
CONFIG

Standard Configuration Information Specification
(Please note: most of this text stems from Tony Tabby and Jochen Merz).

Many programs have the facility to configure themselves to set default working parameters. More
usually the configuration is done by a separate program which modifies the working program file.
Each program will have a different configuration program, and often different versions of the same
program will have different configuration programs too. All this makes things very difficult for users.

It is proposed that a standard configuration system is used on all new programs and all new
releases of existing programs. If this is done, a single configuration program can be used on any
application software file even even when several application files are concatenated. A program that
adheres to this standard must include one or several configuration blocks.

The advantages of this approach are obvious. There are two disadvantages. The first is that each
program has to carry with it all the configuration information: this will make it larger. The second is
that there is no simple means for doing this with compiled BASIC programs. The first will not
usually be a problem as it seems unlikely that a 32k program would have more than about 20
configurable items and their associated descriptions, this would add at most 3% to the pro-gram
size. The second can be overcome with a little will.

There are two parts to this system: the first is a standard for the format of a configurable file, the
second is a program to process files. There can be any number of programs to process files, from
any number of suppliers. If the standards for the configurable file are adhered to, then any
supplier's configuration program can be used on any (other) supplier's software. Most configuration
programs will assume that the configuration block in an application program is correct.

For the time being, there is only one program which handles all currently existing configuration
levels: MenuConfig by Jochen Merz Software.

Indeed, there are two configuration levels, level 01 and level 02. Level 02 is an extension of level
01. Today, there seems to be no need to create just a level 01 configuration block for any new
software.

Config Specification - December 2023 1

Table of Contents

1 Configuration Level 01..3
1.1 Configuration block..3
1.2 Configuration ID and configuration level..3
1.3 Software name and version..3
1.4 Items.. 3

1.4.1 Types of item...4
1.4.1.1 String (type=0)...4
1.4.1.2 Character (type=2)...4
1.4.1.3 Code (type=4)..5
1.4.1.4 Selection (type=6)..5
1.4.1.5 Values (types 8, 10, 12)...5

1.4.2 Item Selection Keystroke..5
1.4.3 Pointer to Item...5
1.4.4 Pointer to Item Pre-Processing Routine..5
1.4.5 Pointer to Item Post-Processing Routine..7
1.4.6 Description of Item..8
1.4.7 Pointer to attributes...8
1.4.8 End of list marker..8

2 Configuration Level 02..9
2.1 Extended configuration block...9
2.2 The "<<QCFC>>" cutoff flag...9
2.3 Item ID..9
2.4 An additional item type?...10

3 Examples..11
3.1 An example of a “normally” coded assembler configuration block, level 02.............11
3.2 An example of a configuration block, level 02, using the SMSQ/E macros..............14

Config Specification - December 2023 2

1 Configuration Level 01

1.1 Configuration block
The configuration block structure for level 01 contains the following information:

Configuration ID
Configuration level
Software name
Software version
List of

Type of item (string, integer etc..) (byte)
Item Selection keystroke (byte)
Pointer to item
Pointer to item pre-processing routine
Pointer to item post-processing routine
Pointer to description of item
Pointer to attributes of item (item type dependent)

End word (value -1)

It was initially envisaged that, as time goes on, additional types of item could be added. This
seems unlikely now (with the exception of Level 02) and it would mean that new versions of the
configuration program(s) would be required. These new versions would, of course, be able to
configure all lower level configurable files. But, if an old configuration program were used, and the
level specified in the configuration block were greater than the level supported by the configuration
program, it would have to give up gracefully.

1.2 Configuration ID and configuration level
The configuration ID is word aligned and consists of the eight characters "<<QCFX>>", this is
followed by two ASCII characters giving the configuration level (minimum "01"). For the time
being, only MenuConfig can handle level 02.

1.3 Software name and version
The software name is a standard string and is followed by a word aligned version identification in
a standard string (e.g. "1.13a", preceded by a length word, of course). The word aligned list of
items follows.

1.4 Items

Items are ordered in a list terminated by the word -1.

Config Specification - December 2023 3

1.4.1 Types of item

The item type is one byte. Levels 01 and 02 support 7 types of item. These are: string, character,
code selection, code, byte, word and long word. Application specific types of item can be
processed by treating them as strings which are handled entirely by an application supplied routine
(see the Item Pre-Processing and Item Post-Processing Routines).

1.4.1.1 String (type=0)

The form of a configurable string is a word giving the maximum string length, followed by a
standard string. There should be enough room within the application program for the
maximum length string plus one character for a terminator. There is a single word of
attributes with bits set to determine special characteristics.

bit 0 set to strip spaces
bit 8 set if string is filename
bit 9 set if string is directory
bits 8 and 9 if both are set, string is an extension

cfs.sspc equ %0000000000000001 string strip spaces
cfs.file equ %0000000100000000 string is filename
cfs.dir equ %0000001000000000 string is directory
cfs.ext equ %0000001100000000 string is extension

At present, the features corresponding to bytes 8 and 9 are supported by MenuConfig, and
ignored by the old “config” program.

1.4.1.2 Character (type=2)

A character is a single byte, if it is a control character, it will be written out as a two character
string (e.g. ^A = $01). There is a single word of attributes with bits set to determine the
possible characters allowed.

bit 0 non printable characters
bit 1 digits
bit 2 lower case letters
bit 3 upper case letters
bit 4 other printable characters
bit 5 -
bit 6 cursor characters
bit 7 -
bit 8 control chars + $40, translated to control chars

Bit 8 is, of course, mutually exclusive with bits 0 to 7, although this is not checked. The
configuration block in an application program must be correct.

Config Specification - December 2023 4

1.4.1.3 Code (type=4)

A code is a single byte which may take a small number of values. The attributes is a list of
codes giving a byte with the value, a byte with the selection keystroke and a standard string.
The list is terminated with an end word (value -1). There are two forms. In the first, the
selection keystrokes are set to zero. In this case, when a code is selected, the value will step
through all possible values. This is best suited to items which can only have two or three
possible codes. Otherwise the user may select any one of the possible codes, either from a
list (interactive configuration programs) or from a pull down menu (menu driven configuration
programs).

1.4.1.4 Selection (type=6)

A selection is in the same form as a code, but instead of a byte being set to the selected
value, the value is treated as an index to a list of status bytes. When one is selected, it is set
to wsi.slct ($80), the previous selection (if different) is set to wsi..avbl (zero). If any status
bytes are unavailable (set to wsi.unav=$10), then they will be ignored. The first status byte in
the list must not be unavailable.

1.4.1.5 Values (types 8, 10, 12)

Largely self explanatory. The values are byte, word or long word. Their attributes are the
minimum and maximum values. All values are treated as unsigned.

1.4.2 Item Selection Keystroke

The item selection keystroke is an uppercased keystroke which will select the item in the menu (of
a menu driven configuration program). It is set in a byte immediately following the item type byte.
The action of selecting the item will depend on the item type. For a code or select item a pull-down
window may be opened to enable the user to select the appropriate code. For character item, a
single keystroke will be expected. For all other types of item, the item will be made available for
editing. For interactive configuration programs, the selection keystroke has no meaning.

1.4.3 Pointer to Item

This points to the actual configuration item itself, i.e. the part that is changed when an item is
configured. The pointer to item, and all other pointers in the configuration block, are relative
addresses stored in a word (e.g. dc.w item-*).

1.4.4 Pointer to Item Pre-Processing Routine

It is possible to provide a pre-processing routine within the main program which will be called
before an item is presented for changing.

This will be when the item is selected in a menu configuration program, or before the prompt is
written in an interactive configuration program. If there is no pre-processing routine, the pointer
should be zero.

The amount of pre-processing that application program can do is not limited. It could just set
ranges, or it could do the complete configuration operation itself, including pulling down windows.

Config Specification - December 2023 5

Pre-processing Routine

Call parameters Return parameters

D0 item set / error

D1+ scratch
D7 0 / Window Manager vector D7 scratch

A0 pointer to item A0 scratch
A1 pointer to description A1 (new) ptr to description
A2 pointer to attributes A2 (new) ptr to attributes
A3 pointer to 4 kbyte space A3 scratch

A4+ scratch

Error returns: set as D0

>0 item set, do not prompt or change

=0 OK

<0 error

The space pointed to by A3 is not used by the configuration program and can be used by the
application code. Initially it is clear. The application code may use up to 512 bytes of stack.

If D0 (and the status) is returned <0, then the Configuration program will write out an error
message and stop.

If D7 is not 0 on entry (which could happen with an interactive configuration program not running
under the Pointer Environment), then it should contain the PE’s Window Manager vector.

Config Specification - December 2023 6

1.4.5 Pointer to Item Post-Processing Routine

It is possible to provide a “post-processing” routine within the main program, to which this pointer
then points. Note that post-processing” is pretty much a misnomer as this routine (if it exists) will be
called (at least by MenuConfig) for every item before configuration starts, and also for every item
(not only for the just configured one) after any item is changed. It can be used to set limits or other
dependencies.

Post-processing Routine

Call parameters Return parameters

D0 item set / error
D1.b set this item just changed D1.b item status (avbl/unav)

D2+ scratch
D7 0 / Window Manager vector D7 scratch

A0 pointer to item A0 scratch
A1 pointer to description A1 (new) ptr to description
A2 pointer to attributes A2 (new) ptr to attributes
A3 pointer to 4 kbyte space A3 scratch

A4+ scratch

Error returns: set as D0

>0 bit 0 item reset

bit 1 description reset

bit 2 attributes reset

=0 OK

<0 error

The space pointed to by A3 is not used by the configuration program and can be used by the
application code. Initially it is clear. The application code may use up to 512 bytes of stack. If an
item description is changed, it should occupy the same number of lines as the original.

The returned values for D1 are WSI.AVBL ($00) if the item can be changed or WSI.UNAV ($10) if
the item is not available for changing.

If D0 and the status are <0, A1 and A2 and the item status will not be updated, the error message
will be written out, no further post-processing routines will be called, and the item just set will be re-
presented.

If D7 is not 0 on entry (which could happen with an interactive configuration program not running
under the Pointer Environment), then it should contain the PE’s Window Manager vector.

A post-processing routine can also be used to set up initial descriptions and attributes.

If there is no post-processing routine, the pointer should be zero.

Config Specification - December 2023 7

1.4.6 Description of Item

The description of an item is in the form of a string. Each description can have several lines,
separated by newline characters. Each line should be no longer than 64 characters, except the last
line must allow space for the longest item. Interactive programs may append a list of states or
selections to the description.

1.4.7 Pointer to attributes

The attributes are item dependent. See item types for descriptions of the attributes.

Note that the attributes are not modified when configuring the program. This means that you can
re-use the same attributes for different items provided they require the same attributes. For
example, if the configuration block contains several items that are simple yes or no questions, you
can use the same attributes for all of these items.

1.4.8 End of list marker

Once every item is set out as per above, the item list is terminated by a word -1.

Config Specification - December 2023 8

2 Configuration Level 02

2.1 Extended configuration block
Re-configuring software you already had in previous versions is a very boring thing. Most of the
time, all you do is set the old settings in the new file. This has to be made automatic. Therefore, the
item structure was expanded in level 02 to make room for an Item ID. Consequently, the
configuration block structure for level 02 consists of the following information:

(Optional cutoff flag) ← NEW!!!
Configuration ID
Configuration level
Software name
Software version
List of

Item ID (long) ← NEW!!!
Type of item (string, integer etc..) (byte) ← See below
Item Selection keystroke (byte)
Pointer to item
Pointer to item pre-processing routine
Pointer to item post-processing routine
Pointer to description of item
Pointer to attributes of item (item type dependent)

End word (value -1)

As you can see, there is an optional cutoff flag and an additional (not optional) Item ID for each
item, compared to level 01. Unless otherwise stated below, the rest remain identical to level 01.

2.2 The "<<QCFC>>" cutoff flag
If a configuration block contains the special flag "<<QCFC>>" BEFORE the "<<QCFX>>"
configuration block ID flag, then MenuConfig offers the user the choice to save a configured
version without the configuration description texts, to reduce the required file size to the minimum
(as the configuration texts are not required any more after configuration). Of course, a file treated
this way can no longer be configured afterwards.

Basically what happens is that when the configured file is saved back to the disk, the file is cut off
right before the configuration description texts.

This means that programmers should take care that the configuration items come BEFORE the
configuration texts, otherwise they will be cut away too. So make sure that the configuration texts
are always the last section in your file!!!

2.3 Item ID
The Item ID is one long word. The ID should be unique for every item. There may be global ID
names, which could be used by many programs (like the colourway setting), there can be unique
"registered" ID names (which are preferred) and there may be "unregistered" local ID names.
Global ID names should start with an underscore, unique ID names should start with a letter. For
unregistered local IDs, the top byte of the ID has to be 0.

Config Specification - December 2023 9

The global IDs are:

_COL Main Colourway Byte range -1, 0 to 3 (extended to 0-7 for the 4 palettes).
_COS Sub-Window Colourway (same)
_COB Button Colourway (same)

To avoid multiple name conflicts, I attempt to maintain a list of all IDs. If you wish to register for one
or more ID names, please email me at my usual address (“wolf” - the usual at sign- “wlenerz.com”).
A list of currently known IDs is maintained at www.wlenerz.com/smsqe, go to the section on
additional information and data.

2.4 An additional item type?
At some stage, it was considered that a new item type should be added. To quote the original
documentation:

“ It became obvious in MenuConfig, that a new item type "nothing" or "all" is required, which does
not do anything automatic but calling the pre/post- processing routines. This is useful for proving
own menus without having to mess around with unwanted texts. In addition, more information is
required to be passed to these pre/post-processing routines. We think, at the moment, of the
following scheme:

A3, which points to a 4kBytes space, is negative indexed and provides the following information:

 $0000 4k base of workspace passed to pre/post-processing routine
-$0004 long MenuConfig's version
-$0008 long primary channel ID
-$000c long pointer to working definition
-$0010 2 word primary window x/y size
-$0014 2 word primary window x/y origin
-$0018 2 word work area x/y size
-$001c 2 word work area x/y origin
-$001d byte text info window number in working def
-$001e byte work info window number in working def
-$0022 long window manager vector
-$0026 long pointer to filename of the file being configured
-$002a long pointer to buffer containing file being configured
-$002e long pointer to buffer of default directory
-$0032 long pointer to buffer of output device
-$0040 long colourway “

It is unclear to me whether this item type was ever seen in the wild, I presume that this stayed at
the project stage.

Config Specification - December 2023 10

http://www.wlenerz.com/smsqe

3 Examples

Here are two examples of configuration blocks, the first one done entirely manually, the second
using the macros in the SMSQ/E sources.

3.1 An example of a “normally” coded assembler configuration block,
level 02.

config block
 dc.w '<<QCFC>>' ; cutoff flag
 dc.w '<<QCFX>>' ; normal header
 dc.w '02' ; level
 dc.w qc1-*-2 ; length of name
 dc.b 'Colours' ; name
qc1
 dc.w 4 ; length word, 4 bytes for vers. string
 dc.l '1.00' ; version string

; item: get default colours from menu extensions?
 dc.l 'ExFT' ; item ID
 dc.b 4 ; type of item (selection, here: yes/no)
 dc.b 'M' ; selection keystroke
 dc.w defmcol-* ; pointer to item
 dc.w 0 ; no pre-processing
 dc.w 0 ; no post-processing
 dc.w coldesc-* ; description
 dc.w ynattr-* ; attributes

; item; choose main colour
 dc.l '_COL' ; item ID (global ID!)
 dc.b 4 ; type of item (selection, here: colourway)
 dc.b 'C' ; selection keystroke
 dc.w colw-* ; pointer to item
 dc.w pre1-* ; pre-processing
 dc.w post1-* ; post-processing
 dc.w mwcol_s-* ; description
 dc.w colattr-* ; attributes

; item; choose dir name
 dc.l 'ExFE' ; item ID
 dc.b 0 ; type of item (string, here: directory)
 dc.b 'D' ; selection keystroke
 dc.w dirnm-* ; pointer to item
 dc.l 0 ; no pre- nor post-processing
 dc.w gendes-* ; description
 dc.w diratt-* ; attributes

; what; is char for hex sign?
 dc.l 'ExFK' ; item ID
 dc.b 2 ; type of item (character)
 dc.b 'H' ; selection keystroke
 dc.w hexsign-* ; pointer to item
 dc.l 0 ; NO pre- and post-processing
 dc.w hexdes-* ; description
 dc.w charatt-* ; attributes

dc.w -1 ; end of list and config block

Config Specification - December 2023 11

; THE ITEMS THEMSELVES
defmcol dc.b 0 ; (yes/no) here: 0 = no

colw dc.b 4 ; main wdw colour : palette 1

dirnm dc.w 30 ; dir name, max length = 30 bytes
dc.w 11 ; current dir name length
dc.b ‘win1_my_dir’ ; name
dcb 19,0 ; the 19 remaining bytes

hexsign
dc.b ‘$’,0 ; NB make sure next is even

; the attributes
; yes no attribute; proposes yes or no as options 0 = NO, $80 = YES
ynattr ds.w 0,0 ; make sure this label is at en even address
 dc.b 0 ; value

dc.b 0 ; selection keystroke (none)
 dc.w 2,'No' ; standard string
 dc.b $80 ; value

dc.b 0 ; selection keystroke (none)
 dc.w 3,'Yes'
 dc.w -1 ; end of attributes

; the attribute to choose colourways, again a selection
colattr dc.b 0,0 ; value and selection keystroke (none)
 dc.w 11,'White/Green' ; standard string
 dc.b 1,0 ; value and selection keystroke (none)
 dc.w 9,'Black/Red' ; standard string
 dc.b 2,0 (... etc ...)
 dc.w 9,'White/Red'
 dc.b 3,0
 dc.w 11,'Black/Green'
 dc.b 4,0
 dc.w 16,'System palette 1'
 dc.b 5,0
 dc.w 16,'System palette 2'
 dc.b 6,0
 dc.w 16,'System palette 3'
 dc.b 7,0
 dc.w 16,'System palette 4'
 dc.w -1

; attributes for the dirname (string)
diratt dc.w $200 ; = %0000001000000000 bit 9 is set

; attributes for the character
charatt dc.w %0000000011111111 ; allow everything except ctrl codes

; now the item descriptions – they should be at the end of the file (cutoff flag
set)

coldesc dc.w dcd2-*-2
 dc.b ‘Get default colours from menu extensions?’
dcd2

mwcol_s dc.w mwc-*-2
 dc.b ‘Please choose the main window colourway’
mwc

Config Specification - December 2023 12

gendes dc.w gd2-*-2
dc.b ‘Please the select the main working directory’

gd2

hexdes dc.w hd2-*-2
‘Input the character to be used as a hex sign’

hd2

Config Specification - December 2023 13

3.2 An example of a configuration block, level 02, using the SMSQ/E
macros

The SMSQ/E sources contain, in file dev8_mac_config02, a certain number of macros that help
with generating a level 02 configuration block. In the example below I use “//” as introduction to a
comment. This is done on purpose to distinguish these comments from real comments in an
assembler file, as sometimes using comments with macros can generate errors.

This example was taken for the SMSQ/E dev8_smsq_q68_hwinit_asm file. I left out the labels with
the “dc.b” etc. for the items themselves and some constants such as q68.d4 defined elsewhere.

 mkcfstart // signal start

; SMSQ generic config items

 mkcfhead {SMSQ},{smsq_vers} // make the config block header, ie.
// config ID ,level, name,version

 mkcfitem 'OSPM',word,'M',qcf_mlan,,,\
 {Default Messages Language Code 33=F, 44=GB, 49=D, 39=IT},0,$7fff

// The mkfcitem makes an entire config item. Here, it has the item ID 'OSPM', is
// of item type word (=10), has the selection keystroke 'M', the item lies at
// label qcf_lan, and it has no pre- or post-processing routines (nothing
// between the commas). After the ‘\’ come the description (within parentheses)
// and the attributes. The pointers to them will be generated by the macros.
// Note that the '\' sign is used to indicate that the parameters for the
// “mkcfitem” macro continue on the next line.

 mkcfitem 'OSPL',word,'L',qcf_lang,,,\
 {Default Keyboard Language Code 33=F, 44=GB, 49=D, 39=IT},0,$7fff

 mkcfitem 'OSPS',byte,'S',qcf_kstuf,,,\
 {Stuffer buffer key for edit line calls},0,$ff

noyes mkcfitem 'OSPU',code,'U',qcf_curs,,,\ // here the \ is used twice
 {Use sprite for cursor?} \ // description
 0,N,{No},1,Y,{Yes} // attributes

 mkcfitem 'OSPB',code,'B',qcf_bgio,,,\
 {Enable CON background I/O},.noyes
// Note how the attributes here are prefixed with a '.' and refer to a label
// previously defined. This means that the attributes pointer should point to
// the attributes that // are defined with the configuration item which lies at
// that label.

 mkcfitem 'OSPN',code,'N',qcf_ctrc,,,\
 {Use new CTRL+C switch behaviour},.noyes

 mkcfblend // end of this configuration block

// now follows the next configuration block
; Q68 specific config items

 mkcfhead {Q68},{smsq_vers} // start a new configuration block

 mkcfitem 'OSPD',code,'D',qcf_ismode,,,\
 {Initial display mode}\

Config Specification - December 2023 14

 q68.d4,4,{Normal QL Mode 4},q68.dl4,Q,{Large QL Mode 4},\
 q68.aur8,A,{8 bit Aurora},\
 q68.ds,S,{Small 16 bit},q68.md,M,{Medium 16 bit},q68.dl,L,{Large 16 bit}

 mkcfitem 'Q68A',code,0,qcf_bwin,,,\
 {Boot from}\
 1,1,{WIN1},2,2,{WIN2},3,3,{WIN3},4,4,{WIN4}\
 5,5,{WIN5},6,6,{WIN6},7,7,{WIN7},8,8,{WIN8}\
 9,F,{FAT1},0,N,{None}

 mkcfitem 'Q680',code,0,q68_led1,,,\
 {Switch LED on when SMSQ/E is initialising?},.noyes

 mkcfitem 'Q689',code,0,q68_led,,,\
 {Switch LED off when SMSQ/E is set up?},.noyes

 mkcfitem 'Q68L',code,0,q68_fst1,,,\
 {Card 1 : Use faster (40 MHz) SD Card speed if available?},.noyes

 mkcfitem 'Q68M',code,0,q68_fst2,,,\
 {Card 2 : Use faster (40 MHz) SD Card speed if available?},.noyes

 mkcfitem 'Q68N',code,0,q68_kbdtyp,,,\
 {Use standard home keys?},.noyes

 mkcfblend // end of this configuration block

 mkcfend // signal end of configuration section

Have fun!

Wolfgang Lenerz

Config Specification - December 2023 15

	1 Configuration Level 01
	1.1 Configuration block
	1.2 Configuration ID and configuration level
	1.3 Software name and version
	1.4 Items
	1.4.1 Types of item
	1.4.1.1 String (type=0)
	1.4.1.2 Character (type=2)
	1.4.1.3 Code (type=4)
	1.4.1.4 Selection (type=6)
	1.4.1.5 Values (types 8, 10, 12)

	1.4.2 Item Selection Keystroke
	1.4.3 Pointer to Item
	1.4.4 Pointer to Item Pre-Processing Routine
	1.4.5 Pointer to Item Post-Processing Routine
	1.4.6 Description of Item
	1.4.7 Pointer to attributes
	1.4.8 End of list marker

	2 Configuration Level 02
	2.1 Extended configuration block
	2.2 The "<<QCFC>>" cutoff flag
	2.3 Item ID
	2.4 An additional item type?

	3 Examples
	3.1 An example of a “normally” coded assembler configuration block, level 02.
	3.2 An example of a configuration block, level 02, using the SMSQ/E macros

