

| A

Every effort has been made to ensure that the information
given in this manual is as accurate as possible, however,
Sandy S.r.1. will not accept any responsibility for losses
or damage caused directly or indirectly from its use.

Copyright Sandy S.r.1. - Milan
Copyright Tony Tebby Q-Jump

QL and QDOS are trademarks of Sinclair Research Limited

H
A
A
N
D
H
H
A
H
R
A
H
H
D
H
H
A
H
D
H
H
H
A
A
A
A
A
D
 FE

d
d
d

d
o
v
e

e
e
e

|
Introduction

(INTRODUCTION

JA
NM
IU
IN
Y

 ~~

INSTALLATION

‘a

V
f

FL OPPY DISK DRIVER |

RAM DISK DRIVER

PRINTER PORT

 BASIC EXTENTIONS

e
r

ae
es

a
a

a

Introduction

This document describes the facilities included with the SANDY disk

interface. Throughout this document the following conventions are used:

COMMAND for parts of commands to be typed as shown

example for parts of commands shown as examples

description for descriptive parts of commands.

The SANDY interface has the hardware and software to add a floppy disk

system, a parallel printer port, and 512k bytes of RAM (including a RAM

disk) to the QL. In addition it has all the file handling facilities of the

Sinclair QL Toolkit together with some other extensions to SuperBASIC.

Contents

Floppy Disk Driver

RAM Disk Driver

Parallel Printer Port

SuperBASIC Extensions

SPL SPL_USE - File Spooler
JOBS AJOB SPJOB RJOB - Job Control

GET BGET PUT BPUT FPOS - Direct Access Files

FLEN FTYP FDAT - File Enquiry Functions

FOPEN FOP_IN FOP_NEW FOP_OVER FOP_DIR

VIEW - Examining a file

WDIR WSTAT WDEL WDEL_F - Wild Card Commands
STAT - Drive Statistics

WCOPY - Wild Card Copy

RENAME TRUNCATE

DATA_USE - Default Directory
CLOCK - Resident Clock

EXTRAS - Listing Extensions

10

15

NUR
ie

ee
A

A
t
t

et

g
Installation

INTRODUCTION

 y
O

INSTALLATION =

f
\
f

FLOPPY DISK DRIVER |

RAM DISK’ DRIVER

PRINTER PORT

BASIC EXTENTIONS fr

V
f

Y
e
)

\ Wy wi Ut UY Up Ut Wu Ub Wi Ub ww UU
v"v |

GU iss ld

“
S
W
W
u
d
0
u
d

L
O
O
M

H
N
O
A

OL
G
H
G
G
V
Y

YO
A
T
L
O
X
Y
I
G

G
a
u
a
L
I
N
a

ad
N
Y
O

S
I
H
L

,
L
X
a

C
M
L
,

Q
G
N
V
W
W
O
D

GdHL
A
s
n

O
I
S
V
d

OL
S
N
O
I
S
N
A
L
X
G

II
L
I
N
T
O
O
L
Y
a
d
N
S

A
H
L

NI
A
N
I
T

Od

;
"
M
0
7
9

T
I
N
d

F
H
L

M
N
I
T

OL
L
H
S
S
a
Y

SSauYd
L
S
N
C

-
dN

A
H
M
O
d

LV
d
Z
I
S

A
X
O
W
A
W

M8Z@L
WV

N
U
N
L
E
Y

T
I
I
M

S
N
O
I
S
H
H
A

IO
GAWOS

°
A
Z
I
S

A
Y
O
W
G
W

I
W
L
O
L

dGHL
S
A
V
I
d
S
I
G

W
O
W
S
S
H
W

d
N
-
L
u
v
i
S

adHL
w
a
M
O
d

a
H
L

NO
O
N
I
H
O
L
I
M
S

G
N
W

G
U
V
O
d
O
N
a
d
N
S

UYNOA
O
N
I
L
L
I
A

w
a
L
a
v

s
o
w

w
d

e
e
e

TO

PR
IN
TE
R

TO

DI
SK

DR
IV
E

DIAGRAM 1 — SUPERQBOARD INTERFACE

TT +}
[o]

kK [] BB :

bp j=] | 8 =— 2]

— 3
| a |

— 2
5 —

=| | f —— ir

| | & 1B Jp |! /e
a

JP _| e ot

DIAGRAM 2 — PIN CONNECTIONS

PRINTER DISK DRIVE

PIN CODE

o1 STROBE
02 DATA 1
03 DATA 2
04 DATA 3
05 DATA 4
06 DATA 5
07 DATA 8
08 DATA 7
09 DATA 8 18 DIRECTION
10 ACKNLG 20 STEP
11 BUSY 22 WRITE DATA
12 N.C. 24 WRITE GATE
13 N.C, 26 TRACK 00
14/24 GND 28 WRITE PROTECT
26 N.C. 30 READ DATA

32 SIDE 1
34 N.C,
01/33 GND

1

e
e

e
e

ee
 e
e
 ee

F-TTING INSTRUCTIONS

:. Fitting the interface card.

DISCONNECT THE QL AND ANY OTHER PERIPHERAL FROM THE MAINS.

Locate the peripheral expansion port on the QL (on the far
‘eft) and gently remove the plastic cover by pulling it away
from the QL. Be patient since this may take some effort.

Now place the QL upright with the expansion port upwards,
grasp the Super Q Board by its plastic cover and gently

slide it downwards into position - the components of the
Super Q Board should be on the same side as the QL keyboard.

The interface card is firmly in position when the plastic
cover is flush against the side of the QL.

2. Connecting the disk drives

DISCONNECT THE QL AND ANY OTHER PERIPHERAL FROM THE MAINS.

You will notice that the Super Q Bard has two ports, a small
one and a large one. The large port is where you should fit
your disk drive connector (the one on the end of a ribbon
cable). The connector will only plug in one way up, so do
not force it.

3. Connecting the printer

As stated above the Super Q Board has two ports, the smal]
one is the centronics printer port. A suitable cable can be

supplied by your dealer. Once again the connector plugs in
one way only.

4. Testing the Super Q Board

Power up sequence:

i. Switch on QL
2. Switch on Disk drives

At this point, the interface will check if there is a floppy
disk in the disk drive (no.] if you have a twin unit) and
then stop the drive motor, and the message :

SANDY SUPER Q BOARD V.1.16 (or later} copyright 1984

with the Sinclair TV/Monitor (F1-F2) prompt will appear.

At this point you may press Fl or F2 accordingly.

The interface will check if there is a file called "BOOT"
on the disk, if no file called "BOOT" is found the drive

motor will stop

3S
g
e
v
e
v
u
s
T
e
U
D

§
T
H
A
N
T
I
Y
L

If you did not put any floppy disk in before power up, the
interface will still look for a floppy on drivel, stop the
motor and then after you have pressed Fl or F2 will turn the
microdrive motor.

Power down sequence:

1. Switch off Disk drives
2. Switch off QL

5. Removing the interface card

If for any reason you need to remove the interface card,
remember to:

DISCONNECT THE QL AND ANY OTHER PERIPHERAL FROM THE MAINS.

Unplug the disk and printer cables, grasp the Super Q Board
by the plastic cover and pull firmly.

rf
ao
t

ees

ee
Se!

 S
S
)

s
y

s
g

yon

Ss
Se

See
)

et t
t

9 O
d

ld

2

A

8
A
A

a
3

Floppy Disk Driver

[INTRODUCTION

 f CONTENTS _ |
Beginners Start Here
Floppy Disk Compatibility
Auto—Boot
Microdrive Emulation
Floppy Disk Options
Security
Security Level 0
Security Level 1

1 [INSTALLATION
2
2
3
x)
4

5
5

Security Level 2

6
6
7

os

[FLOPPY DISK DRIVER IHU
UHU

IN
U
O
T

[RAM DISK DRIVER

Security System Errors
Start Up Time
Number Of Tracks
Direct Sector Read/Write
Disk Drive Specification

PRINTER PORT

 fF

y
f

V
G

BASIC EXTENTIONS
 1

d
i
a

a
w
a
 w
e
a

QJUMP Floppy Disk Driver 1.16

Beginners Start Here

The QL computer is delivered with two ‘mass storage' devices: the

Microdrives. These devices have the samé function as the floppy disks on

more expensive personal computers, being designed for the permanent

storage of programs and data. Other devices which behave in the same

way aS Microdrives (such as floppy or hard disks) may be added to the

QL 'transparently'. This means that QDOS will ensure that a program

does not need to 'know' where its data is stored. A Microdrive looks, to

a program, exactly the same as a floppy disk. This ‘device independence!

is a built in characteristic of the QDOS operating system.

The simplest way of using a floppy disk system on the QL is to copy all

programs and data to floppy disks, and either add the command 'FLP_USE

MDV' to all BOOT files, or type this command at the start of a session on

the QL. The effect of this command is to make the floppy disks pretend

to be rather large and fast Microdrives.

For example, a modified BOOT file for executing the PSION program Quill

eould look like:

100 FLP_USE mdv
110 CLOSE #1: CLOSE #2
120 EXEC_W mdvi_ quill

On the other hand, it is just as easy to use the floppy disks without

changing the name. All the filing system commands described in the

'Microdrives' section of the QL Concept Reference Guide will work with

floppy disks, provided the filenames start with 'FLP' instead of 'MDV':

FORMAT flp1_ 200 formats a new floppy disk in drive 1

DIR flpl_ directory listing of floppy disk 1

SAVE fip1_myprog Save the current SuperBASIC program

as 'myprog' in floppy disk 1

OPEN_NEW #3,flp2 data creates and opens a new file 'data'

in floppy disk 2

COPY mdvl_x TO flpl_x copies file x from Microdrive 1 to

floppy disk 1

~_
ge

-

~
p
p
p
p
e
p
e
p
e
w
E

97
>
>
 - >
=

L
T
E

Floppy Disk Compatibility

The QJUMP Floppy Disk driver software provides easy upgrade path from

Microdrives to floppy disk speed and storage eapacity. It not only

provides all the built-in Microdrive filing system operations, but includes

all the extended filing system operations provided in the Sinclair QL

Toolkit for Microdrives. This allows all the SuperBASIC extensions

provided in the QL Toolkit (e.g. FOP _OVER, RENAME etc.) to be used
with the floppy disks

OPEN OVERWRITE Trap 2, DO=1, D3=3

This variant of the OPEN call opens a file for

write/read whether it exists or not. The file

ts truncated to zero length before use.

RENAME Trap 3, D0=4A, Al points to new name

This call renames a file. The name should include

the drive name (e.g. FLP1_NEW_NAME).

TRUNCATE Trap 3, D0=4B

This call truncates a file to the current byte

position.

In addition the FS.FLUSH call for a file, not only flushes all the file

buffers, but, unlike the Microdrive driver, updates the map and the

directory. This means that a new file can be created, and if it is

flushed, then in the event of the QL being turned off or reset before the

file is closed, then all of the file (up to the point where it was last

flushed), is readable. In effect a FLUSH call is just the same as a

CLOSE call, except that the file remains open and the file pointer

remains unchanged.

Auto-boot

If there is a disk in drive 1 when the QL is turned on (this may be risky

with some makes of floppy disk drive, particularily those with permanently

loaded heads) or reset (this should be safe with all drives), then the QL |

will boot from the disk in drive 1, otherwise the QL will boot from

Microdrive 1 as usual.

p
e
e

i
e
e
e

T
e
r
e
 When a ‘directory device’, such as a floppy disk, is accessed for the first

time, QDOS will allocate a block of memory for the device. In the case

of a floppy disk, the Sinclair standard format requires a block of memory

about 1.6 kilobytes long. This is rather larger than the Microdrive block

which is only about 0.6 kilobytes long. The auto-boot procedure used

ensures that if there is no disk in drive 1 when the QL is reset, then the

1.6 kilobyte block for disk drive 1 will not be allocated. Programs that

are too large to execute when floppy disks are being used, should still

execute from microdrives. “

Microdrive Emulation

The standard driver also includes a SuperBASIC procedure FLP_USE t=

change the name of the floppy disk driver. =

FLP_USE mdv or FLP_USE 'mdv' ,

resets the name of the floppy disk driver to ‘'mdv', so that all subsequent

open calls for Microdrives will use the floppy disks instead. Thus the ®

commands

FLP_USE mdv
woes :

OPEN #3,mdv1_myfile
P| will actually open the file 'myfile' on floppy disk 1, rather than trying to

open a file on Microdrive 1

Any three letters may be used as a new device name, in particular

FLP_USE flip

will reset the driver to its normal state.

Floppy Disk Options

There are three parameters of the floppy disk system which are available
as user options. ,

The security level is selectable to allow a user to choose higher speed of

access at the cost of reduced immunity to erroneous disk swapping. There

are three levels of security, the lowest level still being at least as secure

as common disk based operating systems (e.g. MSDOS and CPM)..

A user may specify the time taken for the disk drive motor to get the disk

speed to within the specification.

A user may specify the mumber of tracks to be formatted on a disk.

these parameters are specified by three separate commands each with one

parameter:

FLP_SEC security level
FLP_START start up time
FLP_TRACK ur of tracks

Security

The Microdrive filing system is unusual in that, although the data is

stored in 'sectors' in just the same way as on a floppy disk, each sector

holds information which identifies the cartridge. When a cartridge is

ehanged the filing system will recognise the change the next time any -

access is made to Microdrive. Standard floppy disk formats do not allow
this type of security, so the format used for QL floppy disks includes

identifying information in Track 0 Sector 1 of the disk. Clearly if this

were checked every time any access were made to the disk, then the

floppy disk system would be very slow indeed. Security, in the context of

this user option, is the extent to which the floppy disk system may be

abused by changing disks, while they are in use, without destroying data

stored on the disks.

There are four operations which affect the security: the first is the

operation to check if the disk has been changed, the second is the

operation to flush the slave blocks, the third is the operation to update

the map and the fourth is the operation to update the directory.

In these definitions, the term 'the drive has stopped‘ is usually taken to

mean that the motors have stopped and no drive select light is visible.

On some floppy disk systems, if an attempt is made to access a drive

which has no disk in place, or has the door open, then the motors will

continue to run. If a drive select light is still on, then the motors may

be stopped by inserting a disk and closing the door. In any case, the

drives are deemed to be stopped if 5 seconds have passed without a disk

access.

IL)

LE
IRE

Oh}

ORE

OS

bE
OE

OD
O
U
D

P
R
E

BD

R
e

ee

r
e
r
e

ae

a

Security Level 0

The disk is only checked when a file is opened and the drive has stopped
since the last time it was checked and there are no files already open on

the drive.

The map is only updated after a file is closed (or flushed) when half a
second has elapsed without any other disk operation.

At this lowest level of security, confusion or loss of data can be expected

if a disk is changed while there are still files open or the motor is

running.

Security Level 1

The disk is checked when a‘ file is opened, or data or the map is to be

written, and the drive has stopped since the last time it was checked. —

The map is only updated after a file is closed (or flushed) when half a

second has elapsed since the previous disk operation.

At this level of security, disks should only be changed while the motor is
stopped (all select lights off}. If a disk is changed while there are files

open, then read operations will be confused but any write operations will

be aborted. This should maintain the integrity of the data on the disk.

Security Level 2

The disk is checked whenever a file is opened or whenever the map or

data is to be read from or written to the disk and the drive has stopped

Since the last time the disk was checked.

The map and directory are updated and the buffers are flushed

immediately after a file is closed, or after an FS.FLUSH call.

This is the default security level and data should be quite secure unless a ~

disk is changed while the motors are running.

eS
e
v
e
e
c
e
v
e
w
r

@
°
°
"
°
°
°
°

"
7

a a

Security System Errors

There are two error messages which may be written to the screen by the

floppy disk filing system. These are in the form of the disk name

followed by the message itself. The first message indicates that an

attempt to read or write a sector on the disk has failed:

disk name read/write failed

The second message indicates that a disk has been changed while it is

still in use:

disk name files still open

If the floppy disk system attempts to write to a disk which has been

ehanged, then you may get both messages indicating that the attempt to

write the data has been aborted, and that files were still open when the

disk was changed.

Start Up Time

The floppy disk system will always try to read data from a disk as soon

as it can. However, to preserve the data integrity of the disk, write

operations are held up until the disk has been 'run up’ for long enough for

the speed to be stable. As a default this is set to .6 second which is

more than enough for most modern drives. The start_up_time parameter

is in 20 millisecond units, so the default value is 30. A value of 13 (260

milliseconds) is adequate for the most recent direct drive 3.5 inch drives,

while some older drives may require a value of about 60 (1.2 seconds). A
value of 90 (1.8 seconds) or more may cause problems with some disk
systems, as the motors may stop automatically before the start up time

has elapsed!

Number Of Tracks

The QL format for. disks allows the number of tracks on a disk to be read

from the disk itself. However, the number of tracks must be determined

when a disk is to be formatted. Normally the disk system will do this

itself by checking if there are at least 55 tracks on a disk. If there

are, then there are assumed to be 80 tracks, otherwise it is assumed that

there are 40 tracks. This internal check may be overwritten, allowing 37

track and 75 track drives to be formatted as well as saving possible wear

or damage to a 40 track drive when seeking track 55 (somewhere in the

middle of the jacket).

F
L
L

{ jl
{ \ ho

rh

n
k

Ch
TL

TL
Th

Th
!

Ih f
Th

Oh

w
e
d
s

—
_

Direct Sector Read/Write

The software includes provision for reading sectors of a disk using direct

addressing. To do this a special file is opened on the disk. The name is

FLP1_*Dsd where s is the sector length
0-128 bytes, 1=256 bytes, 2=512 bytes, 3=1024 bytes

and d is the density

S=single (FM), D=double (MFM)

When opening a disk for direct sector read/write from SuperBASIC, the

name should be enclosed in quotes (or apostrophes).

OPEN #3,'fip1_*d2d'

When this file is open, no other file may be open on the drive. The only

10 calls supported for this type of file are IO.FSTRG, IO.SSTRG IO.POSAB

and 10.POSRE, to read or write complete sectors or to set the position.
The parameter (D1) to the POSRE call is ignored, but the current postion
is returned. Reading or writing a sector does not change the file
position.

If the attempt to read or write a sector fails, DO will be returned as a

standard error message pointer (read / write failed).

The position is a composite of the required sector, side and track:

sector number + side * 256 + track * 65536

To ensure compatibility with string 10 the length specified in the SSTRG

and FSTRG calls may be one of three values:

sector length the complete sector is read or written

2 returns the sector length (10.FSTRG) or
ignored (I0.SSTRG)

2+ sector len returns the sector length followed by the

sector (I0.FSTRG) or
skips the first two bytes, and writes the

rest to the sector (IO.SSTRG)

ce

o-

Ss

of
te
ve
rv
er
es
?

§
°
°
°
°
"
"
"
"
 7

This variety enables sectors to be read and written in SuperBASIC using

the normal string IO in the QL Toolkit, as well as by assembler programs.

For example, sector 1 of side 1 on track 2 may be read into the string A$

using the following command:

GET #n\1+256+2*65536, a$

When using the direct sector read/write calls for a 40 track dise in an 80

track drive, the track number should be doubled. Seek errors will not be

detected. If a read/write error is returned from a direct sector

read/write call, then it will be safest to make another call to read from

track zero. Calls to read from or write to track zero will cause a

'restore' rather than a seek, and will thus reset the drive to a known

state.

Disk Drive Specifications

It is a requirement that disk drives used with this version of the disk

driver should be set to have the motor on when provided with a ‘motor on'

signal and there is a disk in the drive. Drives which turn the motor off
when the drive is not selected will not give reliable service.

The disk driver will automatically adjust itself to use any mixture of disk

drives, 40 or 80 track, single or double sided. In addition it will adjust
itself to use slow step rate drives. Disks need not have been formatted

and written on the same specification drive as a drive being used to read

them. . ,

Compatibility chart

Disk format ---> 40T 40T+40T 80T 80T+80T

Drive

40T c ? x xX

40T+40T c c xX xX

80T R 2 c 2

80T+80T R R c Cc

C = compatible

R = compatible (read only)

X = incompatible

= incompatible but may not be detected

correctly on some types of drive

e
a

a
e

e
e

The format procedure automatically checks the drive specification and
will format the drive in an appropriate manner. Note that 40 track

drives which do not have an end stop, or which would suffer damage when

stepped beyond the 40th track (to track 55) should not be formatted
unless the number of tracks has been specified in an FLP_TRACK command.

It is possible to force the disk driver to format a disk as single sided on

a double sided drive by making the 11th character (it is-invisible) of the
medium name an asterisk: e.g.

FORMAT ‘flpl_disk_name *'

tt
B
r
e
e
e
c
e
v
e
s
y

a
d
e

d
e
e
d

A
Ram Disk Driver

[INTRODUCTION

[INSTALLATION

 f CONTENTS |
Beginners Start Here 10 [FLOPPY DISK DRIVER

 Rem Disk Compatibility 11

R Disk Creat! 11

Heap Fragmentation 12 [RAM DISK DRIVER
Microdrive Emulation 12]

 Examples 13
L_ =xomp ”)

(PRINTER PORT

[BASIC EXTENTIONS

i)

Tt

I
0

a

QJUMP 'RAM_ Disk' Driver 1.01

Beginners Start Here

The QL computer is delivered with two ‘mass storage’ devices: tne

Miecrodrives. These devices have the same function as the floppy disks on

more expensive personal computers, being designed for the permanent

storage of programs and data. Other devices which behave in the same =

way as Microdrives (such as floppy or hard disks) may be added to the =

QL ‘'transparently'. This means that QDOS will ensure that a program

does not need to 'know' where its data is stored. A Microdrive looks, to

a@ program, exactly the same as a floppy disk. ‘shis 'device independence!

is a built in characteristic of the QDOS operating system. -

The term 'RAM disk! is a misnomer. It is used to denote a 'virtual' device

(one that one only exists in the fertile imagination of the QL) that looks |,
and behaves like a very fast disk device. It is so fast because being =SV

virtual, there is virtually nothing to move to get information in and out. =

It is, in fact, no more than a reserved area of the QL's main memory (its==

RAM - Random Access Memory). This means, of course, that any space w

taken by a RAM disk is not available to programs executing in the QL.

Furthermore, any data stored in a RAM disk will be lost when the QL is

turned off or reset!

memory. The normal usage of a RAM disk would be to copy all working

files from Microdrive (or floppy disk) into a RAM disk; rename the RAM

device to be MDV (to pretend that the data is really on the Microdrives); §&

execute the programS (eg. Quill, Archive etc.); and, at the end of the .
session, rename the RAM device to be RAM before copying the data files

back to Microdrive.

4

5
RAM disks in the QL may be of any size, subject to there being enough

On the other hand, it is just as easy to use a RAM disk without changing

the name. All the filing system commands described in the 'Microdrives'

section of the QL Concept Reference Guide will work with RAM disks,

provided the filenames start with 'RAM' instead of 'MDV'.

FORMAT ram2_200 creates a new RAM disk 2, see below

DIR rami_ directory listing of RAM disk 1

SAVE rami_myprog save the current SuperBASIC program
as 'myprog' in RAM disk 1

10

OPEN_NEW #3,ram2_data creates and opens a new file ‘data’

in RAM disk 2

COPY mdvl_x TO raml_x copies file x from Microdrive 1 to
RAM disk 1

RAM Disk Compatibility

The QJUMP RAM Disk driver software provides a means of instant access

data storage using the standard IO system calls. It not only provides ail

the built-in Microdrive filing system operations, but includes all of the
Microdrive extensions provided in the Sinclair QL Toolkit. This allows

the use of the extended filing system commands which are provided in the
QL Toolkit, and these may also be accessed from assembly language code

with the following calls.

OPEN OVERWRITE Trap 2, D0=1, D3=3

This variant of the OPEN call opens a file for

write/read whether it exists or not. The file

is truncated to zero length before use.

RENAME Trap 3, DO=4A, Al points to new name

This call renames a file. The name should include

the drive name (e.g. RAM1_NEW_NAME).

TRUNCATE Trap 3, D0=4B

This call truncates a file to the current byte

position.

RAM Disk Creation

There are two forms of 'RAM disk' for the QL: in one form the space for

the files in the RAM disk is allocated dynamically using any spare memory

in the QL. Unfortunately, this scheme, although very simple to implement

using QDOS, does not work in conjunction with Psion programs or any

_ other programs which automatically use all the spare memory themselves.

However, this other form of RAM disk has its own memory allocation

routines which operate within a predefined area of the QL's memory.

ll

Ch
(
l
l

Ob

CL

tL
 P
L
L

)
OC)

Wh)

Tob

Wb
feb

IE

Tr)

Tt)

Tp
og

rh

m
o
m

(t
h

d
t
c

A 'RAM disk' is created by formatting it: the size, in sectors, is given in
place of the usual medium name.

FORMAT ram2_80

removes the old RAM disk number 2, and sets up a new RAM disk of 80

sectors. A RAM disk may be removed by giving either a null name or zero

sectors

FORMAT raml_ or — FORMAT rami_0

The RAM disk number should be between 1 and eight, inclusive, while the

number of sectors (512 bytes) is limited by the memory available.

Heap Fragmentation

Af

tf
]

I

I

II

LI

LI

iL
]

if

I]

i

The primary storage mechanism in the QL for permanent or semi-

permanent memory alloctions is a 'heap'. Allocating space in a heap, and =="

then re-allocating this space as a different size, inevitably causes holes ="

to be left within the heap. This reduces the amount of memory available SS

to either SuperBASIC or executable programs.

This RAM disk driver has precautions to reduce the possibility of heap

fragmentation, but it is preferable to consider any RAM disk to be a
permanent feature until the QL is reset. Supertoolkit II from QJUMP has

a command DEL_DEFB which will perform a limited ‘garbage collection’ on
a fragmented heap.

Microdrive Emulation

The standard driver also includes a SuperBASIC procedure RAM_USE to

change the name of the RAM disk driver. :

RAM_USE mdv or RAM_USE 'mdv'

resets the name of the RAM disk driver to 'mdv', so that all subsequent

open calls for Microdrives will use the RAM disks instead. Thus the

commands

RAM_USE mdv

"OPEN #3, mdvi_myfile

will actually open the file 'myfile’ on RAM disk 1, rather than trying to

open a file on Microdrive 1.

12

i
i
i
i
f
i
i
i
i
i
g

E
S
v
e
v
e
u
r
g
e
s

Any three letters may be used as a new device name, in particular

RAM_USE ram

will reset the driver to its normal state.

Examples

The following example will copy selected files from a microdrive cartridge

to a RAM disk as well as copying QUILL (V2.3, other versions of QUILL
may require a different size of RAM disk).

100 PRINT #0,'Put QUILL in MOV1 and press a key’
110 PAUSE
120 FORMAT ram1_150
130 COPY mdvl_quill,rami_quil]
140 COPY mdvl_quil_hob,raml_qui1_hob
150 COPY mdvl_printer_dat,raml_printer_dat

170 PRINT #0,'Put data cartridge in MDV2 and press a key''
180 PAUSE
190 FORMAT ram2_200
200 OPEN NEW #3,ram2 file list: REMark make list of files

210 DIR #3,mdv2_
220 CLOSE #3
230 OPEN_IN #3,ram2_file list
240 INPUT #3,a$,a$: REMark skip heading
250 REPeat files
260 IF EOF(#3): EXIT files
270 INPUT #3,file$
280 INPUT #0,'Copy '&file$&' to RAM disk? ";ans$
290 IF 'y' INSTR ans$: COPY 'mdv2_'&file$ TO ‘ram2_‘afile$
300 ENDREP files ~

310 CLOSE #3
320 DELETE ram2_file list

340 RAM USE mdv: REMark al] across from mdv

13

LO
L

T
e

T
T

L
T

rT
{

,)

db
Wb

Gb
eb

teL

}
4)

th
t

(h
)

TR

A
Sa

a
a
A

S
e

a

This program copies files back to microdrive at the end of a session.

100 RAM_USE ram: REMark reset RAM name

110 :

120
130
140
150
160

14

PRINT #0,'Put data cartridge in MDV2 and press a key'
PAUSE
OPEN_NEW #3,ram2 file list: REMark make list of files

DIR #3, ram2_
CLOSE #3.
OPEN_IN #3,ram2_file list ;

INPUT #3,a$,a$: REMark skip heading
REPeat files

IF EOF(#3): EXIT files
INPUT #3, files.
IF file$='file_list': NEXT files
DELETE 'mdv2_ ‘&file$
COPY 'ram2_'&file$ TO ‘mdv2 ‘&file$

ENDREP files

CLOSE #3
DELETE ram2_file_list

e
e

ee
e
T
E

O
Printer Port

rc

L INTRODUCTION

r-

L INSTALLATION

CONTENTS -
Beginners Start Here 15 L FLOPPY DISK DRIVER
More Power To Printer 16
Ser Emulation 17 a
Multiple Buffering 18 RAM DISK DRIVER

. © |

a =
L PRINTER PORT =

—

L BASIC EXTENTIONS

C
o
w

d
e
e

e
e
e

N
A
S

S
S
S

OO

S
O
C

6
a

I
I Parallel Printer Port V1.02

Beginners Start Here

All devices which connect your QL to the world outside its black case are

identified to QDOS by a name. The serial ports (marked SER1 and SER2

on the case) are identified by the name SER, the network port (marked

NET on the case) is identified by the name NET. Likewise the Parallel

Printer Port is identified by the name PAR.

Most programs which send output to a printer are written to use the °

serial port SER1. The simplest way of changing over to using the parallel

printer port is to include the command 'PAR_USE SER' in any BOOT file,

or to type this command just after the QL has been reset. This command

will make the Parallel Printer Port pretend that its name is SER, fooling

programs into sending their print output to the Parallel Printer Port

instead of sending it to SER1.

For example, a modified BOOT file for executing the PSION program Quill

could look like:

100 PAR_USE ser
110 CLOSE #1: CLOSE #2
120 EXEC_W mdv1_quil)

eee

The Psion programs, and many others, can be configured to change the

name of the printer device. If this is to be done, it is only necessary to

set the name of the printer to 'PAR' in the Psion and other programs

which have internal configuration for various types of printers. Some

other programs may require the name of the printer device to be set to

"PARC! for use with most daisywheel printers.

It is possible to make the Parallel Printer Port use a large buffer within

the QL to make printing more efficient, but this technique will not work

with the Psion programs which tend to grab most of the QL's memory for

themselves, and it is most effective when used with additional memory.

 15

More Power to Your Printer

The QJUMP driver for the parallel printer port provides several

advantages over the SER drivers provided with the QL.

Large buffers may be specified to allow efficient print spooling.

A form feed may be created automatically when the channel is closed.

While only one channel may be open to the parallel port at one time, many

complete print files may be held pending without tying up the port.

A channel is opened to the parallel printer port in exactly the same way

as a channel is opened to one of the QL's serial ports. The only

differences lie in the name that is used, and the options which are

accepted as part of that name.

The specification of the device name is

PARcf nk the 'c' flag is used if <CR> is required as

the newline character

the 'f' flag is used if a form feed is required

when the channel is closed

_n is the buffer size in bytes (up to 32767)
UNIESS soos

the 'k' flag is used to specify a buffer size in

kilobytes.

For example

PAR parallel printer port with default buffer

PARF_3K «. with form feed at end of file and a

3 kilobyte buffer, resets the default

buffer length to 3 kilobytes.

PARC_400 ee with <CR> in place of <LF> as newline
and a 400 byte buffer, resets the default

buffer length to 400 bytes.

The initial default buffer length is 128 bytes.

16

al
 i

e!
© G

ens
0

Geers
eee)

2 e

ee
2

es
2 S

e)
ee)

 O
e)

ns

Se
)

Oo O
e

Os

es
|

Os G
e)

|
ly

|
|

|

e
e
d

e
e
d

d
u

e
u
o
u

d
o
s

SER Emulation

There is an additional SuperBASIC command to make it possible to get the

benefits of the Parallel Printer Port, without any need to change existing

programs that use one of the QL's SER ports for printer output. This is

the PAR_USE command.

PAR_USE SER
will make the Parallel Printer Port recognise the device name 'SER' in

addition to the device name 'PAR'. The normal SER options of port

number, parity (O, M, E or S), handshaking (I or H), and protocols (R or

Z) are ignored, while the PAR options are recognised. In particular the

default buffer length, set when a PAR channel is opened with a specified

buffer length, is use for this pseudo~SER device.

For Example:

OPEN #3,PAR_10K: CLOSE #3: REM reset default buffer

PAR_USE SER

eee

OPEN #3,SER1C

will open a channel to the Parallel Printer Port with a 10 kilobyte buffer

and <CR> in place of <LF>, in the same way as the command:

OPEN #3,PARC_10K

This facility is disabled by re-specifying the PAR_USE to exclude the

name SER. This will return the serial ports to their normal usage:

PAR_USE PAR

17

Multiple Buffering

To illustrate the multiple buffer capability of the printer driver, connect

a printer and set it ‘off line', then type in and run the following program:

100 FOR try=1 to 4

110 ~=OPEN #3 ,parf_2k

120 FOR Ino=1 to 50: PRINT #3,'Line ';1no;' of try ';try
130 END FOR try
140 CLOSE #3

When the printer is turned 'on line' the printer should print each 'try' in

turn, showing the way in which the multiple outputs are queued, rather

than confused, inside the Parallel Printer Port driver.

18 N
I
H

n
M
n
g
n
n
n
n
n
n
n
n
i
n
n
n
g
n
n
i
n
n
i
n
n
n
i
t

Cr
 e
e

ee

6
Basic Extensions

f CONTENTS |
File Spooler 19
Spl Examples 20
Job Control 21
Direct Access Files 22
File Open Functions 26
File Enquiry Functions 25
File Position 24
Examining a File 27
Wild Card Commands 28
List Drive Statistics 29
Wild Card Copying 30
Rename End Truncate 32
Data File Default 33

L Resident Clock 34

(INTRODUCTION

[INSTALLATION

[FLOPPY DISK DRIVER

[RAM DISK DRIVER

[PRINTER PORT

[_ BASIC EXTENSIONS

W
w
 d

PR
Ca

a
S
O

A

a

SPL SPL_USE - File Spooler

The SPL command sets up a job to copy a file. Only the source need be

given: the destination may be defaulted. The source file has the default

set up by the DATA_USE command. As supplied, the default destination is

SER. The SuperBASIC interpreter will continue after the Job has been:set

up, with the file being copied in the background. SPL differs from COPY

not only in that it operates as a job in the background, but also in the

handling of file headers. The COPY procedure copies both the file and its

header: to copy a file to a device like a printer, the varient COPY_N is

used to copy without the header. SPL will, however, not copy the header

from an ordinary data file, but it will copy the header of a file which is

one of the special types (eg. executable program file). Furthermore,

when using SPL to copy from file to file, if the destination file already

exists, then it will be overwritten.

The command syntax is

SPL source file or

SPL source_file T0 destination

The source and destination files may be given as names, or as a

SuperBASIC channel number (e.g. 3).

The default set by the DATA_USE command is used to find the source file, _

and there is a special command, SPL_USE, ‘to set the default destination. =

The default destination device or directory may be up to 32 characters

long.

SPL_USE device name or

SPL_USE directory name

A device_name does not end in '_': a directory_name must end in '_'.

If the SPL command is given with only one parameter (the source

filename) the output file (or device) will be derived from the current

default set by SPL_USE as follows:

1) directory_name & source_filename or

2) device_name

19

If the SPL command is given with two parameters, the output file (or

device) will be derived as follows:

1) destination_filename or
2) directory_namea&destination_filename

SPL will often be used to copy files in the background, but it can be used

as a true spooler when used with the default output device. In this case,

if the output device is in use, the SPL job will suspend itself until the

device is available.

SPL_ Examples

SPL myfile using the supplied defaults

this will spool FLP2_MYFILE
to SER

SPL flpl_demo myfile TO ser2 the file FLP1_DEMO_MYFILE will

be spooled to SER2

DATA_USE flp2_demo this will also spool the file

SPL_USE ser2 FLP2_DEMO_MYFILE to SER2

SPL myfile

SPL mdv2_myfile, indvl_myfile does the obvious

SPL_USE mdv1_ using the supplied DATA_USE
ee eae default, this will also spool

SPL myfile FLP2_MYFILE to MDVI_MYFILE

SPL myfile TO #3 will spool myfile to the file

or device already opened as #3

20 O
M

M
O
H
H
A
A
n
n
n
n
A
n
n
i
n
n
n
n
n
n
n
n
n
i
n
a
n
l

ow

W
W

Wa
'

VU
AY
 C

S
S
S

i

S
S

JOBS AJOB SPJOB RJOB - Job Control

As QDOS is a multitasking operating system, it is possible to have, at one

time, in the QL a number of competing or co-operating jobs. Jobs. compete

for resources in line with their priority, and they may co-operate using

pipes or shared memory to communicate. The basic attributes of a job

are its priority and its position within the tree of jobs (ownership). A

job is identified by two numbers: one is the job number which is an index

into the table of jobs, and the other is a tag which is used to identify a
particular job so that it cannot be confused with a previous job occupying

the same position in the job table. Within QDOS the two numbers are

combined into the job ID which is job number + tag*65536. For these job

control routines, where job_id is a parameter of one of the job control

routines, it may be given as either a single number (the job ID, as

returned from OJOB or NXJOB of the QL Toolkit) or as a pair of numbers

(job number, job tag). Thus the single parameter 65538 (2+1*65536) is
equivalent to the two parameters 2,1.

JOBS is a command to list all the jobs running in the QL at the time. If

there are more jobs in the machine than can be listed in the output

window, the procedure will freeze the screen (CTRL F5) when it is full.

The procedure may fail if jobs are removed from the QL while the

procedure is listing them. The following information is given for each

job:

the job number and the job tag

the job's owner's job number

a flag 'S' if the job is suspended

the job priority

the job (or program) name.

The syntax of the JOBS command is:

JOBS list Jobs to window #1
JOBS #ehannel list jobs to a given channel

There are also three procedures for controlling Jobs in the QL:

AJOB job_id, priority activates a job;
SPJOB job id,priority sets a job's priority;

RJOB job id, error_code removes a job from the QL.

If there is a job waiting for the completion of a job removed by RJOB, it

will be released with DO set to error_code. E.g.

RJOB 2,1,0 remove job 2 (tag 1) with no error

21

m
e
e

GET BGET PUT BPUT FPOS - Direct Access Files

In QDOS, files appear as a continuous stream of bytes. On directory

devices (Microdrives, hard disks etc.) the file pointer can be set to any

position in a file. This provides ‘direct access' to any data stored in the
file. Access implies both read access and, if the file is not open for

read only (OPEN_IN from SuperBASIC, 10.SHARE in QDOS), write access.

Parts of a file as small as a byte may be read from, or written to any

position within a file. QDOS does not impose any fixed record structures

upon files: applications may provide these if they wish.

_Procedures are provided for accessing single bytes, integers, floating

point numbers and strings. There is also a function for finding the

current file position.

To keep files tidy there is a command to truncate a file (when

information at the end of a file is no longer required), and a command to

flush the file buffers.

A direct access input or output (I/O) command specifies the I/O channel,

a pointer to the position in the file for the 1/0 operation to start and a

list of items to be input or output.

command #ehannel\ position, itema

It is usual (although not essential - the default is #3) to give a channel
number for the direct I/O commands. If no pointer is given, the routines

will reac or write from the current position, otherwise the file position

is set before processing the list of I/O items; if the pointer is a floating

Point variable rather than an expression, then, when all items have been

read from or written to the file, the pointer is updated to the new

current file position. If no items are given then nothing is written to or

read from the file. This can be used to position a file for use by other

commends (e.g. INPUT for formatted input).

Byte I/O

BGET #ehannel\ postition, tteme get bytes from a file

BPUT #enannel\ position, iteme put bytes onto a file

BGET gets 0 or more bytes from the channel. BPUT puts 0 or more bytes

into the channel. For BGET, each item must be a floating point or integer

variable; for each variable, a byte is fetched from the channel. For
BPUT, each item must evaluate to an integer between 0 and 255; for each

item a byte is sent to the output channel.

22

er

n
O
 a

e a

a
a
 a

ae
a

Ae
!

For example the statements

abcd=2.6

22%=243
BPUT #3, abcdt+l1, '12', zz

will put the byte values 4, 12 and 243 after the current file position on

the file open on channel #3.

Provided no attempt is made to set a file position, the direct 1/0
routines can be used to send unformatted data to devices which are not

part of the file system. If, for example, a channel is opened to an Epson

compatible printer (channel #3) then the printer may be put into

condensed underline mode by either

BPUT #3, 15, 27, 45, 1 or

PRINT #3, chr$(15); chr$(27); ‘-'; chr$(1);

Which is easier?

Unformatted I/O

It is possible to put-or get values in their internal form. The PRINT
INPUT commands of SuperBASIC handle formatted. 10, whereas the direct
I/O routines GET and PUT handle unformatted I/O. For example, if the H

value 1.5 is PRINTed the byte values 49 ('1'), 46 ('.") and 53 ('5') are nec:
to the output channel. Internally, however, the number 1.5 is representeds= =)

by 6 bytes (as are all other floating point numbers). These six bytess=
have the value 08 01 60 00 00 00 (in hexadecimal). If the value is PUT,
these 6 bytes are sent to the output channel.

The internal form of an integer is 2 bytes (most significant byte first).
The internal form of a floating point number is a 2 byte exponent to base
2 (offset by hex 81F), followed by a 4 byte mantissa, normalised so that

the most significant bits (bits 31 and 30) are different. The internal

form of a string is a 2 byte positive integer, holding the number of

characters in the string, followed by the characters.

GET #channel\ position, iteme get internal format data

from a file -

PUT #channel\ position, itema put internal format data
onto a file

GET gets data in internal format from the channel. PUT puts data in
internal format into the channel. For GET, each item must be a integer,

floating point, or string variable. Each item should match the type of

the next data item from the channel. For PUT, the type of data put into

the channel, is the type of the item in the parameter list.

23

Fpoint=54

wal ly%=42: salary=78000: name$='Smith'
PUT #3\fpoint, wally%, salary, name$

will position the file, open on #3, to the 54th byte, and put 2 bytes

(integer 42), 6 bytes (floating point 78000), 2 bytes (integer 5) and the 5
characters 'Smith'. Fpoint will. be set to 69 (54+2+6+2+5).

For variables or array elements the type is self evident, while for
expressions there are some tricks which can be used to force the type:

esee 40 will force floating point type;

cone & will force string type;
coee | [0 will force integer type.

xy z$='ab258.z'

PUT #3\37, xyz$(3 to 5)] [0

will position the file opened on channel 3 to the 37th byte and then will

put the integer 258 on the file in the form of 2 bytes (value 1 and 2, i.e.

1*256+2).

File Position

There is one function to assist in direct access I/O: FPOS returns the

eurrent file position for a channel. The syntax is:

FPOS (#channel) find file position

For example:

PUT. #4\102, valuel, value2
ptr = FPOS (#4)

will set 'ptrt to 114 (=102+6+6).

The file pointer can be set by the commands BGET, BPUT, GET or PUT with

no items to be got or put. If an attempt is made to put the file pointer

beyond the end of file, the file pointer will be set to the end of file and

no error will be returned. Note that setting the file pointer does not

mean that the required part of the file is actually in a buffer, but that

the required part of the file is being fetched. In this way, it is possible

for an application to control prefetch of parts of a file where the device

driver is capable of prefetching.

24 r
a
r

a
n
n
a

A
A
A

n
A

A
n

A
A
T

TL
TL

an
nm
T
T

e
e

Ce
Se

C
c

G
O
 O
O

FLEN FTYP FDAT - File Enquiry Functions

There are three functions to extract information from the header of a
. file. Note that in current versions of the Microdrive handler, the header

is only updated on an FS.HEADS call or on closing the file, the QJUMP

Floppy Disk Driver also updates the header on a call to flush the disk

buffers. This means that the file length read from the header will
usually be the file length as it was when the file was opened.

If a file is being extended, the file length can be found by using the FPOS

function to find the current file position. (If necessary the file pointer
ean be set to the end of file by the command GET #n\ 99999)

FLEN (#n) returns the file length,
FTYP (#n) returns the file type (0=normal 1=EXEC),
FDAT (#n) returns the data space for EXEC files.

OPEN #3, mdvl fred PRINTs the length of file fred on mdvl1_.
PRINT FLEN(#3)

nt
i

f
e
a
t
}

|}

|
S
e

25

FOPEN FOP_IN FOP_NEW FOP_OVER FOP_DIR - File Open Functions

This is a set of functions -for opening files. These functions differ from
the OPEN procedures in ROM in two ways: firstly, if a file system error

occurs (e.g. ‘not found’ or ‘already exists') these functions return the

error code and continue; secondly the functions use the DATA_USE

directory default.

FOPEN (#channel, name) open for read/write
FOP_IN (#channel,nane) open for read only
FOP_NEW (#eharmel,name) open a new file
FOP_OVER (#channel,name) open a new file, or overwrite old file

FOP_DIR (#ehannel,nane) open a directory

Directory entries may be read using GET to get information. Each entry

is 64 bytes long, the length of the file is at the start of the entry, there
is a standard string starting at the 14th byte of the entry giving the
filename and there is the update date as a long integer starting at the
56th byte.

Example of File Open

A file may be opened for read only with an optional extension using the

following code

ferr=FOP_IN (#3,name$&' ASM‘) :REMark try to open ASM file
IF ferr=-7: ferr=FOP_IN (#3,name$) :REMark ERR.NF, try no ASM

26 M
U
O
M
M
n
H
n
M
n
n
H
i
n
n
n
n
n
n
n
n
n
n
n
n
n
a
n
n
t

arr
re

ae

a
a

a
O
e

VIEW is procedure intended to allow a file to be examined in a window on

the QL display.

VIEW name view a file (in #1): lines are truncated to

fit in the window and, when the window

is full, CTRL FS is generated.

VIEW #window, name view a file in given window: the DATA_USE
directory default is used.

27

WDIR WSTAT WDEL WDEL_F - Wild Card Commands

There is a set of directory maintenance commands using a ‘wild card!

definition of the file name (based on the DATA_USE default directory).

The general forms of these commands are

command or

command #channel or
command wild name or

command #ehannel, wild name

The commands are

WDIR list directory, generates CTRL F5 when the

window is full.

WSTAT list file name, length and last update date,

generates CTRL F5 when the window is full.

WOEL delete files (requests confirmation).

WDEL_F delete files (forced).

When using WDEL, each filename is written to the chosen channel, and the

user is requested to press one of the keys:

Y (yes) delete this file
N (no) do not delete this file

Q (quit) do. not delete this or any of the next files
A (all) delete this and all the next matching files

The wild_name in these procedures may refer to more than one file. To do
this’ file names are divided into sections (flp2_fred_ bin has three

sections) and a wild name may have missing sections (eg. flp2_old__ list
has one missing section). All those files whose names have sections

matching the sections in the wild name are referenced by the commands.

In the following examples, flp2_ is assumed to be the default data

directory.

28 M
m
H
U
n
n
n
n
n
a
n
n
n
n
n
n
n
n
n
n

n
n
n

mi
en

y

w
e
e

a
u
d
e

Wild name Typical matching files

fred flp2_fred

flp2_freda list

_fred fip2_fred
flp2_freda_ list
flp2_old_fred
flp2_old freda_list

flpl1_old_ list flpi_old_jo list
fipl_old freda_ list

Examples

WOEL delete all files in current directory,
requesting confirmation

WDOIR #3, asm list the names of all the assembler
source files to channel #3

WSTAT fred list the file statistics of all files

; beginning with fred

STAT - List drive statistics

The STAT command has the same format as the wild card commands, but
lists the statistics of the drive containing the file(s) referred to. These
statistics are the medium name, the free sectors and the total good

sectors.

STAT list the statistics of the current default

STAT #2, mdvl_ list the statistics of mdv1_ to channel #3

29

IN
L.

WCOPY - Wild Card Copying

The WCOPY command has several optional forms:

WCOPY source wild name T0 destination wild name

WCOPY source wild name, destination wild name

WCOPY #channel, source wild name TO destination wild name
WCOPY #channel, source wild name, destination wild name

If no channel is given, the dialogue will be in channel #1.

When using WCOPY, each source and destination filename is written to the

chosen channel, and the user is requested to press one of:

Y (yes) copy this file
N (no) do not copy this file
Q (quit) do not copy this or any more files
A (all) copy this and all the next matching files.

If the destination file already exists, the user is requested to press one

of:

(yes) copy this file, overwriting the old file
(no) do not copy this file
(quit) do not copy this or any more files
(all) overwrite the old file, and overwrite any

other files requested to be copied.

r
P
O
A
K

WCOPY may be used to copy whole directories. The destination name is

made up from the actual source file name and the destination wild name.

If a missing section of the source wild name is matched by a missing
section of the destination wild name, then that part of the actual source

file name will be used as the corresponding part of the actual destination

name. Otherwise the actual destination file name is taken from the

destination wild name. If there are more sections in the destination wild
name than in the source wild name, then these extra sections will be

inserted after the drive name, and vice verca.

: 30

i
m
n
n
o
n
n
n
i
n
o
n

i
p
o

p
a
p
a

a
o
p

e
r

a
Ca

Ae
a

Oe
a
C
e

For example, if the default data directory is flp2_, then

“WCOPY flpl_,flp2_ would copy all files on flp1_ to flp2

WCOPY fred ,mog would copy

flp2_fred to f1p2_mog
flp2_freda_ list to flp2_moga_list

WCOPY fred, mog would copy

flp2_fred to flp2_mog
flp2_freda list to flp2_moga list
flp2_old fred to flp2_old mog
flp2_old freda list to flp2_old_moga list

WCOPY list,old_ Jist would copy

flp2_jo list to flp2_old_jo list
flp2_freda list to flp2_old_freda list

WCOPY old Vist,flpl_list would copy

fip2_old_jo list to flpl_jo_ list
flp2_old freda_list to flpl_freda_list

31

RENAME and TRUNCATE

The RENAME and TRUNCATE procedures operate on files on floppy disks or

on microdrives if the Sinclair QL Toolkit has been added. If either of

these procedures are used on a standard QL to operate on a microdrive

file, the result will be a 'bad parameter’.

RENAME old name, new name renames a file, the DATA_USE default

directory is used for both filenames.

TRUNCATE #n truncates the file open on #n to the
: current file position.

RENAME fred, fred back renames file fred in the current
directory as fred_back

32

S
e
,

OR

ER

EE
UP

UE

UEP

TEE

UE
U
I

E
e

U
U

I
B
.

LL

A
L

r
e

a
Ce

Ce
a

ae
a

ae
i

a
a

a
DATA.USE - Data File Default

Default directories may be set for use with many Toolkit commands.

DATA_USE directory name

If the directory name supplied does not end with '_', '_' will be appended

to directory name. The directory name can be more detailed than just a

device name. For example:

DATA_USE flpl_projectS library

WOIR

ferr=FOP_NEW (#3,fred)

will produce a directory listing of all filenames starting with

‘'flpl_project5_library' and then open a new file called

'flpl_project5 library fred'. The default set by this command is optional

and is only used if the name supplied to a Toolkit command is not a valid

file or device name. Thus:

ferr=FOP_NEW (#3,flp2_fred)

will open file 'flp2_fred' (not 'flpl_project5_library flp2_fred'!)

33

CLOCK - Resident Clock

There are a number of optional forms of the CLOCK command

CLOCK defauit clock, 2 rows of 10 chars
in default position

CLOCK #channel: default clock in defined channel

CLOCK’ string user defined clock in default

position

CLOCK #channel, string user defined clock in defined

channel

CLOCK is a procedure to set up a resident digital clock. If no window is

specified, then a default window is set up in the top RHS of the monitor

mode default channel 0. This window is 60 by 20 pixels and is only

suitable for four colour mode. The clock may be invoked to execute within

a window set up by BASIC. In this case the clock job will be removed

when the window is closed.

The string is used to define the characters written to the clock window:

any character may be written except $ or % If a dollar sign is found in

the string then the next character is checked and

$d or $D will insert the three characters of the day of week,
$m or $M will insert the three characters of the month.

If a percentage sign is found then

%y or $Y will insert the two digit year
$d or $D will insert the two digit day of month

$h or $H will insert the two digit hour
$m or $M will insert the two digit minute
$s or %S will insert the two digit second

The default string is '$d $d $m %h/%m/%s ' a newline should be forced by

padding out a line with spaces until the right hand margin of the window

is reached.

Example:

MODE 8

OPEN #6,'scr_156x10a32x16'
INK #6,0: PAPER #6,4
CLOCK #6,'°QL time Zh:%m'

34

in
’

ni
n
a
n
i

HH

H
A
H

H
A
a
n
n
n
n
o
a
a
t

e
e
e

N
e
e
s

e
e
u

de
d

dd

EXTRAS - Listing All Extensions

EXTRAS or

EXTRAS #channel

The SuperBASIC interpreter is extendable. The procedure EXTRAS may be

used to list the extra procedures and functions linked into the

interpreter. EXTRAS will freeze the screen (CTRL F5) when the output

window has been filled.

35

Or

a
a

a
Ce

a
a
a

CARE ELECTRONICS QJUMP

TOOLKIT Versions

New versions of Toolkit differ from Version 2.00 in the
following respects: .

BREAK (CTRL SPACE) is checked during WCOPY and
WREN even if A({LL) has been requested.

PRINT__USING and FEXP$ have been added. PRINT__
USING is more comprehensive than the form given in
the draft manual.

The network file server has been extended to include
serial device (printer) serving, as well as QL-OQL

messaging. The NFS_USE command has been
changed to give more flexibility, in particular several
users may now share a data disk when using QUILL.

The MG ROM patch, which is not required for English
language ROMs has been omitted, to make room for
the above.

The network file serving protocol of Version 2.0 is not
compatible with new Versions.

Obligatory Notice
QL, QDOS and SINCLAIR are trade marks of Sinclair
Research Limited.

Copyright Tony Tebby 1985

All rights reserved. No part of this software or documentation may be

reproduced in any form. Unauthorised copying, hiring. lending or sale
and repurchase is prohibited.

Disclaimer:
In no circumstances will either Care Electronics or OJump be liable for

any direct, indirect or consequential damage or loss including but not
limited to loss of use, stored data, profit or contracts which may arise
from any erros, defect or failure of the ROM version of Super Toolkit Il.

Care Electronics or Qiump has a policy of constant development and
improvement of the products and will always inform the legitimate and
registered user of this product about the changes and improvements

the product is subject to.

User manual, English edition written by Tony Tebby, Qiump, UK

QL, OL NET, QDOS and Superbasic are Trademarks of
Sinclair Research Limited, UK.

INDEX OF CONTENTS

Preface Section 15: Memory Management

Section 1: Introduction Section 16: Procedure Parameters

Section 2: Contents of Toolkit !I Section 17: Error Handling

Section 3: File Editing Section 18: Time Keeping

Section 4: Directory control Section 19: Extras

Section 5: File Maintenance Section 20: Console Driver

Section 6: SuperBasic programs Section 21: Microdrive Driver

Section 7: Load and Save Section 22: Network Driver

Section 8: Program Execution Section 23: Writing programs to use with EX

Section 9: Job Control Appendix A; SuperBaic Extensions in alphabetic

Section 10 Open and Close order endif arenes
Section 11: File Information Appendix B: Using the Tookit |! facilities with
Section 12: Direct Access Files the GST assembler and linker

Secon 13 Ferma Converions Append c suandard nonaeo
Section 14: Display Control Toolkit || Broadcast

CARE ELECTRONICS QyuMP

PREFACE

The original QL Toolkit was produced in something of a
rush to provide useful facilities which, arguably; should
have been built in to the QL to start with. Since its
appearance, | have been subject to continuous pressure
to modify certain facilities and extend the range of
facilities provided.

QLToolkit 1 is, therefore, a revised (to the extent of
being almost completely rewritten} and much enlarged
version of the original QLToolkit. Old facilities now work
faster and are more compact, so that there is room in the
ROM cartridge for over 100 operations.

The fact that QLToolkit |! ever saw the light of day is
due to prompting from a number of quarters. Many
people have contacted me complaining that they have

been unable to lay their hands on the original QLTootkit,
and this eventually convinced me that there was a
market for a second version. Repeated criticism of the
original facilities made at great length (and with justifi-
cation) by Chas Dillon have provided the basis for many
of the modifications to the old routines. Ed Bruley has
provided invaluable practical support in putting the
product on the market, and Cambridge Systems
Technology allowed me to use one of their Winchester
disc systems to test the network server.

Even so, QLToolkit 11 might not have been completed
without the unrelenting encouragement from Hellmuth
Stuven of QSOFT, Denmark, whose indomitable faith
in the technical merit of this product has kept me on
my toes.

My thanks to you all.

Tony Tobby

TO
RE

PR

CARD

UR

UR

IR
.

T
L
S

I

Tn)

ee

|
|

|
in

t

tA
Aa

A
ae

a
A

CARE ELECTRONICS QJUMP

QJUMP Toolkit Il for the QL
Version Il of the QUUMP Toolkit for the QL is an
extended and improved version of the original QL
Toolkit. This new version is largely rewritten to provide
more facilities and to make the existing facilities of the
QL and the QL Toolkit more powerful.
Since many of these improvements are to correct
defects in the ROMs supplied with the QL, it would be
better to supply am upgrade to the QL by replacing the
Sinclair ROMs. Given the uncooperative attitude of
Sinclair Research Limited towards such an upgrade,
this Toolkit {i is supplied as the next best thing.

1 Introduction
The Toolkit Ii attempts to put a large number of facilities
into a consistent form. A little preamble is worthwhile to
explain some of the principles.
This manual uses the following simple convention when
describing commands and function calls:

CAPITAL LETTERS are used for parts typed as is
italic letters are used descriptively
lower case letters are used as examples

Thus
VIEW name is a description
VIEW fred is an example

1.1 ds Pr d Fi

The extensions to SuperBasic appear as extra
commands, procedures and functions. The distinction
between a. command and a procedure is very slight and
the two terms tend to be used interchangeably: the
command is what a user types, the procedure is what
does the work.
In some cases a command is used to invoke a procedure
which in turn sets up and initiates a Job (e.g. SPL starts
the resident spooler). A function is something that has a
value and the name of a function cannot be used as a
command: the value may be PRINTed, used in an
expression or assigned to a variable.

1.2 ¥/N/A/Q?
Y/N/A/Q? is a concise, if initially confusing, prompt
that Toolkit tl is bound to throw at the unsuspecting
user from time to time. It is no more than a request for
the user to press one of the keys Y (for yes), N (for no},
A (forall}, or Q (for Oh! Bother, | give up (Quit).

What will actually happen when you press one of these
keys, will depend on what you are trying to do at
the time.

There is a short form which will only allow Y (for yes)
and N (for no).
Before the reply to the Y/N/A/Q? (or Y or N?} prompt is
read, any characters which have been typed ahead are
discarded. Typing BREAK {CTRL + space} or ESC will have
the same effect as a ‘Q’ (or ‘N’) keypress.

4.3 Overwriting
In some cases a command is given to create a new file
with the name of a file which already exists. in general
this will result not in an error message, but a prompt
requesting permission to overwrite the file.

There are two (deliberate) exceptions to this rule:
OPEN__NEW will return an error, while the procedures
COPY__O, SAVE__O, SBYTES__O, SEXEC__O and
the spooler will happily overwrite their destination files
without so much as a ‘by your leave’.

1.4 #channe!
All input and output from SuperBasic is through
‘channeis’, Some of these channels are implicit and are
never seen (e.g. the command ‘SAVE SER’ opens a
channel to SER, lists the program to the channel, and
closes the channel}. Other are identified by a channel
number which is a small, positive, integer preceded by a
‘# (e.g. #2),
Many commands either allow or require a channe!} to be
specified for input or output. This should be a
SuperBasic channel number:

#0 is the command channel lat the bottom of
the screen),

#1 is the normal output channel and
#2 is the program listing channel.

Other channels (e.g. for communication with a file) may
be opened using the SuperBasic OPEN commands (see
section 10).
For interactrive commands the default channel is #0,
for most other commands the default channel is #1, for
LIST and ED the default channel is #2, white for file
access commands the default is #3.
For many of the commands it is possible to specify an
implicit channel. This is in the form of ‘X followed by 4
file or device name. The effect of this is to open an
implicit channel to the file or device, do the required
operation and close the channel again.

E.g. DIR list current directory to #1
DIR #2 list current directory to #2
DIR \dlist list current directory to file ‘dist’

this last example should be distinguished from

DIR dlist list directory entries starting with
dlist to #1

1.5 File and Device Names
In general it is possible to specify file or device names as
either a normal SuperBasic name or as a string. The
syntax of SuperBasic names limits the characters used
in a name to letters digits and the underscore. There is
no such limitation on characters used in a string. Ona
standard QL, a filenarne has to be given in full, but using
the Toolkit Il, the directory part of the name can be
defaulted and just the filename used.

E.g. OPEN #3, fred open file fred in the
current directory

This gives rise to one problem: the SuperBasic
interpreter has the unfortunate characteristic of trying
to evaluate all the parameters of a command as
expressions; in this example ‘fred’ will probably be an
undefined variable which should not give rise to any
problems. However, the command:

OPEN #3 list

will give an ‘eror in expression’ error, as it is not possible
for ‘LIST’, which is a command, to have a value. There
are two ways round this problem: either avoid filenames
which are the same as commands (procedures),
functions or SuperBasic keywords (e.g., FOR, END, IF
etc.), or put the name within quotes as a string:

OPEN #3,’list’ or OPEN #3,"‘list’”’

1.6 CTRL F5
The CTRL F5 keystroke (press CTRL and while holding
it down press F5) is used to freeze the QL screen. Many
commands in Toolkit Il check their output window and,
when it is full, internally generate a CTRL F5 keystroke
to hold the display unti! the user presses a key. (F5 will
usually be the best key to press).

CARE ELECTRONICS QJUMP

2 Contents of Toolkit Il
SuperBasic is used as a command ianguage on the OL
as well as a programming language. Extensions are
provided to improve the facilities of SuperBasic in both
these areas as well us providing program development
facilities.

The following list gives a comprehensive form of each
command or function. There are often default values of
the parameters to simplify the use of the procedures

2.1 Development Facilities
Section 3 File Editing

Tootkit I! provides an editor and a command for viewing
the contents of text files. ED is a window based editor
for editing SuperBasic programs. VIEW is a command
Hf examining line based files (e.g. assembler source
iles).

Commands

ED #channel, line number edit Superbasic program
VIEW #channel, name view contents of a file

2.2 Command
The command language facilities of Toolkit !1 are
intended to provide the QL with the contro! facilities to
unlock the potential of the QDOS operating system.
Most of these are ‘direct’ commands: they are typed in
and acted on immediately. This does not mean that they
may not be used in programs, but some care should be
taken when doing this.

Section 4 Directory Control
QDOS does have a treé directory structure filing
system! The Toolkit It provides a comprehensive set of
facilities for controlling access to directories within
this tree.

Commands

DATA__USE name

PROG__USE name

set the default directory
for data files

set the default directory
for executable programs

set the default destination
directory (COPY, WCOPY}

DEST__USE name

SPL_USE name set the default destination
device (SPL)

DDOWN name move to a sub-directory
DUP move up through the tree
ONEXT name move to another directory

at the same level

DLIST #channel list the defaults
Functions .
DATAD$ function to find current data directory
PROGD$

DESTD$

Section 5 File Mai

All the filing system maintenance commands use the
default (usually ‘data’) directories. Some of the
commands are interactive and thus not suitable for use
in SupeBasic programs: these are marked with an
asterisk in this list. In these cases there are also simpler
commands which may be used in programs. Depending
on the command, the name given may be a generic {or
‘wildcard’) name referring to more than one fiie. With
the exception of DIR {an extended version of the
standard QL command DIR), all of these ‘wildcard’
commands have names starting with “W'.

function to find current program directory

function to find current
default destination

Commands
DIR #channel, name drive statistics and list of files
WODIR #channel, name tist of files
STAT #channel, name drive statistics
WSTAT #channel, name list of files and their Statistics
ASTAT #channel, name alphabetic list of files

and their statistics
DELETE name delete a file
*WDEL #channel, name delete files

COPY name TO name copy a file
COPY__O name TO name copy a file (overwriting)
COPY_NnameTO name copy a file (without header)
COPY__H name TO name copy a file (with header)
*WCOPY #channel, name TO name copy files
SPL name TO name spoola file
SPLF name TO name spool a file, <FF> at end

RENAME name TO name rename a file
*WREN # channel, name TO name rename files

Section 6 SuperBasic Programs
Toolkit |} redefines and extends the file loading and
saving operations of the QL. All the commands use the
default directories. Additionally, the execution control
commands have been extended to cater for the error
handling functions of the ‘JS’ and ‘MG’ ROMs;

Commands
DO name do commands in file
LOAD name toad a SuperBasic program

LRUN name load and run a SuperBasic program
MERGE name merge a SuperBasic program
MRUN name merge and run a SuperBasic program

SAVE name, ranges Save a SuperBasic program
SAVE_O name, ranges as SAVE but overwrites

file if it exists
RUN fine number start a SuperBasic program
STOP stop a SuperBasic program
NEW reset SuperBasic
CLEAR clear SuperBasic variables

Section 7 Load and Save

The binary load and save operations of the QL are
extended to use the default directories.

Commands
LRESPR name load a file into resident

procedure area and CALL
LBYTES name, address load a file into memory at

specified address
CALL address, parameters CALL machine code with

parameters

SBYTES name, address, size save an area of memory
SBYTES__. name, address, size as SBYTES but

overwrites file if it exists
SEXEC name, address, size, data save an area of

memory as an executable file
SEXEC__ name, address, size, data as SEXEC but

overwrites file if it exists
Cacti BP Ps "

Program execution is, Anne Boleyn would be relived to
know, the opposite of program (ex)termination. The
EXEC and EXEC__W commands in the standard OL are
replaced by EX and EW in the QL Toolkit. Toolkit il
redefines EXEC and EXEC__W to be the same as EX
and EW. ET is for debuggers (no offence meant) only.

be
ee

ty
fe

te
re

e
r
i
n

E
E

e
e

p
y

ir

Sa
A

a
Oe

Se
a O
S

CARE ELECTRONICS QJUMP

Commands
EXEC/EX program specifications load and set up

one or more executable files
EXEC__W/EW program specifications
ET program specification

Section 8 Job Control
The multitasking facilities of QDOS are made accessible
by the job control commands and functions of Toolkit If.

Commands
JOBS #channef list current jobs
RJOB id or name, error code remove a job

SPJOB id or name, priority set job priority
AJOB id or name, priority activate a job

Functions
PJOB {id or name) find priority of job
OJOB fid or name} find owner of job
JOBS fid or name} find job name!
NXJOB (id or name, id} find next job in tree.

2.3 SuperBasic programming
Toolkit !| has extensions to SuperBasic to assist in
writing more powerful and flexible programs. The major
improvements are in file handling and formatting.

Section 10 Open and Close
The standard QL channel OPEN commands are
redefined by Toolkit It to use the data directory. In
addition, Toolkit il provides a set of functions for
opening files either using a specified channel number
{as in the standard QL commands}, or they will find and
return a vacant channel number. The functions also
allow filing system errors to be intercepted and
processed by SuperBasic programs.

Commands .
OPEN #channel, name
OPEN_IN #channel, name
OPEN__NEW #channel, name
OPEN_OVER #channel, name

open a file for read/write
open a file for input only

open a new file
open a new file, if it

exists it is overwritten

open a directory
close channels

OPEN_DIR #channel, name

CLOSE #channels

Functions
FTEST (name) test status of file
FOPEN (#channel, name), _—_—opena file for read/write
FOP__IN (#channel, name)

FOP__NEW (#channel, name)

FOP__OVER (#channel, name)

open a file for input only

open a new file
open a new file, if it

exists it is overwritten
FOP__DIR fehannel, name} open a directory

Section 11 File Infor i
Toolkit tl has a set of functions to read information from
the header of a file.

FLEN (#channe/ find file length
FTYP (#channe/h find file type
FDAT (#channel find file data space

FXTRA (#channeh find file extra info
FNAMESS (#channe/ find file name
FUPDT (#channe/h find file update data

Section 12 Direct Access File
Toolkit has a set of commands for transferring data to
and from any part of a file. The commands themselves

read or write ‘raw’ data, either in the form of individual

bytes, or in SuperBasic internal format (integer, floating
point or string). :

Commands .
BGET #channel\ position, items get bytes froma file

BPUT #channel\ position, items put bytes onto a file
GET #channel\ position, items get internal format data

from a file
put internal format

data onto a file

truncate file
flush file buffers

PUT #channel \ position, items

TRUNCATE #channel\position

FLUSH #channe/

Functions

FPOS (#channel)

Section 13 Format Conversions
Toolkit || provides a number of facilities for fixed format
1/0. These include binary and hexadecimal conversions
as well as fixed format decimal.

Commands
PRINT__USING #channel, format, fixed format output
list of items to print

find file position

Functions

FDEC$ (value, field, ndp)
IDECS$ fvafue, field, ndp)

CDECS (value, field, ndp)

FEXPS$ (value, field, ndp)
HEX$ (va/ue, number of bits)
BINS (va/ue, number of bits)

HEX (hexadecimal string)
BIN (binary string)

Section 14 Display Control
Toolkit {| provides commands for enabling and disabling
the cursor as well as setting the character fount and
sizes or restoring the windows to their turn on state.

fixed format decimal

scaled fixed format
decimai

fixed exponent format

convert to hexadecimal
convert to binary

hexadecimal to value
binary to value

Commands

CURSEN #channel enable the cursor
CURDIS #channe! diable the cursor
CHAR_USE #channel, addr], addr2 set or reset the

character fount
set the character

x and y increments
reset to ‘Monitor’

reset to ‘TV’ windows

CHAR INC #channel, x inc, y inc

WMON mode

WTV mode

Section 15 Memory Management

Toolkit |! has a set of commands and functions to
provide memory management facilities within the
‘common heap’ area of the QL.

Functions
FREE_MEM find the amount of free memory
ALCHP (number of bytes) allocates space in common

heap (returns the base address
of the space}

Commands
RECHP dase address return space to common heap
CLCHP clear out all allocations

in the common heap
DEL_DEFB delete file definition

blocks from common heap

CARE ELECTRONICS QJUMP

Section 16 Procedure Parameters

Four functions are provided by Toolkit {I to improve the
handling of procedure {and function) parameters. Using
these it is possible to determine the type (integer,
floating point or string) and usage (single value or array)
of the calling parameter as well as the ‘name’.

PARTYP (name/ find type of parameter
PARUSE {name find usage of parameter
PARNAMS /parameter number) find name of parameter
PARSTR$ (name, parameter number if parameter

‘name’ is a string, find the value,
else find the string.

Section 17 Error Handling

These facilities are provided for error processing in
version JS and MG of SuperBasic.

£RR_OF true if drive full error has occurred

REPORT __: #channel, error number report an error
CONTINUE /ine number continue or retry froma

specified line

Section 18 Time-keeping
Two clocks are provided in Toolkit Il, one configurable
digital clock, and an alarm clock.

CLOCK #channel, format
ALRM hours, minutes

Section 19 Extras
EXTRAS lists the extra facilities linked into SuperBasic
TK2_EXT enforces the Toolkit {I definitions

of common commands and functions

2.4 Extensions to Drive
In addition to the SuperBasic interpreter, Toolkit II has
important extensions to the console, Microdrive and
Network device drivers.

variable format clock
alarm clock

Section 20 Console Driver
Toolkit Hl provides last line recall for the command #0
as well as allowing strings of characters to be assigned
to ‘ALT’ keystrokes received on this channel.

Also, for MG versions ROMs only, it provides a patch to
correct the POINT, short LINE and SHORT ARC
problems in the MG ROMs.

Commands

<ALT> cENTER> keystroke recovers last line typed

ALTKEY character, strings assign a string to <ALT>
character keystroke

Section 21 Microdrive Driver

Toolkit {| extends the microdrive driver to provide OPEN
file with overwrite, as well as TRUNCATE and RENAME
of files. These facilities are supported at QDOS level
(Traps #2 and #3) as well as from SuperBasic. The
FLUSH operation is respecified to set the file header as
well as flush the buffers.

Section 22 Network Driver
The network driver is enhanced to provide a primitive
form of broadcast communication as well as providing a
comprehensive file server program which allow many
OLs to share a dise system or printer.

Commands
FSERVE invokes the ‘file server’
NFS_USE name, network names sets the network file

server name

Device names
Nstation number__10 device the name of a remote

(0 device (e.g. N2__FLP1_
is floppy 1

on network station 2)

3. File Editing

3.1 ED - SuperBasic Editor
ED is a small editor for SuperBasic programs which are
already loaded into the QL. !f the facilities look rather
simple and limted, please remember that the main
design requirement of ED is the small size to leave room
for otner tacilities.

ED is invoked by typing:
ED
or ED /ine number
or ED #channel number
or ED #ch i ber, line bi

If no tine number is given, the first part of the program is
listed, otherwise the listing in the window will start at or
after the given line number. If no channel number is
given, the listing will appear in the normal SuperBasic
edit window #2. If a window is given, then it must be a
CONsole window, otherwise a ‘bad parameter’ error will
be returned. The editor will use the current ink and
paper colours for normal listing, while using white ink
on black paper (or vice versa if the paper is already black
or blue) for ‘highlighting’. Please avoid using window# 10
for the ED.

The editor makes full use of its window. Within its
window, it attempts to display complete lines. If these
lines are too long to fit within the width of the window,

they are ‘wrapped around’ to the next row in the
window: these extra rows are indented to make this
‘wrap around’ clear. For ease of use, however, the
widest possible window should be used.

ED must not be called from within a SuperBasic
program.
The ESC key is used to return to the SuperBasic
command mode.
After ED is invoked, the cursor in the edit window may
be removed using the arrow keys to select the line to be
changed. In addition the up and down keys may be
used with the ALT key {press the ALT key and while
holding it down, press the up or down key) to scroil the
window while keeping the cursor in the same place, and
the up and down keys may be used with the SHIFT key
to scroll through the program a ‘page’ at a time.

The editor has two modes of operation: insert and over-
write. (To change press F4.) ‘here is no difference
between the modes when adding characters to or
deleting characters from the end of a line. Within a line,
however, insert mode implies that the right hand end of
a line will be moved to the right when a character is
inserted, and to the left when a character is deleted. No
part of the line is moved in overwrite mode. Trailing
spaces at the end of a line are removed automatically.
To insert a new fine anywhere in the program, press
ENTER. If there is no room between the line the cursor

ir

re
ey

ae
ay

a
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
m
i
m
i
n
m
i
n
i

r
r

ae
ae

ae
a

a
eS

a

A

CARE ELECTRONICS QJUMP

is on and the next line in the program (e.g. the cursor is
on line 100 and the next line is 101) then the ENTER key
will be ignored, otherwis a space is opened up below
the current line, and a new line number is generated. If
there is a difference of 20 or more between the current
line number and the next line number, the new line
number will be 10 on from the current line number,
otherwise, the new line number will be half way
between them.

\f a change is made to a line, the line is highlighted: this
indicates that the tine has been extracted from the
program. The editor will only replace the line in the
program when ENTER is pressed, the cursor is moved
away from the line, or the window is scolled. If the line
is acceptable to SuperBasic, it is rewritten without high-
lighting. if, however, there are syntax errors, the
message ‘bad line’ is sent to window #0, and the line
remains highlighted.

While a line is highlighted, ESC may be used to restore
the original copy of the line, ignoring ail changes made
to that line. :

If a line number is changed, the old line remains and the
new line is inserted in the correct place in the program.
This can be used to copy single lines from one part of
the program to another.

if all the visible characters in a line are deleted, or if all
but the line number is deleted, then the line will be
deleted from the program. An easier way to delete a line
is to press CTRL and ALT and then the left arrow as well.

The length of lines is limited to about 32766 bytes. Any
attempt to edit longer lines may cause undesirable side
effects. If the length of a line is increased when it is
changed, there may be a brief pause while SuperBasic
moves its working space.

 3.28 y of Edit Operati
The general usage of the keys follows the Concepts
section of the QL User Guide first, and then the
business programs usage.
TAB tab right (columns of 8}
SHIFT TAB tab left (columns of 8}
ENTER accept tine and create a new line

ESC escape - undo changes or return to SuperBasic
up arrow move cursor up a line
down arrow move cursor down a line
ALT up arrow scroll up a line (the screen moves down!)
ALT down arrow scroll down a line (the screen

moves up!}

scroll up one page
scroll down one page

left arrow . move cursor left one character
right arrow move cursor right one character

CTRL left arrow delete one charcater to left of cursor
CTRL right arrow delete character under cursor
CTRL ALT left arrow delete line

SHIFT F4_ change between overwrite and insert mode

3.3 Viewing a file
VIEW is procedure intended to allow a file to be
examined in a window on the QL display. The default
window is #1.

View is invoiked by typing
VIEW name View file ‘name’ in window #1
VIEW # channel, nameView file ‘name’ in given window
VIEW name 1, name2 Send file ‘name2’ to ‘namet’
VIEW truncates lines to fit the width of the window.
When the window is full, CTRL F5 is generated. !f the
output device (or file) is not a console, then lines are
truncated to 80 characters.

SHIFT up arrow
SHIFT down arrow

4. Directory Control

4.1 Directory Structures
In QDOS terminology, a ‘directory’ is where the
systems expects to find a file. This can be as simple as
the name of a device e.g. MDV2_the name of the
Microdrive number 2) or be much more complex
forming part of a ‘directory tree’ (directories grow on
trees - honestly they do). For example: the directory
MDV2__ could include directories JOHN__ and OLD__
(note: all directory names end with an ‘_'}, and
JOHN__ could include files DATA1 and TEST). -

MDV2_

JOHN OLD_

DATAI TEST
This shows anothe? characteristic of the directory tree’:
it grows downwards. The complete QDOS filename for
DATA1 in this example is MDOV2_JOHN._DATAl.
(You may have come across the terms ‘pathname’ or
‘treename’ in other operating systems; these refer to the
same thing as a QDOS filename).
One unusual characteristic of the QDOS directory struc-
ture is the absence of a formal file name ‘extension’.
This is not strictly necesary as ‘extensions’ (e.g. __aba
for ABACUS files, __asm for assembier source files
etc.) are treated as files within a directory.

This can be illustrated with the case of an assembler
program TEST, processed using the GST macro
assembler and linkage editor. The assembier source file
(TEST_ASM), the listing output from the assembler
(TEST_LIST), the relocatable output from the
assembler (TEST_REL), the linker control file
(TEST__LINK), the linker listing output (TEST_MAP)
and the executable program produced by the linker
West BIN) are all treated as files within the directory

TL.

MDV2_

JOHN

TesT_

ASM LIST REL LINK MAP BIN

Thus Toolkit tl provides facilities to set default
directories. The defaults are available for ail filing
system operations. A default may be set to any level of
complexity and gives a starting point for finding a file in
the tree structure. Thus, in this example, if the default is
MDV2__, then JOHN__TEST_ASM will find the
assembler source. If the default is MOV2_JOHN_,
then TEST_ASM will find it, while the full filename
MDV2_JOHN_TEST_ASM will find the file
regardless of the default.

CARE ELECTRONICS QJuMP

4.2 Setting Defaults

Unusually, the Toolkit I! extensions to QDOS support
three distinct defaults for the directory structure. This is
because QDOS is an intrinsically multi-drive operating
system. It is expected that executable programs will be
in a different directory, and probably on a different
drive, from any data files being manipulated.
Furthermore, the copying procedure are more likely to
be used to copy from one directory to another, or from
the filing system to a printer or other output device,
than they are to be used to copy files within a directory.

There are three commands fro seeting the three defaults:

DATA_USE directory name

PROG_USE directory name
DEST_USE directory name

lf the directory name supplied does not end with ‘_’,
*_—' will be appended to the directory name.

The DATA_USE default is used for most filing system
commands in the Toolkit. The PROG__USE default is
used only for finding the program files for the EX/EXEC
commands; whilst the DEST_.USE default is used to
find the destination filename when the file copying and
renaming commands (SPL, COPY, RENAME etc.) are
used with only one filename.

There is a special form of DEST_USE command which
does not append '__' to the name given. This provides
the default destination device for the spooler:

SPL_USE device name

This sets the destination default, but if there is no ‘_' at
the end, it is not treated as a directory and so, if a
destination filename is required, the default will be used
unmodified.

E.g. DEST_USE flp_old (default is FLP2_OLD_}

SPL fred
or SPL_USE flp2_old_(default is FLP2_OLD_)

SPL fred

Both of these examples will spool FRED to
FLP2__OLD__FRED. Whereas if SPL__USE is used with
a name without a trailing ‘_‘ (ie. not a directory name)
as follows

SLP__USE ser

SPL fred

then FRED wilt be spooled to SER (not SER__FRED).
Note that SPL_USE overwrites the DEST_USE
default and vice versa.

set data default

set program default
set destination default

(default is SER)

4.3. Directory Navigation
Three commands are provided to move through a
directory tree.

DDOWN name move down (append ‘name to the
default)

DUP = Move up (strip off the last level of the directory)
DNEXT name move up and then down a different

branch of the tree
It is not possible to move up beyond the drive name
using the DUP command. At no time is the default
name length allowed to exceed 32 characters.

These commands operate on the data default directory.
Under certain conditions they may operate on the other
defaults as well:

lf the program default is the same as the data default,
then the two defaults are linked and these commands
will operate on the PROG__USE default as well. If the
destination default ends with ‘0’ (i.e. it is a default
directory rather than a default device), then these
commands will operate on the destination default.

These rules are best seen in action.

data program destination

initial values mdv2_ mdvi__ ser
BDOWN john mdv2__jahn_ mdvt__ ser

DNEXT fred madv2__fred__ mdv1_ ser

PROG_USE mdv2__fred mdv2_fred__ mdv2_fred___— ser

DNEXT john mdv2_john__ ss mdv2_john___ ser
OUP mdv2__ mdv2_ ser
DEST_USE mdv1 mdv2_ mdv2__ mdvt__

DDOWN john mdv2_.john__ mdv2_john_. = mdvt__john__

SPL_USE serlc modv2_jonn_ mdv2_john__ serie

4.4 Taking Bearings

Should you wonder where you are in the directory tree,
there is a command list ali three defaults:

OLIST list data, program and destination
or DLIST#channel defaults
or DLIST \ name‘
if an output channet is not given, the defauits are listed
in window #1.

To find the defaults from within a SuperBasic program
there are three functions:
DATADS find the data default

PROGDS$ find the program default
DESTD$ find the destination default
The functions to find the individual defaults should be
used without any parameters. E.g.

IF DATADS & PROGDS: PRINT ‘Separate directories’
DESTS$ = DESTD$
IF DEST$ (LEN (DEST$)) = ‘_':

PRINT ‘Destination’! DESTS

Facilities to enable executable programs to find the
default directories were provided in the original Sinclair
QL Toolkit, and the same facilties are provided in this
Toolkit. These facilities are not widely used in
commercial software for the QL.
The real solution of providing the default directories at
QDOS trap level can only be attained using additional!
hardware in the expansion slot or by replacement opera-
ting system ROMs. You will probably find, therefore,
that much commercially written software will not recog-
nise the defaults you have set. There is an example of
overcoming this problem in the example program
appendix A.

i
m
i
t
a
t
e

' if |
if

1

mi
ni

ni
ni

ni
n

|
ny

O
n
n

n
d

ar
a

a
ee

ae
e
a

a

CARE ELECTRONICS QJUMP

5 File Maintenance

The standard file maintenance procedure of the QL
{COPY, DELETE and DIR) are filled out into a compre-
hensive set in Toolkit Il. All of the commands, both
standard and new, use the directory defaults; in
addition, many of the commands use wild card names
to refer to groups of similarly named files.

5.1 Wild Card Names
A wild card name is a special type of filename where
part of the name is treated as a ‘wild card’ which can be
substituted by any string of characters. If, for
convenience, the wild card name is to be a normal
SuperBasic name, then special characters cannot be
used for the wild card (e.g. myfiles_"__asm would be
treated by SuperBasic as an arithmetic expression and
SuperBasic would attempt to multiply myfiles_. by
asm}.
For this reason a simpler scheme is adopted: any
missing section of a file name is treated as a wild card.
The end of a wild card name is implicitly missing.
If the wild card name is not a full file name, the default
directory is added to the start of the name.
In the following example, the default directory is
assumed to be FLP2_.

Wild card name = Full wild card ~— Typical matching
. name files

fred flp2__fred flp2__fred
flp2__freda_ist

—fred flp2__fred flp2__fred
flp2__freda_ist
flp2_old__fred
flp2__old__fred_ist

flp1_old__iist flp1_old_list — flp1_old__jo_ist
flp1__old__fred__list

5.2 Directory Listing
There are two forms of directory listing: the first lists just
the filenames, the second lists the filenames together
with file size and update date. All the commands use wild
card names and the data default directory. The output
from these commands will be sent to channel #1 by
default; but a channel or implicit channel may be
specified: if the output channel is to a window the listing
is halted (CTRL F5) when the window is full.
DIR #channel, name drive statistics and list of files

WDIR #channel, name list of files
WSTAT #channel, name __ list of files and their statistics
In all cases the channel specification and the name are
optional.

The possible forms of (for example) WDIR are
WDIR list current directory to #1
or WDIR #channef list current directory to #channel
or WDIR \ name list current directory to ‘name’

or WLIR name list directory ‘name’ to #1

or WDIR #channel, name list directory ‘name’ to
#channel

or WDIR \ name, name2 list directory ‘name2’ to
‘namet’

E.g.
WODIR \ ser,__asm list all___asm files in current

directory to SER

WDIR flp1_ list all files on FLP1__in window #1

WDIR #3 list all files in current
directory to channel #3

DIR is provided for compatibility only: before listing the
files, the drive statistics (medium name, number of
vacant sectors/number of good sectors) are written out.

5.3 Drive Statistics
There is one command to print the statistics for the
drive holding a specified directory, or the data default
directory.

STAT #channel, name
or STAT \ namel, name2
Both the channel and the name are optional.

f

5.4 File Deletion
The standard procedure DELETE has been modified to
use the data default directory unless a full file name is
supplied. No error is generated if the file is not found.
There are also two interactive commands to delete
many files using wild card names.
DELETE name delete one file
WDEL #channel, name delete files
For WDEL both the channel and the name are optional.
E.g.

WDEL delete files from current directory
WDEL_iist delete all _list files from

current directory

Unless a channel is specified, the wild card deletion pro-
cedures use the command WINDOW #60 to request
confirmation of deletion. There are four possible replies:
Yi(yes) delete this file
N (no) do not delete this file
A (all) delete this and all the next matching files
Q (quit) do not delete this or any of the next files

5.5 File Copying
The two forms of the COPY command provided with
the OL are changed to use default filenames, and also to
provide more flexibility. A number of other commands
are added.
Files in QDOS have headers which provide useful infor-
mation. about the file that follows. It depends on the
circumstances whether it is a good idea to copy the
header of the file when the file is copied.
It is a good idea to copy the header when: -
a) copying an executable program file so that the addi-
tional file information is preserved,
b) copying a file over a pure byte serial link so that the
communications software will know in advance the
length of the file.
It is a bad idea to copy the header when:
c) copying a text file to a printer because the header will
be {likely to have control codes and spurious or unprint-
able characters.

The general rules used by the COPY procedures in
Toolkit f!, are that the header is only copied if there is
additional information in the header. This caters for
cases (a) and (c) above. A COPY_N command is
included for compatibility with the standard QL
COPY_N: this never copies the header. A COPY_H
command is included to copy a file with the header to
cater for case (b) above. (Note that the standard OL
command COPY always copies the header.) Neither
COPY__N nor COPY__H need ever be used for file to file
copying.

CARE EL.ECTRON'CS QJuMP

A second rule used by the COPY (as well as by the
WREN) procedures is that if the destination file already
exists, then the user will be asked to confirm that over-
writing the old file is acceptable. The COPY__O (copy
overwrite) and the spooler procedures do not extend
this courtesy to the user

If the commands are given with two filenames then the
data default directory is used for both files. if, however,
only one filename (or, in the case of the wild card proce-
dures, no name at all) is given then the destination will
be derived from the destination default.

a) if the destination default is a directory {ending with
*_’, set by DEST__USE) then the destination file is the
oestination default followed by the name,
b) if the destination default is a device {not ending with
‘_", set by SPL_USE) then the destination is the
destination default unmodified.

5.5.1 Single File Copies
COPY name TO name copy a file
COPY__name TO name copy a file (overwriting)
COPY__Nname TO name copy a file (without header)
COPY__H name TO name copy a file {with header)
These commands can be given with one or two names.
The separator ‘TO’ is used for clarity, but you may use a
comma instead. ‘

To illustrate the use of the copy command, assume that
the data default is MOV2__ and the destination default
is MDV1__.

COPY fred TO old__fred copies mdv2__fred to
mdc2__old._fred

COPY fred, ser copies mdv2__fred to cer
COPY fred copies mdv2__fred to

mdv1_fred
SPL_USEser....

COPY fred COPIES MDV2__fred to ser

5.5.2 Wild Card Coples
The interactive copying procedure WCOPY is used for
copying all or selected parts of directories. The
command may be given with both source and
destination wild card names, with one wild card name
or with no wild card names at ali. Giving the command
with no wild card names has the same effect as giving
one null name:

WCOPY and WCOPY” are the same

it you get confused by the following rules about the
derivation of the copy destination, just use WCOPY
intuitively and look carefully at the prompts.
If the destination is not the destination default device,
then the actual destination file name for each copy
operation is made up from the actual source file name
and the destination wild name. !f a missing section of
the source wiid name is matched by a missing section of
the destination wild name, then that part of the a ctual
source file name will be used as the corresponding part
of the actual destination name. Otherwise the actual
destination file name is taken from the destination wild
name. If there are more sections in the destination wild
name than in the source wild name, then these extra
sections will be inserted after the drive name, and vice
versa.
The full form of the command is:

WCOPY #channel, name TO name copy files
The separator TO 1s used for clarity, you may use a
comma instead.
tf the channel is not given (i.e. most of the time), then
the requests for confirmation will be sent to the

1
command channel #0. to the chosen channel, and the
user 1$ requested to press one of:
Y (yes) copy this file
N (no) do not copy this file
Alall) copy this and all the next matching files
Q (quit) do not copy this or any other files

If the destination file already exists, the user is
requested to press one of:
Y (yes) copy this file, overwriting the old file
Nino) do not copy this file
A (ail) overwrite the old file, and overwrite any

other files requested to be copied
OQ (quit) do not copy this or any other files

For exampie, if the default directory is flo2__, and the
default destintion is fipt__ .
WCOPY would copy all files on fip2__ to fip1

WCOPY flo1_..flp2__ would copy all files on
fip1__ to flp2

wouid copy ftlp2__fred to flp1__fred
flp2__freda__tist to flp1_freda__ist

WCOPY fred. mog would copy fip2._fred to flp2_mog
flp2__freda__list to flp1__moga__ist

WCOPY__fred,_.mog would copy
flp2__fred to flp2__mog

fip2__fieda__list to flp2__moga__list
flp2__old.__fred to flp2_old__mog

flp2__oid_freda_list to flp2__old_moga list

WCOPY __list,old__

WCOPY fred

would copy
flp2_.jo__fist to flp2__old__jo__ist

flp2__freda__list to flp2__old__freda__iist

WCOPY old__list, fipi__ would copy
fip2_old__jo__tist to tlo1_jo__iist

flp2__old__freda__list to flp1__freda__iist

§.5.3 Background Copying
A background file spooler is provided which copies files
in the same way as COPY__O [Section 5.5.1), but is
primarily intended for copying files to a printer. As an
option, a form feed (ASCII<FF> decimai 12, hex OC) can
be sent to the printer at the end of the file
SPL name TO name spool a file
SPLF name TO name spool a file, <FF> at end
The normal use of this command is with one name only

SPL__USE ser2 set spooler default TO seriel Port 2

SPLF fred spool fred to ser2, adding
a form feed to the file

When used in this way, if the default device is in use,
the Job will be suspended unui the device is available
This means that many files can be spooled to a printer at
once.
A variation on the SPL and SPLF commands is to use
SuperBasic channels in place of the filenames. These
channels should be opened before the spooler is
involed

SPL #channell TO #channel2
Where channe/? must have been opened for input and
channe/2 must have been open: — for output

5.5.4 Renaming Files
Renaming a file is a process similar to COPYing a file,
but the file itself is neither moved nor duplicated. only
the directory name is changed. The commands,
however, are exactly the same in use as the equivalent
COPY commands.
RENAME name TO name
WREN #channel, name TO name

see COPY
see WCOPY

HL
TL

AL
STL
E
r

T
T
T

AP
o
t

To
T

S
T

TT
L

S
L
E

O
e

e
e

ee

ee

ae
ee

e
e
e

CARE ELECTRONICS QJuUMP

6 SuperBasic Programs

All the commands for loading, saving and running
SuperBasic programs have been redefined in Toolkit I}.
The differences are in the areas of:
a) default filenames,

b} WHEN ERROR (JS and MG ROMs only),
c) common heap handling.

6.1D0
There is one additonal procedure, DO, to execute
SuperBasic commands from file.
DO name do commands in the file

e.g.: the contents of file ‘’set printer’’ could be:
OPEN #3,ser1: PRINT #3, CHR$({27); °C"; ““H":
CLOSE #3
Set form length to European standard 72 tines per page
on aN EPSON/ Sinclair compatible printer.
{f we assume that the file ‘set printer’’ is stored on the
“current directory” and default data’’ device, you can
set your printer, just by saying:
DO set printer

The commands should be of the ‘direct’ type: any lines
with line numbers will be merged into the current
SuperBasic program. The file should not contain any of
the commands listed in this section (e.g. RUN, LOAD
etc.), CONTINUE, RETRY or GOTO. It appears that a
-BO file can invoke SuperBasic procedures without
harmful effect.

A DO file can contain in line clauses:
FOR i = 1 TO 20: PRINT ‘This is a DO file’
If you try to RUN a Basic program from a DO file, then
the file will be left open. Likewise, if you put direct
commands in a file that is MERGED, then the file will be
left open.

6.2 Default Directories

Most of the commands use the data default directory.
tn addition, the program LOADing commands will try
the program default directory if a fite cannot be found in
the data default directory.

6.3 WHEN ERROR Problems
There is a problem in the JS and MG ROM error
handling code, in that WHEN ERROR processing, once
Set, is never reset, even if the WHEN ERROR clause
is removed by a NEW or a LOAD! All of the commands
in this section clear the WHEN ERROR processing fiag,
and all but STOP also clear the pointer to the current
WHEN ERROR clause.

6.4 Common Heap
Toolkit It contains facilities for allocating space in the
common heap. This space is cleared by the commands
that clear the SuperBasic variables: LOAD, LRUN,
NEW and CLEAR.

6.5 Summary of Commands
DO name do commands in the file.
LOAD name load a SuperBasic program.
LRUN name load and run a SuperBasic program.

MERGE name merge a SuperBasic program
MRUN name merge and run a SuperBasic program

SAVE name, ranges save a SuperBasic program
SAVE_O name, ranges as SAVE but overwrites the

file if it exists
RUN fine number start a SuperBasic program.
STOP stop a SuperBasic program.
NEW reset SuperBasic
CLEAR clear SuperBasic variables

7 Load and Save
Toolkit I! provides the same binary file load and save
operations as the standard QL. The differences are that
the save operations will request permission to overwrite
if the file already exists, and all the commands use
default directories.
There are also two ‘overwrite’ variants for the save
operations, and one new command: LRESPR.
LRESPR opens the load file and finds the length of the
file, then reserves space for the file in the resident pro-
cedure area before loading the file. Finally a CALL is
made to the start of the file.
The CALL procedure itself has ben overwritten to avoid
the problems that occur in AH and JM ROMs when a
CALL is made from a large (> 32 bytes) program.

LRESPR name load a file into resident
procedure area and CALL
load a file into memory at

specified address
LBYTES name, address

CALL machine code with
parameters

SBYTES name, address, size save an area of memory

SBYTES__O name, address, size as SBYTES but over-
writes file if it exists

SEXEC name, address, size, data save an area of
memory as an executable file

SEXEC__O name, address, size, data as SEXEC but
overwrites

For SEXEC and SEXEC__O the ‘data parameter is the
default data space required by the program.

If there are any Jobs in the QL {apart from-Job 0 the
SuperBasic interpreter) then LRESPR will fail with the

error message ‘not complete’. If this happens, use
RJOB to remove all the other jobs.

CALL address, parameters

CARE ELECTRONICS QJUMP

8 Program Execution
There is one procedure of initiating the execution of
compiled (executable) programs. This procedure is
invoked by five commands: EX, EXEC (which are
synonymous), EW, EXEC__W (which are synonymous)
and ET. The differences are very small: when EX is
complete, it returns to SuperBasic; when EW is
complete it waits until the programs initiated have
finished before returning to SuperBasic; while ET sets
up the programs, but returns to SuperBasic so that a
debugger can be called to trace the execution. EX will
be used to describe all the commands.

8.1 Single Program Execution
In its simplest form EX can be used to initiate a single
program:
EX name
The program in the file ‘name’ is loaded into the
transient program area of the QL and execution is
initiated. If the file does not contain an executable
program, a ‘bad parameter’ error is returned.
It is also possible to pass parameters to a program in the
form of a string:
EX name; parameter string
tn this case the program in the file ‘name’ is loaded into
the transient program area, the string is pushed onto its
stack and execution is initiated.
Finally it is possible for EX to open input and output files
for a program as well as (or instead of) passing it
parameters. If preferred, a SuperBasic channel number
may be used instead of a filename. A channel used in
this way must already be open.
EX program name, file names or #channel; parameter
string
Taking as an example the program UC which converts a
text file to upper case, the command:
EX uc, fred, #1

will load and initiate the program UC, with fred as its
input file and the ouput being sent to window #1.

8.2 Filters
ex is designed to set up filters for processing streams of

jata.

Within the QL it is possible to have a chain of coopera-
ting jobs engaged in processing the same data in a form
of production line. When using a production line of this
type, each job performs a well-defined part of the total
process. The first job takes the original data and does its
part of the process; the partially processed data is then
passed on to the next job which carries out its own part
of the process: and so the data gradually passes
through all the processes. The data is passed from one
Job to the next through a ‘pipe’. The data itself is
termed a ‘stream’ and the Jobs processing data are
termed ‘filters’.

Using the symbol$[] to represent a single optional item
{} to represent a repeated optional item
the compiete form of the EX command is:
EX[#channefTO" |prog_spec
{ TO preg__spec] [TO #channet”]
where prog __spec is

program name
{_ file name or #channel} [parameter string’ |
Each TO separator creates a pipe between jobs

All the names and the parameter string may be names,
strings or string expressions. The significance of the
filenames is, to some extent, program dependent; but
there are two general rules which should be used by all
filters:
1) the primary input of a filter is the pipe from the
previous Job in the chain (if it exists), or else the first
data file,
2) the primary output of a filter is the pipe to the next job
in the chain (if it exists) or else the last data file.

Many filters will have onty two IN/OUT channels: the
primary input and the primary output.

if the parameters of EX start with ‘#channe/ TO’, then
the corresponding SuperBasic channel will be closed (if
it was already open) and a new channel opended as a
pipe to the first program;
Any data sent to this channel (e.g. by PRINTing to it)
will be processed by the chain of Jobs. When the
channel is CLOSEd, the chain of Jobs will be removed
from the QL.
{f the parameters of EX end with ‘TO #ehannef, then
the corresponding SuperBasic channel will be closed (if
it was already open) and a new channel opened as a
pipe from the last program.
Any data passing through the chain of Jobs will arrive in
this channel and may be read (e.g. by INPUTing from
it). When all the data has passed, the Jobs wil! remove
themselves and any further attempt to take input from
this channel will get an ‘end of file’ error. The EOF
function may be used to test for this.

8.3 Example of Filter Processing

As an example of filter processing, the programs UC to
convert a file to upper case, LNO to line number a file,
and PAGE to split a file onto pages with an optional
heading are all chained to process a single file:
EX uc, fred TO into TO page,ser; ‘File fred at “& date$
The filter UC takes the file ‘fred’ and after converting it
to upper case, passes through a pipe to LNO, LNO adds
line numbers to each line and passes the file down a
pipe to OAGE. In its. turn, PAGE splits the file onto
pages with the heading (including in this case the date) at
the top of each page, before seding the file to the SER
port. Note that the file fred itself is not modified; the
modified versions are purely transient.

9 Job Control
As QDOS is a multitasking operating system, it is
possible to have a number of competing or co-operating
Jobs in the OL at any one time. Jobs compete for
resources in iine with their priority, and they may co-
operate using pipes or shared memory to communicate.

The basic attributes of a Job are its priority and its
position within the tree of Jobs {ownership}. A Job is
identified by two numbers: one is the Job number

which is an index into the table of Jobs, and the other is
a tag which is used to identify a particular Job so that it
cannot be confused with a previous Job occupying the
same position in the Job table. With QDOS the two
numbers are combined into tne Job ID: Thus:
JOBID=Job number + tag*65536. For these Job
control routines, where Job__id ia s parameter of one.of
the Job control routines, it may be given as either a
single number (the Job ID, as returned from OJob or

T
7 qi

fF
7

r
U
H
T
n
i
g
n
n
i
n
n
i
n
n
i
n
n
i
n
i
n
i
n
t

vA
a
S

S
O

S
S

S
S
 CARE ELECTRONICS QJUMP

NXJob of Toolkit I) or as a pair of numbers (Job
number,Jobtag). Thus the single parameter 65538
(2+ 1*65536) is equivalent to the two parameters 2,1.

9.1 Job Control Commands
JOBS is a command to list all the Jobs running in the
QL at the time. If there are more Jobs in the machine
than can be listed in the output window,,the procedure
will freeze the screen (CTRL F5) when it is full. The
procedure may fail if Jobs are removed from the QL
while the procedure is listing them. The following
information is given for each Job:
the Job number
the Job tag
the Job’s owner Job number
a flag ‘S’ is the Job is suspended
the Job priority
the Job (or program) name.

The command is

JOBS list current Jobs to #1
JOBS #channel list current Jobs
JOBS name list Jobs to ‘name’

There are three procedures for controlling Jobs in
the QL:
RJOB /d or name, error code
SPJOB id or name, priority set Job priority
AJOB id or name, priority activate a Job
If a name is given rather than a Job ID, then the pro-
cedure will search for the first Job it can find with the
given name.

remove a Job

'f there is a Job waiting for the completion of a Job
removed by RJOB, it will be released with DO set to the
error code.
E.g.

RJOB 3,8,-1
SPJOB demon, 1

remove Job 3, tag 8 with error -1

set the priority of the Jab called
‘demon’ to 1

9.2 Job Status Functions

The Job Status functions are provided to enable a
SuperBasic proggram to scan the Job tree and carry out
complex Job control procedures.

PJOB {id or name) find priority of Job

OJOB fid or name) find owner of Job
JOBS fid or name} find Job name
NXJOB fidorname)top Jobid} find next Job in tree

NXJOB is a rather complex function. The first para-
meter is the id of the Job currently being examined, the
second is the id of the Job at the top of the tree. If the
first id passed to NXJOB is, the last Job owned, directly
or indirectly, by the ‘top Job’, then NXJOB will return
the value 0, otherwise it will return the id of the next Job
in the tree.

Job 0 always exists and owns directly or indirectly all
other Jobs on the QL. Thus a scan starting with id = 0
and top Job id = O will scan all Jobs in the QL.

It is possible that, during a scan of the tree, a Job may
terminate. As a precaution against this happening, the
Job status functions return the following values if called
with an invalid Job id:

PJOB=0 OJOB=0 JOB$=" NXJOB=-1

10 Open and Close
All of OPEN and CLOSE commands and functions avoid
the problem that occurs using the standard QL facilities
when more than 32768 files have been opened in one
session.

10.1 Open Commands

The OPEN commands of the standard QL have been
modified to use the data default directory. Two
commands have been added to open a new file over-
writing the old file if it already exists, and to open a
directory.
OPEN
OPEN_IN #channel, name
OPEN_NEW #channel, name
OPEN._OVER #channel, name

open a file for input only
open a new file

open a new file, if it
exists it is overwritten

OPEN_DIR #channel, name open a directory

10.2 File Status
The function FTEST is used to determine the status of a
file or device. It opens. a file for input only and
immediately closes it. If the file exists it will either return
the value 0 or -9 (in use error code), if it does not exist,
it will return -7 (not found error code). Other possible
returns are -11 (bad name), -15 (bad parameter), -3 (out
of memory) or -6 (no room in the channel table).
FTEST fname} test status of file
The function can be used to check that a file does not
exist:

IF FTEST (files) xx -7; PRINT ‘File’; file$; ‘exists’

10.3 File Open Functions
This is a set of functions for opening files. These
functions differ from the OPEN procedures in two ways.
Firstly, if a file system error occurs (e.g. ‘not found’ or
‘already exists’) these functions return the error code
and continue. Secondly the functions may be used. to
find a vacant hole in the channel table: if successful
they return the channe! number.

FOPEN (#channel, name)
FOP__IN (#channel, name)

FOP__NEW (#channel, name)
FOP__OVER (#channel, name}

open a file for read/write
open a file for input oniy

open a new file
open a new file, if it

exists it is overwritten
FOP__DIR (#channel, name) open a directory

When called with two parameters, these functions
return the value zero for successful completion, or a
negative error code.

A file may be opened for read only with an optional
extension using the following code:
ferr = FOP__IN (#3,name$&’__ASM’) :REMark try to

open_ASM fite

IF ferr = -7 :ferr = FOP_IN (#3,name$}
:REMark ERR.NF,

try no_ASM

The #channe/ parameter is optional: if it is not given,
the functions will seach the channel table for a vacant
entry, and, if the open is successful, the channel
number will be returned. Note that error codes are
always negative, and channel numbers are positive.

CARE ELECTRONICS QJUMP

In this exarnple:

outch = FOP__NEW (fred)
ifoutch O:REPORT outch:STOP
PRINT #outch, ‘This is file Fred’
CLOSE #outch
there is no need to ever know the actual channel
number.

:REMark open fred

:REMark ... oops

10.4 CLOSE
The CLOSE command has been extended to take
multiple parameters. In addition, if called with no para-
meters it will close all channel numbers #3 and above.
It will not report an error if a channel is not open.

CLOSE #channels close channels
E.g. CLOSE #3, #4, #7 close #3, #4 and #7

11 File Information

There are six functions to extract information from the
header of the file.
If a file is being extended, the file length can be found
by using the FPOS function to find the current file
position. (If necessary the file pointer can be set to the
end of the fite by the command GET #n \ 999999.)

FNAMES (#channel)
FUPDT (#channel)
The file type is

find filename
find file update date

0 for ordinary files
1 for executable programs

2 for relocatable machine code.
The file information functions can also be used with

FLEN (#channel) find file length implicit channels. E.g.

FTYP (#channel) find filetype PRINT FLEN (#3) print the length of the file open
FDAT (#channel} find file data space ; on channel #3
FXTRA (#channel/ find file extra info PRINT FLEN (\ fred) print the Jength of file fred

12 Direct Access Files 12.1 Byte Input/Output (1/0)

In QDOS, files appear as a continuous stream of bytes.
On directory devices (Microdrives, hard disks etc.) the
file pointer can be set to any position in a file. This
provides ‘direct access’ to any data stored in the file.
Access implies both read access and, if the file is not
open for read only, (OPEN_IN from SuperBasic,
IN/OUT. SHARE in QDOS}, write access. Parts ofa file
as small as a byte may be read from, or written to any
position within a file. QDOS does not impose any fixed
record structures upon files: applications may provide
these if they wish.

Procedures are provided for accessing single bytes,
integers, floating point numbers and strings. There is
also a function for finding the current file position.

To keep files tidy there is a command to truncate a file
(when information at the end of a file is no longer
required), and a command to flush the file buffers.

A direct access input or output (I/O) command
specifies the I/O channel, a pointer to the position in the
file for the !/O operation to start and a list of items to be
input or output.

command #channel \ position, items

It is usual (although not esentiai - the default is #3) to
give a channel number for the direct |/O commands. If

. No pointer is given, the routines will read or write from
the current position, otherwise the file position is set
before processing the list of 1/0 items: if the pointer is a
floating point variable rather than an expression, then,
when all items have been read from or written to the
file, the pointer is updated to the new current file
position. !f no items are given then nothing is written to
or read from the file. This can be used to position a file
for use by other commands (e.g. INPUT for formatted
input).

BGET #channel \ position, items get bytes froma file

BPUT #channel \ position,items put bytes onto a file

BGET gets 0 or more bytes from the channel. BPUT
puts O or more bytes into the channel. for BGET, each
item must be a floating point or integer variable; for
each variable, a byte is fetched from the channel. For
BPUT, each item must evaluate to an integer between 0
and 256; for each item a byte is sent to the output
channel.
For example the statements

abcd = 2.6
22% = 243
BPUT #3,abcd + 1,'12',2z%
will put the byte values 4, 12 and 243 after the current
file position on the file open #3.

Provided no attempt is made to set a file position, the
direct 1/O routines can be used to send unformatted
sata to devices which are not part of the file system. If,
for example, a channel is opened to an Epson compat-
ible printer (channel #3) then the printer may be put
into condensed underline mode by either
BPUT #3, 15, 27, 45, 1
or PRINT #3, chr$(15);chr$(27);'-',chr$(1);
Which is easier?

12.2 Unf d Input/Output (4/0)
It is possible to put or get vaiues in their internal form.
The PRINT and INPUT commands of SuperBasic
handle formatted !/O, whereas the direct 1/0 routines
GET and PUT handle unformatted I/O. For example, if
the value 1.5is PRINTed the byte values 49 (‘1"), 46 (".")
and 53 (‘5’) are sent to the output channel. Internally,
however, the number 1.5 is represented by 6 bytes (as

TL

UW
OV

TD
TE

TE
TE

TE
TR

TR
TIE

TE

E
T
T

L
T

T
T
L

ES

LT
&E

C
e

a
a

Ne
Ne

Ae
Nie

ae

ae
a

a
Se
S
e

e
e
e

CARE ELECTRONICS QJUMP

are all other floating point numbers). These six bytes
have the value 08 01 60 00 00 00 (in hexadecimal). If the
value is PUT, these 6 bytes are sent to the output
channel.

The internal form of an integer is 2 bytes (most signifi-
cant byte first). The internal form of a floating point

number of a 2 byte exponent to base 2 (offset by hex
81F), followed by a 4 byte mantissa, normalised so that
the most significant bits (bits 31 and 30) are different.
The internal form of a string is a 2 byte positive integer,
holding the number of characters in the string, followed
by the characters.
GET #channel position, items get internal format

data from a file
put internal format

data onto a file
GET gets data in internat format from the channel. PUT
puts data in internal format into the channel. For GET,
each item must be an integer, floating point, or string
variable. Each item should match the type of the next
data item from the channel. For PUT, the type of data
put into the channel, is the type of the item in the
parameter list. The commands
fpoint = 54

PUT #channel position, items

wally % = 42: salary = 78000: name$ = ‘Smith’

Put #3&fpoint, waily%, salary, name$

will position the file, open an channel 3, to the 54th
byte, and put 2 bytes (integer 42), 6 bytes (floating point
78000), and the 5 characters ‘Smith’. Fpoint will be set
to 67 (54+2+6+5).

For variables or array elements the type is self evident,
while for expressions there are some tricks which can be
used to force the type:
fi. +0 will force
wees &’’ will force string type;

teeee 110 will force integer type.

xyz$ = ‘ab258.2"

floating point type;

PUT #3 \ 37,xyz$(3 to 5) HO
will position the file opened on channel #3 to the 37th

byte and then will put the integer 258 on the file in the
form of 2 bytes {value 1 and 2, i.e. 1°256 + 2).

12.3 Truncate File

TRUNCATE #channel position , truncate file
If the position is not given, the file will be truncated to
the current position.
TRUNCATE #dbchan
channel dbchan

truncate the file open on

12.4 Flush Buffers
FLUSH #channe/ flush file buffers
QDOS directory device drivers-maintain as much of a
file in RAM as possible. A power failure or other
accident could result in a file being Jeft in an incomplete
state. The FLUSH procedure will ensure that a file is
updated without closing it. Closing a file will always
cause the file to be flushed: Toolkit I! includes an
upgrade to the microdrive routines to performa
complete flush. FLUSH will not work with Micro Peri-
pharals disc systems, unless it has been upgarded to
version QFLP.

12.5 File Position
There is one function to asist in direct acces 1/O:FPOS
returns the current file position for a channel. The
syntax is:

FPOS (#channel

For example:
PUT #4 102,value1,value2
ptr = FPOS (#4)
will set ‘ptr’ to 114 {= 102+ 6+ 6).

The file pointer can be set by the commands
BGET,BPUT, GET or PUT with no items to be got or
put. If an attempt is:made to put the file pointer beyond
the end of file, the file pointer will be set to the end of
file and no error will be returned. Note that setting the
file pointer does not mean that the repaired part of the
file is actually in a buffer, but that the required part of
the file is being fetched. In this way, it is possible for an
application to control prefetch of parts of a file where
the device driver is capable of prefetching.

find file position

13 Format Conversions

Toolkit || provides a number of facitities for fixed format
1/0. These include binary and hexadecimal conversions
as well as fixed format decimat. Most of these are in the
form of functions but one new command is included.

13.1 PRINT__USING
PRINT__USING is a fixed format version of the PRINT
command:

PRINT_USING #channel, format, list of items to print
The ‘format’ is a string or string expression containing a
template or ‘image of the required output. Within the
format string the characters + — #*,.1\"'’$and@
all have a special meaning. When called, the procedure
scans the format string writing out the characters of the
string until a special character is found.

lf the @ character is found, then the next character 's
written out, even if it is a special character.

If the character is a’ or ‘, (single or double quotes) then
all characters are written out until the next or’. If the\
is found, then a new line is written out.
All the other special characters appear in ‘fields’. For
each field an item is taken from the list, and formatted
according to the form of the field and written out.
The field determines not only the format of the item, but
also the width of the item (equai to the width of the
field). The field widths in the examples below are
arbitrary.

field

HHH

format

if item is string, write string left
justified or truncated, otherwise write integer

right tustified.
write integer right justified empty part

of field filled with * (e.g. °**12)

fixed point decimal (e.g. 12.67)

fixed point decimal, * filled (e.g. ** 12.67)

errr

HHBE.GH
eene He

CARE ELECTRONICS QJUMP

##,##H#.HH fixed point decimal, thousands separ-
ee eee ** ated by commas (e.g. 1,234.56 or *1,234.56)

— #.AXAKAII exponent form (e.g. 2.9979E + 08)
optional sign

+ H.AAHEAIIN exponent form always includes sign

The exponent field must start with a sign, one #, and a
decimal point (comma or full stop). It must end with
four (IHEN’s.
Any decimal field may be prefixed or postfixed with a +
or —, of enclosed in parantheses. If a field is enclosed in
parantheses, then negative values will be written out
enclosed in parantheses. If a — sign is used then the
sign is only written out if the value is negative; if a + is
used, then the sign is always written out. If the sign is at
the end of a field, then the sign will follow the value.
Numbers can be written out with either a comma or a
full stop as the decimal point. If the fiéld includes only
one comma or full stop, then that is the character used
as the decimal point. If there is more than one in the
field, the last decimal point found {comma or full stop)
will be used as the thousands separator, the other used
as a decimal point. Long live European unity!

_|f the decimal point comes at the end of the field, then it
will not be printed. This allows currencies to be printed
with the thousands separated, but with no decimal
point (e.g. 1,234) .
Floating currency symbols are inserted into fields using
$ character. The currency symbols are inserted between
the $ and the first # in the field (e.g. SOM#.###4#,##
or 8$##.##). When the value is converted, the
currency symbols are ‘floated’ to the right to meet the
value.
For example

fmt$='’@ Charge °°°"*** °°: (SSKr##. ###, ##)
[AH HEH ABN

PRINT_USING fmt$, 123.45, 123.45, 123.45
PRINT_USING fmt$, — 12345.67, — 12345.67,
— 12345.56
PRINT_USING '— #. 44 #I/!!\' | 1234567

will print

$ Charges **** 123.45 : SKr123,45 2123.45 +

$ Charges * — 12345.67 : (SKr12.345,67) : 12,345.67 —
1.2356+06

13.2 Decimal Conversions
These routines convert a value into a decimal number in
a string. The number of decima! places represented is
fixed, and the exponent form of floating point number is
not used.

FDECS (value, field, ndp)
IDEC$ (value,

fixed format decimal

field, ndp}

IDEC$ (value, field, ndp) scaled fixed format
CDECS (value, field, ndp) decimal
The ‘field’ is length of the string returned, ‘ndp’ is the
number of decimal places.
The three routines are very similar. FDEC$ converts the
value as it is, whereas IDEC$ assumes that the value
given is an integral representation in units of the least
significant digit displayed. CDEC$ is the currency
conversion which is similar to IDEC$, except that there
are commas every 3 digits.
FDECS (1234.56,9,2)
IDEC$ (123456,9,2} returns ‘ 1234.56"

CODECS (123456,9,2) returns ‘ 1,234.56"
{f the number of characters is not large enough to hold
the value, the string is filled with ‘*’. The value should
be between -—231 and 2°31 (—2,000,000,000 to
+2,000,000,000) for IDEC$ and CDEC$, whereas for
FDECS the value multipled by 10*ndp should be in this
range.

returns ‘ 1234.56"

13.3 Exponent Conversion
There is one function to convert a value to a string
representing the value in exponent form.
FEXP$ (value, field, ndp) fixed exponent format

The form has an optional sign and one digit before the
decimal point, and ‘ndp’ digits after the decimai point.
The exponent is in the form of ‘E’ followed by a sign
followed by 2 digits. The field must be at least 7 greater
than ndp. E.g.
FEXP$ (1234.56,12,4) returns ' 1.2346E + 03’

13.4 Binary and Hexadecimal

HEX$ (va/ue, number of bits) convert to hexadecimal

BINS (va/ue, number of bits) convert to binary
These return a string of sufficient length to represent
the value of the specified number of bits and the least
significant end of the value. In the case of HEX$ the
number of bits is rounded up to the nearest multiple of 4.

HEX (hexadecimal string) hexadecimal to value

BIN(binary string) binary to value
These convert the string supplied to a value. For BIN,
any character in the string, whose ASCil value is even,
is treated as 0, while any character, whose ASCII vatue
is odd, is treated as 1. E.g. BIN (’.#.#) returns the
value §. For HEX the ‘digits’ ‘0’ to ‘9", ‘A’ to ‘F’ and ‘a’.
to ‘f’ have their conventional meanings. HEX will return
an error if it encounters a non-recognised character.

14 Display Control

There are three separate facilities provided to extend the
display control operations of the QL. They are cursor
control, character fount control and window reset.

14.1 Cursor Control
The functions INKEY$ is designed so that keystrokes
may be read from the keyboard without enabling the
cursor. Two procedures are supplied to enable and
disable the cursor. When the cursor is enabled, it will
usually appear solid (inactive). The cursor will start to

flash (active) when the keyboard queue has been
switched to the window with the cursor (e.g. by an
INKEY$},
CURSEN #channe/ enable the cursor
CURDIS #channel disable the cursor

Note that while CURSEN and CURDIS default to
channel #1, like most IN/OUT commans, INKEY$
defaults to channel #0.
For exampie:
CURSEN: in$ = INKEY$S (#1,250): CURDIS
will enable the cursor in window #, and wait for up to 5

Si
ni
ni
n

Fh

q

N
U
U
T
A
M
A
N
A
N
n
n
H
n
n
n
n
n
n
n
n
e
t

R
e
a

KH

H
e
e

A
e
A

a
a

a CARE ELECTRONICS QuyumP

seconds for a character from the keyboard. If nothing is
typed within 5 seconds, then in$ will be set to a null
string (""").

4.2Ch Fount C. i
The QL display driver has two character founts built in.
The first provides patterns for the value 32 (space) to
127 (copyright), while the second provides patterns for
the values 127 (undefined) to 191 (down arrow). For
each character the display driver will use the appropriate
pattern from the first fount, if there is one, failing that, it
will use the appropriate pattern from the second fount,
failing that, it will use the first defined pattern in the
second fount.

Substitute founts need not have the same range of
values as the built in founts. A fount could, for example,
be defined to have all values from 128 to 255.
The format of a QL fount is:

byte lowest character value in the fount
byte number of valid characters — 1
9 bytes of pixels for the lowest character value

9 bytes of pixels for the next character value, etc.
The pixels are stored with the top line in the lowest
address byte. For each pixel a bit set to one indicates
INK, a bit set to zero indicates PAPER. The leftmost
pixel is in bit 6 of the byte.
The character ‘g’ is stored as:

%00000000
% 00000000
% 00111000
% 01000100
% 01000100
%01000100
%00111100
% 00000100
% 00111000

The command CHAR__USE is used to set or reset one
or both character founts

CHAR_USE ##channel, addr1, addr2- addr1 and addr2
both point to substitute founts

CHAR_USE #channel, 0, addr2 the built in first fount
will be used, addr2 points to a

substitute second fount
CHAR__USE 0,0 reset both founts for window #1

15 Memory Management

As QDOS is a multitasking operating system, there may
be several jobs running in a QL, and so the amount of
freememory may vary unpredictably. No Job may
assume that the amount of free memory is fixed. The
function FREE_.MEM may be used to guess at the free
memory (defined as the space available for filing system
slave blocks less the space required for two (c.f. QL
Toolkit: one only) slave blocks.
Temporary space may be allocated in the ‘common
heap’. This is done with the function ALCHP which
returns the base address of the space allocated.
Individual allocations may be returned to QDOS with
the command RECHP, or all space allocated is released
by the commands CLCHP (clear common heap),
CLEAR or NEW.
Functions
FREE_MEM find the amount of free memory

ALCHP {number of bytes} allocates space in common
heap (returns the base address of the space)

The QL dispiay driver assumes that all characters are 5
pixels wide by 9 pixels high. Other sizes are obtained by
doubling the pixels or by adding blank pixels between
characters. It is possible, with Toolkit Il, to set any hori-
zontal and vertical spacing. If the increment is set to less
than the current character size (set by CSIZE) then
extreme caution is required as it will be possible for the
display driver to write characters (at the right hand side
or bottom of the window! partly outside the window
The windows should not come closer to the bottom or
right hand edges of the screen than the amount by
which the increment specified is smaller than the
character spacing set by CSIZE.

CHAR_INC #channel, x inc, y ine set the character x
and y increments

The channel! is defaulted to #1.
The character increments specified are cancelled by a
CSIZE command.

For example, if there is a 3x6 character fount in a file
called ‘f3x6’ {length 875 bytes), then a 127 column by 36
row screen can be set up:
MODE 4
WINDOW 512-2,256-3,0,0 :REMark clear of edges

of screen
CSIZE 0,0 :REMark spacing 6x10
CHAR_INC 4,7 :REMark spacing 4x7
fount = ALCHP (875)
LBYTES f3x6, fount
CHAR_USE fount,O _

:REMark reserve space for fount
:REMark load fount

:REMark songle fount only

14.3 Resetting the Windows

There are two commands for resetting the windows to
the turn-on state:

WMON mode reset to ‘Monitar’

WTV mode reset to ‘TV’ windows
The mode should be 0,4 or 512 for the 4 colour (512
pixel) mode, or 8 or 256 for the 8 colour (256 pixel)
mode. Only the window sizes, positions and borders are
reset by these commands, the paper strip and ink
colours remain unchanged.

Commands

RECHP base address return space to common heap
CLCHP clear out all allocations in the

common heap.

Making large allocations in the common heap and then
accessing a drive for the first time, can cause a terrible
heap disease called ‘large scale fragmentation’ where
the drive definition blocks become widely scattered in
the heap leaving large holes that cease to be available
except as heap entries (i.e. you cannot load programs
into them). A simple but dangerous cure is to delete the
drive definition blocks.

DEL__DEFB delete file from definition
biocks from common heap

Although there are precautions within the procedure
DEL__DEFB to minimize damage, care should be taken
to avoid using this command while any directory device
is active.

CARE ELECTRONICS QsuMP

16 Procedure Parameters

in OL SuperBasic procedure parameters are handled by
substitution: on calling a procedure (or function), the
dummy parameters in the procedure definition become
the actual parameters in the procedure call. The type
and usage of procedure parameters may be found with
two functions:
PARTYP (name) find type of parameter
PARUSE (name) find usage of parameter

the type is Onull the usage is Ounset
1 string 1 variable

2 floating 2 array
3 integer

One of the ‘tricks’ used by many machine code
procedures is to use the ‘name’ of an actual parameter

rather than the ‘value’ (e.g. ‘LOAD fred’ to load a file
name fred}. Given the name of a dummy parameter of a
procedure, it would be possible to find the name of an
actual parameter of a SuperBasic procedure call, but it
would be very slow. It is much easier to find the name of
an actual parameter, if the position in the parameter list
is known.

PARNAMS$ {parameter number) find name of parameter

For example the program fragment
pname fred, joe, ‘mary’

DEF PROC pname (n1,n2,n3)

PRINT PARNAMS(1), PARNAMS$(2), PARNAMS(3)
END DEF pname
would print ‘fred joe ‘(the expression has no name).

One further ‘trick’ is to use the value of the actual
argument if it is a string, otherwise use the name. This is
possible in SuperBasic procedures using the slightly
untidy PARSTR$ function.

PARTSTRS (name, parameter number} if parameter
‘name’ is a string, find the value, else find the name.

For example the program fragment
pstring fred, joe, ‘mary’

DEF PROC pstring (n1,n2,n3}

PRINT PARTSTR$(n1,1),
PARSTR$(n3,3) END DEF pstring
would print ‘fred joe mary’.

PARSTRS(n2,2),

17 Error Handling

The JS and MG QL ROMs contain unfinished code for
error trapping in SuperBasic: Toolkit Il corrects some of
the remaining problems.

Error handling is invoked by a WHEN ERROR clause.
Unlike procedure and function definitions, these clauses
are static. The error handling within a WHEN ERROR
clause is set up when the clause is executed, but is only
actioned WHEN an ERROR occurs. This means that a
program may have more than one WHEN ERROR
clause. As each one is executed, the error processing
within that clause replaces the previously defined error
processing.
The clause is opened with a WHEN ERROR statement,
and closed with an END WHEN statement. Within the
clause there may be any normal type of statement.
{Although it might be better to avoid calling SuperBasic
functions or procedures!} A WHEN ERROR ciaused is
exited by a STOP, CONTINUE, RETRY, RUN, LOAD or
LRUN command (if you are using Toolkit II).
Furthermore the Toolkit Il versions of RUN, NEW,
CLEAR, LOAD, LRUN, MERGE and MRUN reset the
error processing (an unfortunate omission from the QL
ROMs).
There are some additional facilities intended for use
within WHEN ERROR clauses.

ERROR FUNCTIONS
These functions correspond to each of the system error
codes

{ERR_NC, ERR_NJ, ERR_OM, ERR_OR,
ERR__BO, ERR__NO, ERR_NF, ERR__EX, ERR_IU
ERR_EF, ERR._DF, ERR_BN, ERR__TE, ERR_FF,
ERR_BP, ERR_FE, ERR_XP, ERR_OV, ERR_NI,
ERR__RO, ERR_BL)

and return the value TRUE if the error, which caused
the WHEN ERROR clause to be invoked, is of that type.
Do NOT use ERR__DF without Toolkit Il.
ERROR information
ERLIN returns the line number where

the error occurred
ERNUM returns the error number

ERROR reporting

REPORT #channe/ teports the last error
REPORT reports the last etror to channe! #0
REPORT #channel, error number reports the error

number given

RETRY and CONTINUE

As theRETRY and CONTINUE exit fiom an error clause
without resetting the WHEN ERRun, | .vould be useful
if they could also be used to exit to a different part of
the program. In Toolkit Il, RETRY and CONTINUE can
have a line number.
CONTINUE /ine number
RETRY fine number
100 WHEN ERRor
110 IF ERLIN = 200: PRINT #0\Noops’
120 REPORT
130 STOP
10 END WHEN

continue or retry froma

specified line

“RETRY

160 do__in x
170 STOP
180 DEFine PROCedure do_in (j)
190 FOR i=1TO1
200 INPUT #0,° af d
210 PRINT #0, 'value’;)
220 END FOR i
230 END DEFine do__

t
K
A
A
D
D
A
A
N
A
N
A
N
A
N
U
N
N
A
M
N
A
N
H
H
A
A
R
A
T
N
Y
T

C
e

ee

e
e

e
e

ee

ee

CARE ELECTRONICS Quump

18 Timekeeping

18.1 Resident Digital Clock

CLOCK default clock in it's own window
CLOCK #channel default clock, 2 rows of 10 chars.
CLOCK #channel, string user defined clock

CLOCK is a procedure to set up a resident digital clock.
ff no window is specified, then a default window is set
in the top RHS of the monitor mode default channel 0.
This window is 60 by 20 pixels and is only suitable for
four colour mode. The clock may be, invoked to execute
within a window set up by Basic. In this case the clock
job will be removed when the window is closed.
The string is used to define the characters written to the
clock window: any character may be written except $ or
%. If a dollar sign is found in the string then the next
character is checked and
$d or $D will insert the three characters of the day of
week,

If a percentage sign is found then

%y or %Y will insert the two digit year
% or %D will insert the two digit day of month
%h or %H will insert the two digit hour
%m or %M will insert the two digit minute,
%s or %§ will insert the two digit second
The default string is ‘$d %d $m %h/%M/%s ' a
newline should be forced by pading out a line with
spaces until the right hand margin of the window is
reached.
Example:
MODE8

OPEN #6,’scr__156x10a32x16'
INK #6,0: PAPER #6,6
CLOCK #6,’0L time %h:%m’

18.2 Alarm Clock

ALARM time set alarm clock to sound at given time

The time shouid be specified as two numbers: hours (24
hour clock) and minutes:

$m or $M will insert the three characters of the month. ALARM 14,30 alarm will sound at half past two

19 Extras
EXTRAS #channe/ tists the extra facilities TK2__EXT enforces the Toolkit 1

linked into SuperBasic
EXTRAS lists the extras to #1

lf the output channel is a window, the screen is frozen
(CTRL F5) when the window is full. With Toofkit Il
installed, there are hundreds of extras.

definitions of common commands and functions.
If, for any reason, some of the Toolkit {| extensions have
been re-defined, TK2__EXT (c.f. FLP__EXT floppy disc
extensions, EXP_EXT expansion unit extensions) will
reassert the Toolkit Il definitions.

20 Console Driver

20.1 Keyboard Extensions
There are two keyboard extensions to the QL keyboard
handling. The first provides a last line recall facility, and
the second assigns a string of characters to an ‘ALT’
keystroke.
<ALT>. <ENTER>® keystroke recovers the last

line typed

This keystroke recovers (on a per-window basis) the fast
line typed, provided only that the keyboard buffer is
long enough to hold it.
The ALTKEY command assigns a string to an ‘ALT’
keystroke (hold the ALT key down and press another

key). The string itself may contain newline characters,
or, if more than one string is given, then there will be an
implicit newline between the strings. To add a newline
to the end of the string put a null string (‘ ‘ or’ "’) at the
end of the line.
ALTKEY character, strings assign a string to <ALT>

character keystroke

For example after the command

ALTKEY ‘r’, ‘RJOB’’SPL'",""
when ALT ris pressed, the command ‘RJOB’’SPL'” will
be executed.
ALTKEY 'r’ will cancel the ALTKEY string for ‘r’, while

ALTKEY will cancel all ALTKEY strings

21 Micro Driver

21.1 Microdrive extensions

There are three extensions to the microdrive filing
system. These are available as operating system entry
points, but may also be supported as calls from
SuperBasic.

OPEN OVERWRITE TRAP #2,D0=1, D3=3
This variant of the OPEN call opens a file for write/read
whether its exists or not.

The file is truncated to zero length before use.
RENAME TRAP#3, D0=4A, A1 points to new name.

This call renames a file. the name should include
the drive name (e.g. FLP1_NEW__NAME).

TRUNCATE TRAP #3, D0=4B
This call truncates a file to the current byte position.

21.2 Microdrive Improvements
The FS.FLUSH filing system call has been extended to
perform a complete, fiush including header information.
This operation may be accessed through the FLUSH
command.

CARE ELECTRONICS QJUMP

22 Network Driver

Attempts have been made in Toolkit It to elevate the
rather elementary network facilities of the QL to a useful
level.

The network performance is dominated by the
exceptionally low capability of the network hardware.
(tf your QL has a pre-D14 serial number then it is highly
possible that your network hardware does not work at
all, although recent experience has shown that many
more pre-D14 Qis have a working network port than
generally supposed).

22.1 Network improvements
Each QL connected to a network should have a unique
‘station number’ in the range 1 to 63. This is set using
the NET command.
NET station number

Toolkit {| provides a new protocol for broadcast which
includes new provisions for handshaking. A broadcast
is a message’sent from one QL to al! other QLs listening
to the network. The Toolkit Il broadcast protocol has a
positive NACK (not acknowledged) handshake, as well
as provision for detecting BREAK.
The device names for the network foliow the following
convention:

NETO__station number output to station number
NETO_O send broadcast

NETI___station number input from station number
NETI__my station number input from any station
NETI_O receive a broadcast
NETI_0__buffer size receive a broadcast into a

specified buffer size

When opening a channel to receive a broadcast, a
buffer is opened to allow the entire transmission to be
received uninterrupted. If no buffer size is specified,
then all but 2k bytes of the free memory will be taken,
The buffer size should be specified in Kbytes. For
example:
NETI_0O__10 receive broadcast into a

10 Kbytes buffer.
When a network output channel is closed, then (as with
the QL network driver) the network driver will keep
trying to send the last buffer for approximately 20
seconds in case the receiving station is busy with its
Microdrives. With Toolkit !l, however, after about 5
seconds the driver will start checking for a BREAK.

22.2 File Servers
The file server provided in Toolkit li is a program which
allows 10 resources attached to one OL to be accessed
from another QL. This means that, for example, disc
drives attached to just one Qt can be accessed from
several different QLs. The file server only needs to be
running on the OL with the shared 10 resource. This
version of the file server is more genera! than the first
version in that the 10 resources may be pure serial
devices (such as modems or printers) or windows on
the QL display as well as file system devices (such as
disc drives).
FSERVE invokes the ‘file server’

There may be more than one QL on a network with a file
server running: the station number for these QLs should
be as low as possible, and should not be greater than 8.
It is possible that files opened across the network may
be left open. This can occur if a remote OL is removed
from the network, if turned off or is reset. To correct
this condition, wait until all other remote QLs have
finished their operations on this QL., then remove the file

20

server and restart with the commands.
RJOB SERVER
FSERVE

22.3 Accessing the File Server
The network files are accessed from remote QLs using a
compound device name:

Nstation number__lO device the name of aremote 10
device (e.g. N2__FLP1__ is floppy 1

For example on the network station 2}

LOAD n2_flp1__fred loads file ‘fred’ from floppy 1
on network station 2

OPEN_IN #3,n1__fip2__myfile opens ‘myfile’ on
floppy 2 on network station 1

OPEN #3,n1__con_.120x20ax0x0 opens a 20 column
2 row window on net station 2

The use of directory default names makes this rather
simpler. For exaple:
PROG_USE__win1__progs by default all programs

will be laoded from directory ‘progs’ on
Winchester disk 1 on network station 1

SPL_USEnt_-ser set the default spooler destination
to SER1 on network station 1

It is possible to hide the network from applications by
setting a special name for network file server.
NFS__USE name, network names sets the network file

The ‘network names’ should be complete directory
names, and up to eight network names may be given in
the command. Each one of these network names is
associated with one of the eight possible directory
devices (‘name’ 1 to ‘name’ 8).
For example
NFS__USE mdv,n2__fip1__,n2__fip2__ sets the

network file server name so that any reference to
‘mdv1' on this remote QL, will be taken to be

reference fip1 on net station 2, likewise ‘mdv2‘
will be taken to be fip2 on net station 2

OPEN__NEW #3, mdv2_fred _now this will open file
‘fred’ on floppy 2 on network station 2

The network names will normally just be a network
number followed by a device name as above and will
end with an underscore to indicate that the name is a
directory. indeed if the network file server name is to be
used with the wild card file maintenance commands,
this is the only acceptable form. QUILL, however, tends
to open a file with the name DEF_.TMP on mdv2__.
Clearly, there will be problems if more than one copy of
QUILL is run across the network at any one time. This
can be avoided if the network name for mdv2__is set to
be a directory:
NFS__USE mdv,n1__flp1__,n1__fip2__fred__DEF__TMP

opened on mdv2__ will now appear in directory
‘fred’ on flp2__ on network station 1

22.4 Messaging
The Toolkit I network facilities may also be used for
messaging. A window may be opened, a message sent,
and a reply read using a simple SuperBasic program. If
particularly pretty messages are required, then the
graphics facilities of SuperBasic may also be used. The
only standard 10 facilities not available across the
network are SD.EXTOP (extended operations} and
SO.FOUNT (setting the founts).
For example

ch = FOPEN in2__con__150x10a0x0): CLS #ch
INPUT #ch, ‘Do you want coffee?’ :rep$
{F ‘y' tNSTR rep$ = 1: PRINT ‘Fred wants coffee’
CLS #ch: CLOSE #ch

« D
P
H
E
H
A
D
A
D
A
A
H
A
N
A
N
N
N
A
A
n
K
n
K
A
H
h
H
n
K
n
n
n
n
H
n

Th
y

\

Pe
ea
eA
AR
EK
Ra
K
R
A
H
A

RN
R

A
a

CARE ELECTRONICS QJuMP

23 Writing programs to use with EX
Programs invoked by EX (or EW or ET) fall into three
classifications:
non standard Program header is not standard format;

special program header is standard but there is
an additional flag;

standard program header is standard.

So far as EX is concerned, the distinction is that a
special program must contain the code to open its own
Input/Output channels.
At the start of execution a standard or non-standard
program will have the following information on the
stack:

[long the channel ID of the output pipe, if present]

word the length of the option string or 0

[bytes the bytes of the option string]

If there is just one channel open for a Job, then it is
opened for read/write unless it is a pipe in which case
the direction is implied in the command.
If there is more than one channel open for a Job, then
the first channel is the primary input (opened for read
only}, and the others are opened OVERWRITE. The last
channel is the primary output.

A Job should not close the channels supplied, but,
when complete, it should commit suicide. Each Job is
owned by the next one in the chain, so that when the
last job has completed, the entire chain is removed.
Committing suicide in this way will put an end of file in
the output. Thus an end file from the primary input
shouid, directly or otherwise, indicate to a program that
the data is complete.

word the total number of channels open for this job
[long the channel ID of the input pipe, if present]
{long the channel ID of each filename given in

prog spec}

Special Programs

Standard and special programs have the value $4AFB in
bytes 6 and 7. This is followed by a standard string
{length in a word followed by the bytes of the program
identification). In the case of a special program heading
a further value of $4AFB (aligned on a word boundary}
follows the identification. When the program has been
loaded, the option string put on the jobs stack and the
input pipe (if it is required) opened and its 1D put on the
job‘s stack, then EX will make a call to the address after
the second identifying word. Note that the code called
will form part of a Basic procedure, not part of an
executable program.
On entry to this code, the following registers will be set:
D4.L 0 Or 1if there is an input pipe: 1D is not on stack
DS5.L Oor 1 if there is an output pipe; |D is on stack

D6.L Job ID for this program
D7.L total number of pipes + file names in prog__spec

A0 address of support routines
Al pointer to command string

A3,A6 "pointer to first flle name (name table}
A4 pointer to job’s stack
A5,A6 “pointer beyond last file name (name table}
“these are the standard Basic procedure parameters
passing registers.
The file setup procedure should decode the

tile__names, open the files required and put the IDs on
the stack (A4). Register DO should be set to the error
code on return. D5 must be incremented by the number
of channel iDs put on the job‘s stack. A4 must be
maintained as the job’s stack pointer. Registers D1 to
D7, AO to A3 and A5 may be treated as volatile.
The routine (AO) to get a file name should be called with
the pointer to the appropriate name table entry in A3.
DO is returned as the error code, D1 to D3 are smashed.
If DO is 0, Al is returned as the pointer to the name
(relative to A6). If DO is positive, AO is returned as the
channel ID of the SuperBasic channel (if the parameter
was #n), ali other address registers are preserved.

The routine 2(A0} to open a channel should be called
with the pointer to the file name in A1 (relative to A6).
The file name should not be in the Basic buffer; D3
should hold the access code (overwrite is supported)
and the job iD (as passed to the initialisation routine}
should be in 06. The errors code is returned in DO, while
D1 and D2 are smashed, and A1 is returned pointing to
the file name used (it may have a default directory in
front). If the open fails, At will point to the
default + given filename. The channel ID is returned in
AQ and all other registeres are preserved.
In both cases the status register is returned set
according to the value of DO.

21

CARE ELECTRONICS QJUMP

Appendix A

Appendix and List of Differences

This index lists the SuperBaic extensions in alphabetical
order together with the usage (procedure, function,
program), the section number describing the facility in
detait, ihe crigin of the facility (whether the facility first
appeared in the QL ROMs or in the Sinclair QL Toolkit)
and principal differences between the facility in the
Toolkit Il and earlier versions

This list onty includes the most important differences, in
many cases there are other improvements over earlier
versions.

Name
AJOB
ALARM

ALTKEY

BGET
BIN
BINS
BPUT

CALL
CDECSs
CHAR_USE
CHAR_INC
CLCHP
CLEAR

CLOCK
CLOSE
CONTINUE
COPY

cOoPY_O
COPY_N

COPY_H

CURSEN
CURDIS

DATA_USE
DATADS

ODOWN
DEL_DEFB
DELETE

FNAMES

Usage
procedure

Program
function
procedure

procedure

function

function

«procedure

procedure
function
procedure

procedure
procedure

procedure
program
Procedure
procedure

procedure

procedure

procedure

procedure

procedure

procedure

procedure
function
procedure

procedure

procedure

Procedure
function

procedure
procedure

procedure

Procedure
procedure

procedure

function
procedure

procedure

procedure

procedure
procedure

procedure

function

function

function
function
procedure

function

Sectios
9
18
18

20

12
13
13

12

a
a

B
R

a

Origin Difteences
QL Toolkit accepts Job name

QL Toolkit resident program
QL Toolkit
new

QL Toolkit
QL Toolkit
QL Toolkit

QL Toolkit

bug fix
QL Toolkit
QL Tootkit
QL Tootkit

QL Toolkit

QL clears WHEN ERROR

QL Toolkit configurable program
QL close multiple files

cola specified line number
aL uses default directory

uses default destin-
ation

new overwrites file
QL uses default directory

uses default destin-
ation

new
QL Toolkit
QL Toolkit

QL Toolkit

QL uses default directory

QL uses detauit directory

QL Toolkit completely

respecified
bug fix
QL Toolkit

QL Tootkit

Qk now the same as EX

au now the same as EW
QL Tootkit

QL Toolkit

QL Tootkit
QL Toolkit
new

QL Toolkit
new

new

Name

FOP_DIR
FOP_IN

FOP_NEW
FOP_OVER
FOPEN
FPOS
FREE_MEM
FSERVE
FTEST

FTYP
FUPDT
EXTRA
GET
HEX
HEX$

IDECS

JOBS
JOBS

LBYTES
LOAD

LRESPR
LRUN

MERGE

MAUN

NEW

NFS_USE
NXJOB

OJOB
OPEN

OPEN_DIR
OPEN__IN
OPEN_NEW
OPEN__OVER

PARNAMS
PARSTR$
PARTYP
PARUSE
PJOB
PRINT_USING

PROG_USE
PROGDS
PUT

RECHP
RENAME

RETRY
RJOB
RUN

SAVE
SAVE_O
SBYTES
SBYTES_O
SEXEC
SEXEC_O
SPJOB
SPL

SPL_.USE
SPLF
STAT
STOP

TK2_EXT
TRUNCATE

VIEW

Usage

function
function

function
function
function

function
function
program
funcuon
function

tunction
function
procedure
function

function

functon

function
procedure

procedure
procedure

procedure

procedure

Procedure

procedure

procedure

function

function
procedure

procedure

procedure

procedure

procedure

function
function
function
function
function

procedure

procedure

funciuon
procedure

procedure

procedure

procedure

procedure

procedure

procedure

procedure

procedure

procedure
procedure

procedure?

Procedure

program

Prox * ture
program

procedure

procedure

procedure
procedure

procedure

Section Origin

10 QL Tooikit
ie) QL Toolkit
40 QL Toolkit
10 QL Toolkit

10 QL Toolkit
12 QL Tooikit

15 QL Toolkit
22 new
10 new
4 QL Tootkit
11 new
11 new
12 QL Toolkit
13 QL Toolkit
13 QL Toolkit

13 QL Toolkit

9 OL Toolkit
9 QL Toolkit

7 Qu
6 ol

7 new
6 au

6 QL

6 a

6 iol

22 new
9 QL Toolkit

9 QL Toolkit
10 QL
1Gnew
10 QL
10 Qu
1Onew

16 new
16 new

16 OL Tootki:
6 OL Toolkit
9 QL Toolkit
13 new

3 QL Toolkit
3 new
12 QL Toolkit

1 QL Toolkit
5 QL Toolkit

7 QL
9 QL Toolkit

6 a

6 Qe
6 new
7 Qt
7 new
7 QL
7 new
2 QL Toolkit

6 QL Toolkit
4 QL Toolkit
5 new
5 1 Toolkit

6 QL

20 new
12 QL Toolkit

3 QL Toolkit

Difference

finds vacant channel
finds vacant channel
finds vacant channel
finds vacant channel

finds vacant channel

gives 512 bytes iess

uses default directory

uses defauit directory
clears WHEN ERROR

uses default directory

clears WHEN ERROR

uses default directory
clears WHEN ERROR

uses default directory
clears WHEN ERROR

clears WHEN ERROR

uses defauit directory
uses default directory
uses default directory
uses default directory
uses default directory

specified tine number

accepts Job name

clears WHEN ERROR

uses default directory
overwrites file
uses defauit directory

overwrites fi'e
uses defau’
overwrites tile
accepts Job name

simplified destinat-on

rectory

adds form feed to file

civars WHEN ERROR

Position may be

specified

P
U
R
H
A
D
H
D
A
M
H
M
M
M
N
N
A
M
N
n
N
n
K
N
n
i
n
h
h
h
n
i
n
h
n
n
t

fd
!

Lt
4 J

!
‘
k
h
a

b
b

E
b
b

b
H
E
E
L

EL
E

LI

-
~

CARE ELECTRONICS QyuMP

Name Usage Section Origin Difference Name Usage Section Origin Difference

wcoPyY Procedure 5 new defaults to command WMON procedure 14 — QL Toolkit
window uses default WREN procedure 5 new defaults to command
destination window and uses

WOEL procedure 5 QL Toolkit defaults to command default destination
window WIV procedure 14 QL Toolkit
WDIR procedure 5 QL Toolkit WSTAT procedure 5 OL Toolkit

Appendix B

The appendix illustrates the use of Toolkit II facilities
with the GST assembler and linker. (The version used
by QUUMP is supplied by GST with their QC compiler:
QC is well worth buying just to get the assembler and
linker!)
The programs accept a wide variety of options on their
command line. This command line can be passed to the
programs in the parameter string of the EX command.
Unfortunately the programs do not attempt to find the
default data directory, so it is necessary to add this to
the file names in the command line.
The assembler is called ASM and the linker LINK.
Filenames can be passed to these procedures as strings
or names.

90 REMark assemble a relocatable file
110:
120 DEFine PROCedure asr (file$)
130 EX asm; DATADS & PARSTRS (file$,1)

& '-errors scr’

160 REMark assemble with listing
170:
180 DEFine PROcedure asl (file$)
190 EW asm; DATADS & PARSTR$ (file$,1) & ‘ -list

ser -nosym’
200 END DEFine asi
210:
220 REMark link program
230:
240 DEFine PROedure Ik (file$)
250 EX link, DATADS & PARSTRS (file$,1} & ‘ -with ’

& DATAD & ‘link -nolist’
260 END DEFine Ik
If the default directory is “FLP1_JUNK_’, then the
procedure calls:
ASL ‘table’ and LK master

will create the cormmand parameter strings to the
assembler and linker
*FLP1_JUNK__table -list ser -nosym’ and

140 END DEFine asr ‘FLP1_.JUNK__master -with FLP1_JUNK._link -nolist
150:

Appendix C

QL Network Protocols 7) hackbt —- wait for start bit, send 11.2us start bit
Standard OL Handshal read 8 data bits, 8 data bits 00000001

. if error: restart
The Standard QL handshaking network protocol is id ,
compatible with the Sinclair Spectrum protocol. It c ata .
comprises 11 phases 8) dactiv set net active 22us wait for‘active

sender receiver 9) dbytes for each byte 11.2us for each byte wait
a) scout Start (inactive) bit, for start (inactive)

a: 8*11.2us data bits, bit, read 8 data bits,
1) gap waiting for 3ms for 5*11.2us stop if fails: restart

activity, if activity (active) bits

. occurs: restart “e . 10) dackw = wait for 2.5ms for _— set net active 22us
2) wait waiting for activity active, if not active:

(a scout) restart

3) scout send a scout of wait for 530us 11) dackbt wait for start bit, send 11.2us start bit
duration <630us, if read 8 data 8 data bits 00000001
contention occurs: bits, if error: restart
restart

b) header
4) hactiv set net active 22us wait for active The entire protocol is synchronised by a period of
5 hbytes for each byte 11.2us for each byte wait inactivity at least 2.8ms long.

start inactive) bit, for start (inactive) The header is eight bytes long in the following format:
8°11.2us data bits, bit, read 8 data destination station number
5°11.2us stop bits, if fails: restart sending station number

{active} bits block number (high byte}
6 Hackw wait for 2.6ms for set net active 22us block number {low byte)

active, if not active:
restart

23

block type (0 normal, 1=last block of file}
number of bytes in block (0 to 255)

CARE ELECTRONICS QJuMP

data checksum
header checksum
If the number of bytes in a block is 0, 256 data bytes are
actually sent.

The checksums are formed by simple addition: if there
are two single bit errors in the most significant bit {the
most common type of error) within one block, then the
errors will pass undetected.

tf the block number received in a header is not equal to
the block number required, then the header and data
block are acknowledged but ignored
The protocol is not proof against a failure on the last

block transmitted where the receiver has accepted the
block, but the sender has missed the acknowledge. |
this c ase the sender will keep re-transmitting the block
until it times out {about 20s).

Toolkit I! Broadcast

Toolkit Il has a special ersion of this protocol for c) data
network broadcast. This has an extended scout to allow
time for the receiver to interogate the IPC without 7) dbytes for each byte 11.2us for each byte wait
missing the scout, and it has an active acknowledge/ wait (inactive) bit, for start (inactive)
not acknowledge. The protocol has been defined in 8°11.2us data bits, bit, read 8 data bits
such a way that future network drivers can be more 5°11.2us stop if fails: nack
flexible than the Toolkit li driver. {active) bits

sender receiver 8) dack inactive net and within 500us set net
a) scout wait Ims for active: active and wait 5ms,
1) gap waiting for 3ms for if fails, restart do any processing

activity, if no activity required and when
occurs: restart ready for next

2) wait waiting for activity packet. inactivate
(a scout) every and restart
20ms check IPC for d) Not acknowledge

: BREAK 9) nack wait for inactive wait for 2.8us of
3) scout send a scout of ‘ wait for 530us active or inactive, if

duration x630us, if inactive: restart

contention occurs: 10) nackw ~~ wait 500us for
restart active: wait 200us for

4 scext send a scout exten- timeout is ok, active active, if active,
sion of 5ms active is fail restart if inactive

b) header activate 500us

5) hbytes for each byte 11.2us for each byte wait : _(nack)
start (inactive) bit, for start (inactive) A broadcast acknowledge is 5ms active followed by more
8°11.2us data bits, bit. read 8 data bits, | than 400us inactive. A broadcast not acknowledge is no
5*11.2us stop if fails: nack response or 5ms active followed by 200us to 300us
(active) bits inactive, followed by more than 200us active. -

6) hwait leaving net active,
wait Ims

Toolkit Ii Server Protocol
The Tootkit !! server protocol is physically the same as

the Standard QL protocol, but the header has been
slightly changed to improve the checksum, to allow
blocks of up to 1000 bytes to be sent and to distinguish
server transactions. A server header cannot be
confused with standard header.

wait 20Gus for
active, if active:
restart, if inactive
activate 500us (nack)

wait for 500us for
active: timeout is
ok, active is fail

24

| H
e
a
 e
in
im
ni
mi
mi
ni
mi
ni
mn
im
in
in
im
in
in
in
mi
mi
mi
mi
mi
;(

P
O
M
B
O

a
n
e
g
a
r
n
a
n
a
n
r
a
r
a
r
a
n
o
s
s

DG

