

ProWesS documentation
PROGS, Professional & Graphical Software
Dr. Frans Hemerijckxlaan 13 /1
2650 Edegem
BELGIUM
tel : +32 (0)3/ 457 84 88 fax : +32 (0)3/ 458 62 07 e-mail :
joachim@club.innet.be
www : http://www.club.innet.be/~year2827

Introduction
What is ProWesS
ProWesS manual
Disclaimer & Copyright
Present, Past and Future
Installation

ProWesS in pieces
ProWesS
PROforma
syslib
DLL Manager
DATAdesign engine
other extensions

Using ProWesS
Configuration & customization

ProWesS
PROforma
boot files
buttons

Frequently Asked Questions

Utility software
ProWesS reader

The program to read the manuals etc. which is also used as help system

for ProWesS applications.
ProWesS loader

The program which, together with some smaller utilities, allows loading
of extra applications, and runtime configuration management. This
makes it possible to add or start application without resetting the
computer.

ProWesS calculator
A simple calculator, which also allows conversion between decimal,
hexadecimal and binary numbers.

procon
A config program which allows you to configure programs which
contain level 1 and/or level 2 config blocks.

PFconfig
This utility helps you to configure all aspects of PROforma. You can
add drivers and fonts and other options. The program also helps you to
configure the imageable area of the printer driver, so that it matches
your model.

PWconfig
A special program to modify the ProWesS and PROforma config files.
All changes which are made to the file can be saved, and they are also
passed to ProWesS or PROforma respectively, to make the effects
visible immediately.

PROGS, Professional & Graphical Software
last edited October 3, 1996

ProWesS introduction
What is ProWesS
ProWesS manual
Disclaimer & Copyright
Present, Past and Future
Installation

What is ProWesS

ProWesS is short for 'PROGS Windowing System' and is (as the name
suggests) a new window manager. However, the ProWesS package contains a
lot more than just ProWesS (in fact ProWesS is just the most important part
of a group of programming libraries).

However, the ProWesS package also contains some utility programs, like the
ProWesS reader.

ProWesS manual

This is the general ProWesS manual, which explains how to use ProWesS
and the utility programs which are part of the ProWesS package. It does not
explain how to write programs which use the system extensions which are
part of ProWesS. These manuals are available in public domain
(electronically and via PD suppliers).

We (and everybody who uses these manuals) would like it very much if you
could send us any comments about this manual, like

omissions
inaccuraties or mistakes
typing and/or spelling mistakes
making this manual into better English

anything else (positive comments are also always appreciated)

At the bottom of each page is mentioned when the HTML document was last
modified. I will try to keep this date correct, however it is only meant to
indicate changes in the information provided, I will not change that date
when correcting spelling mistakes or HTML errors.

Disclaimer & Copyright

All parts of the ProWesS package, both software and manual are copyrighted
material with all rights reserved. It is forbidden to copy or multiply any part
or the whole (exceptions given below) of the ProWesS package without prior
written permission from PROGS, PROfessional & Graphical Software, with
the exception of making a backup.

The PROforma drivers and ProWesS types can be freely distributed. They are
copyrighted, but the source code is available and anybody is allowed to
modify them and they can be freely distributed.

The DLL Manager and syslib can be freely distributed.

All copyrights are owned by PROGS, Professional & Graphical software,
except

The processor detection and program relocation code in the DLL
Manager are written by Dave Walker and originate from c68.
In syslib, the maths routines and c68 support routines originate from the
c68 distribution and the copyright is owned by the respective authors.
the ptr_gen file contains the Pointer Interface and is copyrighted by
QJUMP
the scrap_rext file contains the Scrap Extensions and is written and
copyrighted by Jochen Merz Software
the hot_rext file contains the Thing System and Hotkey System II and is
copyrighted by QJUMP.
the button_rext file contains the Button Frame code and is copyrighted
by QJUMP.
the PWbasic_rext file contains the SBASIC interface for ProWesS and

is copyrighted by Wolfgang Lenerz.
the PWconfig program allows you to modify (both permanently and
temporarily) the ProWesS and PROforma configuration. This program is
copyrighted by Wolfgang Lenerz.
the procon program allows you to configure a file which contains
standard level 1 or 2 config blocks. This program is copyrighted by
Wolfgang Lenerz.
The IBM Courier font which is distributed as part of ProWesS, is
produced and copyrighted by IBM Corporation.

IBM Courier - Copyright © IBM Corporation 1990, 1991

You are hereby granted permission under the terms of the IBM/MIT X
Consortium Courier Typefont agreement to execute, reproduce,
distribute, display, market, sell and otherwise transfer copies of the IBM
Courier font to third parties.

The font is provided "AS IS" without charge. NO WARRANTIES OR
INDEMNIFICATION ARE GIVEN, WHETHER EXPRESS OR
IMPLIED INCLUDING, BUT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

The Bitstream Charter font which is distributed as part of ProWesS, is
produced and copyrighted by Bitstream Inc.

© Copyright 1989-1992, Bitstream Inc., Cambridge, MA.

You are hereby granted permission under all Bitstream propriety rights
to use, copy, modify, sublicense, sell, and redistribute the 4 Bitstream
Charter (R) Type 1 outline fonts for any purpose and without restriction;
provided, that this notice is left intact on all copies of such fonts and that
Bitstream's trademark is acknowledged as shown below on all copies of
the 4 Charter Type 1 fonts.

BITSTREAM CHARTER is a registered trademark of Bitstream Inc.

The Utopia font which is distributed as part of ProWesS, is produced

and copyrighted by Adobe Systems Incorporated. Utopia is a registered
trademark of Adobe Systems Incorporated.

Permission to use, reproduce, display and distribute the listed typefaces
is hereby granted, provided that the Adobe Copyright notice appears in
all whole and partial copies of the software and that the following
trademark symbol and attribution appear in all unmodified copies of the
software:

Copyright © 1989 Adobe Systems Incorporated
Utopia (R)
Utopia is a registered trademark of Adobe Systems Incorporated

The Adobe typefaces (Type 1 font program, bitmaps and Adobe Font
Metric files) donated are : Utopia Regular, Utopia Italic, Utopia Bold,
Utopia Bold Italic.

The ProWesS reader contains an SGML parser which originates from
the W3C library.

Copyright 1995 by: Massachusetts Institute of Technology (MIT), CERN

This W3C software is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this software, you
agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee or royalty is hereby
granted, provided that the full text of this NOTICE appears on ALL
copies of the software and documentation or portions thereof, including
modifications, that you make.

THIS SOFTWARE IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS. COPYRIGHT HOLDERS WILL BEAR NO LIABILITY FOR
ANY USE OF THIS SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in
advertising or publicity pertaining to the software without specific,
written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright
holders.

(webmaster@w3.org, May 1995)

Please note that this copyright message only applies to the SGML parser
which is part of the ProWesS reader program. The rest of the program is
copyright 1996 by Joachim Van der Auwera, for PROGS, Professional
& Graphical Software.

You are not free to distribute the ProWesS reader without written
permission from PROGS. However, you can get the modified SGML
parser, as it is part of the ProWesS reader. This means the SGML_c,
HTChunk_c and HTMLdtd_c files and associated header files,
HTStruct_h and HTStream_h.

the Qlib_sys file contains the Q_Liberator Runtimes and is copyrighted
by Liberation Software. These runtimes are used in some of the utility
programs (e.g. procon & PWConfig)

All the code which is copyrighted by PROGS is written by Joachim Van der
Auwera, except the ProWesS calculator, which is written by Nathan Van der
Auwera.

The Complete font is copyrighted by PROGS with all rights reserved. It was
designed and written by Nathan Van der Auwera.

Although much care is taken in the development of the ProWesS package and
manual, in no circumstances will PROGS, Professional & Graphical

Software, be liable for any direct, indirect or consequential damage or loss
arising out of the use or inability to use any part of the PROforma software or
documentation.

This said, it goes without saying that PROGS will continue to develop this
manual and software. Therefore, we would appreciate any comments about
our software and manual. As you may know, we are only human, we can do
no more than our best to provide you with the best quality.

Present, Past and Future

Past

There has been a pre-release verssion of ProWesS. This was mainly intended
to allow interested people to start using all the (new) libraries and get
acquainted with the system. Between the first pre-release (January 28, 1996)
and the first release version (September 7, 1996) many things have still
changed, but all for the better. The system has been improved, some utilities
have been added, installation of programs is now possible, and the
performance of many parts has been improved.

Present

This is the first release version of ProWesS. Although the package can still be
improved in many ways, we feel that, after two years of work, it is time to get
a user base and allow you to make use of the work we have done. ProWesS
now includes

The full set of libraries.
The ProWesS reader, for reading manuals and help files.
The ProWesS loader, for starting programs without resetting (and also
needed for automatic program installation).
Some simple ProWesS program, like a calculator.
Installation software.

Future

However, some things can still be improved. For example, we would like to
get some work done in the following areas (any help is always appreciated) :

Some extra simple programs, e.g. to select the default printer driver, to
preview fonts etc.
Maintenance software, to control the current ProWesS system, possibly
adding or removing parts (e.g. printer drivers, installed fonts) to your
ProWesS installation.
More picture and printer drivers for PROforma.
ProWesS can be improved in some areas, like to make menus adjust
their own size depending on the number of items in it.
Some extra types would be useful in ProWesS, for example support for a
text editing window (kind of a multi-line edline).
...

Installation

ProWesS can automatically be installed (as is also the case for all ProWesS
applications). When your computer is booted with the ProWesS master disk,
you immediately get the option to install it. To update your installation, you
should indicate the "install software" item in the utilities button.

PROGS, Professional & Graphical Software
last edited September 5, 1996

ProWesS in pieces
ProWesS is a software support package, which basically means that is doesn't
do very much by itself, but is essential to make some applications work on
your computer. The package mainly consists of a group of system extensions
(mostly programming libraries), which have to be present for some programs
(ProWesS applications) to work.

Apart from that, ProWesS also contains some programs which actually do
something. The most important one (may be even the reason for buying
ProWesS) if the ProWesS reader which is used to read HTML documents
like the ProWesS manuals.

Another important group of programs are used for configuration and system
management, and allow you to start programs without rebooting (see
ProWesS loader). A program for automatic installation of applications will
also be provided in future.

The system extensions which are part of ProWesS are :

Rationale
ProWesS
PROforma
syslib
DLL Manager
DATAdesign engine
other extensions

Rationale

While we all know what a wonderful computer we have, and most of us don't
even consider using anything else (I know I don't), it is not all that practical
for writing large applications. As a result, the release of new applications are
rare. To try to remedy this problem, we have started developping a new set of

programming libraries. However, as we did not want to loose the aspects
which are rather typical for our OS, we have had to make a clean break from
already existing libraries (like standard c libraries as part of c68). So
ProWesS applications can still be re-entrant and are quite small.

ProWesS

ProWesS is built with the following goals :

Ease of programming. The creation of the user interface of a program is
an important task. However, the efforts should go towards making the
interface powerful and easy to use, and towards making it do what it
should.
Configurable. It should be easy to change the parameters which
determine what a program looks like. If you prefer small text for more
information, or large text for better readability, that should be easily
configured. In essence, many parameters can be determined about how
things are displayed. It should be possible to change these.
Consistency. A window manager can be used by many programs. It is
preferable if all these programs are somewhat consistent. So instead of
configuring each program individualy, it would be better to have the
general parameters globally configurable. This way each application
automatically fits in with the rest, and the programmer is not burdened
with it.
Fast prototyping. ProWesS is designed to allow windows to be created
with a limited amount of work. Some extra effort may be required to
make it look properly, and definitely to make the scaling work as
intended. So ProWesS allows you to first concentrate on making a GUI
application that works, and worry about the details later.
Screen independence and PROforma support. ProWesS is a general
framework which has been designed specifically to allow the use of
PROforma for all drawing. This way all the text on your screen can be
drawn with the font and size of your choice. Because ProWesS uses
PROforma for the drawing, it is possible to have windows which are
larger than the screen, and also screen independence. When using a high
resolution monitor, the fonts will still be as big as on a screen with less
resolution.

Re-entrant code. It should be possible to write re-entrant programs using
ProWesS. Re-entrant code can be executed many times with only one
copy in memory. This means that a mechanism for accessing global data
has to be provided - without using global variables. This is particularly
important because ProWesS is event driven which means that the
window manager calls the routines (and the programmer can not
determine the prototype).

ProWesS is strictly event driven. The programmer has to describe what the
window should look like. The control is then passed to ProWesS which will
display the window and wait for events. The events can be handled by
routines which are provided by the programmer. These routines can change
the behaviour of the window, add or remove something from the window or
do something (like copy a file). When the event handler terminates, the
window is updated. When the control is passed back to the calling application
(because the window is exited (or broken down in ProWesS terminology)),
the window is removed from the screen.

PROforma

The OS has never given a lot of support for graphics. This has changed when
PROforma was released. We therefore no longer support most of the graphics
in syslib, but recommend the use of PROforma when graphics are necessary.

PROforma is short for 'PROGS Font & Raster Manager', and it does exactly
what this name suggest. It is a library of routines to manage and display
vector graphics and fonts on (raster) devices like screens and printers.

The availability of a separate program to manage graphics and fonts has
several advantages. It allows application developers to create output of equal
quality (resolution permitting) on several devices, and they can share
resources. In short this means that the PROforma library only has to be
loaded once, independent of the number of applications which use it. Also
fonts only have to be loaded once, and can be shared between applications.

PROforma was originally developped as the graphics library for LINEdesign.
That does not mean that this is the only kind of application for which

PROforma is of use. PROforma is also perfectly suitable for desktop
publishers, word processors, business graphics and all applications which
want high quality output (which must be just about every application except
compilers and games). Actually, even at the time of writing there are things
which are possible with PROforma but can't be accessed through
LINEdesign.

More recently, PROforma has been redesigned to a great extent, to make it
even more future-proof, easier to extend (both internally, and by writing
drivers). There have been some changes to make it easier to write a window
manager (for ProWesS) and complete support of colour has been added.

As a library, PROforma has the form of dynamic link library (DLL).

syslib

syslib is a set of low level library routines, mainly to provide an interface
with the operating system (although some user code is included as well). The
library is specifically written to be incompatible with the standard C library
so that they can be mixed if necessary (although a lot of it is quite similar to
what is already available).

The standard C library is specifically written for unix® machines and
presents a few problems when compared to syslib. In fact it is difficult to
implement the standard libraries completely. This requires the support of
signals, which is some kind of user interrupt of a program. However much
more annoying is the limited error handling. Normally errors are reported by
returning an out of the ordinary value to functions, and storing what the
problem was in _errno, a global variable.

Unfortunately, global variables make programs modify their own code, in
which case the code is not re-entrant. As the standard libraries always use
these variables, most C programs are not re-entrant. However, if no global
variables are used then there are no problems. syslib specifically does not
require the use of global variables. When library functions need to read or
modify global variables, proper DLL linking also becomes difficult to
provide.

Consistency is also a strong point of syslib. There is a consistent naming
scheme, only one memory model, only one type of strings etc.

syslib is also intended to make programming safe. No unsafe constructs are
supported by syslib, or when possible, a safe way of doing things is provided.
For example, many aspects of QDOS are only accessible because of direct
access to the system data structures. However, this can cause dangerous
modifications and allows you to do some things which are not "clean". syslib
specifically does not support such operations.

An example of an important part of the library is the support for external
modules. This allows code to be written as a separate part of the program,
which can be loaded on demand. This can be useful because it allows pieces
of a program to be replaced by others, or extra pieces to be loaded. This is for
example very useful for printer drivers. Many drivers can be added when
necessary (as indeed is the case in PROforma).

DLL Manager

C programs are typically quite large (especially when compared to native
assembler). There are two main reasons for this. The least important factor is
the translation from c to assembler. This translation produces code which is
less optimal than native assembler (from good programmers) and can
therefore be slightly larger. However this does not make a significant speed
difference. Most of the time, a program is waiting for the user to tell it what
to do anyway. For those pieces of code where speed does matter (typically
less than 1% of a program) you could still use assembler anyway.

A much more important factor are the libraries which are included in the
program. These libraries can make up a large part of the final program. As
such, this is not a problem, but the same routines are linked with many
programs, thus waisting memory when multitasking. Thus we wrote the
Dynamic Link Library Manager. When a program uses the DLL Manager, it
can link to routines which are separately loaded. In fact, a dynamic link
library is just a kind of thing. However, it is used in such a way that the calls
to the thing code are a lot more efficient than when using the extension thing
mechanism.

Note that the DLL Manager does not load extensions, it only links to them.
The direct loading of extensions is in general not possible without assuming
that there is a harddisk with the extensions. Therefore the extensions have to
be loaded in advance, and an error will be reported if a dynamic link can not
be resolved. (In fact, ProWesS applications normally use a loader program
which will test whether the needed extensions are available and if necessary
load them - this is some kind of boot facility and only works in a controlled
environment).

The DLL Manager also does prepares the system for using syslib (it makes
sure that enough supervisor stack is available), and allows you to load all
programs which use it as resident extensions. The programs will then be
linked as executable things.

DATAdesign engine

The DATAdesign engine is a rather powerful, multi-user, free-form database
management system. It allows DATAdesign files to be shared (used at the
same time) by several programs (with proper record locking). The fact that it
is free-form means that the maximum length of a field doesn't have to be
specified in advance, but can vary from record to record. This allows you to
store an entire text in a record.

Other extensions

Thing System

This is one of the most important extensions which exist. It allows a general
(named) access mechanism to arbitrary pieces of memory. It is for example
used by the DLL Manager for finding the DLL's. This extension was written
by Qjump.

Pointer Interface

This is one of the basic system extensions, which allows the use of a pointer,
the arrow or shape which is used to indicate things. It also does other things

like making sure that the window from one job is not overwritten by another
job, and taking care of (re)displaying a window when switching jobs. The
pointer interface was developped by Qjump.

Scrap Extensions

The Scrap extensions (which are produced and written by Jochen Merz
software), is a buffer to pass data (usually text) between applications.

Hotkey System II

The Hotkey System II extension allows the user to define the definition of
combinations of <ALT> with another keypress. Amongst the user defined
combinations, it handles last line recall and the Stuffer Buffer (which is a one
line scrap which is often used to pass filenames between applications). The
hotkey system is developped by Qjump.

Global Variables

Global Variables are usually referred to in (DOS® and Unix®) literature as
Environment Variables. It is a global mechanism to assign a string to a name,
and make that globally available (in our case without a shell). This is very
important to make automatic installation of software possible.

Global Variables are often used to indicate a directory, and can be used to
start a directory name (possibly in a path).

PROGS, Professional & Graphical Software
last edited January 13, 1996

Using ProWesS
ProWesS is intended to make things rather easy to do, so there is not a lot you
have to know before you can fully use it.

You only have to know two little things about the windows in general, and
you can do anything with a little experimentation.

The actual functionality of the items inside the window depends on the type
of the items which are displayed. Not too much help is necessary here as
most things are rather straightforward, but some things are explained in more
detail.

General ProWesS usage

Scaleborder usage

A ProWesS window always contains a scaleborder, which can be used to
move and scale the window. The pointer will change to a small diagonal
bidirectional arrow when you are inside the scaleborder. When you HIT the
scaleborder, you can move the window, a DO allows you to scale the
window. Any keypress will terminate the moving or scaling. If your system is
configured to do so, a preview of the window at the new position and/or size
will be shown.

Note that not all windows are fully scaleable. A window may be limited to
scale in one direction only, or even not at all. A window which can not be
scaled will just let you move the window when scaling. When scaling, the
opposite corner of the window will normally maintain its position.

All windows include a scaleborder at each side, except when the window is
larger than can be visualised.

Larger than screen windows

In ProWesS it is quite possible and permitted for a window to be larger than
can be shown. This can be noticed because the scaleborder is not visible in
the orientations where the window is too large.

There are two possible reasons why a window may be too large.

The window is larger than the screen.
The window is larger than the primary window of the job. The pointer
interface requires each window to have an outline, which is the
maximum area that can be ocupied by that window. The primary
window is the window which was first opened for a job (counting
restarts when all windows are removed). In ProWesS this is the bottom
window. All subwindows are limited to fall inside the primary, but this
may be impossible.

If a window is too large to be visualised completely, it becomes scrollable,
and the scaleborder is not displayed in the direction in which the window can
be scrolled. To scroll the window, you should use <ALT> + <SHIFT> +
<CTRL> + <cursor key>.

If you are using SMSQ/E on your system, you can also scroll windows that
are larger than the screen by trying to move the pointer out of the screen (to
touch the edge of the screen).

HIT, DO and keypresses

In ProWesS, all keypresses are case dependent, so the application
programmer can assign different actions to upper and lowercase variants.
However, if a keypress does not have an action attached to it, then the case is
changed and another attempt is made to find an action for it.

A HIT is generated by pressing the left mouse key, and a DO by pressing the
right mouse key. Usually, a HIT can also be generated by pressing <space>,
and a DO by pressing <enter>. However, in some windows these keypresses
are used in an input item.

In some objects dragging is possible. This is done by maintaining a HIT or
DO somewhat longer than normal. This is usually only useful when the

pointer is also moved at the same time. A dragging operation starts when the
mouse key is pressed down, and stops when the key is released.

Type specific help

Scroll Bar

A scroll object consists of arrows and possibly also a bar which indicates the
approximate size and position of the visible part of the document. A HIT on
the scroll arrow will usually scroll the window by a small amount (typically a
"line"), a DO will scroll a larger part (typically a "line" less than the size of
the scrollable area.

The reaction for a scroll bar is somewhat different. When the scroll bar is
HIT, the approximate position which was indicated will be displayed. When
you indicate the scroll bar with a DO, then the start or end will be displayed,
whichever is closest to the position in the scroll bar which was indicated.

File Select window

The File Select Window allows you to indicate one or more files (depending
on what it is used for). It mainly consists of a large scrollable area which
displays the files in the current directory.

If only one file can be selected, a "filename" object is displayed. This object
allows direct input of the filename. This object can also be selected by
pressing <f>.

The window always has an "extensions" object. This object can be used to
edit the list of extensions. Only files which end in one of the given extensions
will be displayed in the window. Several extensions can be given by
separating them by semicolons (';'). The selection of files can also be
reversed by indicating the "Not" item. The "extensions" object can be
selected by pressing <e>, the "Not" item can be indicated by pressing <n>.

There is also a "directory" object. If this is indicated by a HIT or <d>, then

you can edit the directory name. If you indicate the item with a DO, a
directory select window is displayed. There is also a "<-" item, which allows
you to move up in the directory tree (press <<>).

There is also a "Tree" object. When this is selected, then all the files in the
subdirectories will also be displayed. This item can also be selected by
pressing <t>.

When several files can be selected in the window, then there is also an "All"
item which can be used to (de)select all the files. Press <a> for this item.

Directory Select window

The Directory Select Window can be used to select a directory. It displays the
current directory, some subdirectories and some devices. The window may
also display some default subdirectories which can be selected directly.

Which devices and default subdirectories are displayed can be configured in
the ProWesS_cfg file.

The "directory" object indicates the current directory. It can be edited directly
(press <d>), or it will be modified by indicating anything in the window.
There is also a "<-" item, which allows you to move up in the directory tree
(press <<>).

Edline object

It may be very useful to know that it is often possible to move between the
edline objects while typing. This can be possible with any of <left cursor
key>, <right cursor key>. <tab> or <shift tab>.

All of the standard keypresses can be used, including keypresses to move by
(space separated) words (<shift left> and <shift right>), and to the start or end
of the line (<alt left> and <alt right>). You can delete the entire line at once
by pressing <ctrl down>, and the start or end of the line (<alt ctrl left> and
<alt ctrl right>).

PROGS, Professional & Graphical Software
last edited March 27, 1996

Configuring ProWesS
Configuring ProWesS is quite straightforward. It basically boils down to
editing the configuration files which are used by PROforma and ProWesS. In
fact, there is even a special program which aids you in doing this.

Another important aspect is combining ProWesS with other programs which
you want to have loaded in your system. Some guides are given below about
integrating ProWesS in your existing boot files.

Please note that most applications can also be configured individually. This
can be done using procon or another configuration program which can handle
level 2 configuration blocks.

ProWesS by default displays some buttons to call some utility or application
programs. This can also be customized to allow you to select the applications
that you use often, remove some items, or add other buttons to call your
favorite programs...

ProWesS
PROforma
boot
buttons

ProWesS

ProWesS is a highly configurable system, many parameters in the system can
be changed. However, these can be situated either in the ProWesS program,
or in the external types. Therefore, all configurable items have been grouped
in a configuration file, called ProWesS_cfg, which is loaded when ProWesS is
started (this file can be found in the pws_pw directory on the program disk).

Each line in the configuration file is interpreted as a configuration command.
Empty lines are discarded as comments. All the other lines are divided into

two type : commands and definitions of configuration constants. The lines
with a command have a fixed format : the first character is the actual
command, the second character should be a space, and the rest of the line is
the parameter. All lines which don't have a space as second character are
considered as configuration constants.

The configuration commands currently supported by ProWesS are :

'%' and ';'
the line is considered as comment and is discarded.

'S'
set the searchpath for the following commands. The searchpath contains
the directories which should be searched to open a file. The directories
should be separated by a semicolon (';'). The directories are scanned
from left to right. For each directory, the trailing underscore ('_') may be
discarded.

'T'
specify a type definition file which should be loaded. The file is
searched on the current searchpath. A type is an external module (as
supported by syslib), which contains the behaviours of the objects of
that type. All types in ProWesS are external, ProWesS has no builtin
types.

Lines which contain the definition of a configuration constant contain the
name of the configuration constant, followed by the parameter, separated by
one or more spaces or tabs. Each definition is passed to the system and each
of the types for processing, which can thus modify their behaviour.

By convention, the name of the configuration constant starts with the type
which is intended to process the result. However, all other types also see the
definition and get a chance to modify their behaviour according. As the name
of the configuration constant can not contain spaces, dashes ('-') are used to
separate the words. The names are case dependant.

All the coordinates and widths are given in virtual screen coordinates (called
points). These pretend a screen size if 720 by 540. There are some
exceptions, SYSTEM-BORDER-WIDTH, SYSTEM-SCALEBORDER-WIDTH, SYSTEM-
SHADOW-RIGHT and SYSTEM-SHADOW-BOTTOM have a parameter in pixels.

Colours are normally given as RGB colours. This means that the colour is
split in Red, Green and Blue components in that order. The value "100 100
100" indicates white and "0 0 0" indicates black. The exceptions to this are
SYSTEM-BORDER-COLOUR and SYSTEM-SCALEBORDER-COLOUR which need
system colour values (0 for black, 2 for red, 4 for green and 7 for white).

The default configuration file which is on the program disk does not contain
all the possible configuration constants which are accepted by the standard
types. The possible definitions depend on the type of object.

Possible definition constants

ProWesS system
applic type
edline/dedline types
dirselect type
separator type
infotext type
infostring type
menu type
title item type
loose item
scroll type
item/itemp types
label type
listselect type

PROforma

Like ProWesS, PROforma also reads the initial configuration information
from a special file called PROforma_cfg, which can be found in the pws_pf
directory.

Each line in the configuration file is interpreted as a configuration command.
Empty lines are discarded as comments. All the other lines are divided into
two types : commands and definitions of configuration constants. The lines
with a command have a fixed format : the first character is the actual

command, the second character should be a space, and the rest of the line is
the parameter. All lines which don't have a space as second character are
considered as configuration constants.

The configuration commands currently supported by PROforma are :

'%' and ';'
the line is considered as comment and is discarded.

'S'
the parameter is now the searchpath for fonts.

's'
to set the searchpath for drivers.

'D'
will load the given PROforma driver. It is not necessary to know what
kind of driver it is. The names of PROforma driver files normally end in
'_pfd'. The file will be searched on the current searchpath for drivers (cfr
's').

'M'
allows you to specify the maximum amount of memory which can be
used by PROforma as buffer to render a page in. If the amount given is
negative, then that is the amount of memory which has to remain free
(both in bytes).

'C'
specify the size of the font cache. This consists of two numbers, the
actual size of the fontcache, and the minimum number of different
font/size combinations that can be in the cache (one more combination
can be in the cache for each gstate). Each combination of font & size
uses about 1.5kB of memory, so this number should not be too big,
however, if you use a large fontcache, this number should also be
increased.

'c'
Define the size for the colour cache. In PROforma each gstate keeps a
few colours which were last used to make sure that the pattern which is
used to estimate the colour does not have to be recalculated all the time.
This causes a very big speed increase in some operations, especially for
drawing pictures. You can choose how many colours are retained in the
colour cache. The value is restricted to stay inside the 1..256 range. The

default value is 8.
'R'

load a font file as resident font. A resident font will always remain in
memory (unless PROforma is removed). The first resident font is
considered to be the built-in font (which is essential for proper
functioning). The characters from the built-in font are (also) displayed
when that character is not available in the current font. It is therefore
recommended that the built-in font be as complete as possible.
The parameter is the name of the fontfile, which is searched on the
searchpath for fonts. If you also want to be able to choose the resident
fonts in the fontmap, then you should also include a 'P' command.

'P'
this command adds a font to the fontmap. The fontmap is a matching
between font names and their filename. The fontmap is also used to
figure out which fonts are available. The command has two parameters,
separated by a semicolon (';'), there should be no spaces before and after
the semicolon. The first parameter is the name of the font (which has to
be an exact match, including case). The second parameter is the name of
the font file. PROforma font files normally end in '_pff'.

'd'
selects the default printer driver. The driver can be given either as the
driverid number (in ASCII, this starts with a minus sign as driverid's are
negative) or as the full (case sensitive) printer driver name.

The configuration constants are only passed to the last loaded PROforma
driver (or if you just selected the default printer driver, than that driver will
get the configuration constants). Most printer drivers will normally
understand the following configuration constants :

DEFAULT-DEVICE
The parameter if the default device for the printer driver. Some
examples are ser1hr or pard. Note that PROforma only prints raw data,
so translates should be switched off, hence the 'r' in ser1hr and the 'd' in
pard.

PRINTABLE-AREA-SIZE
Allows you to set the size of the printable area for your printer. This is
the area where output can be visible on the page. The parameters are in

typographical points, which has a unit if 1/72 inch or approx. .35 mm.
PRINTABLE-AREA-ORIGIN

Allows you to set the origin of the printable area for your printer, or to
put it differently, the offset of the printable area from the left and top of
the page. The parameters are in typographical points, which has a unit if
1/72 inch or approx. .35 mm.

For example, if you want to configure the epson compatible 9 pins printer
driver to have margins of one inch at each side, use 8.5x11 inch paper, and
print to the serial port by default, then part of your PROforma_cfg should
look like this :

D Epson9_pfd

PRINTABLE-AREA-SIZE 468 648

PRINTABLE-AREA-ORIGIN 72 72

DEFAULT-DEVICE ser1hr

boot file

When ProWesS is started, three files are used to give instructions about
which files have to be loaded etc. These three files are the boot file, the
ProWesS startup file ($PWSDIR_startup, where $PWSDIR is your ProWesS
directory), and a file with your personal configuration
($PWSDIR_personal_ldr). Of these, you can both change the boot and
personal_ldr files to customize your system.

These files all have a specific usage :

The boot file is used to load all the extensions which are necessary start
the loading process of ProWesS and all the SuperBASIC extensions (as
these can't be loaded in the other files). Apart from this some other
system initialisations are also done in the boot file like setting the
display resolution and colour depth, assigning hard drive numbers,
setting hotkeys,...
The startup file is used by ProWesS to load all the extensions that
ProWesS needs to work properly. It also loads some programs which are
assumed to be in memory by some of the ProWesS utilities. This file
should not be modified.

The personal_ldr file is started by the startup file and contains your
local customized info. This is the place where the buttons which have to
be displayed are defined, and where printer drivers are added, fonts are
made available and where extra applications can be installed.
When you install a program, some lines are usually added to this file (as
it is easier to handle than the boot file). You can also edit this file by
hand.

The boot file which is generated by ProWesS is rather generic. If you want to
have other resident extensions and programs, then this is a good place to add
them. The boot file contains many comments with guidelines about where to
put which sort of commands. Just use the boot file as a template to customize
your system.

buttons in ProWesS

The default configuration of ProWesS displays two buttons and a clock. This
can easily be modified. The mine subdirectory in ProWesS contains your
personal configurations. The buttons etc. which are started are defined in the
personal_ldr file. A button is defined by executing cbutton. This program
will create a button in the button frame. If the button is indicated with a DO,
then the ProWesS loader is started with the given filename as parameter. If
that file is an executable, then that file is executed, otherwise, the commands
in that file are executed.

For example, the following lines, when added in your personal_ldr file, create
a button which will execute the make program (to compile a program) :

%% add button for make

cbutton -name "compile all" win1_c68_make

Unfortunately, your screen would soon be too small if all applications would
require their own button. So there is a utility program (mbutton), which
allows you to group several items in one menu.

The utilities button for example is defined as follows :

cbutton -name "utilities" utilities_ldr

The utilities_ldr file just calls mbutton to display the menu.

mbutton utilities_mbt -name utilities

The items which have to be displayed inside the menu are defined in the
utilities_mbt file. Each line in the file is an item in the menu. The line can
contain the name which has to be displayed, the loader file or executable
which has to be called, and the searchpath for the file. The file used above is
given here.

install -path flp1_ -name "start program in flp1_"

procon -path $PWSDIR_prg -name "configure (procon) (level2)"

PWconfig -path $PWSDIR_prg -name "configure PROforma/ProWesS"

calc -name "calculator"

multiview -path $PWSDIR_prg -name "file viewer"

global -path $PWSDIR_prg -name "Global Variables"

install -path $PWSDIR_prg -name "install software"

PROGS, Professional & Graphical Software
last edited July 27, 1996

Frequently asked questions
Why is ProWesS not included with the programs which need it ?

ProWesS is a very powerful system. It is distributed as a separate
package because the entire package is quite big. If you would want to
include the ProWesS package with each copy of LINEdesign or
DATAdesign, then you would always need an extra disk.

However, the question is all wrong. It suggests that you consider
ProWesS to be the same as the Pointer Environment. However,
ProWesS does a lot more, it provides more libraries (not just a window
manager), and also includes lots of extra support software for installing
programs, displaying and printing documentation etc. The end result is
that ProWesS allows the software producers to deliver the software to
you cheaper and faster than before. Also, once you get the program,
using it is a lot easier. There is no need to modify the boot file, there is
no need to reset the computer to start the program. Even if you are not a
very experienced QL user, you can still easily multitask all the programs
etc.

Why do ProWesS and the ProWesS applications need installation ?

One of the main goals for ProWesS is to make your computer easier to
use. Since the release of the QL, it was built to multitask several
programs. However, many programs need some extensions to be loaded,
and therefore, many users had no other option but to reset the computer
and boot up with a specific program. It is only once you can modify and
write boot files yourself that this can be solved.

In ProWesS this is no longer true. When you install ProWesS, it can
build a boot file for you. After that, modifying the boot file is never
necessary (though you can customize it a lot, and guidelines for this are
given in the file). Most programs can be started by indicating start
program in flp1_ in the utilities button. Even better, you can install the

applications so that they appear in a button on screen. Using your
computer has never been easier.

How can I print out a manual in ProWesS ?

To print out a manual, you have to start the ProWesS reader. This is
normally possible by indicating read documentation in the applications
button. The ProWesS reader includes a print command which allows
you to print the document which is loaded and all the subdocuments
(when that option is indicated).

To be able to print an entire set of documentation, you should start from
the table of contents file. This is usually called either toc.html or prg-
name.html.

To be able to print a document, a printer driver has to be available. You
can add (and configure) printer drivers in your system by using the
configure PROforma option in the utilities button.

How can I get an update for ProWesS ?

You can get a ProWesS update directly from PROGS or from your local
dealer. When not ordering anything else you probably have to pay
postage and possibly a small handling fee. You have to send your master
disk(s) to get the update.

For registered users, there is also a much quicker way. Updates to
ProWesS are regularly posted on Jochen Merz's BBS. If you are a
registered ProWesS user, you can get access to the ProWesS updates file
area (60). There you can get zip files which contain all the changes since
the full release version. You have to unzip these files on top of your
master disk(s) and then install ProWesS again. The installation options
which should be indicated are update installation and possibly install
documentation if you want the docs to be updated.

We strongly advice to get ProWesS updates regularly. Some ProWesS
applications need fairly recent versions of ProWesS to operate. Also

updates can remove bugs and increase the speed, which is interesting for
all programs.

Why does it take so long for the ProWesS buttons to appear ?

ProWesS is by default configured to precalculate the fonts which are
used in the menus. This takes only a limited amount of memory and
makes sure that windows are always drawn as quickly as possible. This
uses the SYSTEM-FONT-CALCULATED config definition in ProWesS. You
can remove these tags to make sure this delay does not happen, but this
is not adviseable. When the screen fonts are not precalculated, drawing
windows will take a while before the characters are all in the cache. The
drawing can also slow down again after you have printed something (as
the letters cached characters will be replaced).

PROGS, Professional & Graphical Software
last edited March 27, 1997

ProWesS reader
PROGS, Professional & Graphical Software
Dr. Frans Hemerijckxlaan 13 /1
2650 Edegem
BELGIUM
tel : +32 (0)3/ 457 84 88 fax : +32 (0)3/ 458 62 07 e-mail :
joachim@club.innet.be
www : http://www.club.innet.be/~year2827

Introduction
Menu Bar

Back
Load
Reload
Print
Styles
Bookmarks
History

Configuration
Command line options
short HTML guide

Introduction

The ProWesS reader is a program which can display hypertext
documentation. These are text files with some hints about proper display, and
possible links between documents. The file format which is used for this is
HTML, the HyperText Markup Language.

This program is mainly intended for online reading of documents, especially
manuals and help files. However, it can also produce hardcopy of these
documents.

The ProWesS reader is normally used for reading hypertext documents.
These documents often consist of several files, which have links between
them. To be able to fully use hypertext documents, you usually need to start
at the main menu or table of contents. These can usually be found in a file
ending in _toc.html or a file which has the program name as file name (e.g.
this file : reader.html).

Menu Bar

The menu bar is the list of items just below the title bar (which contains the
help, quit and sleep items), and just above the items which display the name
of the document being viewed.

Although it is possible to change all the item names, I will use the default
names for reference. All the items can also be indicated by pressing a key.
The key which should be pressed is the first letter of the (default) item name,
except for bookmarks, which can be indicated by pressing <o>.

Back

The Back items allows you to go back on your tracks. It will redisplay the file
which was being viewed just before this one.

Load

Select the file which has to be displayed. A file select window is displayed to
allow you to make your choice interactively. Please note that the ProWesS
reader can only display HTML hypertext documents. Other files could give
unexpected results.

Reload

This item will load the file which is currently displayed again. This can be
useful when you resized the window (as the line width is not automatically
changed).

More importantly, this allows you to reload the page easily when you are
designing or modifying the contents.

Print

To allow you to read a big part of documentation more easily, you can also
produce proper hardcopy by printing them on your printer. To make things
readable, you should set the fontsize to a value which is suitable for printing.
Values which are often used are eleven (11) or twelve (12), which match the
sizes often used in books.

Of course, the device and printer driver which should be used for printing
can be set. Please note that the ProWesS reader will try to make full use of
the printable area of your printer. To make sure that nothing falls of the edge,
your printer driver should be properly configured.

The ProWesS reader will not just print the document which is being
displayed, but will try to include all subdocuments in the printout (without
duplicates of course). This is done by giving hints when writing the HTML
documents. All references which include the PRINT, REV="toC" or
REL="SUBDOCUMENT" attribute in the reference will be included.

If you want to punch holes in the documents you are going to print, then the
Margin for perforation option should be indicated. This will make sure that a
one inch margin is available at the left side of the page.

Save the trees ! Remember that you can directly reuse a lot of paper by also
printing on the backside of pages which were used at the other side only. This
can save a lot of trees and energy on recycling. Please do not throw used
paper in the bin, but have it recycled, our world has to survive for many
generations to come !

Styles

This menu allows you to change the (high level) style which is used for the
document, like the fontsize which has to be used on screen, and the selection
of fonts. Many more can be changed by configuring the program (see config).

Please note that the typewriter font should be a mono spaced (or fixed width)
font. A lot of documents representation depends on all the characters having
the same width in this font. A typical example of a mono spaced font is the
Courier font family.

Bookmarks

It is possible to define Bookmarks. This is a list of files which you often need,
so that you can jump to them directly. The list of bookmarks is loaded from a
file when the ProWesS reader is started. The name of the bookmarks file can
be configured (see config).

The bookmarks menu contains the bookmarks which can be used and three
items

Add current
This adds the file which is currently displayed to the bookmarks list (at
the bottom). Please note that this can generate duplicates.

Load
This command will display the file select window, so that you can
indicate a new bookmarks file. An error will be reported if the file which
was indicated is not a bookmarks file.

Save
When you indicate this window, a window is displayed in which you
can edit the filename to save the bookmarks file. You can still cancel by
indicating quit or pressing <esc>.
In this window you cannot move the pointer using the cursor keys as
they control the cursor in the edline object. The filename and save action
are confirmed by pressing <enter>.

The bookmarks file is a human readable file. This allows you to load it in an
editor and manually sort or delete items (each line is an item from the
bookmarks list).

History

The History window gives the list of the files which were last displayed. This

allows you to go back to one of the previous files in somewhat larger steps
than by using Back.

Configuration

As could be expected, The ProWesS reader is quite configurable. The things
which are configurable are be divided into three parts.

General options
default window size
page colour scheme (white on black or black on white)
the file which contains the bookmarks
default printer driver
directory with the ProWesS reader documentation

Language options
All the item names and the labels which are used in the ProWesS reader
are configurable.

Stylepage
All the items from the Style menu can be configured here, and much
more. The entire look of documents can be configured. All the sizes etc.
are relative to the body font size. This makes the look scale along nicely
when the fontsize is changed (e.g. when printing).

The body font size can be configured to zero. In that case the ProWesS
default fontsize will be used.

Command line options

reader [-help] [-file filename] [-pos position] [-dir directory]

help
This option indicates that the ProWesS reader is used to display the help
files. In this case the Load and Bookmarks items are not available.

filename
This allows you to pass the name of the file which has to be displayed

when the program starts.
position

The name of the position in the file which should be displayed.
directory

The directory where the file should be searched.

PROGS, Professional & Graphical Software
last edited October 18, 1996

HTML - Hypertext Markup Language
Introduction
Document Structure

Document Element: HTML
Head: HEAD

Title: TITLE
Body: BODY
Headings: H1 ... H6
Block Structuring Elements

Paragraph: P
Preformatted Text: PRE
Address: ADDRESS
Block Quote: BLOCKQUOTE

List Elements
Unordered List: UL, LI
Ordered List: OL
Directory List: DIR
Menu List: MENU
Definition List: DL, DT, DD

Phrase Markup
Idiomatic Elements

Citation: CITE
Code: CODE
Emphasis: EM
Keyboard: KBD
Sample: SAMP
Strong Emphasis: STRONG
Variable: VAR

Typographic Elements
Bold: B
Italic: I
Teletype: TT

Anchor: A
Line Break: BR

Horizontal Rule: HR
Image: IMG

Introduction

HTML is an application of SGML, the Standard General Markup Language.
It has the shape of text which is enriched with extra markup. Two kinds of
markup are possible :

tags
A tag is a name enclosed in angled brackets (< and >).Tags are normally
encountered in pairs, a start tag (just the name in backets), and an end
tag (the name is preceded by a slash (/)).
For example <I>italics</I>.
Tags can also have extra attributes, which can be given after the name,
but before the closing bracket.
Tags which are not recognised are skipped !

entities
To allow access to characters which are not always available in the
standard character set on a computer, and to allow access to reserved
characters (like < and >, see above), entities are also allowed. An entity
denotes character, and has to be given by name. Entities are preceded by
an ampersand, and ended by a semicolon (e.g. © for ©).
For a list of the possible entities, click here.

In HMTL documents, whitespace is mostly skipped. Line breaks which exist
in the source document are translated to whitespace, and all whitespace is just
rendered as one word spacing. This allows you to make the source document
look good, without affecting the final rendering. However, this changes in the
PRE element, which will display preformatted text, and maintains the
organisation the source (see section Preformatted Text: PRE).

Document Structure

An HTML document is a tree of elements, including a head and body,

headings, paragraphs, lists, etc.

Document Element: HTML

The HTML document element consists of a head and a body, much like a
memo or a mail message. The head contains the title and optional elements.
The body is a text flow consisting of paragraphs, lists, and other elements.

Head: HEAD

The head of an HTML document is an unordered collection of information
about the document. For example:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HEAD>

<TITLE>Introduction to HTML</TITLE>

</HEAD>

...

Title: TITLE

Every HTML document must contain a TITLE element.

The title should identify the contents of the document in a global context. A
short title, such as "Introduction" may be meaningless out of context. A title
such as "Introduction to HTML Elements" is more appropriate. (Although the
length of titles is not limited, long titles may truncated in some applications.
To minimize this possibility, titles should be limited to less than 64
characters. The ProWesS reader has a maximum title length of 80 characters).

The ProWesS reader uses the title of a document both in the history list and
as a label for the window displaying the document. This differs from
headings (section Headings: H1 ... H6), which are typically displayed within
the body text flow.

Body: BODY

The BODY element contains the text flow of the document, including
headings, paragraphs, lists, etc.

For example:

<BODY>

<h1>Important Stuff</h1>

<p>Explanation about important stuff...

</BODY>

Headings: H1 ... H6

The six heading elements, H1 through H6, denote section headings. Although
the order and occurrence of headings is not constrained by HTML, it is
advised not to skip levels (for example, from H1 to H3), as converting such
documents to other representations is often problematic.

Example of use:

<H1>This is a heading</H1>

Here is some text

<H2>Second level heading</H2>

Here is some more text.

Typical renderings are:

H1
Bold, very-large font, centered. One or two blank lines above and below.

H2
Bold, large font, flush-left. One or two blank lines above and below.

H3
Italic, large font, slightly indented from the left margin. One or two
blank lines above and below.

H4
Bold, normal font, indented more than H3. One blank line above and
below.

H5
Italic, normal font, indented as H4. One blank line above.

H6

Bold, indented same as normal text, more than H5. One blank line
above.

Block Structuring Elements

Block structuring elements include paragraphs, lists, and block quotes. They
must not contain heading elements, but they may contain phrase markup, and
in some cases, they may be nested.

Paragraph: P

The P element indicates a paragraph. The exact indentation, leading space,
etc. of a paragraph is not specified and may be a function of other tags, style
sheets, etc.

Typically, paragraphs are surrounded by a vertical space of one line or half a
line. The first line in a paragraph is indented in some cases.

Example of use:

<H1>This Heading Precedes the Paragraph</H1>

<P>This is the text of the first paragraph.

<P>This is the text of the second paragraph. Although you do not

need to start paragraphs on new lines, maintaining this

convention facilitates document maintenance.</P>

<P>This is the text of a third paragraph.</P>

Preformatted Text: PRE

The PRE element represents a character cell block of text and is suitable for
text that has been formatted for a monospaced font.

Within preformatted text:

Line breaks within the text are rendered as a move to the beginning of
the next line.
Anchor elements and phrase markup may be used.
Elements that define paragraph formatting (headings, address, etc.) must

not be used.
The horizontal tab character (code position 9 in the HTML document
character set) must be interpreted as the smallest positive nonzero
number of spaces which will leave the number of characters so far on
the line as a multiple of 8. Documents should not contain tab characters,
as they are not supported consistently.

Example of use:

<PRE>

Line 1.

 Line 2 is to the right of line 1. abc

 Line 3 aligns with line 2. def

</PRE>

Address: ADDRESS

The ADDRESS element contains such information as address, signature and
authorship, often at the beginning or end of the body of a document.

Typically, the ADDRESS element is rendered in an italic typeface and may be
indented.

Example of use:

<ADDRESS>

Newsletter editor

J.R. Brown

JimquickPost News, Jimquick, CT 01234

Tel (123) 456 7890

</ADDRESS>

Block Quote: BLOCKQUOTE or BQ

The BLOCKQUOTE element contains text quoted from another source.

A typical rendering might be a slight extra left and right indent, and/or italic
font. The BLOCKQUOTE typically provides space above and below the
quote.

Single-font rendition may reflect the quotation style of Internet mail by
putting a vertical line of graphic characters, such as the greater than symbol
(>), in the left margin.

The ProWesS reader allows you (conforming with HTML3) to shorten the
BLOCKQUOTE tag to BG. Also, the rendition is exactly the same as the
ADDRESS element.

Example of use:

I think the play ends

<BLOCKQUOTE>

<P>Soft you now, the fair Ophelia. Nymph, in thy orisons, be all

my sins remembered.

</BLOCKQUOTE>

but I am not sure.

List Elements

HTML includes a number of list elements. They may be used in combination;
for example, a OL may be nested in an LI element of a UL.

In compliance with HTML3, lists can be provided with a title which is
rendered just before the actual list, typically in a somewhat larger font. A list
should have at most one title, which should should be given before the list
items.

The list header uses the LH element. For example :

<LH>List header</LH>

List item

Another list item

Unordered List: UL, LI

The UL represents a list of items -- typically rendered as a bulleted list.

The content of a UL element is a sequence of LI elements. For example:

First list item

Second list item

 <p>second paragraph of second item

Third list item

Ordered List: OL

The OL element represents an ordered list of items, sorted by sequence or
order of importance. It is typically rendered as a numbered list.

The content of a OL element is a sequence of LI elements. For example:

Click the Web button to open URI window.

Enter the URI number in the text field of the Open URI

window. The Web document you specified is displayed.

 substep 1

 substep 2

Click highlighted text to move from one link to another.

Directory List: DIR

The DIR element is similar to the UL element. It represents a list of short
items, typically up to 20 characters each. Items in a directory list may be
arranged in columns, typically 24 characters wide.

The content of a DIR element is a sequence of LI elements. Nested block
elements are not allowed in the content of DIR elements. For example:

<DIR>

A-HI-M

M-RS-Z

</DIR>

Menu List: MENU

The MENU element is a list of items with typically one line per item. The
menu list style is typically more compact than the style of an unordered list.

The content of a MENU element is a sequence of LI elements. Nested block
elements are not allowed in the content of MENU elements. For example:

<MENU>

First item in the list.

Second item in the list.

Third item in the list.

</MENU>

Definition List: DL, DT, DD

A definition list is a list of terms and corresponding definitions. Definition
lists are typically formatted with the term flush-left and the definition,
formatted paragraph style, indented after the term.

The content of a DL element is a sequence of DT elements and/or DD
elements, usually in pairs. Multiple DT may be paired with a single DD
element. Documents should not contain multiple consecutive DD elements.

Example of use:

<DL>

<DT>Term<DD>This is the definition of the first term.

<DT>Term<DD>This is the definition of the second term.

</DL>

If the DT term does not fit in the DT column (typically one third of the
display area), it may be extended across the page with the DD section moved
to the next line, or it may be wrapped onto successive lines of the left hand
column.

Phrase Markup

Phrases may be marked up according to idiomatic usage, typographic
appearance, or for use as hyperlink anchors.

User agents must render highlighted phrases distinctly from plain text.
Additionally, EM content must be rendered as distinct from STRONG
content, and B content must rendered as distinct from I content.

Phrase elements may be nested within the content of other phrase elements;
however, HTML user agents may render nested phrase elements indistinctly
from non-nested elements:

plain bold <I>italic</I> may be rendered

the same as plain bold <I>italic</I>

Idiomatic Elements

Phrases may be marked up to indicate certain idioms.

Citation: CITE

The CITE element is used to indicate the title of a book or other citation. It is
typically rendered as italics. For example:

He just couldn't get enough of <cite>The Grapes of Wrath</cite>.

Code: CODE

The CODE element indicates an example of code, typically rendered in a
mono-spaced font. The CODE element is intended for short words or phrases
of code; the PRE block structuring element (section Preformatted Text: PRE)
is more appropriate for multiple-line listings. For example:

The expression <code>x += 1</code>

is short for <code>x = x + 1</code>.

Emphasis: EM

The EM element indicates an emphasized phrase, typically rendered as italics.
For example:

A singular subject always takes a singular verb.

Keyboard: KBD

The KBD element indicates text typed by a user, typically rendered in a
mono-spaced font. This is commonly used in instruction manuals. For
example:

Enter <kbd>FIND IT</kbd> to search the database.

Sample: SAMP

The SAMP element indicates a sequence of literal characters, typically
rendered in a mono-spaced font. For example:

The only word containing the letters <samp>mt</samp> is dreamt.

Strong Emphasis: STRONG

The STRONG element indicates strong emphasis, typically rendered in bold.
For example:

STOP, or I'll say "STOP" again!

Variable: VAR

The VAR element indicates a placeholder variable, typically rendered as
italic. For example:

Type <SAMP>html-check <VAR>file</VAR> | more</SAMP>

to check <VAR>file</VAR> for markup errors.

Typographic Elements

Typographic elements are used to specify the format of marked text.

Typical renderings for idiomatic elements may vary between user agents. If a
specific rendering is necessary -- for example, when referring to a specific
text attribute as in "The italic parts are mandatory" -- a typographic element
can be used to ensure that the intended typography is used where possible.

Bold: B

The B element indicates bold text. Where bold typography is unavailable, an
alternative representation may be used.

Italic: I

The I element indicates italic text. Where italic typography is unavailable, an
alternative representation may be used.

Teletype: TT

The TT element indicates teletype (monospaced)text. Where a teletype font
is unavailable, an alternative representation may be used.

Anchor: A

The A element indicates a hyperlink anchor. At least one of the NAME and
HREF attributes should be present. Attributes of the A element :

HREF
gives the URI of the head anchor of a hyperlink. The ProWesS reader
can only access local documents, so this makes the URI quite limited.
You can reference files by giving the filename as value. The file will be
searched in the same directory as the current file. If you want, a position
in the file can also be given. This position is given by name, just after
the filename, separated by a hash (#). For local links, the filename
should be omitted. For example :

external link

local link

position in file

All dots and (back)slashes in the filenames are translated to underscores
by the ProWesS reader. This allows access of external HTML
documents.

NAME
gives the name of the anchor, and makes it available as a head of a

hyperlink.
REL

The REL attribute gives the relationship(s) described by the hyperlink.
The value is a whitespace separated list of relationship names. The
semantics of link relationships are not specified in this document.
The ProWesS reader will include referenced objects in printout if the
REL=SUBDOCUMENT attribute/value pair if found (value is compared
case independant).

REV
same as the REL attribute, but the semantics of the relationship are in
the reverse direction. A link from A to B with REL="X" expresses the
same relationship as a link from B to A with REV="X". An anchor may
have both REL and REV attributes.
The ProWesS reader will include referenced objects in printout if the
REV="toC" attribute/value pair if found (value is compared case
independant).

PRINT
the ProWesS reader also supports an extra PRINT attribute value, which
indicates that the referenced document should also be printed when the
user requests hardcopy of the document.

Line Break: BR

The BR element specifies a line break between words. For example:

<P> Pease porridge hot

Pease porridge cold

Pease porridge in the pot

Nine days old.

Horizontal Rule: HR

The HR element is a divider between sections of text; typically a full width
horizontal rule or equivalent graphic. For example:

<HR>

<ADDRESS>February 8, 1995, CERN</ADDRESS>

</BODY>

Image: IMG

The IMG element refers to an image or icon via a hyperlink.

HTML user agents may process the value of the ALT attribute as an
alternative to processing the image resource indicated by the SRC attribute.

Attributes of the IMG element :

ALT
text to use in place of the referenced image resource, for example due to
processing constraints or user preference.

SRC
specifies the URI of the image resource.

UNITS
Give the unit which is used in the value of the WIDTH and HEIGHT
attributes. The possible values are PIXELS or EN. The default is pixels.
An en is half the point size which is in use. The ProWesS reader also
accepts CW as unit. One cw equals the current width of the column.

WIDTH
Specify the width for the image.

HEIGHT
Specify the height for the image.

In the ProWesS reader, all images are always displayed flush left on a
separate line. To be able to display a picture, there has to be a PROforma
picture type which can recognize and display that picture. When the size to
display the picture is not given, then the picture will get a width of half the
width of the area in which the document is displayed (as if you included
WIDTH=.5 UNITS=CW. If you only specify either the width or the height of the
picture, then the aspect ratio of the picture will be retained. When the
UNITS=EN attribute is given, then one en is half the current fontsize. Because
the ProWesS reader also has to be able to print HTML files properly, the
picture size when given in pixels is approximated by using points (as if you
are running at a resolution of 720 by 540).

Examples of use:

car1_com

car2_com

This document is mostly based on a part of the HTML 2.0 specification
PROGS, Professional & Graphical Software
last edited September 27, 1996

ProWesS loader
PROGS, Professional & Graphical Software
Dr. Frans Hemerijckxlaan 13 /1
2650 Edegem
BELGIUM
tel : +32 (0)3/ 457 84 88 fax : +32 (0)3/ 458 62 07 e-mail :
joachim@club.innet.be
www : http://www.club.innet.be/~year2827

Introduction
Usage
Input File Format
Examples

Introduction

The ProWesS loader is a utility program for ProWesS. It is used to start
applications with full configuration and based on a startup file which can
make sure that all the necessary extensions are installed.

The loader will execute the commands which are given in the startup files.
The commands themselves can either be executable things, or will load them
on the searchpath. The searchpath is also given as parameter to each of the
commands, preceded by '-path'.

If the startup file which has been passed happens to be an executable, then
that program will be executed (without passing any parameters to it).

Usage

loader startup-file [-path path]

startup-file
The program needs one parameter when it is started, the name of the
startup file. Startup files are normally called "startup", or have a name
ending in "_ldr".

path
This option allows you to give the path where the loader file has to be
searched. If you do not tell the program where to look, the file will be
searched first on the data default and then the program default device.

Input File Format

The file format is line oriented. Each line contains a command. However, if
the command and the parameters do not fit on one line, then you can make
sure that the next line is appended by ending the line with a backslash. Empty
lines and lines starting with a percentage sign or a semicolon ('%' or ';') are
discarded as comments. Lines which start with two precentage signs ('%%')
will be used by maintenance programs to customize startup files.

Lines starting with an ampersand ('&'), followed by a program name (not
separated), and then the parameters will execute thing or file with that name
and wait for the result (even the program name can contain spaces when
enclosed in double quotes).

Lines starting with an asteriks ('*'), followed by the name of a startup file (not
separated) will run a different startup file (similar to include, except that the
search path is redetermined (and restored afterwards).

Lines starting with plus sign ('+'), followed by a searchpath will replace the
searchpath by the directory of the startup file, followed by the searchpath
which is given as parameter.

Lines starting with a program name (not separated), and then the parameters
will execute thing or file with that name and wait for the result (even the
program name can contain spaces when enclosed in double quotes).

Some action programs for ProWesS loader
request

Request confirmation from the user (e.g. "change disks").
rext

Load a resident extension, or a program as executable thing (if the
program supports that).

setenv
Set a "Global Variable", similar to environmnent variables on other
systems.

wait
Wait for a thing to be available, or a fixed time (whichever happens
first).

cbutton
Create a button which will load a program when indicated.

mbutton
A program which allows you to indicate from a list, which program has
to be loaded.

Examples

Set an environment variable. The first word is the program which has to be
called. The rest are parameters.

setenv PWSDIR win1_pws

Parameters can contain spaces by enclosing them in quotes. The ProWesS
loader can wait until the program has finished.

&request "Please insert another disk"

Program names can also contain spaces.

"ProWesS reader" -file myfile

Commands and their parameters can be spread over several lines.

request "just to display that multiple" \

 "lines can be used" \

 "indicate OK"

PROGS, Professional & Graphical Software
last edited April 16, 1996

request

Introduction

request is a program to request the user to do or confirm something. The
most typical example is the request a insert a certain disk.

The actual message can be given as parameter. Apart from that, the window
will contain an OK which has to be indicated by the user for the program to
terminate.

Usage

request {line}

line
The given line will be displayed in the request window. Several lines
can be given. If the line contains spaces, then it has to be enclosed in
double quotes ('"'), and the double quotes themselves have to be
doubled.

PROGS, Professional & Graphical Software
last edited January 26, 1996

rext

Introduction

rext is a program to load a resident extension.

Please note that this program is not suitable for loading programs which link
in SuperBASIC extensions. This can only be done by the system !

Usage

rext filename [-path path]

filename
The name of the file which has to be loaded. If no path is given, then file
will be searched on the program default device.

path
A path can be given. The file will be searched on the path given. A path
can include several device_directory combinations, each separated by a
semicolon (';'). A path can also include directories which start with the
name of a "Global Variable".

PROGS, Professional & Graphical Software
last edited January 26, 1996

setenv

Introduction

setenv is a program to set a Global Variable. A Global Variable is somewhat
similar to Environment Variables on some other systems (hence the name).
However, this variant really is global, and can be accessed and changed by
everybody.

Usage

setenv name [value] [-path path]

name
The name of the Global Variable which gets a value.

value
The value for the given name. If the value contains spaces, then it should
be included in double quotes (as usual).

path
If no value is given explicitly, then the given path will be used as value.
This is done to allow the directory which contains a program to be set
automatically (without ever needing configuration) by including setenv
NAME at the very start of the loader file.

PROGS, Professional & Graphical Software
last edited January 30, 1996

wait

Introduction

wait is a program which waits for either a thing to exist, or for a specified
amount of time (whichever occurs first).

Usage

wait [thingname] [-wait period]

thingname
The name of the thing which should exist.

period
Specify the maximum waiting period. The unit is approximately 1/50 of
a second. If no maximum waiting period is given, the program will wait
forever, until the given thing exists.

PROGS, Professional & Graphical Software
last edited January 30, 1996

cbutton

Introduction

cbutton is a program to create a button in the button frame. This button
allows you to start a program (cbutton stands for "Call BUTTON").

If the button frame does not exist, the program will just display a moveable
window. The further operations are the same.

When the item in the cbutton program is indicated by a DO, then a given
program will be started. This is done by starting the ProWesS loader which
will load that program.

If needed, you can make sure that the program asks you to insert the proper
disk before the program is actually started.

To function properly, cbutton assumes that the request and ProWesS
loader executable things are available. These are normally loaded when
ProWesS is started.

Usage

cbutton filename [-path path] [-insert] [-name button-name]

filename
The name of the file which has to be used by the ProWesS loader when
the button is activated. If no path is given, then file will be searched on
the data default device (and then on the program default device).

path
A path can be given. The file will be searched on the path given. A path
can include several device_directory combinations, each separated by a
semicolon (';'). A path can also include directories which start with the
name of a "Global Variable".

insert

When this option is given, the program will ask the user to insert a disk
before it tries to load the program.

button-name
You can explicitly tell the button which name has to be displayed inside
it. If you do not specify the button name, then the filename will be
displayed.

PROGS, Professional & Graphical Software
last edited March 30, 1996

mbutton

Introduction

mbutton is a program which displays a list of "applications" which can be
loaded. If you indicate one of the items, then that item will be loaded, and the
window will be removed.

The list of programs which can be started, comes from a special file which
gives details about the name of the choices, the loader file which has to be
used to start the application, and possibly also a path where the loader file can
be found. If needed, you can also let the program ask for the proper disk to be
inserted.

To function properly, mbutton assumes that the request and ProWesS
loader executable things are available. These are normally loaded when
ProWesS is started.

Usage

mbutton filename [-path path] [-name name] [-wait]

filename
The name of the file which has to be used by the ProWesS loader when
the button is activated. If no path is given, then file will be searched on
the data default device (and then on the program default device).

path
A path can be given. The file will be searched on the path given. A path
can include several device_directory combinations, each separated by a
semicolon (';'). A path can also include directories which start with the
name of a "Global Variable".

name
Give a name to the mbutton program You can explicitly tell the button
which name has to be displayed inside it. If you do not specify the
button name, then the filename will be displayed.

wait
When this option is given, then the mbutton program will not terminate
after starting the ProWesS loader. Therefore, the user can indicate more
than one of the options.

Input file format

Each line in the input file, corresponds with a program which can be selected
in the window. The length of each line is limited to be less than 160
characters.

Each line contains several tokens. Normally each word is a token, but words
can also be grouped by putting them in double quotes. A token which starts
with a dash (-) indicates a flag. If that flag has a parameter, then the next
token is used as that parameter.

Each line should contain a token which indicates the name of the file which is
used by the loader program to start the program. If several tokens exist which
are not flags and not a parameter to a flag, then the last one will be used as
filename.

Several flags are supported by mbutton

-insert
This indicates that the user is asked to insert the proper disk before the
ProWesS loader is started to load the application program. this flag has
no parameter.

-terminate After the loader file has been executed, mbutton will terminate,
even if the -wait flag was passed on the command line.
-path

Specify the path where the ProWesS loader should try to find the loader
file. If this is not given, mbutton defaults to first searching on the data
device and then on the program device.

-name
Specify the name for this program, which has to be displayed in the
menu. If this is not explicitly given, then the filename of the loader file
will be used as application name.

PROGS, Professional & Graphical Software
last edited August 3, 1996

ProWesS calculator
PROGS, Professional & Graphical Software
Dr. Frans Hemerijckxlaan 13 /1
2650 Edegem
BELGIUM
tel : +32 (0)3/ 457 84 88 fax : +32 (0)3/ 458 62 07 e-mail :
joachim@club.innet.be
www : http://www.club.innet.be/~year2827

Calculating
Base Conversions
Configuration

Calculating

The ProWesS calculator allows you to do some simple calculations. You can
type the numbers or indicate them, and add, multiply, subtract or divide them.
The calculations occur in while typing (so precedence rules are not
considered).

The current subtotal is displayed in the display window. The fontsize and
colour of the display window can be configured.

The result can be obtained by pressing <=>, or (if the pointer is not inside an
item) by pressing <enter>.

The display can be cleared by indicating the "Clear" item, or by pressing
<esc>. However, if you press <esc> when the display is already cleared, the
program will be terminated.

It is possible (especially in binary representation) that not all digits of a
number can be displayed in the window, in that case you should resize the

window to make everything visible.

Base Conversions

The ProWesS calculator is also capable of doing base conversions. The base
which is in use is always indicated.

When the base is changed, the value in the display window is converted, and
all items for the digits which can not be used are made unavailable.

Changing base is possible by indicating the item or pressing <x> for
hexadecimal representation, <t> (cfr. ten) for decimal representation or <i>
for binary representation.

Configuration

The ProWesS calculator is very configurable. It contains a configuration
block which allows configuring with any level 2 config program (sorry, there
is no such program which is part of ProWesS just yet, it is possible using the
MenuConfig program which is distributed by Jochen Merz).

The following aspect are configurable :

The names of all the items in the window.
Font, fontsize and colour of the display window.
Directory where the manual (this file) can be found.
Whether the calculator should start full sized or sleeping.
Whether there should be a difference between <enter> and a DO. If
there is a difference, then pressing <enter> will always display the
result, even if the pointer is inside an item.

PROGS, Professional & Graphical Software
last edited March 29, 1996

PROCON, the ProWesS Configuration
program

Introduction
Overview of the window
Loading the INF file
Indicating the files to work on
Learning the settings of all selected files
Updating all selected files
Updating all files in a directory
Configuring a single file
Rules for updating a single file
Rules for learning a single file
Rules for saving a file
Configuring Procon

Introduction

Procon is a configuration program (like Config or Menuconfig) that allows
you to configure all files that have standard configuration blocks, whether
they are 'level 1' or 'level 2'. These configuration blocks contain the
configuration information: the descriptive texts, some other information, and,
of course, the configured values - all of these make up the configuration
items.

Some programs/files have several configuration blocks (e.g. FiFi), others
have only one. Each configuration block has a name, which is supposed to
say something about the configuration items it contains.

For programs that have a "level 2" configuration block, the configuration
values are also stored in a separate file, called 'INF file' (e.g. menuconf_inf).
This allows you to configure a program once, and, if you get a new version of
the program, you can UPDATE the configuration values of the new version
with the values already used in the older version, so that you don't have to go

through the entire configuration proccess again.

Procon can also LEARN the current configuration settings of all your
programs already configured (if they are level 2 programs), so that it will
know them the next time round.

Procon, should be able to handle most, if not all, standard configuration
items. It is executed with a simple EXEC command.

Once you EXEC'd the program in the normal way, it will draw its windows:
you can see several items, and two menus, which are empty at first. Procon
needs the QLiberator runtimes to be loaded.

Overview of the window

At the top, you have the menu bar, containing the "Save", "Back" and 'Help'
items, the name of the program and the "Quit", "Sleep" and "About" items.
The use of the latter three is obvious and will not be mentioned further.

Further down comes a line where you can indicate the name of the INF file,
and the "Write" item to write the INF file back if it has changed.

Underneath is a row with the four main items, which are are "Update",
"Learn", "Config" and "Files". What they do exactly often depends on the
context.

Finally, there are two menus. We shall call the menu to the left the left menu
and the menu to the right, the right menu. Yes, I know, this is quite a feat of
imagination.

Loading the INF file

You should first of all load the "INF" file, i.e. the file that contains the
configuration information. Generally, this will be called "MenuConf_inf" or
"Procon_inf" in the Prowess_prg_ directory.

You can work without loading this file since it isn't useful for level 1

programs. Unless you do load it, however, you can't use the Update and
Learn items: they stay unavailable until a valid INF file was loaded or
created.

To load this file, indicate the "Inf file" item (selection key: 'I'). This pulls
down the fileselect window where you can select the file.

If you do not have an INF file yet, and wish to create one, just type in the file
name of the future INF file in the fileselect object. If the file doesn't exist,
you will be asked whether you want to create this file. OK will create it, ESC
abandons this.

Do not give the name of an existing file that is not an INF file - there is no
way to check whether a file is really an INF file or not. If you give the name
of an existing file, it is presumed that this is the name of an INF file in the
correct format! The program may crash if this assumption turns out to be
incorrect.

The program can also automatically load the INF file that you have
configured (see below - Configuration).

Indicating the files to work on

Normally, once you have loaded an INF file, you will attempt to configure
one or several files. One of the advantages of Procon is that it allows you to
act on several files automatically at the same time.

Thus, once the INF file is loaded, you must indicate on which file(s) you
wish to operate. This is done, not surprisingly, with the "Files" item, which
lets you select one or several files. The names of the files chosen will be
displayed in the left menu. As you can see, all of these files are already
selected.

You can now do several things with these files: you can update all or some of
them, you can learn the settings of all or some of them, or you can configure
only one of them.

Learning the settings of all or some of the selected files

You might now want to learn the configuration values of some or all of the
files. This is done simply by indicating some or all of the files in the left
menu, and then hitting the learn item. Procon then learns all the configuration
values as they are currently set in these files. The INF file is then
automatically written out, so that these values are preserved for future use.

Updating all or some of the selected files

As mentioned above, updating means taking the configuration values as they
are already configured in the INF file, and setting these values in the file.
This is useful for new versions of older programs, where you want to be sure
that the new version is configured exactly like the older version.

Indicating Update will update all of the selected files. This is why all of the
files are already selected. If you do not wish to update one of these files,
please deselect it before you Update.

If you update some or all files, the updated files are automatically saved (i.e.
overwritten) with the new, updated version. This is done according to the
rules for saving files.

Sometimes, when updating a file, Procon will notice that the program being
updated contains some new configuration items, which are not yet in the INF
file (and which it thus can't update, of course). It will then tell you that there
are some new configuration items, and ask you whether it should learn them.
If yes, it learns these values as they currently are set. This also warns you that
you might want to configure this file explicitly, to search for the unknown
configuration items and set values which suit you (don't forget to learn them
afterwards!).

Updating all files in a directory

There is also a possibility to update all files contained in a directory: If you
start Procon and pass it a directory name in the command line (eg. EX

_procon_obj;"my_dir") Procon will automatically update all updatable files
in that directory. Please note that the INF file must be found in the file that is
preconfigured within Procon. You can configure Procon itself so that it
automatically quits once it has configured all (configurable) files in the
directory (see below, Configuration).

When doing this, Procon will NOT warn you if some files have new
configuration items, which are not yet in the INF file, but it doesn't Learn
these new values, either.

If you just EXEC Procon and pass it the string "/a", it will automatically
update all programs/files found in the preconfigured directory.

Procon does NOT recurse into subdirectories.

Configuring a single file

Once you have selected several files to work on, you can also choose to
configure one single file of these. Indicating the Config item will let you
configure the first file selected in the left menu. Procon will then change the
content of the left menu and use it to display "FILE INFORMATION", i.e.
the name(s) of the configuration block(s) of this file. If you want to go back
to the list of files, hit the "Back" item (selection key: 'B'). (When going back,
the file that you just configured will be deselected, so that you can hit Config
again for the first file selected etc...)

The configuration information of the first configuration block will also be
displayed in the right menu.

You can now choose any configuration block simply by indicating it. The
configuration items of this block will then be displayed in the right menu, and
indicating any of these items will bring up a further window which allows
you to set the configuration value for this item.

The UPDATE and LEARN items become available if the file contains level 2
configuration blocks - if it contains level 1 blocks, you cannot update or
learn. The updating and learning here are done according to the following

rules:

Rules for updating a single file

The Update item has the following functions, which depend on where exactly
you are when you try to update:

If no configuration block is selected in the left menu, then this updates
all the configuration blocks of this file. It does not save the file
automatically. You can save the file with the "Save" item.
If one or several configuration blocks are selected in the left menu then
Procon updates only the blocks selected. It does not save automatically.
You can save the file again with the "Save" item.

It may happen that, when updating, there are some new configuration
options. You will be told when this happens - in this case you should later
configure the program again, to configure (and learn) the new configuration
items.

Rules for learning a single file

Learning is when the software takes the configuration settings in the program
from which it learns, and incorporates them in the INF file, so that they may
later be used for updating. Learning must ALWAYS be done explicitly.
Simply configuring a program is not enough. The learn item has the
following functions, which depend on where exactly you are when you try to
update:

If no configuration block is selected in the left menu, then Procon learns
from all the configuration blocks of this file. It does not write out the
INF file automatically. You can do that with the "Write" item.
If one or several configuration blocks are selected in the left menu then
Procon learns only from the blocks selected. It does not write out the
INF file automatically. You can do that with the "Write" item.

For compatibility reasons, Procon uses the same type of INF file as

MenuConfig. One small pitfall of this is that an INF file can only hold the
configuration information of a determined and finite number of configuration
items. It can thus happen that, whilst learning, the program comes up with an
error, telling you that you have reached the upper limit of items in the INF
file. If that happens, you should write the INF file out, choose a new INF file
and relearn all of the items of the program that was being learned whilst this
happened.

Rules for saving a file

The save item works as follows: if you are configuring a determined file, it
saves only that file. If not and you have selected some filenames in the left
menu, indicating the Save item saves all the files that are selected.

Some files are a bit special: they contain a special marker within them, which
tells a configuration program such as Procon that they may be saved without
the configuration blocks. After all, once you configured the program you
shouldn't need the configuration blocks (and the description texts etc) any
more, you only need the configured values themselves. Saving the files
without the configuration details means that the files will be smaller, but they
cannot be configured again later (consequently, never use this option on an
original, ALWAYS on a copy)!

Procon notices this special marker, and, where applicable, it will ask before
saving whether you wish to save the file without the configuration details. If
you say 'no', the file will be saved normlly. If you say yes, you will be given
the chance to give a new name to the file, to make sure that you don't
overwrite a valuable orginal!

This feature is disabled when Procon updates all files in a directory since you
probably don't want it to pop up a window and aks you questions during such
an automatic update.

Configuring Procon itself

Procon itself is also configurable:

You can set the default directory where your programs are. This is
preconfigured to $PWSDIR_prg_, which is ususally the ProWesS
program directory.
You can set the default name of the _inf file, and whether this should be
loaded automatically on startup. Procon comes preconfigured so that the
_inf file Procon_inf is to be found the the $PWSDIR_mine_ directory
and is loaded automatically.
Procon can stay after configuring a whole directory: Normally, if you
pass a Directory to Procon when you invoke it (i.e. EX
Procon;'win1_whatever_'), Procon will automatically UPDATE all
programs in that directory and then quit - unless you configure it to stay.
Procon uses a fixed length string for the descriptions/options in its right
menu. You can set the length of this string: 40 is OK for a small
window, 80 for a big window. Procon will try to make its window big
enough to contain the longest string in the right hand menu. The preset
value is 54.

last modified on 20.6.97

Procon is copyright (c) W. Lenerz 1996

PFconfig
PROGS, Professional & Graphical Software
Dr. Frans Hemerijckxlaan 13 /1
2650 Edegem
BELGIUM
tel : +32 (0)3/ 457 84 88 fax : +32 (0)3/ 458 62 07 e-mail :
joachim@club.innet.be
www : http://www.club.innet.be/~year2827

Introduction
Add driver
Configure printer driver
Default printer selection
Memory options
Fonts, add from directory
Search directory for fonts
Make changes permanent

Introduction

PFconfig is a program which allows you to fully configure PROforma. The
main use is for adding printer drivers or fonts to your system, selecting what
the default printer driver is, and to allow you to configure the printable area
for your printer.

PFconfig automatically reads the normal config file for PROforma, which is
used when your system is booted. When you make a change, then it is
effective immediately. You then also get the possibility to make sure the
changes you made will also be effective the next time your system boots up.

When PFconfig starts, you have a few options of things which can change.
When you indicate such an item or press the first letter of the description,

then you can change that aspect of your PROforma configuration. The item to
make the changes permanent is only available when something has been
changed.

Add driver

You can add new printer, picture and bitmap drivers using this option. A
fileselect window will be displayed. In this window you can indicate all the
files you want to add in your system.

When you want to save the changes made in this option, then the directory
will be added in the searchpath for the drivers, and the drivers themselves are
added to the list of drivers. PFconfig will make sure that there are no drivers
which are loaded twice and that directories don't occur twice in the
searchpath.

Please note that a different driver may be loaded than expected if drivers with
the same filename occur in several directories which are in the searchpath for
drivers.

Available drivers

printer drivers

QVME_pfd : the standard screen driver. This is loaded by default.
LaserJet4_pfd : HP LaserJet 4 driver. Use this if your printer accepts it
(it might even work on some newer DeskJets).
Stylus_pfd : Epson Stylus printer driver. Use this on any ESC/P2 printer.
StylusColour_pfd : Epson Stylus Colour driver. Uses ESC/P2 in colour.
DeskJet_pfd : simple HP DeskJet driver. For newer models, use the
DeskJet 500 driver, or even (if it works) the LaserJet 4 driver.
DeskJet500_pfd : HP DeskJet 500 printer driver. Uses better
compression than the ordinary DeskJet driver.
LaserJetIII_pfd, LaserJetII_pfd, LaserJet_pfd : HP LaserJet printer
drivers. These support a different set of support commands and

compression. Use the driver with the highest number which works.
Epson9_pfd : ESC/P printer driver for Epson compatible 9 pin printers.
Epson24_pfd : ESC/P printer driver for Epson compatible 24 pin
printers.
NecP5_pfd : printer driver for the Nec P5 24 pins printer. The P5 has a
different command which is used for vertical spacing, which allows the
use of high (360 dpi) resolution).
bj10_pfd : Canon BJ-10 printer driver. This should also work on other
Canon BJ-xxx printers.
monopic_pfd : printer driver which writes the file to a monochrome
pointer environment _pic file. The driver produces output at 288 dpi.
You have to specify the filename as the printing device (there is no
default). This driver can only output one page.
fax_pfd : printer driver which writes to a file (name passed as device,
always overwritten). The file which is produces is a g3 fax file which
can be sent using Qfax. The core routines of this driver have been
supplied to us by Jonathan Hudson (thanks for that).

picture drivers

QLscr_pfd : picture driver which allows the display of standard QL
screens, pointer environment _pic pictures (2, 4 and 8 colour) and The
PAINTER compressed pictures.
LINEdesign_pfd : allows the display of LINEdesign v2 pictures.
sprite_pfd : picture driver for mode 4 sprites. This driver has to be
loaded if you want to display sprites in your program. This driver is
written and copyrighted by Wolfgang Lenerz. Sprite filenames have to
end in "_sp4" to be recognized automatically.
gif_pfd : picture driver to display gif files.

bitmap drivers

mono_pfd : monochrome bitmap driver. This is used by all the printer
drivers, and is loaded by default. It also contains bitmap drivers for
multi-plane bitmaps (three and four planes).
mode4_pfd : mode 4 bitmap driver. This support bitmaps which are

composed as the standard mode 4 screen. It is used by the QVME screen
driver, and loaded by default in PROforma.

Configure printer driver

This allows you to configure a printer driver so that the margins on the page
are as small as possible without using extra paper, and that the coordinates on
screen match the coordinates on paper.

To start, you have to indicate the printer driver which has to be configured.
Configurations are always for all the resolutions which are available in one
printer driver, so we advice you to choose the highest resolution driver which
is available, so as to prevent duplication and overwriting.

When you have selected the printer driver which is to be configured, you get
a window which display the name of the driver, the default printing device
and the page size which is read from the driver. Unfortunately, PFconfig is
not capable of determining what the default device is. To aid you, you can
choose the unit which is to be used as metric for the page size and the width
of the margins.

At the bottom of the window there are also two rows of items. The first row
indicates some default paper size which can be used to set the paper size (and
clear the margins). This can be useful when trying to determine the proper
settings.

At the bottom row you get some extra items. Get can be used to re-read the
current settings from the printer driver. It acts as some kind of cancel. You
can also set the imageable area and default driver of the printer driver to the
values which are indicated int he window. The try item allows you to test the
current configuration of the printer driver.

How to configure your printer driver

The easiest way to configure your printer driver consists of the following
steps :

Set the default device, which is the device your printer is attached to.
This is normally either pard or ser1hr.
Indicate the paper size which you will use (e.g. A4).
Indicate Set and Try. A page will be printed which contains some
horizontal and vertical lines. The page also indicates the (normal)
distance of these lines with the left/top margin.
The width of the page should be set to the length of the horizontal lines.
The height of the page should be set to the length of the vertical lines.
The margins should be set to the difference between the actual position
of the lines and the position which is indicated on the page.
Set should again be indicated to make the proper configuration effective.

It is adviseable that the configuration is tested a few times to make sure that
possible differences when feeding the paper can be resolved.

Default printer selection

A window is displayed which displays all the printer drivers which are
available in PROforma. You can indicate the printer drivers you want to use
as your default driver.

Memory options

It is also possible to configure how PROforma should allocate memory and
how much memory should be used for caching. This item will display a menu
with the following items.

Max/min memory for Gstate

This allows you to set the maximum amount of memory which PROforma is
allowed to use as buffer to render a page. You can also specify a negative
amount, in which case at least that amount of memory has to remain free
when allocating the buffer.

This item can also be indicated by pressing <m>. The amount are given in
bytes.

Size of fontcache

To allow PROforma to display characters as fast as possible, PROforma uses
a fontcache. This is a place where characters which have been rendered once
are stored to make sure that the image doesn't have to be recalculated each
time.

You can set the size of the fontcache. The default is 64kB (65536 bytes),
which should be good for most applications. When you haven't got much
memory in your system, you could reduce this number (even to zero).

This item can also be indicated by pressing <s>. The amount are given in
bytes.

Number of fonts in cache

No matter how big the fontcache is, only a limited number of font/size
combinations can be stored in the cache. You can determine what the
minimum number of these pairs is. For each Gstate which is open, one extra
font/size combination is possible in the fontcache.

Each font/size combination takes about 1.5kB, so you should not make this
number too big. On the other hand, when a large fontcache is used, it is
adviseable to increase this number as well.

This item can also be indicated by pressing <n>.

Colour cache size

To make switching between colours as fast as possible, PROforma also uses a
colour cache. Each Gstate which is opened will allocate some memory in
which several colour patterns can be stored. The size of the colour cache is
specified as the number of colours which are cached.

This item can also be indicated by pressing <c>.

The colour cache can cause a very large speed increase for some operations.
The most important example being the drawing of pictures. The value is
restricted to be between one and 256. The default value is 8. If you often use
pictures which contain more colours, than it is a good idea to set the colour
cache to at least that number.

Note that the pure black and pure white are never stored in the colour cache.

Fonts, add from directory

This option allows you to add fonts to PROforma so that they can be used in
your programs. When the item is indicated, a fileselect window is displayed.
In this window you have to indicate the font files which you want to be able
to access. These fonts will then be made available to PROforma when you
indicate do.

When the fonts are added in PROforma, the directory where the fonts were
found are automatically also added in the searchpath for fonts. The fonts
themselves will only be added if no other font with the same name exists.

Search directory for fonts

This menu opion allows you to add extra directories to the searchpath for
fonts. All you have to do is type the name of each directory you want in the
path, pressing <enter> after each directory. Tou leave the window, press
<escape>.

PFConfig will automatically make sure that the searchpath does not contain
any duplicates.

Make changes permanent

This option will overwrite the existing PROforma_cfg file. It will be replaced
by a new file with the info from the previous file, and the changes which
have been made.

PROGS, Professional & Graphical Software
last edited December 11, 1996

THE ProWesS AND PROforma
CONFIGURATOR
This program can be used to edit the ProWesS and PROforma Configuration
files.

First give the program the filename of the configuration file, either by hitting
the filename item, and then editing it, or by doing the filename item and
selecting the filename from the standard file selector. The file must have the
line "% configuration file for ProWesS" as its very first line if it is a
ProWesS file, or "; PROforma, PROGS Font & Raster Manager, fontmap
config file" if it is a PROforma file, else it will not be recognized as a valid
Configuration file, and the program refuses to load it.

The program automatically recognises whether it is a ProWesS or PROforma
configuration file, and the item top left reflects that.

Every line in the file -including comments- is displayed. You can edit each
line in turn, except for empty lines, which cannot be edited at all. As soon as
you have edited a line, this is passed on to the ProWesS or PROforma
internal configurator, for the change to take effect immediately. You can also
save the file back, overwriting the older file without any sort of confirmation
request.

If you want to get rid of an option altogether, the best way to achieve this is
to add a semicolon in front. This way, the option stays in the file and can be
reactivated later, but is not taken into account by the ProWesS and PROforma
internal configurators.

The "Add" item lets you add a new line to the file. There cannot be more than
200 lines.

This program was written with the ProWesS SBasic Interface, and then
compiled with QLiberator. There are two versions on the disk - with and
without the QLiberator runtimes.

defines for PW_TYPE_APPLIC
APPLIC-SCROLLBAR-LEFT

This constant indicates that the vertical scrollbar has to be displayed to
the left of the canvas when present.

APPLIC-SCROLLBAR-RIGHT
This constant indicates that the vertical scrollbar has to be displayed to
the right of the canvas when present. This is the default.

APPLIC-SCROLLBAR-ABOVE
This definition constant indicates that if a horizontal scrollbar has to be
displayed, it is to be positioned above the canvas which can be scrolled.

APPLIC-SCROLLBAR-BELOW
This definition constant indicates that if a horizontal scrollbar has to be
displayed, it is to be positioned above the canvas which can be scrolled.
This is the default position.

PROGS, Professional & Graphical Software
last edited April 10, 1996

defines for PW_TYPE_DIRSELECT
DIRSELECT-DEVICE

Set a device which should be displayed by each directory select window
as an easy to select option to change devices (e.g. "win1_", "flp2_",...)

DIRSELECT-DIRECTORY
Set a directory (including device) which should always be displayed by
each directory select window as an easy to select directory. It will be
displayed in the window which also lists the subdirectories.

PROGS, Professional & Graphical Software
last edited February 7, 1996

defines for PW_TYPE_EDLINE and PW_TYPE_DEDLINE
EDLINE-INK-COLOUR

Define the RGB colour in which the text in edline objects has to be
displayed.

EDLINE-PAPER-COLOUR
Define the RGB paper colour of the edline objects.

EDLINE-FONT
Set the PROforma font which should be used by the edline objects.

EDLINE-FONTSIZE
Set the fontsize in PROforma points which should be used for the text in
edline objects.

EDLINE-MAXLENGTH
Set the default maximum length for the text in edline objects. By default
his is 256 (including ending '\0').

EDLINE-ITEMWIDTH
Set the default minimum size of the edline objects in PROforma points.
By default this is 120 (1/6 of the width of the screen).

EDLINE-ALWAYS-TYPE
This allows you to choose which type of edline should be used. By
default, there is a difference between a notmal and a direct edline, but
this can be changed. This definition needs a number as parameters.
Three values are allowed, 0 (zero) for the default case. When the
paremeter is 1 (one), then normal edlines are always used (even when
creating a direct edline). When the parameter is 2 (two), then you will
always use direct edlines (even when creating the normal variant).

PROGS, Professional & Graphical Software
last edited February 12, 1997

defines for PW_TYPE_INFOSTRING
INFOSTRING-INK-COLOUR

Define the RGB colour in which the text in infostring objects has to be
displayed.

INFOSTRING-PAPER-COLOUR
Define the RGB paper colour of the infostring objects.

INFOSTRING-FONT
Set the PROforma font which should be used by the infostring objects.

INFOSTRING-FONTSIZE
Set the fontsize in PROforma points which should be used for the text in
infostring objects.

PROGS, Professional & Graphical Software
last edited February 7, 1996

defines for PW_TYPE_INFOTEXT
INFOTEXT-INK-COLOUR

Define the RGB colour in which the text in infotext objects has to be
displayed.

INFOTEXT-PAPER-COLOUR
Define the RGB paper colour of the infotext objects.

INFOTEXT-FONT
Set the PROforma font which should be used by the infotext objects.

INFOTEXT-FONTSIZE
Set the fontsize in PROforma points which should be used for the text in
infotext objects.

PROGS, Professional & Graphical Software
last edited February 7, 1996

defines for PW_TYPE_iTEM
ITEM-BORDER-COLOUR

Define the corlour which should be used for the border around the
(current) item. The colour is given as an RGB colour, so by specifying
the red, green and blue components. This will default to the default
middleground colour.

SYSTEM-BACKGROUND-COLOUR
Set the RGB colour which should be used to remove the border around
the current item. By default, the global background colour is used when
this is not defined explicitly.

ITEM-BORDER-WIDTH
Set the width of the border which should be displayed. The value is
given in PROforma coordinates, so with a virtual screen size of 720 by
540.

PROGS, Professional & Graphical Software
last edited June 6, 1996

defines for PW_TYPE_LABEL
LABEL-INK-COLOUR

The RGB Colour which has to be used to display the label name. The
ProWesS middleground colour will be used as default when not defined.

LABEL-FONT
Set the font to display the label name. The ProWesS default font will be
used when not defined.

LABEL-FONTSIZE
Set the fontsize to display the label name. The ProWesS default fontsize
will be used when not defined.

PROGS, Professional & Graphical Software
last edited April 11, 1996

defines for PW_TYPE_LISTSELECT
LISTSELECT-ARROW-COLOUR

Set the colour (RGB) which should be used for the arrow which is
displayed in the listselect item. When not specified, the default
middleground colour is used.

LISTSELECT-ARROW-SIZE
Set the size for the arrow which is displayed in the listselect item.

PROGS, Professional & Graphical Software
last edited May 8, 1997

defines for PW_TYPE_LOOSE_ITEM
LOOSE-ITEM-AVAILABLE-INK-COLOUR

Set the RGB colour to display the text in the item when the item is
available.

LOOSE-ITEM-UNAVAILABLE-INK-COLOUR
Set the RGB colour to display the text in the item when the item is
unavailable.

LOOSE-ITEM-SELECTED-INK-COLOUR
Set the RGB colour to display the text in the item when the item is
selected.

LOOSE-ITEM-AVAILABLE-PAPER-COLOUR
Set the RGB colour for the background in an available loose item.

LOOSE-ITEM-UNAVAILABLE-PAPER-COLOUR
Set the RGB colour for the background in an unavailable loose item.

LOOSE-ITEM-SELECTED-PAPER-COLOUR
Set the RGB colour for the background in a selected loose item.

LOOSE-ITEM-FONT
Set the font which has to be used to display the text inside the loose
item. If this is not defined, the ProWesS default font is used.

LOOSE-ITEM-FONTSIZE
Set the fontsize to display the text. When this is not defined, the
ProWesS default fontsize is used.

LOOSE-ITEM-AUTOREPEAT-TIMEOUT
Set the timeout value for the test for autorepeat.

PROGS, Professional & Graphical Software
last edited June 11, 1996

defines for PW_TYPE_MENU
MENU-BORDER-WIDTH

Set the width of the border which should be displayed around the current
item. The value is given in PROforma coordinates, so with a virtual
screen size of 720 by 540.

MENU-AVAILABLE-INK-COLOUR
Set the RGB colour to display the text in the item when the item is
available.

MENU-UNAVAILABLE-INK-COLOUR
Set the RGB colour to display the text in the item when the item is
unavailable.

MENU-SELECTED-INK-COLOUR
Set the RGB colour to display the text in the item when the item is
selected.

MENU-AVAILABLE-PAPER-COLOUR
Set the RGB colour for the background in an available loose item.

MENU-UNAVAILABLE-PAPER-COLOUR
Set the RGB colour for the background in an unavailable loose item.

MENU-SELECTED-PAPER-COLOUR
Set the RGB colour for the background in a selected loose item.

MENU-FONT
Set the font which has to be used to display the text inside the loose
item. If this is not defined, the ProWesS default font is used.

MENU-FONTSIZE
Set the fontsize to display the text. When this is not defined, the
ProWesS default fontsize is used.

MENU-PAPER-COLOUR
Define the colour which should be used as background colour inside the
menu. This will default to the system background colour.

MENU-INK-COLOUR
Set the colour which should be used to display the items inside the
menu. This defaults to the system foreground colour.

MENU-BORDER-COLOUR
Set the colour which is used to display the border around the current
item. The default value is the system middleground colour.

MENU-DISPLAY-ROWS

Indicates whether the items should be displayed by row or by column.
The default is by column. The value is either "true" or "false".

PROGS, Professional & Graphical Software
last edited June 10, 1997

defines for PW_TYPE_SCROLL
SCROLL-ARROWS-LEFT

Make sure that the scroll arrows are always displayed to the left of the
scroll bar in horizontal scroll objects.

SCROLL-ARROWS-RIGHT
Make sure that the scroll arrows are always displayed to the right of the
scroll bar in horizontal scroll objects.

SCROLL-ARROWS-ABOVE
Make sure that the scroll arrows are always displayed above the scroll
bar in vertical scroll objects.

SCROLL-ARROWS-BELOW
Make sure that the scroll arrows are always displayed below the scroll
bar in vertical scroll objects.

SCROLL-BAR-MARGINWIDTH
Specify the marginwidth which is used inside the scroll arrow. This
margin is always visible around the bar which indicates the visible area.

SCROLL-ARROW-SIZE
Define the size of the scroll arrows. The size is given in pt (PROforma
coordinates).

SCROLL-ARROW-COLOUR
Define the colour of the scroll arrows. The colour is given by specifying
the RGB components. When not specified, the default ProWesS
foreground colour is used.

SCROLL-BAR-BACKGROUND-COLOUR
Set the RGB colour which is used as background in the scrollbar. If this
is not defined, then the ProWesS default background colour is used.

SCROLL-BAR-COLOUR
Set the RGB colour which is used to display the current size and
position of the visible area in the scrollbar. This colour is also used to
display the scroll arrows. If this colour is not defined, then the ProWesS
default middleground colour is used.

PROGS, Professional & Graphical Software
last edited April 11, 1996

defines for PW_TYPE_SEPARATOR
SEPARATOR-COLOUR

Set the colour to be used by separator objects and containers. The
parameter is an RGB colour, where each component is specified as a
percentage. When this colour is not defined, the ProWesS middleground
default colour will be used.

SEPARATOR-THICKNESS
Set the thickness of the separator and container objects. The parameter is
given in PROforma coordinates. The thickness is always at least one
pixel, even if the parameter was zero.

PROGS, Professional & Graphical Software
last edited April 11, 1996

defines for ProWesS system
SYSTEM-SHADOW-RIGHT

Defines the width of the shadow at the right of the window, in pixels.
SYSTEM-SHADOW-BOTTOM

Defines the width of the shadow below the window, in pixels.
SYSTEM-BORDER-WIDTH

Defines the width of the width of the border, in pixels.
SYSTEM-BORDER-COLOUR

Defines the border colour, in device colour.
SYSTEM-SCALEBORDER-WIDTH

When a window can be moved or scaled, then the border is extended
with the scaleborder. This is the area which has to be indicated to initiate
a move or scale. The scaleborder is surrounded by the normal border.
The value is in pixels.

SYSTEM-SCALEBORDER-COLOUR
Colour for the scaleborder, in device colour.

SYSTEM-PREVIEW-MOVE
Should the new position of the window be previewed when moving,
'true' or 'false'.

SYSTEM-PREVIEW-SCALE
Should the new size and position of the window be previewed while
scaling, 'true' or 'false'.

SYSTEM-PREVIEW-TIMEOUT
Set the timeout value which should be used when a preview should be
given of the window during window move or scale. The default value is
10. The unit is ticks. There are between 50 and 72 ticks a second
(depending on your system and country). If the window should be
previewed (as set by SYSTEM-PREVIEW-MOVE and SYSTEM-
PREVIEW-SCALE), then a preview will be shown at the requested
interval.

SYSTEM-LOAD-RESIDENT-FONT
ProWesS types may use PROforma fonts to display text. To make sure
that fonts don't have to be reloaded all the time, they can be kept resident
by specifying the name as parameter. This becomes essential when the
fonts have to be loaded from disk. The fonts will be loaded when
ProWesS is started. If they have to be loaded later, errors may occur.

However, the types will probably not report these and just continue.
SYSTEM-FONT-CALCULATED

Make sure that the given font is always available and that the characters
are pre calculated at the given size. This allow maximum speed when all
the often used combinations are available, as the character never have to
be rendered. This will take up some memory though (the pre-calculated
glyphs are not stored in the cache to make sure they are never released).
You first have to pass the size, and then the fontname, e.g.

SYSTEM-FONT-CALCULATED 10 Goudy Old Style

SYSTEM-SCROLL-DISTANCE
Set amount which should be scrolled for windows which are bigger than
the screen (or bigger than the primary). The parameter should be a value
in PROforma coordinates.
For each application, the scrolling distance is limited to at most 3/4 of
the window size in that direction.

SYSTEM-DRAGTEST-TIMEOUT
Timout value which should be used for testing whether a hit/do or drag
action occurs. If this is too small, then some hit or do events could be
interpreted as dragging. If it is too high, then the response to a hit or do
may be sluggish.

SYSTEM-BACKGROUND-COLOUR
Set the background colour of the window, given as a device independent
RGB colour, where 100 100 100 is white, 0 0 0 is black, 100 0 0 is red,
0 100 0 is green and 0 0 100 is blue. This value is also used by many
ProWesS types as default background colour.

SYSTEM-FOREGROUND-COLOUR
Set the default ProWesS foreground colour. This is used by many
ProWesS types as default colour. It is typically used to as colour to
display important information. The colour is given by specifying the
RGB components.

SYSTEM-MIDDLEGROUND-COLOUR
Set the default ProWesS middleground colour. This is used by many
ProWesS types as default colour. It is typically used to as colour to
display guidelines etc. These thing which are not really important, but
are displayed to make the window look better and make the programs
easier to use.

SYSTEM-FONT
Set the font which should be used by default by the ProWesS types (and
possibly also by some applications).

SYSTEM-FONTSIZE
Set the default fontsize which should be used by the ProWesS types (and
possibly also by some applications).

PROGS, Professional & Graphical Software
last edited December 27, 1996

defines for PW_TYPE_TITLE_ITEM
TITLE-ITEM-INK-COLOUR

Set the ink colour which is used to display the title in the title item. As
normal, the colour is specified by the RGB components. If the ink
colour is not specified, the ProWesS default foreground colour is used.

TITLE-ITEM-SURROUND-COLOUR
Set the colour which is used as "border" around the title string. The
colour is given by stating the percentages of the RGB components. By
default the ProWesS middleground colour is used when no colour is
explicitly given.

TITLE-ITEM-PAPER-COLOUR
Set the colour which is used as background under the title string. The
ProWesS default background colour is used when no specific value has
been assigned.

TITLE-ITEM-FONT
Set the font which should be used for the title name. If no value is given,
the ProWesS default font is used.

TITLE-ITEM-FONTSIZE
Set the fontsize (in points) to be used for displaying the title string. If
this definition constant is not passed, then the ProWesS default fontsize
will be used.

PROGS, Professional & Graphical Software
last edited April 11, 1996

Proposed Entities
HTML references the "Added Latin 1" ENTITY set, which only supplies
named entities for a subset of the non-ASCII characters in [ISO-8859-1],
namely the accented characters.The following entities are supported by the
HTML reader and can only be referenced symbolically.The names for these
entities are taken from the appendixes of [SGML].

ENTITY nbsp " " -- no-break space
ENTITY iexcl "¡" -- inverted exclamation mark ¡
ENTITY cent "¢" -- cent sign ¢
ENTITY pound "£" -- pound sterling sign £
ENTITY curren "¤" -- general currency sign ¤
ENTITY yen "¥" -- yen sign ¥
ENTITY brvbar "¦" -- broken (vertical) bar ¢
ENTITY sect "§" -- section sign ¦
ENTITY uml "¨" -- umlaut (dieresis) §
ENTITY copy "©" -- copyright sign ©
ENTITY ordf "ª" -- ordinal indicator, feminine ª
ENTITY laquo "«" -- angle quotation mark, left «
ENTITY not "¬" -- not sign ¬
ENTITY shy "­" -- soft hyphen
ENTITY reg "®" -- registered sign ®
ENTITY macr "¯" -- macron ¯
ENTITY deg "°" -- degree sign °
ENTITY plusmn "±" -- plus-or-minus sign ±
ENTITY sup2 "²" -- superscript two ²
ENTITY sup3 "³" -- superscript three ³
ENTITY acute "´" -- acute accent ´
ENTITY micro "µ" -- micro sign µ
ENTITY para "¶" -- pilcrow (paragraph sign) ¶

ENTITY middot "·" -- middle dot ·
ENTITY cedil "¸" -- cedilla ¸
ENTITY sup1 "¹" -- superscript one ¹
ENTITY ordm "º" -- ordinal indicator, masculine º
ENTITY raquo "»" -- angle quotation mark, right »
ENTITY frac14 "¼" -- fraction one-quarter ¼
ENTITY frac12 "½" -- fraction one-half ½
ENTITY frac34 "¾" -- fraction three-quarters ¾
ENTITY iquest "¿" -- inverted question mark ¿
ENTITY Agrave "À" -- capital A, grave accent À
ENTITY Aacute "Á" -- capital A, acute accent Á
ENTITY Acirc "Â" -- capital A, circumflex accent Â
ENTITY Atilde "Ã" -- capital A, tilde Ã
ENTITY Auml "Ä" -- capital A, dieresis or umlaut mark Ä
ENTITY Aring "Å" -- capital A, ring Å
ENTITY AElig "Æ" -- capital AE diphthong (ligature) Æ
ENTITY Ccedil "Ç" -- capital C, cedilla Ç
ENTITY Egrave "È" -- capital E, grave accent È
ENTITY Eacute "É" -- capital E, acute accent É
ENTITY Ecirc "Ê" -- capital E, circumflex accent Ê
ENTITY Euml "Ë" -- capital E, dieresis or umlaut mark Ë
ENTITY Igrave "Ì" -- capital I, grave accent Ì
ENTITY Iacute "Í" -- capital I, acute accent Í
ENTITY Icirc "Î" -- capital I, circumflex accent Î
ENTITY Iuml "Ï" -- capital I, dieresis or umlaut mark Ï
ENTITY ETH "Ð" -- capital Eth, Icelandic Ð
ENTITY Ntilde "Ñ" -- capital N, tilde Ñ
ENTITY Ograve "Ò" -- capital O, grave accent Ò
ENTITY Oacute "Ó" -- capital O, acute accent Ó
ENTITY Ocirc "Ô" -- capital O, circumflex accent Ô
ENTITY Otilde "Õ" -- capital O, tilde Õ
ENTITY Ouml "Ö" -- capital O, dieresis or umlaut mark Ö

ENTITY times "×" -- multiply sign ×
ENTITY Oslash "Ø" -- capital O, slash Ø
ENTITY Ugrave "Ù" -- capital U, grave accent Ù
ENTITY Uacute "Ú" -- capital U, acute accent Ú
ENTITY Ucirc "Û" -- capital U, circumflex accent Û
ENTITY Uuml "Ü" -- capital U, dieresis or umlaut mark Ü
ENTITY Yacute "Ý" -- capital Y, acute accent Ý
ENTITY THORN "Þ" -- capital THORN, Icelandic Þ
ENTITY szlig "ß" -- small sharp s, German (sz ligature) ß
ENTITY agrave "à" -- small a, grave accent à
ENTITY aacute "á" -- small a, acute accent á
ENTITY acirc "â" -- small a, circumflex accent â
ENTITY atilde "ã" -- small a, tilde ã
ENTITY auml "ä" -- small a, dieresis or umlaut mark ä
ENTITY aring "å" -- small a, ring å
ENTITY aelig "æ" -- small ae diphthong (ligature) æ
ENTITY ccedil "ç" -- small c, cedilla ç
ENTITY egrave "è" -- small e, grave accent è
ENTITY eacute "é" -- small e, acute accent é:
ENTITY ecirc "ê" -- small e, circumflex accent ê
ENTITY euml "ë" -- small e, dieresis or umlaut mark ë
ENTITY igrave "ì" -- small i, grave accent ì
ENTITY iacute "í" -- small i, acute accent í
ENTITY icirc "î" -- small i, circumflex accent î
ENTITY iuml "ï" -- small i, dieresis or umlaut mark ï
ENTITY eth "ð" -- small eth, Icelandic ð
ENTITY ntilde "ñ" -- small n, tilde ñ
ENTITY ograve "ò" -- small o, grave accent ò
ENTITY oacute "ó" -- small o, acute accent ó
ENTITY ocirc "ô" -- small o, circumflex accent ô
ENTITY otilde "õ" -- small o, tilde õ
ENTITY ouml "ö" -- small o, dieresis or umlaut mark ö

ENTITY divide "÷" -- divide sign ÷
ENTITY oslash "ø" -- small o, slash ø
ENTITY ugrave "ù" -- small u, grave accent ù
ENTITY uacute "ú" -- small u, acute accent ú
ENTITY ucirc "û" -- small u, circumflex accent û
ENTITY uuml "ü" -- small u, dieresis or umlaut mark ü
ENTITY yacute "ý" -- small y, acute accent ý
ENTITY thorn "þ" -- small thorn, Icelandic þ
ENTITY yuml "ÿ" -- small y, dieresis or umlaut mark ÿ

This file is extracted from the HTML 2.0 specification

	ProWesS documentation
	ProWesS introduction
	What is ProWesS
	ProWesS manual
	Disclaimer & Copyright
	Past
	Present
	Future

	Installation

	ProWesS in pieces
	Rationale
	ProWesS
	PROforma
	syslib
	DLL Manager
	DATAdesign engine
	Other extensions
	Thing System
	Pointer Interface
	Scrap Extensions
	Hotkey System II
	Global Variables

	Using ProWesS
	General ProWesS usage
	Scaleborder usage
	Larger than screen windows
	HIT, DO and keypresses

	Type specific help
	Scroll Bar
	File Select window
	Directory Select window
	Edline object

	Configuring ProWesS
	ProWesS
	PROforma
	boot file
	buttons in ProWesS

	Frequently asked questions
	Why is ProWesS not included with the programs which need it ?
	Why do ProWesS and the ProWesS applications need installation ?
	How can I print out a manual in ProWesS ?
	How can I get an update for ProWesS ?
	Why does it take so long for the ProWesS buttons to appear ?

	ProWesS reader
	Introduction
	Menu Bar
	Back
	Load
	Reload
	Print
	Styles
	Bookmarks
	History

	Configuration
	Command line options

	HTML - Hypertext Markup Language
	Introduction
	Document Structure
	Document Element: HTML
	Head: HEAD
	Title: TITLE
	Body: BODY
	Headings: H1 ... H6
	Block Structuring Elements
	Paragraph: P
	Preformatted Text: PRE
	Address: ADDRESS
	Block Quote: BLOCKQUOTE or BQ

	List Elements
	Unordered List: UL, LI
	Ordered List: OL
	Directory List: DIR
	Menu List: MENU
	Definition List: DL, DT, DD

	Phrase Markup
	Idiomatic Elements
	Citation: CITE
	Code: CODE
	Emphasis: EM
	Keyboard: KBD
	Sample: SAMP
	Strong Emphasis: STRONG
	Variable: VAR

	Typographic Elements
	Bold: B
	Italic: I
	Teletype: TT

	Anchor: A

	Line Break: BR
	Horizontal Rule: HR
	Image: IMG

	ProWesS loader
	Introduction
	Usage
	Input File Format
	Examples

	request
	Introduction
	Usage

	rext
	Introduction
	Usage

	setenv
	Introduction
	Usage

	wait
	Introduction
	Usage

	cbutton
	Introduction
	Usage

	mbutton
	Introduction
	Usage
	Input file format

	ProWesS calculator
	Calculating
	Base Conversions
	Configuration

	PROCON, the ProWesS Configuration program
	Introduction
	Overview of the window
	Loading the INF file
	Indicating the files to work on
	Learning the settings of all or some of the selected files
	Updating all or some of the selected files
	Updating all files in a directory
	Configuring a single file
	Rules for updating a single file
	Rules for learning a single file
	Rules for saving a file
	Configuring Procon itself

	PFconfig
	Introduction
	Add driver
	Available drivers
	printer drivers
	picture drivers
	bitmap drivers

	Configure printer driver
	How to configure your printer driver

	Default printer selection
	Memory options
	Max/min memory for Gstate
	Size of fontcache
	Number of fonts in cache

	Colour cache size
	Fonts, add from directory
	Search directory for fonts
	Make changes permanent

	THE ProWesS AND PROforma CONFIGURATOR
	Proposed Entities

