BIN
file AFTER loading the QLOAD_bin file from Liberation. This will ensure that the names
and routines in our file replace the earlier versions.

Our MLOAD_BIN file is compatible with earlier versions of QL ROM so there is no need
to create separate boot files for MINERVA/non-MINERVA machine use.

STOP PRESS Liberation Software have just produced QLOAD v1.7 which they be-
lieve is now MINERVA compatible. Contact them for an upgrade. They also have v3.34
of Liberator which is happy in the two screen environment, and supports WHEN ERRor.

Compilers

With the implementation of integer tokenisation in current releases of MINERVA, there is
a conflict with some versions of compilers produced by Digital Precision (Turbo and Su-
percharge) and Liberation Software (QLiberator). Unless you know that the version of the
compiler you use has been modified to recognise this MINERVA feature, you will need to
disable integer tokenisation before loading and compiling your SuperBASIC program.
The procedure is as follows:

 POKE \\212, 128 Turn off integer tokenisation
 ………. Load SuperBASIC program
 ………. Compile as per instructions
 POKE \\212, 0 Restore integer tokenisation

If you LIBERATE from a _sav file instead of producing a work file by using the LIBER-
ATE command, then you should ensure that integer tokenisation was turned off when the
SuperBASIC program was first loaded and subsequently QSAVEd. The same caveat ap-
plies if you QLOAD a file prior to Turbo or SuperCharging it.

Digital Precision and Liberation Software have been kept informed of our developments
in this area of the ROM and will quite likely upgrade future releases of their compilers to

10

cope with this change.

Integer tokenisation also has an effect when RENUMbering lines of SuperBASIC with
line numbers less than 127. See the RENUM section in the BAS chapter of the Techni-
cal Guide for further information.

Turbo Toolkit and Illegal Extension Names

Some versions of the Turbo Toolkit (also to be found in some commercial software
packages called EXTRAS or XTRAS) contain the illegal extension names FUNCTION
and PROCEDURE. MINERVA will reject such illegal names (and other extension
names with silly characters) and return from BP.INIT ignoring any subsequent proce-
dures or functions. Digital Precision have produced a revised Turbo Toolkit which no
longer contains these illegal names. This updated Toolkit is supplied on the MINERVA
disk.

Solution and Conqueror FORMAT

MINERVA now has an extended check before a FORMAT call, to avoid allowing a
FORMAT if any channels are still open to that medium

The MS.DOS emulators Solution and Conqueror from Digital Precision leave a *d2d
direct sector access channel open all the time so under MINERVA a FORMAT within
Solution or Conqueror will fail. To deal with this we have implemented SX_TOE to
turn off such enhancements. To allow these emulators to FORMAT disks you will need
to set bit 7 of SX_TOE with the following POKE:

 POKE !124!149,128

Trump Card SDUMP

SDUMP is a bit sneaky in that it parasites itself on a job to do its I/O operations for it.
Under normal circumstances SuperBASIC will quite happily do this. However in order
to create multiple BASICs and the concept of an interpreter class job we used an avail-
able bit in the Job Header - the JB_RELA6 ($16) offset - with bit 6 set if we're one of
these interpreters.

Tony should be testing the MSB but tests with BNE instead of BMI which tests just the
top bit for you. you can get an amusing effect with JS etc if you start an SDUMP, then
hit CTRL-SPACE - the dump will stop. EXEC'ing something like QUILL will then re-
start the dump!

As to a cure .. Well the best thing to do is have a job running which doesn't disturb the
screen and has the JB_RELA6 byte set in the way SDUMP expects to test. Just such a

11

job is by a happy coincidence, FSERVE! So have FSERVE running before you issue the
SDUMP command. We don't think there is any way round this in current MlNERVAe,
we've passed this information on to Tony and he will doubtless arrange for it to be cured
for the next issue of the Trump Card TK ROM.

Hatemail!

We're told that people found the following file on our early documentation files most
amusing so we've incorporated it into the printed Versions

People we really HATE...

...those who assume there's an RTE at address $5E in the ROM, because they're too lazy
 to write the code to fill in their trap redirection table
.. those who put filenames in "spare slots" in the system variables, because they're too
 lazy to work out a legal way of communicating between passes of their Compiler
...those who assume the system variables live at address $28000
...those who assume the screen is at address S20000
...those who write directly to the screen without using the SD.EXTOP trap
...those who open files for writing when they're only going to read them
...those who use the wrong trap to allocate memory in the system heap - the correct one is
 MT.ALCHP, not MT.ALLOC

People we slightly hate..

...those who search the ROM for a known pattern, but don't start at the beginning to
 save time
...those who call routines which they know start just after (or before) a legally-vectored
 one
... those who set the MODE without reading it first to see if it's already the one they want
...those who think it's worth using priorities above 127 to get a few percent extra speed
 (note our change in this area!)

Concepts

Startup

Some (!) changes have been made to the start-up routines. The RAM test is faster, which
will please Trump card owners. In order to make the RAMTEST more reliable, the starting
point for the tweed pattern of random bits is started from one of 4096 possible points. Thus
a few consecutive presses of the RESET button should make sure that your RAM is safe
from most errors including the elusive refresh problems which may only show as sporadic
locking up of the machine for no readily apparent reason.

12

Ramtest Failure

Should the RAM fail the test, you will get three lines of information on the screen: the
value which was written, the value read back and the memory location at which the fail-
ure occurred There will be a pause of about ten seconds before MINERVA restarts
stepping the memory size down to just below the failed area. In an extreme case of a
failure of an internal RAM chip you may find yourself with a 48K QL - just be thankful
you started with a ZX81 once! See the RAMFAIL_BAS utility on the supplied utility
disk.

If all your memory passes its physical, you then have the option of pressing F3 or F4,
which goes through some of the start-up code again in order to enable the second screen
- we couldn't figure out a way of moving the system variables without bringing the sys-
tem down around our ears, and leaving them permanently at the second screen location
would confuse the (badly-behaved) software that assumes the old location. F1 and F2
have the original effect of putting you in monitor or TV mode - in combination with
SHIFT the memory is cut to 128K, with CTRL the ROM scanning is omitted for really
badly-behaved software.

After F3 or F4, pressing the screen switch key CTRL-TAB should now give you a
blank screen instead of the pretty coloured dots and things that appear when you screen
switch on a single screen MINERVA.

Auto-start

If you don't press F1 or F2 within fifteen seconds of the boot screen appearing, the sys-
tem will start anyway, pretending that you've Just pressed the F2 key. This will be of
use to those who leave systems running while they're out - they'll re-boot automatically
after a power cut. If you wanted F1 as a start-up then just add the following magic
mode command to your BOOT program - MODE 4,0. Note that this just resets the
hardware - if you want the windows changed to the appropriate size you'll have to do
that yourself in the boot file. If you need to perform a software reset, you can now do
so: see the Assembler sec-
tion of this guide for de-
tails. You can also do a
reset from the keyboard,
with CTRL-ALT-SHIFT-
TAB.

Keyboard Changes

A number of changes have
been made to the key-
board, to improve usability
and gain access to some of

13

the new facilities. The following list of keys did nothing (useful) in previous versions:
while the functions they now perform are (where appropriate) retained on their original
keys, these ones are hard-wired into the system and can't be modified by POKEs. This is
especially useful for the new "next jobs" key, as CTRL-C is forever being zapped by
unfriendly software, and never twice the same key either!

Keystroke Function Old keystroke
CTRL-ALT-SPACE BREAK MultiBASICs (none)
CTRL-TAB swap displayed screen (none)
CTRL-ALT-TAB screen freeze CTRL-F5
CTRL-ALT-SHIFT-TAB Keyboard RESET (none)
CTRL-ENTER compose character (none)
CTRL-ALT-ENTER keyboard queue CTRL-C
SHIFT-CTRL-ENTER CAPSLOCK CAPSLOCK
ALT-CTRL-SHIFT-ENTER Call User routine (none)

“Compose” Characters

The only really non-obvious one of these is compose character, CTRL-ENTER. This
allows you to type in that tricky foreign character you know is in there somewhere, but
is it on CTRL-= or CTRL-SHIFT-1 ?! Now all you need do is type CTRL-ENTER, A,:
for a-umlaut (an a with two dots, OK?), and so on. Where an upper-case version exists,
shifting either of the two characters gives the upper-case result (or having caps lock on,
of course). We've tried to keep the combinations pretty obvious: \ and / combine with
letters to give grave and acute accents,: for umlaut, and A (or 6) for circumflex. We've
avoided the quote key, as it's not obvious whether it adds an accent (΄) or umlaut(΄΄).
Note that symbols (^,: etc.) are added correctly whether or not you press the SHIFT with
them: you get an umlaut from CTRL-ENTER, A,; as well.

IO.EDLIN which is called by EDIT, AUTO and INPUT can now accept enhanced
movement keys which are as follows:

ALT / move to start/end of current line
TAB move along to 8th character from start of buffer
SHIFT-TAB moves BACK in same steps as above
CTRL-ALT deletes to start of current visible line
CTRL-ALT delete from current character to total end of line
ESCape behaves like CTRL/SPACE (Break)
SHIFT-ENTER behaves pretty much like ENTER
SHIFT-SPACE behaves pretty much like SPACE

Dual Screen

Whilst there is a perfectly good Trap MT.INF to find the location of the system vari-
ables and despite the Technical Guide stating that there is no reason why the System

14

Variables should always be in the same place, many software writers seem to have decided
that they always know they'll be at $28000. We have provided a small SuperBASIC pro-
gram called svcheck_bas which you can use on any of your own commercial programs to
discover whether they are usable in a two screen environment. Note that we've extended
VER$ to provide VER$(-2), which tells SuperBASIC programs where the System Vari-
ables are. There is now NO EXCUSE!

It may be possible to patch a version of these offending pieces of software to use the posi-
tion of the System Variables when the two screens have been enabled. This is currently
$30000 (or higher if you use some of the strange options on CALL 390!). But we might
change it.

CTRL-C (or the new equivalent CTRL-ALT-ENTER) now has the additional function of
switching screens if the next active cursor happens to be on the other screen. Note the dif-
ference between this and CTRL-TAB, which allows you to Inspect the other screen, with-
out moving from the current job.

Screen Tweaks

Apart from implementation of the second screen, a number of improvements have bean
made to screen handling. 8-pixel-wide characters now work in all character sizes. If you
use the Super Toolkit II CHAR_INC routines, then characters will print out on a STRIP of
the size specified, but won't fall out of the window as they can on previous ROMs. This
was particularly embarrassing when the STRIP fell out into the system variables! The char-
acter set has been extended to include a complete (if rather scattered) Greek alphabet and
some other useful bits and pieces. It's a moot point whether this is a useful way of occupy-
ing 1k of valuable ROM space, to don't rely on them. We'd welcome comments on what
people want in an extended character set: we now have ways of installing new character
sets so that they can be used by all jobs - see sx_f0.

Screen Graphics

Graphics have been speeded up, and their robustness improved: ELLIPSE and ARC in par-
ticular benefit- you no longer get gaps in wavy lines drawn with ARCs, and narrow ellip-
ses don’t go bananas so readily. Even POINT has been speeded up! The net result is that
graphics are now at least 98% of the speed of the LIGHTNING graphics, without taking up
4K of your memory. (Figures are based on DPs own graphics benchmark, running LIGHT-
NING 1.13 from RAM a ROM-based version would be faster).

MDV Date-stamping

On a MINERVA machine without Toolkit II, the system will now date-stamp both the
creation and update dates of files on the microdrive. Whilst we would have liked to imple-
ment these concepts on floppy disk drivers, these are not controllable by the operating sys-
tem as the external device driver over-rides the internal routines.

15

Network Broadcast

For machines without Toolkit II (still not convinced you to buy one from QJump yet?)
the broadcasting to all stations listening has been made more reliable than previous is-
sues but is not yet absolutely 100% perfect in all situations.

Scheduler

Break (CTRL-SPACE) handling has been moved here to avoid having it inside interrupt
service code. Also, CTRL-ALT-SPACE breaks all interpreters other than job 0. The us-
age of job priorities has been enhanced somewhat. They now behave as:

-128 .. -1 background tasks (see below)
0 job is Inactive
1 .. 127 major active jobs, as before

Background tasks are split into eight levels, according to their top nibble, within each of
which the low nibble now gives the priority increment.

Background tasks of a given level are given time only II no major job and no tasks at a
higher level want time. Note that their negative priorities may be reported by some utili-
ties as large positive numbers, so a task with a priority of -1 may be reported as 255.

Serial Driver

This has all been shuffled about quite a bit, in an attempt to get toward properly func-
tioning serial channels. The current version still suffers from some problems.

The main problem is that handshaking can only be actioned at the stage of actually
sending bytes to the 8302. Swapping between SERi and SERh opens will not get this
right. However, this seems to be the least of evils, as one will usually be changing the
hardware plugged into the port in these cases. All other
handling is done earlier, including making the CLOSE
do generation of CTRL-Z if required.

The serial queues now contain only raw data to/from
the serial ports. The action of SERc is now treated as
an exchange of CR/LF values. The I/O translation rou-
tines now occur between parity/handshake and proto-
col (CR <>LF and CTRL-Z) handling.

The only user translation that is difficult/impossible at
the moment is the one-to-many conversion of data
coming from the serial queue. The current sequence of

16

operation is as shown in the funky grey box.

The channel structure is not discarded when closing a serial channel, as there may be
further data pending in the transmit queue. This deserves more thought. The above se-
quence is not wildly satisfactory, as it can be held up indefinitely by a SERh channel
with the handshake holding off output permanently. The original technique relied on
outputting the CTRL-Z when the 8302 had emptied the queue, but this was prone to the
syndrome of changing protocols before the code had actioned the protocol. For instance:
sending a series of small CTRL-Z files, then changing to SERr would not send any
CTRL-Z’s! An alternative scheme to avoid the handshake problems suffers from the
same flaw as the above. This would be to use a special byte in the output queue as an
escape character. A preferred value would be a zero byte. The output would then double
up single nulls when they were real, say, and restore them in the IP routine. Other byte
values after a null would be used to pass open/close parameters down.

Foreign Keyboard Drivers

Provision has been made for foreign keyboard machines by allowing an appropriate
keyboard driver to be RESPR’d into the machine at boot-up. Once this has been done,
the error messages and keyboard mapping will have been altered appropriate to the lan-
guage of the driver installed. There are currently versions available for the German
(MGG), French (MGF), Finnish (MGY) and Norwegian (MGD) ROMS. For those who
have access to an EPROM programmer and who do not use the ROM port at present,
there are _ROM files for each keyboard driver which can be blown into an EPROM so
that your keyboard driver is available immediately on power up.

With a product like RPM from Liberation Software or Thing and EPROM Manager
from Jochen Merz, you can incorporate the _BIN keyboard files into whatever
EPROMs you have already produced.

For those without access to EPROM programmers, we would be prepared to supply the
keyboard driver blown into an EPROM cartridge for a nominal fee - please contact us at
the usual address if you require this.

For those QL users who have the ABC Keyboard Interface and would like to use MI-
NERVA on a QL fitted with this interface, we have provided a MINERVA compatible
driver on the disk called ABC_KBD_BIN.

This file should be the first thing loaded by your boot file if you want to use the key-
board. Unfortunately you cannot press F1/F2/F3/F4 until the keyboard driver has been
installed so you will have to rely on the ten second timeout starting up your boot file
unless you rig up a piece of wire with a switch to the old QL keyboard connector to al-
low you to press F1 or F2 from the QL keyboard. Note that both drivers can run in par-
allel so if your QL still has its keyboard attached you can use either the ABC or QL key-
boards.

17

If you do not have Toolkit II with the LRESPR extension then you need the following
sequence to load the driver:

10 base=RESPR(750) :LBYTES flp1_abc_kbd_bin,base:CALL base

If you do not use the ROM port for any toolkit ROMs etc, you might consider blowing
the ABC_KBD_ROM code into an EPROM so that it is initialised immediately on
power up. If you do not have access to an EPROM programmer to do this but would
like to install the keyboard driver in this way, please give us a call or drop us a line and
we should be able to do it for you for a nominal charge.

The source file ABC_KBD_ASM is also provided for those who might find it of inter-
est.

ATARI QL Emulator and Thor Machines

At the time of going to press, no specific work has been done to produce a version of
MINERVA to run on the Atari QL Emulator from the Futura Datasenter supplied by
Jochen Merz. If there is sufficient demand we will try and find some odd moments to
see how much work is required and whether there is sufficient interest to warrant it. The
same applies to variations of the Thor family.

MINERVA Version

The specifications in this manual apply to MINERVA versions from 1.82 onwards. If
you have an earlier version then some of the features described may not be implemented
on your version; if you feel you need them, please contact us for upgrade information.
Later versions of MINERVA may have extra enhancements which we will describe in a
printed supplement if the changes are major, or an updates_doc file on the utility disk in
the case of minor tweaks.

SuperBASIC

ABS

The ABS function now takes a list of numeric parameters, and returns the square-root of
the sum of the squares of its parameters. The observant among you will spot that this
leaves its original function unchanged, though of course the one parameter call is not
done by squaring and square- rooting the parameter!

18

ATAN

This can now take two parameters, ATAN(x,y) giving the angle from the origin to the
point (x,y)... much the same result as ATAN(y/x) but not overflowing if x happens to be
zero, and getting the quadrant right.

AUTO - EDIT - INPUT

IO.EDLIN which is called by EDIT, AUTO and INPUT can now accept enhanced
movement keys which are as follows:

 ALT / move to start/end of current line
 TAB move along to 8th character from start of buffer
 SHIFT-TAB moves BACK in same steps as above
 CTRL-ALT deletes to start of current visible line
 CTRL-ALT delete from current character to total end of line
 ESCape behaves like CTRL - SPACE (Break)
 SHIFT-ENTER behaves pretty much like ENTER
 SHIFT-SPACE behaves pretty much like SPACE

BLOCK

The screen driver entry (SD.FILL) for this command has been enhanced to accept any
16-bit signed integer values for width, height, x and y. Normal usage is unaffected, but
one can use it very similarly to the graphics routines, in that it will now just fill in any
part of the area that lies within the screen.

 eg BLOCK 200,20,-195,-10,7 will behave as BLOCK 10,5,0,0,7.

The reason for this enhancement is twofold. We found it quite irritating to have to be so
finicky (some of you will know what I mean). Secondly, we wanted something that
would accept BLOCK 2,2,-2,0,7, and various others, that JS fails to error trap correctly.
This was causing trouble in some software that used such invalid BLOCK commands,
and got away with it. (That is they did, before Minerva started to check values cor-
rectly). Be careful if you try out the duff BLOCK commands on non-Minerva ROM’s;
the example above actually draws itself on the right hand edge of a full size screen, but
we wouldn’t guarantee that other parameters won’t cause a crash!

DATE - SDATE

The date procedures now accept a wider range of parameters. DATE accepts the six-
parameter format formerly used by SDATE, allowing you to convert this form for use
with DATE$ and DAY$ and SDATE now accepts a single parameter in addition to the
original six parameter syntax.

19

So:
 PRINT DATE$ (DATE(1962,3,21,9,0,0))

will print 1962 Mar 21 09:00:00

and more usefully

 PRINT DAY$(DATE(1962,3,21,9,0,0))

will print Wed

A small program to copy the clock from one QL to another across the network is now:

100 remf$="n1_ram1_find_the_time"
110 e=FOP_NEW(remf$)
120 IF e>0 THEN CLOSE #e:SDATE FUPDT(\remf$)):DELETE

remf$

Note that you do need the wonderful Super Toolkit II on both machines to use this.

FILL

This is a bug-fix. Previously, if a program didn’t do a FILL #n,0 before a CLOSE #n,
the fill buffer (used to keep track of which parts of the screen are to be filled) was left
behind, resulting in 1k of memory being lost to the system. Now the fill buffer (if any)
is automatically thrown away when a window is closed. (Sad, but with QJump’s Pointer
Interface loaded, the bug is put back...) Also the rules for FILL are slightly different and
correspond more closely to the original manual.

MODE

MODE now allows you to use both screens. The original one-parameter call is exactly
as before. The new form is:

 MODE screen_mode,display type

Screen mode accepts the normal 4, 8, etc, but with a few additions (see below). Dis-
play_type is simple, 0 for monitor, 1 for 625-line TV, and 2 for 525-line TV, or
(usually) to leave the display type alone. Very little software uses the display type re-
cord, as old versions of SuperBASIC smashed it!

Screen_mode is very complex...
The two screens are known as Screen0 and Screen1. Each screen may be in 4-colour
mode or 8-colour mode, or blank. Each job now has a default screen on which any new

20

windows will be opened - it can change this default to have windows open in both screens.
The screen which is not the default for the current job (the one calling the new MODE) is
the other screen. Note that it is not necessarily the case that the default screen for a job is
the same one the user is looking at (the displayed screen).

Oh, and the user can’t necessarily see the displayed screen, it might be blank. Your head
hurt yet?

Toggling: MODE 64+n, -1

toggles various attributes of the display, where:

 n Toggles...
 1 other screen from visible to blank
 2 default screen from visible to blank
 4 other screen from 4-colour to 8-colour
 8 default screen from 4-colour to 8-colour
 16 displayed screen from Screen0 to Screen1
 32 default screen from Screen0 to Screen1

You can add together the various values for n to combine effects, so n=12=8+4 will toggle
the colour modes of both screens. Note: a change to the default screen takes place before
any of the others. Also, none of these calls do the “forced re-draw” imposed by the one-
parameter version of the MODE call.

Setting: MODE -16384+128+k*n+c, -1
sets or resets display attributes. The values of n are as above.
 k Sets...
 0 ... to the from column above
 1 ... to the to column above
 257 toggles, as above

Values of k can’t be combined. The c portion controls which screen is force
re-drawn:
 c Re-draws...
 -16384 other screen
 32768 default screen

You can add the c values to re-draw both screens.

So...
 MODE 80, -1 toggles the displayed screen (80=64+16)
 MODE 96, -1 makes subsequent OPENs happen on what was
 the other screen (96=64+32)
 MODE 112 ,-1. does both the above simultaneously

21

 (112=64+32+16)
 MODE 16560,-1 sets default to Screen1, displays it in 4-colour
 mode, and force re-draws all windows in it
 (16560=16384+128+1 (32+1 6)+32768)

OPEN - OPEN_NEW - OPEN_IN

Minerva will accept a third parameter on these commands. Should it be given, it be-
comes irrelevant which of the three commands was used, as it overrides that. The com-
mand will pass it as the “open type” to the driver (lO.OPEN D3.W). (QL tech manual
says IO.OPEN D3.L - not sure which is right!)

For directory structured device drivers, this may be one of:

 0 IO.OLD (same as doing OPEN in the first place)
 1 IO.SHARE (same as doing OPEN IN)
 2 IO.NEW (same as doing OPEN NEW)
 3 IO.OVERW (as TK2’s OPEN_OVER, it overwrites any existing file)
 4 IO.DIR (as TK2’s OPEN DIR, it opens the directory given)

The other thing that uses this “open type” parameter is the “pipe” device, where it re-
quires the QDOS channel number of the source end of the pipe. It is possible, with some
effort, to get pipes connected between MultiBasics using OPEN#chan,’pipe
128:qdch=PEEK_W(\48\chan*40+2) in one, getting qdch across to another, and doing
OPEN#chan,’pipe_128’,qdch there.

Once again, the above facilities are lost when TK2 (or anything else) comes in and re-
places the calls.

PAUSE

PAUSE now takes an optional channel number, allowing you to use the procedure from
programs which do not have a channel #0.

PEEK - POKE

Some improvements on these, such as allowing odd addresses, POKEing lists, etc mak-
ing them much more powerful. Their syntax is now:

 PEEK (address) returns unsigned byte (1 byte)
 PEEK_W (address) returns signed word (2 bytes)
 PEEK_L (address) returns signed Iongword (4 bytes)
 POKE address (,byte] .. store a series of bytes
 POKE_W address [,word] .. store a series of words
 POKE_L address [, longword] ... store a series of longwords

22

where
 address := absolute | \\A6offset | \A6vector\A6offset

We didn’t dare enhance them by doing anything that could have been accepted by the
original syntax, so latched onto the idea of omitting the first parameter. The original
functionality is just enhanced to not mind the absolute address being given as an odd
number, rather that rejecting is as a bad parameter, and the POKEs can have zero or
more items to store. E.g. POKE_W 131073,1,2,-1 will happily store 0,1,0,2.255,255 in
the second to seventh bytes of screen memory.

The two extended forms for address allow you to totally reliably access any job’s own
memory, assuming that register A6 is pointing at it, that is! The simpler one, with both
the first two parameters omitted, uses the third parameter as the offset relative to A6 to
be accessed. The final form will add the longword at the offset relative to A6 given by
the second parameter to the third parameter, then use that relative to A6. Clear as mud?
Yes? Why bother? Well, as anyone who has ever tried to use PEEK/POKE to access
SuperBASlC’s table will know, you run the risk of SuperBASlC moving while you look
at it. It’s also pretty messy, anyway.

Some examples:

Like to save/restore the current DATA position?
 savedata=PEEK_L(\\148) and POKE_L\\148, savedata

Want the QDOS channel ID for one of your basic channels?
 PEEK_L(\48\40*chan) will give it.

Want to see what you’ve just typed?
 FOR i=0 TO PEEK_L(\\4)-PEEK_L(\\0):PRINT CHR$(PEEK(\0\i));

Want to find out how an “INPUT a$” was ended? Look at what comes back
from PEEK(\4\-1).

PEEK and POKE to System Variables

To read or write data from/to the System Variables or MINERVA’s own System Xten-
sions, a further enhancement to PEEK and POKE has been implemented as follows:

 address= !!(System Variable offset)
 !(System Vector)!Offset

Some examples:

 PEEK(!124 !50) >127 will tell you when you press CTRL-ALT-
 SHIFT-SPACE!

23

 PEEK(!!55) returns NET station number
 POKE !!51,1 equivalent to pressing CTRL-F5 (freeze screen)
 POKE !124!51,76 change system cursor to a green underline
 POKE !!136,255/0 turn CAPSLOCK on/off

RENUM

We discovered some anomalous behaviour in this, and, in the process of sorting it out,
made quite a few Improvements. Its parameters are now exactly as per the manual, i.e.
the syntax is:

 RENUM [start line [TO end_line] ;] [first_line] [, step]

However, it will now also permit:

 RENUM [start_line] TO (end_line] [, step]

It now renumbers all the line numbers in the system, that is it now gets the current
DATA line and ERLIN right. When renumbering a 1000 line program, it used to allo-
cate over 4000 bytes of temporary space to do it, although the current requirement is
approximately half of this! Not that it makes a great deal of difference, as a binary chop
search is now used on this table, instead of the original sequential search. Unless you’re
an aficionado of GO TO or GO SUB, have masses of RESTOREs or set up lots of
WHEN variables, it’ll not be noticeable. We may be persuaded to vector the code, if
anyone is interested in an extension function like LOOKUP(value, integer array)?

AUTO and EDIT used to share all the code that RENUM used for checking its parame-
ters, with the strange effect that you could put the start_line and end_line in, and they
would be totally ignored! They now just allow the documented (start number [, step]
syntax. However, in case anyone notices, for some time now EDIT [start number],0 has
not been allowed.

RESPR

It is often useful to be able to add resident procedures while there are jobs running in the
QL. The new version of RESPR will, if there are jobs running, allocate space in the
common heap instead. This heap will be owned by the job doing the RESPR, and will
thus disappear when that job does: DON’T use RESPR within compiled SuperBASIC to
add SuperBASIC extensions, their disappearance will confuse the system utterly. It is
safe to add extensions to a MultiBASIC with RESPR and remove the MultiBASIC at a
later point, those extensions were known only to that BASIC.

SBYTES - SEXEC

These commands will actually accept up to seven parameters. The syntax is device,

24

start_address[, length[, data space[, extra[, type]]]] . The defaults are all zero, except
for the type in SEXEC, which defaults to 1. The extra parameter is what the TK2
FXTRA function returns; but unfortunately TK2 replaces SBYTES and SEXEC to get
default directories working... The type actually allows you to set both the file type
(bottom byte) and the file access key (next byte up), though this latter byte has never
been used by anything except Toolkit 3, and we wouldn’t know what setting it non-zero
would cause.

SCALE

You can now use a negative scale. Don’t ask me why. Oh, here’s a News Flash from the
Technical Department.. apparently it’s so you can draw pictures upside down. Now I
understand... Also, it removes a lot of time- wasting checks in the graphics routines.

SELect

This can now use integer and string variables. Similar rules apply to these as applied to
the floating point version:

 SELect ON a$=’abc’

will match ‘AbC’ as well. If you want an exact match, you must use the:

 SELect ON a$=’abc’ TO ‘abc’

construction. As with floating point a single number need only be approximately equal
(==), but a range compares from greater-than-or- exactly-equal to less-than-or-exactly-
equal. This makes no difference with integers, of course!

VER$

This has changed. Surprise. You can also give it parameters now:

 VER$ (-2) returns the base address of the System Variables
 VER$ (-1) returns the current Job ID
 VER$ (0) returns SuperBASIC version
 VER$ (1) returns QDOS version, e.g. 1.79

VER$(-2), System Variables address, should ALWAYS be used if you feel you MUST
peek and poke in the SVs. Don’t use it to find out how many screens you’ve got - we
may decide to move the 2-screen system variables up to the top of available RAM. If we
feel like it.

WINDOW

The syntax is now extended to:

25

 WINDOW width, height, x, y[\ border]

allowing the border size and colour to be specified as the window is moved. border
takes the form size[, colour] exactly as on the BORDER command. This facility may
have to be modified in the future, as other ROM’s do not check the number of parame-
ters, and existing software that passed such extra parameters, which were being ignored,
are now causing problems. At present, Minerva is not checking for the "\" delimiter
above, but this may well be the way we will circumvent the problem, by ignoring extra
parameters on calls that do not use the backslash as the delimiter.

WHEN ERRor

The WHEN keyword is used to implement a sort of implied subroutine system, where
the programmer doesn’t explicitly write a procedure call or GOSUB but lets it happen
when the conditions are right, as it were.

Having said that, WHEN ERRor routines are executed when conditions are wrong, i.e.
an un-trapped error has occurred. The syntax is:

 WHEN ERRor:<statements>
or

 WHEN ERRor
 <statement>
 <statement>
 <statement>
 <statement>
 END WHEN

If an error occurs then the statements on the WHEN ERRor line, or between the WHEN
ERRor and END WHEN lines, will be executed. Normal execution will then resume at
the statement after the one that caused the error. SuperToolkit II users can use the im-
proved CONTINUE and RETRY statements to resume elsewhere.

If an error occurs within the WHEN ERRor routines, then the program will halt with the
usual error message, but with the additional information during WHEN processing
added. The WHEN ERRor routine is added when it is encountered: thus errors in state-
ments executed before this will cause errors as usual, and the recovery routine can be
changed by passing through another WHEN ERRor block. The last such block encoun-
tered remains in force even after the program stops, so errors in the command line will
cause a recovery attempt - you can turn this off by typing WHEN ERRor at the com-
mand line.

 100 WHEN ERROR:PRINT “Whoops!”

26

 110 PRINT “The answer isnt”,1/0
 120 WHEN ERROR
 130 PRINT “Eeek!”
 140 END WHEN
 150 PRINT 110

will thus print

 Whoops!
 Eeek!

and all subsequent error messages will be Eeek! until you type WHEN ERRor at the com-
mand line!

WHEN Variable

WHEN variable will execute a routine when a simple variable is assigned to. It does not
work with arrays, nor when a variable is INPUT or READ into. A number of WHEN con-
ditions can be set up for a variable, and you can of course have multiple WHEN variables.

If WHEN conditions overlap there is no guarantee as to which will be chosen.(???)

100 WHEN i=5:PRlNT “i is five”
110 WHEN i>8:PRINT “i is big”
120 FOR i=1 TO 10:PRINT i

will print

1
2
3
4
i is five
5
6
7
8
i is big
9
i is big
10

You can get very silly with this facility

100 WHEN a=1:PRINT “a is one

27

110 WHEN a=2:PRINT “a is now two”:b=5
120 WHEN b=5:a=1:PRINT “b is five”:a=2
130 a=2

will print:

a is now two
a is one
b is five

and end up with a=2. Note that because the WHEN block at line 110 was already active
when the last statement of line 120 is executed, is doesn’t get re-entered. If you alter
line 130 to b=5, you’ll get:

a is one
b is five
a is now two

Provided the condition starts with a simple variable, it can be as complex as you like:
WHEN a>5 AND a<10 is valid.

SPEED

Various improvements have been made to the execution speed of SuperBASIC. Float-
ing point and string calculations have been speeded up, particularly concatenation of
very long strings and short strings or numbers. Internal calculations stay In integer form
for as long as possible, speeding things up considerably. For example, the following
program runs about 40% faster on MINERVA than it does on JS:

10 k%=1:s=DATE
15 FOR 1=1 TO 5000
20 j%=k%+k%-k%*k% DIV k% && k% l l k%
30 END FOR l:PRINT DATE-s

Program searching, used whenever you change the flow from straight through with an
IF, FOR, REPeat, procedure call etc., has been substantially improved. The following
program:

100 DEFine PROCedure null
110 END DEFine
1000 REMark
1001 REMark
. . .
1998 REMark
1999 REMark

28

2000 FOR i=1 to l000:null

runs at about twice the original speed. In passing, note that SuperBASIC doesn’t reward
putting procedures at the start of the program: they have to be close to the call for maxi-
mum speed.

Graphics

Many improvements have been made in the area of graphics. The routines have been sub-
stantially re-written to improve their speed and robustness. In particular, narrow ellipses
and shallow arcs no longer go haywire. These improvements carry through to any ma-
chine-code that calls the graphics TRAPs, although anything that does its own graphics
will show no change.

Strings

Previously, string slicing needed the first parameter explicitly specified – a$ (TO 10) failed
because it was converted to a$(0 TO 10). Now you can use this, and you get a$(1 TO 10),
which was what you wanted.

You can also now slice the ” string off either end... any of you who have got irritated that
you can pick characters one by one off the front of a string, but have to change when you
get down to the last one... this is for you. In fact any expression can now be string sliced
e.g: (a$ & ’x’) (4) or using DATE$ now: DATE$ () (1 TO 4) returns the year. You can
now slice sub-strings out of DATE$ without needing to assign it into a temporary string
first.

These features only apply to simple variables and expressions, not arrays.

Tracing SuperBASIC

A hook has been inserted inside the SuperBASIC interpreter to call user-defined trace code
under various circumstances. The supplied tile TRACE_BIN contains a simple trace and
single-step routine using this. The routines supplied are as follows:

 TRON (#channel | \device] [; first line] [TO last line]]]

Traces SuperBASIC execution to the specified SB channel number, or a specially opened
trace channel. The Information supplied is very simple, being of the form llll:sss... where
llll is the line number and sss the statement number of the statement about to be executed.
TRON defaults to channel #0 and line number range 1 to 32767.

 SSTEP [#channel | \device]

As TRON, except that having printed the line and statement number execution halts until a

29

key is pressed.

 TROFF

Stops tracing, and closes the trace channel if it was opened with the \device parameter.

Integer and string, FOR and SELect

There is now no construct restricted to floating point. In particular, Integer FOR loops are
fully supported. To maintain compatibility, strings used as REPeat and FOR variables are
truncated to four bytes. (Try REPeat a$: PRINT a$:a$=’x’&a$ on a JS, if you don’t mind
crashing, then re-boot). As we could not come up with any consistent idea of what else to
do with them, string FOR ranges are limited to single characters. E.g.:

 FOR i$ = ‘xx’, ‘g’ TO ‘a’ STEP CHR$(-3) : PRINT i$

will print xx, g, d and a.

Integer Tokens

We felt mildly depressed typing in i%=i%+ 1, knowing full well that the “1” would be to-
kenised as six bytes of floating point, and when the interpreter did its stuff, it would go
through the sequence of stacking the value from i%, remembering the +, stacking the float-
ing point one, seeing the end of expression, finding that it had a float at the top, so the +
had to work in FP, having to do various shuffles to get the integer value of i% out from un-
derneath the FP one, do the addition in floating point, then it would see that it now had to
convert the FP result back to an integer before putting it into i% !

By default, Minerva now tokenises values in three formats, adding “short” and “long” inte-
gers to the original floating point. Before anyone gets excited, in this context “short” inte-
gers means values that fit in one byte and “long” is just two bytes.

Now the sequence for i%=i% + 1 goes: stack i%’s value, remember +, stack INTEGER 1,
see end of expression, add two integers on the stack, store result in i%.

Programs using integer tokens run about 10% faster and take about 15% less space. On
looking at one 800 line program, we found it saved over 5k of memory when integers were
tokenised! If one had a program that consisted almost entirely of DATA statements of long
lists of small numbers, in such a case, the space saving can get near 50%!

The two new tokens take the following form in the stored basic program:

 short integer: two bytes: $89 value (-128..127)
 long integer: four bytes: $8A value (-32768..32767)

30

Compilers and Integer Tokenisation

Being well aware that this sort of change can have horrendous consequences for current
versions of compilers, etc., we have allocated a byte in the “Basic Variables” area for
flags to control any such major deviations from the original. Having had bad experi-
ences in the “1.6x” versions with conflicts with the “SV” stuff, we have chosen a byte
that cannot cause any problems, as it’s one that used to be used by “WHEN”, but isn’t
anymore... it’s at offset $D4, decimal 212, and setting its top bit will prevent the parser
from using the new integer tokens. Both Digital Precision and Liberation Software have
been notified of this change and have stated that it would be a simple matter for them to
modify the behaviour of their compilers to take integer tokenisation in their stride.

See below for the details, but

 POKE\\212, 128

will set it and turn integer tokenisation off before loading and compiling your BASIC
program! To re-enable it, use POKE\\212,0 . The “REPLACE” extension which ap-
peared in QL World, was singularly unsuccessful when tried, because it didn’t know
how long the new tokens were supposed to be (it got “short” right, but thought “long”
would also be only two bytes... disaster!). This is somewhat inexcusable, as anyone who
delved into the earlier ROMs would have found a little table (at $9062 in a JS) which
says how long each token is supposed to be! (See we don’t just grab these thing out of
the air!)

Tokens $89 and $8A were in fact already reserved for integers, although whether they
were intended to be signed or not is unknown. Anyway, a quick change to one byte in
the table in “REPLACE” sorted it out. P.S. REPLACE old_name ,new_name overwrites
every old_name with new_name. It’s nice for changing short names to more descriptive
ones, and on Minerva, changing floating point to integer variables. For anyone else out
there who uses it, beware! It’s not particularly safe. The most reliable way of using it is
to LOAD, REPLACE and then SAVE a program. There is one repercussion of tokenis-
ing integers within Minerva itself. RENUM will not renumber references to lines 1 ..127
in GO TO, GO SUB or RESTORE. This should rarely be a hardship…

One other thing that will not work is the recommendation in the Toolkit II manual for
BPUTing floating point. With MINERVA’s integer tokenisation on the loose, “.. +0”
will not force floating point. You need to use something like “+1E-555”, or have “fp=0”
set up, and use “...+fp”.

Parser

Major re-writes of the parser make it more efficient, and hence, faster.

The bad line cursor is now put just about slap-bang at the error: i.e. everything to the

31

left of it, the parser made sense of, but whatever the cursor is sitting on, at that point it
couldn’t puzzle out what you meant! So if you type i=INT ((i+3)/4)) *4 the cursor will
be placed on the last “)“.

For some obscure reason, monadic operators (-, +, and NOT) were restricted occurring
singly. Now, this crops up very rarely, but we have been caught out by it. It’s quite
amusing to have i%=- ~~ i% as an alternative for i%=i%+1 ! Following on at this point,
were you aware that using i=-1 was actually stored with a monadic minus followed by a
positive one! It’s not anymore! If you really want that to happen (and we can’t think
why!), you must now type i =-+1.

Another interesting idea concerned slicing, in respect of function parameters. We all
know that DATE$ (1 TO 4) returns “bad parameter”, as DATE$ gets given two parame-
ters, instead of having the “ear sliced out of it, which is what you were thinking about
doing. Right!, you say, and try to get round it with (DATE$) (1 TO 4). Still no luck! JS
says bad line now, and sticks with that when you have the brainwave of DATE$ () (1
TO 4), (“I know! I’ll try giving it no parameters!”).

You then give in and have to do temp$=DATE$:temp$=temp$ (1 TO 4), or worse. Mi-
nerva fitted, and both ideas work! Minerva will now slice anything (including num-
bers!) and is perfectly happy with a parameter list with no parameters in it.

The interpreter now parses those instances where the original insisted that you put a
space after a keyword, even though it looked as though it wouldn’t need it. For example
how often have you typed things like DATA’ fred’, ‘jim’, only to have it thrown out as
a bad line? MINERVA’s parser will now insert a space for you.

MultiBASIC

There are very few differences between a MultiBASIC and the standard SuperBASIC
interpreter, job 0. A MultiBASIC can be started in exactly the same way as any other
job, using EXEC, a front-end program, or one of the Qjump hotkey systems (highly rec-
ommended) - a new vector allows an EXECed job to promote itself to being a Super-
BASIC interpreter. This will inherit all the procedures and functions available to its par-
ent interpreter: any others added to the parent subsequently will not be seen by the child
interpreter, and any added to the child are only seen by it and its offspring, disappearing
when it is removed.

This all sounds wonderful but it must be horrendously difficult to use this MultiBASIC
facility isn’t it ? Well no actually! Watch carefully, this is all there is to it

 EXEC pipep

You are now looking at another SuperBASIC interpreter which to all intents and pur-
poses behaves just like the original with the noted exceptions below.

32

A MultiBASIC can have its job priority altered just like any other job and any toolkit
extensions which relate to job control should work in the usual way.

Please note that you should load only SuperBASIC extensions into a MultiBASIC,
unless you can. guarantee that you’ll never throw it away. Loading operating system ex-
tensions, such as QJump’s Pointer Interface, is almost bound to cause problems if they
disappear when the owner job goes away! Packages in the latter category include Light-
ning, and SuperToolkit II with the MDV extensions: SuperToolkit II without the MDV
stuff, the Pointer Toolkit, and the Turbo Toolkit should be safe enough.

The MultiBASIC supplied has just one channel opened for it, which is used for both
channels #0 and #1. If you want something that looks like an ordinary SuperBASIC in-
terpreter, as seen at boot time, the following program will do the trick - note that it
needs SuperToolkit II:

 100 OPEN #0;con:OPEN #1;con:OPEN #2; con
 110 WMON 4

Removing a MultiBASIC

A MultiBASIC will remove itself if it encounters an error while reading a new com-
mand from its primary command channel, #0. You can therefore get it to go away by
typing CLOSE #0 at it.

For more advanced use, you can use QX or EX to pass channels and/or command string.
If the last character of the command string is the “ROM” marker (an exclamation mark)
it is removed from the string and the interpreter will start up with only the original ROM
names, instead of inherited names. The remaining command string is then scanned for
the “file” marker (a greater-than sign), and if it’s got it, the first part is opened as an in-
put command channel, and the rest is shuffled down.

The command string, what’s left of it, becomes CMD$ in the interpreted basic. Chan-
nels passed:

 None: If no file marker in the command string, a single window is opened for
 both #0 and #1
 One: Slotted in as both #0 and #1
 Two: Become #0 and #1
 More: First two become #0 and #1, #2 is missed out, and the rest go in as chan
 nels #3 onward.

E.g. A filter to replace strings in a file:

 100 a$=’’:i%=’/’ INSTR cmd$
 110 IF i%:a$=cmd$(i%+1TO) :cmd$=cmd$ (TO i%-1)

33

 120 c%=LEN(cmd$)
 130 REPeat lp1
 140 IF EOF(#0):EXIT lp1
 150 INPUT#0,i$:IF c%
 160 REPeat lp2
 170 i%=cmd$ INSTR i$:IF NOT i% : :EXIT lp2
 180 PRINT i$(TO i%-1);a$; : i$ = i$(i% + c% TO)
 190 END REPeat lp2:END IF
 200 PRINT i$: END REPeat lp1
 999 IF VER$(-1):POKE\48\0,-1

Save this in a file called flpl_c_bas, then use:

 EX flp1_multi,flpl_in,flp1_out;’flpl_c_bas > fred/jim’

to convert all occurrences of fred in flp1_in to jim, writing the result to flp1_out.

A further tweak is permitted: we may even tell the new interpreter to use a specified set
of machine code names by giving it a positive value in Al. This option is just a bit weird
and we don’t support it at the moment. Note that MultiBASICs cannot be re-activated:
the vector entry sorts this out.

Resident MultiBASIC

An additional MultiBASIC file is now provided MultiB_REXT which when loaded
with LRESPR or the following:

 base=RESPR(344) :LBYTES flp1_MultiB_rext,base :CALL base

will add the SuperBASIC extension MB which will invoke a new copy of the Multi-
BASIC job. This is allows you to have MultiBASICs available without needing to
EXEC them from a disk or microdrive but it is not quite as convenient as having them
resident on a hotkey.

Assembler

WARNING: this section is for the real hackers amongst you! If you’re not well into
machine code programming for the QL, a lot of this will mean very little to you. That’s
not to say it’s not worth reading it, it’s all good stuff, but don’t worry if you find it in-
comprehensible.

Some new features have been added to the start-up sequence, and a clean way to re-boot
added.

34

Start up

The QL may now be re-booted by calling the reset code at address $186 directly:

 MOVEQ #0,D1 ; pretend we hit the button
 JMP $186 ; re-boot machine

You can also use this facility from SuperBASIC, thus;

 CALL 390,d1_value

Different values in D1 will cause various aspects of the initialisation to be skipped:

 Bit to set Value to add Effect
 0 1 skip test, just clear memory to 0
 1 2 skip ROM scanning
 2 4 use memory limit in bits 14..31
 3 8 default to TV mode
 4 16 don’t wait for Fl..F4
 7 128 enable dual screens
 8...13 n * 256 leave n*64K between screen and SVs
 14….31 n * 16384 cut RAMTOP to a multiple of 16K

Unused bits are reserved, and should be set to 0.

BEWARE! CALL 390 can crash the machine - if you tell it to allocate too many blocks
of 64K + second screen, if bigger than the upper limit of memory in the machine it will
push your system variables off the top of physical memory which naturally will upset
it!! Similarly attempts to reduce RAM size below 48K are doomed to fail!

NOTE: ROM scanning will take place despite a CALL saying No Roms Today Please if
the timeout on F1/F2 occurs or you attempt to start up in a mode from the keyboard
which is not compatible with the CALL.

So, to cut RAM to 128K and omit the ROM scanning, thus giving you a totally un-
expanded machine, you can

 CALL 390, (128 + 128) * 1024 + 4 + 2

To do the same, and enter TV mode automatically,

 CALL 390,128 * 1024 + 16 + 8 + 4 + 2

A reset can also be invoked from the keyboard at any time by pressing CTRL-ALT-
SHIFT-TAB.

35

ROMs

The ROM scanning has been extended: the range covered is now $C000, $10000,
$14000, and from the top of RAM (as indicated by SV_RAMT) upwards. This allows
use of a machine with, say, 256K of RAM and 256K of ROM in the RAM expansion
area.

Exceptions

On perusing the ROM we found that the vectors that are used when instructions of the
form Axxx and Fxxx are encountered (the Line 1010 and Line 1111 emulators, as Mo-
torola call them), have BSR instructions in them. This means that any software which
goes haywire and tries to execute such an instruction will leap off to a really stupid
place and probably crash the machine. We’ve therefore made such instructions follow
the same path as the illegal instruction exception, so they’re trapped by QJUMP’s
QMON and other machine code monitors, or you can even use them.

TRAPs

The TRAP and scheduler entries have been speeded up, so there are lower overheads on
system calls in a machine full of jobs. One consequence of this is that the job and chan-
nel tables are scanned from the end backwards, rather than from the start forwards as
was previously the case - we can’t conceive of a way in which you could fall foul of
this, but you never know...

In an attempt to make life easier while debugging machine-code programs, we’ve modi-
fied the effect of TRAP #0 slightly. It still enters supervisor mode, but now does so
without smashing the trace flag so you don’t need to have enabled supervisor mode trac-
ing to trace through your own supervisor code. TRAPS of other numbers are unaffected,
and won’t be traced unless you turn on supervisor tracing explicitly.

In this area, we’ve made it safe to execute several QLiberated jobs in quick succession
(e.g. from QRAM or another front-end). Previously the second (and subsequent) QLib-
erated jobs would cause SuperBASIC to move while the first one was still looking at
SuperBASIC’s name table, usually causing a spectacular crash. For all we know, this
happens with Super and Turbocharge too.

In this area, there is a problem with machine-code extensions to SuperBASIC which
need more space than is available on the RI stack. The system only knows how to add
space to an interpreter’s stack, so if this happens in a compiled program it won’t get the
expected space increase, and will either crash spectacularly or merely behave peculiarly.
We have allowed for this by ensuring that any calls to BV.CHRIX by a job other than
the interpreter which result in a requirement to increase the size of the RI stack, cause
the offending job to be force removed from the machine.

36

RI Vectors

While improving the graphics, it became clear that a number of useful functions should
be added to the arithmetic operations vector. The new operations are odd positive num-
bers, as follows:

 RI.ONE equ $01 -6 push constant one
 RI.ZERO equ $03 -6 push constant zero
 RI.N equ $05 -6 followed by a signed byte, to push
 FP -128 to 127
 RI.K equ $07 -6 plus a byte, nibbles select
 mantissa and adjust exponent.
 Following byte values may be:
 RI.PI180 equ $56
 RI.LOGE equ $69
 RI.P16 equ $79
 RI.LN2 equ $88-$100
 RI.SQRT3 equ $98-$100
 RI.PI equ $A8-$100
 RI.P12 equ $A7-$100
 RI.FLONG equ $09 -2 float a long integer
 RI.HALVE equ $0D 0 TOS / 2
 RI.DOUBL equ $0F 0 TOS * 2
 RI.RECIP equ $11 0 1 / TOS
 RI.ROLL equ $13 0 (TOS)B, C, A -> (TOS)A, B, C
 (roll 3rd to top)
 RI.OVER equ $15 -6 NOS
 RI.SWAP equ $17 0 NOS <-> TOS
 RI.ARG equ $25 +6 arg(TQS,NOS)=a, solves TOS = k*cos(a)
 and NOS = k*sin(a)
 RI.MOD equ $27 +6 sqrt(TOS^2 + NOS^2)
 RI.SQUAR equ $29 0 TOS * TOS
 RI.POWER equ $2F +2 NOS ^ TOS, where TOS is a signed short
 integer

MT.DMODE

This requires a section all of its own, as it’s become pretty complex. The original values
of -1, 0 or 8 for Dl and -1, 0, 1 or 2 for D2 still apply, so existing programs will still
work as expected.

The enhanced set of options now available needs to operate on up to six bits of informa-
tion. These are the 4/8 colour and visible states of each of two screens (4 bits), which
screen is currently displayed and which screen is the current default for this job. They
may all be read, en masse, but there is a need to be able to set them selectively , which

37

means 12+ bits!

In order to maintain compatibility even with people who send the wrong parameters, the
options have bits 7/6 of Dl.B differing.

The primary needs are to be able to change the default screen and make it blank or visi-
ble. Being able to force which screen is on display is rather undesirable for too many
programs to try doing simultaneously! With these in mind, we define the options avail-
able from Dl bits as follows:

 Dl bit Effect
 0 visible/blank on other screen
 1 visible/blank on default screen MC..BLNK
 2 mode4/mode8 on other screen
 3 mode4/mode8 on default screen MC..M256
 4 display scr0/scr1
 5 default scr0/scr1 (NB takes effect BEFORE all other options)
 6 Clear - use Dl .W. Set - use Dl .B (same as Dl .W msb all
 ones).
 7 opposite to bit six, i.e. 7/6 = 0/1 or 1/0 always
 8-15 Ignored if bit 6 set. Otherwise….
 8-13 Associated with bits 0-5 (clear=absolute, set=toggle)
 14 Clear - force redraw of other screen
 15 Clear - force redraw of default screen

If bits 6 and “x” + B are clear, use bit “x” to force absolute selection. Otherwise, toggle
settings as per bit “x”. (“x’ = 0.5). If bits 6 and “x” are clear, invoke that screen redraw.
(“x” = 14..15). The original -1/0/8 options are equivalent to $40 (or -128), $7780 and
$7788.

The default screen is initially inherited from the parent job. It is the screen on which
newly opened con/scr channels will appear. It is also the screen affected/reported on by
Dl.B = 0/8/-1. A change to this takes effect before the rest of the above is looked at. It
then remains changed for the job, until the job does another change to it.

The mode4/mode8 selection in this extended system does not operate the same as the
basic Dl.B = 0/8 options. It only changes the physical display mode. Redrawing of the
windows is independent. It is also not forced by D2.B being positive, except on Dl =
0/8/-1 calls.

The “displayed screen” is the one currently on display.

The least significant bit of the JB_RELA6 variable in a jobs header is where its default
screen is recorded. 0=scr0, 1=scr1

38

The returned value in Dl .B for the extended calls is as follows:

 bit 0 1 which screen
 0 visible blank other
 1 visible blank default
 2 mode4 mode8 other
 3 mode4 mode8 default MC..M256
 4 scr0 scr1 display
 5 scr0 scr1 default
 6
 7 single dual available MC..SCRN

SuperBASIC Trace

A hook has been added to SuperBASIC to allow user-supplied trace routines to be
added.

 BV_UPROC equ $70 ; long top-bit-set address of user trace routine

It may be set by something similar to the following code:

 TST.B BV_UPROC (A6) ; is there already a trace?
 BMI.S WHOOPS ; better not blat it!
 LEA TRACE(PC),A0 ; point to routine
 MOVE.L AO,BV_UPROC (A6) ; fill in its address...
 TAS BV_UPROC(A6) ; ...with the top bit set

The routine is called under various circumstances, with a long word on the stack to indi-
cate the reason:

 TRC.STST equ 0 ; start of statement
 TRC.LET equ 2 ; variable assignment
 TRC.SWAP equ 4 ; variable/LOCal swap
 TRC.MCFN equ 6 ; entry into machine-code function
 TRC.RENM equ 8 ; RENUM just happened

The user-supplied routine must preserve all registers. It should pop the reason code from
the stack, perform any action suggested by the reason, and return to the interpreter with
an RTS instruction. An example of a simple trace and single-step routine is supplied on
this medium for you to study. We haven’t explored the full implications of a decent Su-
perBASIC debugger yet, but the functions above should be enough to keep track of
variables and program execution.

39

MT.RERES

This now works...

IO.EDLIN

The editing TRAPs IO.EDLIN and IO.FLINE, which are called by EDIT, AUTO and
INPUT, can now accept enhanced movement keys which are as follows:

 ALT / move to start/end of current line
 TAB move along to 8th character from start of buffer
 SHIFT-TAB moves BACK in same steps as above
 CTRL-ALT deletes to start of current visible line
 CTRL-ALT delete from current character to total end of line
 ESCape behaves like CTRL/SPACE (Break)
 SHIFT-ENTER behaves pretty much like ENTER
 SHIFT-SPACE behaves pretty much like SPACE

BV.CHxxx

The BV.CHxxx routines check space in relevant memory areas and, if necessary, allo-
cate more. The schemes go like this:

1) A call that already has enough space available should return as fast as can
possibly be arranged.

2) If a call is not immediately satisfied, the extra amount required is rounded
up a little, and this amount is looked for in the central free area. If found, the
involved sections are shuffled by this amount.

3) In extremis, the amount that the central area fell short by is requested from
the system by an ALBAS trap. This will tell us how much extra we got,
which may have been rounded up a bit, e.g. to a multiple of 512. The re-
quested amount is added to the original place and any spare is given over
into the central area.

3) If we can’t get enough memory off the system, we trundle off to the return
address held in BV_SSSAV, hopefully to report the problem.

Actually, there is no requirement to round requests, other than ensuring that any even-
tual shuffling of the areas moves them a sufficient even distance. The rounding happens
to be convenient, as the headroom (which is desirable!) can be applied with an addq in
the code. This code now only moves the active parts of each section.

A serious flaw in the original code was that once it needed to move anything, it insisted
on finding the originally requested amount, plus headroom, plus rounding. This meant
that, for instance, if a large array was re-dimensioned a little larger, although a mass of
VV area might have been fully released, an out of memory could be reported when there

40

was no real problem! This code now only goes for the, slightly bumped up, extra space
needed. One other point that could be made here is that it would be very nice if the entry
points (or due to history and silly software, a new set) were added, that not only checked
for the requested amount, but actually updated the pointer involved!

Note: Some of these routines are expected to be at fixed offsets from BV_CHRIX by
silly software.

BV.NAME

This is used at startup of a new copy of SuperBASIC, to acquire names from its inter-
preting ancestor, the ROM or even elsewhere. In the interest of making the process
fairly simple, though we could be terribly subtle, we get space for the whole of the
Name Table and Name List, then compact it as we copy it across. We could go to the
bother of doing two scans, the first just to establish the size, but it seems a bit pedantic,
as the extra space can be immediately released to the central area, and it won’t be vast
usually. We mustn’t confuse people when moving names, so this is all done in supervi-
sor mode.

Device Drivers

The routine, which finds driver information from a filename now imposes the following
two constraints on directory device driver names, failing which, they will always result
in ERR.NF.

Firstly, they must be longer than one character (and less than 32768 !). The exclusion of
zero length names is needed as NFS_USE in TK2 hides its DD entry as a zero length
name when it is not In use.

Secondly, they must have bit 5 clear in all bytes. This excludes lowercase ‘a’ to z’, up-
percase ‘`‘ to ‘+‘, digits and various other characters. A digit in the range ‘1’ to ‘8’ after
the first character of the caller’s name will invariably be expected to mark the exact end
of the DD name part, and must be followed by an underscore. This syntax does allow in
a few obscurities, but so far nobody has tried to produce a driver whose name contains
anything but uppercase ‘A’ to ‘Z’.

The original code had various bugs, including the fact that if one driver on the list was
preceded by one with a shorter name, it was never found! This bug was detected by
Tony Tebby, when he got the network driver in front of another driver starting with an
‘N’.

FS.RENAME

No longer changes the update date on microdrive files. This works for anything that
uses this trap, e.g. the TK2 RENAME procedure.

41

For those of you who don’t know what the parameters are, D0 is $4A, D3 is the timeout,
A0 is the channel ID of the file to be renamed, opened for write access, and Al is the
pointer to the new name, including the “mdvn_” and prefixed in the normal way with a
word for the string length.

While here, I’ll add the point that the FS.TRUNC trap #3 exists, D0 is $4B, D3 and A0
as per FS.RENAM but Al is irrelevant. It truncates a file to the current position, discard-
ing any data beyond that point.

Open overwrite of a file (IO.OVER =3) is implemented, and has the same effect as
IO.NEW if the file doesn’t exist or, if it already exists, it has the effect of IO.OLD fol-
lowed immediately by FS.TRUNC.

New Vectors

All the vectors described below need to be offset by $4000 to give the call address, e.g.
to call UT_INSTR:

 MOVE.W $13C,A2
 JSR $4000 (A2)

Unless explicitly stated otherwise, register values are preserved.

UT.ISTR $13C Do an INSTR operation.
 D0 0
 Dl match offset
 D2 smashed
 D3 smashed
 D7 smashed
 A0 string to search preserved
 Al string to look for preserved
 A6 base address preserved

The string at 0(A6,Al .L) is searched, looking for a sub-string that is type 3 equal to the
string at 0(A6,AO.L). Each string is in the standard format of having the first word re-
cording the string length. The returned value in Dl .L is zero if no match is found, and
offset, plus one, in the searched string where the other string has been found.

GO.NEW $13E Do a NEW command.
 A6 base of SuperBASIC updated
 A7 SuperBASIC stack updated
 most registers destroyed

Clears out SuperBASIC program/variables/channels, etc.

42

BP.CHAN $140 Get optional channel parameter, default #1.
BP.CHAND $142 Ditto, with a supplied default channel number.

 Dl channel number preserved
 A0 channel id if one exists
 A2 position of channel block
 A3 parameter offset updated if chan given
 A5 top parameter preserved
 A6 base of SuperBASIC updated
 A7 SuperBASIC stack updated

Errors: ERR.NO if the channel is not open.

Determines whether or not there is at least one parameter; and if it is preceded by a hash
(#) sign, expects it to be the integer channel number.

If there are no parameters, or the first is not preceded by a hash, then the default is used
as the channel number. The default is passed in Dl .W to BP.CHAND, or will be set to
the standard listing channel (#1) by BP.CHAN.

BP.CHNID $144 Look up a channel number.

 Dl channel number preserved
 A0 channel ID
 A2 SuperBASIC channel location
 A6 base of SuperBASlC preserved

Errors: ERR.NO if the channel is not open. In this case, the value input in AO is pre-
served. Also, if the X’ flag is not set on return, the pointer In A2 is above the current top
of the channel table.

BP.CHNEW $146 Start up a new SuperBASIC channel number.
 Dl channel number preserved
 A0 channel id preserved
 A2 SuperBASIC channel location
 A6 base of SuperBASIC updated
 A7 SuperBASIC stack updated

Errors: ERR.EX if channel is already open.

If the channel was already open, nothing will have been changed. If the channel table is
extended, it is done with all $FF’s. If a good slot is found, the new ID will be stored and
the rest zero, except for filling in 80 as the line width.

43

BP.FNAME $148 Get a file name parameter, with or without quotes.
 Al RI pointer to file name string
 A3 NT parameter pointer usually updated by 8
 A5 top of NT parameters preserved
 A6 base of SuperBASIC updated
 A7 SuperBASIC stack updated

Errors: various

This will accept ~ parameter suitable as a file name string. The string is put at the top of
the RI stack.

CA.CNVRT $14A Convert data type.
 D0 type required error code
 Al RI stack pointer updated
 A5 top of NT stack preserved
 A6 base of SuperBASIC updated
 A7 SuperBASIC stack updated

Errors: ERR.XP if the conversion fails, but note that the top of the RI stack will always
be left with a value of the requested type.

The item described by the top entry on the name table is converted to the requested
type. The name table entry should be an internal type, i.e. it is already on the top of the
RI stack, and has its type in the 4 lsbs at -7(A6,A5.L) as 0 or 1 for string, 2 for F.P. or 3
for 2-byte integer. The requested type may be 1, 2 or 3. A requested type of 4 is also ac-
cepted, which will finish up as type 3, but only the logical true (1) or false (0) value will
ever be left. This request will convert strings to float first, then the float, or an original
integer, is tested for non-zero.

CA.OPEXE $140 Execute operator.
 D0 operation code error code
 Al RI stack pointer updated
 A5 top of NT stack updated
 A6 base of SuperBASIC updated
 A7 SuperBASIC stack updated

Execute a monadic or dyadic operator on the top elements of the RI/NT stacks.
Details omitted at present…

CA.EVAL $14E Evaluate top element of NT/RI.
 Al RI stack pointer updated
 A5 top of NT stack preserved
 A6 base of SuperBASIC updated
 A7 SuperBASIC stack updated

44

Evaluate the top element of the NT stack leaving it as an internal (RI) value. Details
omitted at present...

IP.KBRD $150 Action KEYROW type into.
 D0 smashed
 Dl keyrow data smashed
 D2 shift key data smashed
 D6 smashed
 A0 smashed
 Al smashed
 A2 key queue addr preserved
 A3 smashed
 A4 smashed

Main keyboard read routine. Can be called by replacement keyboard code. Must be
called in supervisor mode.

The value supplied in Dl is as follows:

 bits function
 31..6 ignored
 5..3 7– row number (as per KEYROW command)
 2..0 bit number

The value supplied in D2 is as follows:

 bits function
 31..3 ignored
 2 CTRL
 1 SHIFT
 0 ALT

These finish by pushing a character, possibly preceded by ALT, (CHR$(255)), into the
supplied queue. This also becomes the auto-repeating character (pair). Special codes
corresponding to space, TAB or ENTER keys in conjunction with CTRL and also op-
tionally with ALT and/or SHIFT are handled, causing all sorts of wonderful things to
happen.

IP.KBEND $152 Finalise keyboard read.
 D0-D2 smashed
 D3 no. of polls missed preserved
 D5 flag if last key held smashed
 A2 keyboard queue preserved
 A3 smashed

45

Finish off keyboard read and handle auto-repeat.

This should be called by replacement keyboard code when all required KEYROW type
data has been passed using IP.KBENC, to indicate if the last key is to be treated as still
held down. Only bit 4 of D5 is relevant, and a zero means the final key has been re-
leased.

SB.START $154 Start a MultiBASIC.
 A0 command channel ID
 A5 size of available area
 A6 base address
 A7 stack pointer

This entry should be JMP’ed to. It is used to start a MultiBASIC job. The second word
in the job’s program space must be set to the offset from the start of the program’s area
to the start of the SuperBASIC tables given in A6. The value in A6 should be the base
of the area available to the job and A5 is the total size available, i.e. -2(A6,A5.L) is the
last word.

A7 points to the EXEC type parameters, as in:
 number of channels (word),
 channel ID’s (longwords)
 command string length (word)
 contents (bytes)

A variable CMD$ is preset with the command string.

If any channel IDs are passed on the stack, they are set up as the new MultiBASIC’s
channels #0, #1, #3, #4, etc. Note that #2 is skipped.

If only a single channel ID is passed on the stack, it will not only be put in as #0, but
also as #1

If A0 is zero and no further channels are given, the default monitor/TV windows are
opened for #0, #1 and #2.

If A0 is non-zero, the job:starts interpreting lines from the supplied source, until such
time as EOF is signalled, or any other problem crops up, at which point it will close that
channel and continue trying to read from #0.

RESERVED $156 (currently preset to –1, just for fun...).

Move Memory Vectors

These vectors are designed to allow you to move memory as quickly as possible!

The call sequence is kept as simple as possible to avoid having lots of complex code in

46

the calling routines. To this end, it preserves the values of all registers, including the call
parameters, except that D0.L is returned as zero.

The main routine is an absolute move, but three additional. entry points provide for
switching to supervisor mode and handling source and/or destination as A6 relative ad-
dresses.

The move is always non-destructive, i.e. if the source and destination do overlap, the
move will start from the top of the areas.

A bit of a waste on a normal QL, but in order to provide for the astounding Medusa
spec, we leave the code so it can actually trundle more than a megabyte around! After
all, it only costs 24 bytes of code!

The choice of instruction sequences to achieve the move is based on very exhaustive
testing of alternatives. The only improvement would be to employ movem.l, at some
considerable expense for a very minor speed increase.

This version is inefficient when called to move trivial (<256?) amounts of memory, but
current callers are usually asking for much more, or have already spent so much time
setting up for this that it probably doesn’t matter. With normal (slow) internal RAM, the
overhead seems to be around thirty bytes worth of move. It’s a moot point whether
string copying should use this routine, though I believe that it should, as it has already
done a vast amount of processing before deciding to move a string, that one might just
as well get the speed improvement for very long strings, without hassle.

Using movep instructions is a little faster than eight single byte moves on standard
memory, and even quicker on faster memory.

MM.MOVE $158 Fast memory move.
 D0 0
 D1 length preserved
 A0 destination pointer preserved
 Al source pointer preserved

The Dl.L bytes from (Al) are moved to (A0). No constraints are imposed: i.e. any of Dl,
A0 and Al may be odd. The only slight get-out is that nothing is moved if Dl is nega-
tive. This may be called in either user or supervisor mode.

The move is always non-destructive, i.e. should the source be at a lower address in
memory than the destination (Al <AO), and the areas overlap (Al +Dl >AO), then, and
only then, the memory is moved starting at the top of the areas.

The move is fast, approaching within about 5% of the maximum theoretic speed that
memory can ever be moved around. (The fastest move would be something like having

47

a piece of code with enough MOVEM or MOVEP instructions to do the whole move
without a loop!)

This vector can be called from within SuperBASIC using:

 mm_move = peek w(344) :mm_move=mm_move+16384
 CALL mm_move, length,2,3,4,5,6,7,destination, source

MM.MRTOA $15A Fast move, relative to absolute.
MM.MATOR $150 Fast move, absolute to relative.
MM.MRTOR $15E Fast move, relative to relative.

 D0 0
 D1 length preserved
 A0 destination pointer preserved
 Al source pointer preserved
 A6 base address preserved

This should only be called in user mode. It switches to supervisor mode in order to con-
vert the A6-relative pointers to absolute pointers. The source is 0(A6,Al.L) for
MM.MRTOA and MM.MRTOR and the destination is 0(A6,A0.L) for MM.ATOR and
MM.RTOR. Once these considerations have been taken into effect, MM.MOVE is
called to do the actual moving.

These two vectors will clear memory 32 bytes at a time, to give just about the fastest
possible method of zeroing out memory areas. Minerva uses them for clearing common
heap areas and initialising DIM arrays.

MM.CLEAR $168 Fast memory clear

 D0 0
 D1 length preserved
 A0 destination pointer preserved

The D1.L bytes at (A0) are set to zero. Dl and/or A0 may be odd. If Dl.L is negative,
nothing is touched.

MM.CLRR $16A Fast clear, relative
 D0 0
 D1 length preserved
 A0 destination pointer preserved
 A6 base address preserved

This should only be called in user mode, as it switches to supervisor mode and back, to

48

speed up the operation. The Dl .L bytes at 0(A6,A0.L) are set to zero. Dl and/or A0 may
be odd. If D1.L is negative, nothing is touched.

System Extensions

MINERVA has a set of System Extensions of its own which serve a range of house-
keeping purposes, some of which may be freely manipulated by the user, others which
are definitely only for the experienced hacker.

They can be found between the top of the channel table and the base of the common
heap. We cannot conceive of anybody who is short-sighted enough to expect the heap to
follow on exactly from the end of the channel table, but we’ve been proved wrong be-
fore!

The base of these extensions is pointed to by the System Variable SV_CHTOP at offset
$7C (decimal 124).

Thus from SuperBASIC: sx_base=PEEK_L(VER$(-2)+124)

The scope of the extensions is quite wide; offering everything from the trivial effects of
changing the fonts which all subsequent newly opened channels or jobs use, changing
the cursor colour, shape and flash rate through to implementing new keyboard drivers
(see the keyboard _asm files on the supplemental disk for examples) to the real heavy-
weight stuff of changing the device driver linkage pointers and the close routine for the
MM.RECHP driver. Play with these latter ones at your own risk!

sx_case equ $00 L non-zero = user routine on
 CTRL-ALT-SHIFT-ENTER (C/A/S/E?)
sx_itran equ $04 L input translation routine
sx_otran equ $08 L output translation routine
sx_driv equ $0C L MM_RECHP’s memory management
 driver, close entry point
sx_kbenc equ $10 L keyboard encoder routine
sx_ipcom equ $14 L routine to front end MT.IPCOM calls
spare equ $18 L RESERVED (routine/table)
spare equ $1C L RESERVED (routine/table)
sx_trn equ $20 L default i/o translation table address
sx_msg equ $24 L default message table address
sx_f0 equ $28 L default primary font
sx_f1 equ $2C L default secondary font
sxdspm equ $30 B real display mode settings (dual
 screen)
sx_toe equ $31 B Turn off enhancements
sx_event equ $32 B Keyboard events

49

sx_fstat equ $33 B cursor flash rate, size and color
 RRRRSCCC
sx_kbste equ $34 B*12 special key remap table
sx_qdos equ $40 B*4 returned by MT.INF, VER$(-2)
sx_basic equ $44 W+B*4 returned by VER$, VER$(0)
spare equ $4A W*2 RESERVED
sx_ipcrtn equ $4E B*2 IPO return codes (experimental)

*Initial RAM based linkages *
 equ $50 L*2 00000000
 equ $58 L*6 BASE+$60
 00000000 I0_SCAN *
 equ $70 L*4 BASE+$80 0D_SERIO 0D_SEROP
 0D_SERCL
 equ $80 L*4 BASE+$90 10_SERQ OD_PIPOP
 00_PIPCL
sx_con equ $90 L*4 BASE+$A0 OD_CON I0 OD_CONOP
 OD_CONCL
 equ $A0 L*4 00000000 OD_NETIO OD_NETOP
 OD_NETCL
 equ $B0 L*8 00000000 DD_MDVIO DD_MOVOP
 DD_MDVCL MD_SLAVE 0 0
 MD_FORMT
 equ $D0 L,W,C*3 MD_END 3 ‘MDV’
spare equ $D9 B*7 RESERVED
 equ $E0 end of system extension

Here is a brief summary of the extensions and their use:

SX_CASE
If this is non-zero it is assumed to be pointing to a user routine which will be called
when CTRL-ALT-SHIFT-ENTER is pressed. It is called within the keyboard interrupt
routine in Supervisor mode and therefore you should save and restore all registers and
do not attempt to allocate or release memory. The top bit should be set for the routine to
be recognised.

SX_ITRAN SX_OTRAN
The input translation and output translation routines are used to translate characters
passing through the serial queues as explained in the section dealing with the serial
driver in the CONCEPTS section.

SX_DRIV
The SX_DRIV pointer is the close entry point for the MM.RECHP routine. it is unlikely
you will use this pointer (it is primarily there for the own use to avoid having absolute
pointers within the ROM itself) it has the interesting possibility of being used to front-

50

end the MM.RECHP call so that you could monitor some of the memory usage within
the machine. Should a subsequent memory violation occur which may be picked up by
QPAC’s SysMon you might get more information on who did the dirty on your ma-
chine! It must, however, finish by calling the original close routine or you’ll be in big
trouble. When in doubt leave it alone!

SX_KBENC
SX_KBENC allows a keyboard encoder routine to be added; the best example of how to
use this is to examine the _asm files on the supplemental disk for the foreign language
keyboard drivers. This is also relevant to SX_IPCOM which front-ends calls to the IPO
via MT.IPCOM and is used to manage the ABC keyboard hardware to modify the
KEYROW call.

SX_TRN SX_MSG
SX_TRN and SX_MSG do a similar thing to the TRA command which has pointers in
the System Variables area although the operate when the use default command is issued.
Thus altering these pointers will only take effect when a revert to default TRA is issued,
this differs from the SV versions which take immediate effect.

SX_F0 SX_F1
SX_F0 and SX_F1 are a pair of pointers that can easily be used by the relative novice.
When new screen channels are opened these font pointers are picked up and used. If it is
required that only one channel get use of the new font then read the pointer, substitute
the new value, open the channel(s) required then restore the previous value. That font
will remain attached to that channel until it is closed or in the case of a job, until the job
is removed from the TPA.

An example in SuperBASIC:
 old_font=PEEK_L(sx_base+40)
 font_addr=RESPR(font_size)
 LBYTES flp1_font_name,font_addr
 POKE_L sx_base+40,font_addr
 OPEN #3;scr:PRINT #3;’Hello World!’:CLOSE #3
 POKE_L sx_base+40,old_font

SX_DSPM
This gives the return byte as described in the MT.DMODE section. It is re-arranged to
take into account which default screen you are in. It is not recommended that you
change the mode by poking this byte but use the proper MT.DMODE calls - please do
as we suggest!

SX_EVENT
SX_EVENT is written to by the keyboard interrupt routines and read (and cleared in
some cases) by the scheduler to implement CTRL-SPACE (BREAK) and CTRL-ALT-
SPACE (BREAK MultiBASICs). This is safer to the system’s health as the original
CTRL-SPACE (BREAK) used to try directly to set a flag in SuperBASIC, whilst it

51

could in fact be moving. At best this might mean you didn’t actually get a BREAK and
at worst you could crash the machine by poking the wrong byte into SuperBASIC.

Under the new scheme, the scheduler flags SuperBASIC that a BREAK event has oc-
curred and as the scheduler is running, SuperBASIC can’t be moving because nothing
else is running! As a secondary precaution, SuperBASIC now invokes supervisor mode
whilst in motion so the scheduler can’t be called when SuperBASIC actually does
move.

If you want to break SuperBASIC, you can do it by setting bit 4: to break all running
MultiBASICs set bit 5.

Bits 0 to 3 are reserved for future user events as yet undefined.

 Bit Key Event
 0-3 Reserved
 4 CTRL-SPACE (BREAK)
 5 CTRL-ALT-SPACE (MultiBASIC BREAK)
 6 CTRL-SHIFT-SPACE (unused)
 7 CTRL-ALT-SHIFT-SPACE (unused)

SX_FSTAT
You can now set the cursor flash rate, shape and colour by setting the appropriate bits in
sx_fstat. The top four bits determine the flash rate. The size bit, if set, produces an un-
derline cursor: if clear it produces the standard QL block cursor. The bottom three bits
determine the cursor colour as per the standard 0-7 colour designation. We quite like 76
here!

SX_QDOS SX_BASIC
sx_qdos and sx_basic allow you to alter the version numbers as returned by calls to
MT.INF and VER$. This was put in to allow certain software to be fooled into running
on MINERVA; we haven’t come across many of these, the only one we know of at pre-
sent is the German QUILL which expects the MT.INF version of QDOS to be returned
as 1G10 instead of 1.10 - patching the ‘.‘ in the sx_qdos bytes will allow this program to
run on MINERVA.

SX_IPCTRN
For an experimental time, versions 1.86 and maybe above will be using the two bytes at
$4E and $4F in the extension area to record some additional status data that comes in
from the IPC, but has never been seen before.

The first of these is set whenever serial data bytes are handed on from the IPC to the
main processor.

The low order 6 bits contain the serial byte count, which should always be between 1

52

and 23, so far as we know.

The upper two bits are more interesting, and seem to be flagging serial overrun on ser1
and ser2. The second byte has in bits 6, 5 and 2 the status bits from the IPC that have
never been used for anything (it’s been rotated and munged a bit from the original input,
where these bits were 3, 2 and 7 respectively).

Even with the benefit of a complete dis-assembly of the IPC code, we haven’t worked
out exactly what they all do, yet, but one is a flag that you have changed the combina-
tion of CTRL/ALT/SHIFT keys you’re holding down, while holding yet another key...
usefulness... zero? More detail may follow, if it‘s of interest.

RAM based linkage pointers
These linkages are pointers to the default list of device drivers. Previously these were
absolute pointers within the ROM, but it became policy for these to be pulled out into
RAM to permit modification. A full explanation is beyond the scope of this manual but
it now becomes possible to replace a QL device driver with your own, without making a
copy of it and then ensuring your version slots itself in at the head of the list.

53

Minerva RTC MKII (RTC)

Fitting and Getting Started

Fitting is very similar to the original Minerva - see the instructions for this. The re-
chargeable battery can be placed anywhere convenient in the QL; we have allowed
enough wire to put it in the spare corner of the case between the 64-way expansion con-
nector and the back wall.

All Minerva RTCs are tested and pre-configured with the correct time. Mishaps do oc-
cur, however, and it is possible that the contents of the RAM will have become suffi-
ciently scrambled to prevent the QL from starting. To get the system going, press and
release the QL’s reset button TWICE within one second or so: you should then see the
usual tweed pattern.

The clock will always be copied into the QL’s 32-bit seconds counter whenever the QL
is re-started. You can prevent the other configuration information (see below) from be-
ing used by pressing the left-arrow key after reset but before the F1/F2 etc. message ap-
pears - useful if you want to check what ROMs you have plugged in without changing
the configuration, for instance.

Hardware

Minerva RTC adds a Philips PCF8583 real-time clock and RAM chip to the QL, and
uses some of its contents to configure the QL at reset. The interface to this chip is the
Philips 12C serial bus, driven by software at near its maximum speed of 100kbits/
second. Although the original specification of this bus allows for multiple masters, the
Minerva RTC implementation is restricted to a single bus master, the QL itself.

Each device on the 12C bus has a device address which is seven bits long – that of the
8583 in this system is set 10.80. A complete bus transaction consists of a start condition
followed by a number of byte reads or writes, terminated by a stop condition. Every
byte read or written during a transaction will be acknowledged by its recipient, except
(usually) the last. The first byte after the start contains the address of the desired device,
plus one bit designating the transaction as a read or write: the content and direction of
subsequent bytes depend on the device addressed.

The 8583 has 256 locations that can be read or written. Thus the first action required is a
write to set up the address to be accessed. To simplify matters, once this address has
been accessed the 8583s internal address counter increments, so that multiple consecu-
tive locations can be accessed without re-writing the address explicitly. If write access
to the location is what is wanted, then the data byte(s) can follow directly after the ad-
dress. If read is required, then a new start+device must be sent, with the read/write set to
read.

54

Thus to write $1234 to location $56, the following is sent:
 <start><$A0><$56><$l2><$34><stop>

Note that the address of 80 is doubled to $A0, and the write bit, 0, inserted as the least
significant bit.

To read back from locations $60.63, the following is sent:

After the second start condition the device address is sent out again, but this lime with a
read bit, 1, inserted as the LSB, so $AI is sent: at this point the 8583 starts outputting
data until the stop condition occurs.

Software

The clock and RAM can be accessed from machine-code or SuperBASIC. A vector to
perform 12C bus transactions is provided in the Minerva ROM, and a SuperBASIC
function that uses this is provided on the utility disc.

Vector II_DRIVE = $172 = 370 (offset by $4000)

Registers:
 Entry Exit
 D0 error code
 Dl register result
 D2 device parameter smashed
 Al pointer to data buffer updated
 A3 pointer to command buffer updated

The I2C driver vector is controlled by a byte stream contained in the (read- only) com-
mand buffer. Data to be written may come from either the command or data buffer. Re-
sults may be returned into Dl or the data buffer.

Four error codes are returned at present: ERR.FF implies that the hardware is not func-
tioning: ERR.NF that the addressed device is not present: ERR.TE that an acknowledge
was not received when it was expected: and ERR.BP that a bad command byte has been
encountered.

During the interpretation of the command stream, D2 holds the number of the addressed
device in its more significant word, and a parameter word in its less significant word.

Command stream bytes are as follows:

Parameter build byte:

55

The contents of the parameter word are shifted left seven bits, and this byte is ORed into
it. A contiguous sequence of three of these can be used to set up a full 16 bits of pa-
rameter. Only two uses of this are currently made. A single byte is used before a special
command which is to copy it to the device group register, so we can change devices
during a sequence. The other usage is to set up the byte count for a normal I/O com-
mand. This will make use of a 16-bit count, and may need anything from zero to three
of these parameter build bytes. The parameter register is always cleared to zero after
each of the normal i/o and special byte types has been processed.

Normal input/output byte:

The bits of this byte are essentially handled from left to right, to allow the most typical
i/o sequence to be handled in its entirety.

 S = 0: no START required (assumed SDA high and SCL low)
 S = 1: send START and device (SDA/SCL assumed. high)
 R = 0: write mode, or R = 1: read mode
 B = 0: if R=0, write from control, or R=1 read to register
 B = 1: write/read uses data buffer
 P = 1: send STOP sequence
 A = 1: send acknowledge on last read (R=1) byte

R=0 and A=1 is invalid, as is R=1, P=1 and A=1. Also bit 0 must be clear. If these con-
ditions are not met, an err.bp is reported after processing all but the P bit.

The parameter value specifies the exact byte count for a write sequence, but on a read
(R=1) sequence, it counts only those bytes to be acknowledged. If R=1 and A=0, the
final byte with standard non-acknowledge is extra.

Write sequence data byte:

7 6 5 4 3 2 1 0

o seven parameter data bits

7 6 5 4 3 2 1 0

1 0 5 R B P A 0

7 6 5 4 3 2 1 0

 Data byte

56

If a normal i/o byte requests writes from this control buffer, it will be immediately fol-
lowed by the appropriate number of data bytes to be written.

Special i/o and control byte:

Once again, the bits are handled from left to right, and these control all the exceptional
cases we wish to cope with. Note that the SDA and SCL setting will occur simultane-
ously, hence to be valid, only one should differ from its currently known state. If V=O,
the state will always be both ones before they are applied, so the combination of V, D
and S all zero is always invalid.

 G = 0: set device group addresses as 2 current parameter value
 G = 1: assume device group is already in its register
 V = 0; kill bus (assume NOTHING about bus, ensure in standard free
 state)
 V = 1: assume the bus is valid, whatever state it is in
 D = d: set SDA
 C = c: set SCL
 0 = 1: quit

Note that bit 1 is reserved and must be set, or an ERR.BP is reported after processing
the G and V bits, but before setting the D/C combination

The control buffer must finish up with a special command that has its quit (lsb) set. Nor-
mally this will be all ones, but where the bus is not being released between calls a value
of $F3, keeping SDA and SOL low, will be typical.

The general rules for the bus go as follows:

Before a START+device, SDA should be high. After a START+device, SDA will be
high and SCL will be low. For a read/write, SDA high and SCL low are required and
are left the same. Before a STOP, SCL low is expected and both SDA and SCL will be
left high. Before an initialise, SDA and SCL are irrelevant. When using the special”
command, only one of SDA and SCL should be changed at one time. When it includes
an initialise, that will preset them high.

7 6 5 4 3 2 1 0

1 1 G V D C 1 Q

57

I2C_IO
This SuperBASIC function uses the above vector almost directly:

 res$=I2C_IO(cmnd$,res len[device[,parameter]])

The command string cmnd$ is as described above. The data buffer is effectively “write
only”, being the result of the function, and is thus not available as a data source; in addi-
tion, the anticipated length of the result must be supplied as the second parameter so that
space can be allocated to store it.

So:

 x$=CHR$ (164) &CHR$ (16)&CHR$(3)&CHR$(188)&CHR$ (255)
 PRINT I2C_IO(x$,4,80,1)

will read four bytes from location 16 of the RAM.

CHR$(164) is a normal I/O byte, saying write <parameter> bytes to the <device>; the
8583’s device number (80) and the parameter (1) are set by the last two function pa-
rameters.

The one byte written is taken from the command stream, thus absorbing the CHR$(16)
and setting the 8583’s address counter to 16.

The CHR$(3) then sets the parameter to 3; this will be used as the count of bytes read
and acknowledged, so the estimated result length Is four (the second function parame-
ter).

CHR$(188) then says read <parameter> bytes and send a <stop>; the four bytes from
locations 16.. 19 are thus read.

CHR$(255) terminates the command stream, and the four bytes read are returned as a
string.

Examples of the use of this may be found in the configuration program: hpeek$ returns
1 bytes from address a in the RAM, and hpoke$ puts the string s$ to address a - it’s sim-
pler than it may seem from the above example!

If you intend experimenting with this, we’d suggest you use the save configuration to
file option in the configure program, as a wrong command string does tend to corrupt
the RAM.

The I2C_I0 extension is in the file I2C_IO_BIN on the supplied disc; LRESPR it as with
other SuperBASIC extensions.

58

Memory Map

The 8583s memory map is as follows:

 0-15 control and clock
 16-255 RAM

The control and clock bytes should not normally be accessed from user programs: a
configuration program is provided to set these correctly, and writing unexpected values
here may cause Minerva to mis-interpret the clock contents.

This version of Minerva defines uses for the following RAM locations:

 16-19 expected QDOS version number. e.g. 1.89
 20-23 re-boot D1 value
 24-25 year*2+month DIV 10
 26-27 copy of locations 22 and 23
 28-29 ROM disable bits
 30 NET station number
 31 SX_TOE value System Turn Off Enhancements
 32 BV_TOE, SuperBASIC Turn Off Enhancements
 33-34 unassigned, reserved
 35 length of boot string, 0 to 128
 36-163 boot string arid user area
 164-251 unassigned, reserved
 252 SER1 device
 253 SER2 device
 254 PAR device
 255 unassigned, reserved

The expected QDOS version must match the actual version of the ROM - if it does not
the QL wilt not adopt the configuration set up in the rest of the RAM. This feature is for
upward compatibility.

The re-boot Dl value is as documented for the CALL 390 warm re-start facility in the
Minerva manual - see this for a detailed explanation of the various options. Different
values will allow either a full RAM test at reset or a quicker RAM clear with minimal
testing, and choice of monitor or TV mode with one or two screens enabled.

The year and month are set by the configuration program, and maintained by QDOS, as
the 8583 only provides enough year information to keep track of leap years.

The copy of locations 22 and 23, the low-order part of the re-boot value, is used to en-
sure that a completely corrupt system can be re-started. Locations 22 and 23, once read,
are set to a known sensible value before the re-boot proceeds. If this fails due to 20-23

59

having a completely stupid value in, another reset will use this value and the QL can be
started normally. The configuration program can then be run to set sensible values for
this and other RAM locations.

Locations 28 and 29 contain 16 bits which can be used to disable plug-in ROMs selec-
tively. First, note the order in which the ROM banners appear on the start up (FI/F2 etc.)
screen. The first of these can be made to disappear by setting the top bit of location 28,
the second by setting bit 6, the tenth by setting bit 6 of location 29, and so on. If your
boot screen has something like:

 CARE/QJUMP TK2.21 (c) 1985
 Digital Precision LIGHTNING 2.10
 CST QDISC vl.18 0 1984

setting location 28 to 96 (01100000 binary) will map out the second two ROMs leaving
you with just SuperToolkit II.

The NET station number SX_TOE and BV_TOE are Just copied to the relevant places
in RAM. The net station should be obvious. If the top bit of SX_TOE is set, then Mi-
nerva allows you to format media with open files on, which is dangerous but required if
you wish to format PC discs under Conqueror. Selling the top bit of BV_TOE disables
the tokenising of integers, which will make SuperBASIC run slower but will prevent old
versions of Q_Liberator and all current versions of Supercharge and Turbo from getting
confused.

The boot string is inserted into SuperBASIC channel #0 as if it had been typed at the
keyboard. A length of 0 implies you don’t want a boot string: if you do have one, it re-
quires an ENTER at the end of each line in it, just as it would if you were typing it. So a
boot string of:

 TK2_EXT
 LRUN N3_WIN1_REMOTE_BOOT

will enable SuperToolkit II and then run a boot file from a networked hard disc. note:
FI/F2 etc must. be the first. string

All unassigned, reserved areas are just that: QView reserves these locations for future
enhancements to Minerva or for use by third party hardware or software. All allocations
to third party products must be made via QView so that clashes can be avoided.

Any spare space tell over after you’ve set up your boot string may be used for your own
purposes, and will not be allocated for new features in future versions of Minerva or for
third party products.

The SERI, SER2 and PAR devices are not used directly by Minerva. They are for use

60

by any software that uses printers or modems, so that programs can find out if such
items are present and what type they are.

Currently defined values are:

 0 nothing connected to this port
 1 upwards printer type code as used by Tony Tebby’s
 SDUMP routines e.g.
 1 =Epson MX8O,
 8=Epson LQ2500 colour, 18=Brother 8056 etc.
 253 Tandata modem
 254 Astracom native modem
 255 Astracom/other Hayes-compatible modem

We anticipate that new printer types will be added at the low
number end going upwards, and modems from the high num-
bers down.

Using the CONFIG program

Two versions of the configuration program are supplied. One
is the SuperBASIC source file, and requires the I2C_IO exten-
sion to be loaded to operate correctly; the other is the same
program compiled with QLiberator, which can be EXEC_Wed
at any time — it has the extension built-in. (miniconfig_bas &
rniniconfig_obj)

The configuration program has the following options:

 Enter Review/alter the current settings
 T allows the date and time in the 12C RTC chip to be set
 L loads a set of configuration details from a file
 S saves a set of configuration details to a file
 R reads the current configuration from the 12C RAM
 W writes the current configuration details to 12C RAM
 0 quits the program

Reviewing the Settings

Pressing the ENTER key displays the current setting for the next configurable item and
allows the user to alter it. To leave an item unchanged, simply press ENTER again to
step on to the next item. The configurable items are as follows:

View of I2C
Connections - solder side

61

 REBOOT Dl value (see p33) h
 ROM disable h
 NET station
 System de-enhance (SX_TOE)
 SuperBASIC de-enhance (BV_TOE)
 Type-ahead string hh

h These values are in hexadecimal - a $ is displayed to remind you of this!
hh Normal editing facilities are not provided here: all keystrokes (except TAB to fin-
ish the entry) are appended to the string exactly as typed.

The first item in your type-ahead string should be one of the function keys Fl, F2 etc.,
depending on your preferred screen mode. If the string is giving a “BAD LINE” error
and it looks as if some of the characters have been eaten”, try adding a couple of extra
spaces before the offending statement.

These changes are not automatically written to the I2C RAM — use the Write option to
do this when you are happy with your changes.

Setting the Clock

Pressing T reads the current setting of the I2C clock and allows you to set a new value
using the same parameters as for SDATE . Type the SDATE parameters, pressing EN-
TER after each one; for example:

 1991 ENTER
 3 ENTER
 31 ENTER
 12 ENTER
 59 ENTER
 0 ENTER

On the last parameter, the I2C clock will be set to the new date and the QL clock will
also be set to the same value.

Configure Files

If it is your intention to change your configuration regularly, or you anticipate the possi-
bility of corrupting your configuration while experimenting with the I2C bus, you can
save configurations to disc or microdrive with the configuration program. Pressing S
will allow you to save the current program settings to a file, while L will load from a
file. The I2C RAM is not modified by either of these operations. You must give a full
device+filename, for example flp1_normal_cfg

Pressing R reads the configuration currently in the I2C RAM into the program, ready for

62

modification, checking or writing out to a file.

Pressing W will write out the settings you have just changed, or loaded from a file, to
the I2C RAM. Once you have confirmed that you want to overwrite the old RAM con-
tents, the new settings will take effect from the next machine reset.

Fitting (MKI)

You will need a cross-head screwdriver to undo the QL casing, and a chip extraction
tool or small flat bladed screwdriver to remove the ROM chip set.

1/ Remove screws from the QL casing - except the screws holding the microdrives.
There should be eight - if you have ten then it's too late, you obviously have a deep-
seated fear of reading Instructions..

2/ locate the two QL ROMs which are labelled IC 33 and 34 on the PCB, they should
have printed on the top 'QL JS' or ALL JM' and then either ‘0000' or '8000' which is the
location in the memory map that the ROMs inhabit. If you have QJUMP's Internal
Mouse Interface, IC34 was transferred to it - it's the smaller of the socketed chips.

AH Conversion
2a/ if you appear to have a piggy-backed set of ROMs with flying leads you have an
EPROM'd QL which will need converting with the following set of instructions before
MINERVA will work correctly - or any of the later ROMS such as JM/JS/MG for that
matter. Should you require the instructions on modifying your AH machine, here they
are otherwise go onto Stage 3:

WARNING - QVIEW cannot be held responsible for any damage you might do to your
QL in the AH conversion. If you are at all doubtful then seek expert advice.

2b/ Remove and discard any flying wires from A14, IC34 and JU points.

2c/ Remove all wire links in JU points 1 to 6 (to the right of IC34). Note that JU 1 and
JU6 may appear to be fitted with resistors with only a single black band. These are in
fact zero resistance and were inserted because the automatic component insertion equip-
ment used to populate the boards cannot handle bare wire links.

2d/ Remove IC17 (74LS00) - on some PCBs this chip is socketed and on others it is sol-
dered into the PCB.

2e/ Remove IC33 and 34 (EPROMS)

2f/ Fit wire links to JU2,JU3 and JU4

63

3/ Remove both of the ROMs gently to avoid bending the legs into wire sculptures.
Stash in a safe place as you might one day want a nostalgia trip ...

4/ The MINERVA assembly plugs Into the socket IC33 which is the one nearest the ex-
pansion port on the left. Make sure the new EPROM is fully home with gentle but firm
pressure. The notch at one end of the chip should point towards the serial port sockets as
the original ROMs did. Do not replace the ROM that came out of socket IC 34, this
socket should be empty, even if it's now on your QIMI. if you plug MINERVA in the
wrong ROM socket don't worry too much - it works fine in either one!!

5/ You can now replace the keyboard casing and power up your QL to enjoy the won-
derful new Minerva logo....

 6/ Don't be unnerved it after 15 seconds the system appears to spring into life - Mi-
nerva has just got a little restless and decided to start without you....

7/ You can now press F1/F2/F3/F4 during the tweed pattern and MINERVA will re-
member which screen option you required when the RAMTEST has been completed. if
at this point you see a block of large hexadecimal numbers then MINERVA is signal-
ling that there appears to be a RAM failure or fault of some kind For details on what
these numbers mean see under RAMTEST in the Assembler section. other failures are
rare, and likely to be a result of undue timidity in shoving the MINERVA assembly into
its socket - go on, give it some wellie. Don't be alarmed it you see a continuous white
line in the tweed pattern which appears to move from time to time - this is perfectly nor-
mal and a result of the extra checks in the memory test routine.

On the supplemental files medium you will find a number of items which don't really
belong in the ROM, usually because they are of a more or less specialist nature:

MultiBASIC files - see SuperBASIC chapter
 MULTIB_EXE MultiBASIC EXECable file
 MULTIB_ASM source file for the above
 MULTIB_REXT MultiBASIC command file

Trace facility- see SuperBASIC chapter

 TRACE_TRACE_ASM source files
 TRACE_CHAN_ASM for the trace facility
 TRACE_LINK linker command file
 TRACE_MAC macros
 TRACE_KEYS symbol definitions
 TRACE_BOOT boot file for...
 TRACE_BIN . ..the resulting SuperBASIC extension!

64

Utilities to improve Compatibility - see Concepts and Incompatibilities chapters

 SVCHECK BAS checks for naughty software
 BODGE_xxx bodger programs for naughty software
 MLOAD_BIN Improved version of QLOAD/QLRUN

non-English keyboard drivers - see Concepts chapter

 GERMAN_ASM source for German version QL
 GERMAN_KBD_BIN ...LRESPRable...
 GERMAN_KBD_ROM ...or ROMmable keyboard layouts

 FRENCH_xxx French...
 MGD_xxx ...Danish and Norwegian...
 MGY_xxx ...and Finnish versions of the above

Test utility - see Concepts chapter

 RAMFAIL RAS shows faulty RAM chip on-screen

