
The FDI Directory Device Driver

This version 2, of the FDI device driver is for use with standard QDOS floppy disk image files.
The driver uses the image file as if it was a real floppy disk. So you can use all the usual disk
commands, SAVE, LOAD, DIR etc.

It is based on the device level 3 FLP driver from SMSQ/E (version 3.16) source code.
(see licence notice at the end of this document)

Version 2 of the FDI driver supports Single, Double, High, and Extra High density disk images.
It also supports sub-directories, and many of the features of a Level 3 device driver.
However it does not support DOS disk images.

Installing the Driver
Two versions of the driver is supplied. A RAM based one, and a 16K byte ROM image.

To load the RAM based version of the driver, load the driver into memory and call it.

example: i. LRESPR flp1_FDI2driver_cde
ii. x=RESPR(14734) {if you don’t have Toolkit 2, or equivalent}

LBYTES flp1_FDI2driver_cde,x
 CALL x

An installation message, and a version number will be displayed in #0

To load the ROM based version, see the user instructions of your emulator. For example in
QPC2 use the command:

EPROM_LOAD flp1_FDI2driver_rom

Using the Driver
Before the FDI device driver can use an image file. It must first be mounted, onto one of the
eight available drive slots. See the MOUNT_FDI and UNMOUNT_FDI commands for
associating image files with drive numbers.

To create new, blank formatted FDI image files. See the MAKE_FDI command.

To convert actual floppy disks into FDI images, see the ReadMe document supplied with the
device driver.

Formatting FDI devices
When the FORMAT command is used on an image file. It will format the image to it’s current
size. So if you have an HD image file mounted, it will format it to 2880 sectors. Note, adding the
format density directives to the end of the format name will have no effect.

If you require an image file of a particular size, use the MAKE_FDI command below.

If a Format fails, the image file is unmounted, as it's condition is unknown, and it would not be
safe to continue to use it.

Martin Head Release V2.04

2 2.04

MOUNT_FDI
FMOUNT_FDI
The MOUNT_FDI command is used to associate a floppy disk image file to one of the eight
available drive slots. The optional protect status parameter determines whether or not, the
image file will be write protected. The default being 0, for not write protected.

FMOUNT_FDI is a function version of MOUNT_FDI that returns 0, or an error code, without
stopping the running program.

syntax: fdi_no := numeric_expression {1 to 8}
protect := numeric_expression {0 or 1, default 0}

MOUNT_FDI fdi_no, filename [,protect]
FMOUNT_FDI(fdi_no, filename [,protect])

example: i. MOUNT_FDI 1,win2_Quill_img
 ii. MOUNT_FDI 3,win1_Games_img,1 {image is write protected}
 iii. result=FMOUNT_FDI(4,dos1_Xchange_img)

comment: Once an image file has been mounted, it appears to the system to be an
ordinary directory device. So you can LOAD, SAVE, DELETE etc.

UNMOUNT_FDI
FUNMOUNT_FDI
The UNMOUNT_FDI command is used to disassociate a floppy disk image file with its drive
slot.

It is equivalent to removing a floppy disk from it’s drive.

FUNMOUNT_FDI is a function version of UNMOUNT_FDI that returns 0, or an error code,
without stopping the running program.

When an image file is unmounted, The FDI driver will attempt to tidy up behind itself by closing
any open channels on the FDI device, and removing the drives Physical Definition Block from
memory. It will not close any programs that have open channels to the device, but if the
program attempts to access the device, an ‘invalid channel ID’ error may occur.

syntax: fdi_no := numeric_expression {0 to 8}

UNMOUNT_FDI fdi_no
FUNMOUNT_FDI(fdi_no)

example: i. UNMOUNT_FDI 3 {dismounts the image file connected to slot 3}
ii. result=FUNMOUNT_FDI(1)

comment: In the special case of UNMOUNT_FDI 0, all mounted image files will be
dismounted.

FDI_USE directory devices
FDI_USE allows renaming of the FDI device. FDI_USE without a parameter will reset the name
of FDI back to FDI.

syntax: FDI_USE [name]

example: i. FDI_USE mdv : LOAD mdv1_prog {loads ‘prog’ from FDI1_}
ii. FDI_USE {the driver now uses FDI again}
iii. MOUNT_FDI 1,win2_Quill_img

 FDI_USE mdv
 LOAD mdv1_boot {the Quill Image file acts as if it was in mdv1_}

2.04 3

FDI_FILE$
The FDI_FILE$ function returns a string containing the filename of a mounted image file. If no
image file is mounted, FDI_FILE$ will return an empty string.

syntax: fdi_no := numeric_expression {1 to 8}

FDI_FILE$ fdi_no

example: PRINT FDI_FILE$ (1) {print the name of the image file of FDI1_}

MAKE_FDI
FMAKE_FDI
The MAKE_FDI command will create a blank formatted disk image file.

The density parameter defines the size of the disk image to be created.
s - Single density, 360K, 720 sectors
d - Double density, 720K, 1440 sectors
h - High density, 1.4M, 2880 sectors
e - Extra density, 3.2M, 6400 sectors

FMAKE_FDI is a function version of MAKE_FDI that returns 0, or an error code, without
stopping the running program.

syntax: mediun_name := name | string_expression {maximum of 10 characters}
density := name | string_expression {s | d | h | e}

MAKE_FDI filename, medium_name ,density
FMAKE_FDI(filename, medium_name ,density)

example: i. MAKE_FDI win2_myfiles_img,Games,d
 {creates an image file named 'myfiles_img' on flp2_, With a medium

 name of ‘Games’, and 1440 Sectors}

 ii. MAKE_FDI win1_Work1_img,Data,s
 {creates an image file named 'Work1_img' on flp1_, With a medium

 name of ‘Data’, and 720 Sectors}

iii. result=FMAKE_FDI(“dos1_Games.img”,Vol1,d)

comment: This command will only create an Image file, it does not mount it.

4 2.04

Copyright and Disclaimer

This driver should not cause any problems, damage, or loss of data. However by using this
device driver, you do so at your own risk, and I do not accept responsibility for any damage, or
loss of data. You should always only work on copies of important disk images.

The driver also contains portions of the SMSQ/E source code

Licence for SMSQ/E

Copyright (c) 1989-2012, by

 Tony Tebby
 Marcel Kilgus
 Bruno Coativy
 Fabrizio Diversi
 Phoebus Dokos
 Thierry Godefroy
 Jérôme Grimbert
 George Gwilt
 John Hall
 Mark Swift
 Per Witte
 Wolfgang Lenerz

collectively called the "COPYRIGHT HOLDERS".

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

2.04 5

