MEGA - TOOLBOX
for the Sinclair QL Computer
USER GUIDE
by Francesco Balena
Compware Mega-Toolbox: Issue 1 December 7, 1987
© Copyright 1987 Francesco Balena
© Copyright 1987 Compware
All rights reserved
This documentation and the software to which it relates are copyright and must not be loaned
or passed on to any third party, or modified, copied, stored or reproduced in any form or on
any medium without the written consent of Compware, except for the making of working
copies of the software by the purchaser. The purchaser may make up to five copies of the
software for backup and for their own exclusive use on a single Sinclair QL or compatible
computer. If the purchaser wishes to make further copies of the software for use on further
computers, even if within the same establishment, then they must purchase further licenses
(one for each additional computer) from Compware. Under no circumstances may the pur-
chaser make copies of the documentation. It is the responsibility of the purchaser to ensure
that the copyright is not infringed by preventing unauthorised copying of the software and
documentation licensed to him.
Copyright Infringement
As a measure to discourage infringement of the copyright, each copy of the Mega-Toolbox is
encoded with a unique number ensuring that the origin of illegal copies can be traced.
Compware, 57 Repton Drive, Haslington, Crewe, CW1 ISA.
Sinclair, QDOS, & QL are registered trade marks of Sinclair Research Limited.
Mega-Toolbox	2	Compware

Mega-Toolbox	3	Compware

[bookmark: bookmark0]TABLE OF CONTENTS
	1
	Introduction

	
	1.1
	How To Use This Manual

	
	1.2
	QDOS Specific Information

	2
	What You Get

	3
	How To Install The Mega-Toolbox

	
	3.1
	Making A Working Copy

	
	3.2
	The BOOT Program

	
	3.3
	Mega-Toolbox Demonstration

	4
	Summary Of Mega-Toolbox Facilities

	
	4.1
	Keyboard Input Enhancements

	
	4.2
	QDOS Resources

	
	
	4.2.1 Memory Management
4.2.2 File Handling
4.2.3 Keyboard Control
4.2.4 Function Key Programming
4.2.5 Job Control
4.2.6 Special Jobs
4.2.7 Channel Control

	
	4.3
	Windows Text And Graphics

	
	
	4.3.1 Window Management
4.3.2 Text And Graphics

	
	4.4
	Dual Screen Control

	
	4.5
	Miscellaneous Functions

	5
	Description Of Commands And Syntax

	6
	General Notes For Programmers

	
	6.1
	Installation

	
	6.2
	Basic Compilers

	
	6.3
	Hide And Show Commands

	
	6.4
	Image Compression Method

	
	6.5
	Stored Image Header

	
	6.6
	Using The QL’s Alternative Screen

	
	6.7
	File I/O Errors

6.8 Sharing Facilities Between Multi-tasking Programs
7 Distributing Programs With The Mega-Toolbox
8 What To Do If Things Go Wrong
Appendix A	Example Programs
Appendix B	Problem Report Form
The Mega-Toolbox is not just another QL toolkit. It has been designed by an experienced pro-
grammer who has intimate knowledge of the Sinclair QL, specifically for use by other experi-
enced programmers. Only a relatively small number of essential facilities can be found in
other toolkits; the vast majority of features break new ground, and enable programs to be writ-
ten in QL Superbasic that simply could not be contemplated before. Simply reading about the
facilities available is likely to provide inspiration to programmers.
More than 170 new commands have been added, covering a very wide range of facilities.
Throughout, the author has favoured speed of execution rather than compactness of code. The
result is a relatively large toolkit, which makes very sophisticated programs possible albeit at
the expense of precious RAM. To compensate for this, customised versions can be produced
for individuals or software houses wishing to distribute software using the Mega-Toolbox (see
chapter 7). By removing those facilities that are not required in any particular program, large
reductions in the size of the Mega-Toolbox can be made, and in order to make the Mega-
Toolbox even more appealing to such programmers, care has been taken to make it compatible
with basic compilers.
1.1. [bookmark: bookmark1]How To Use This Manual
The number of commands and diversity of facilities available has made this manual into a sub-
stantial document, making it impractical for most people to read it from cover to cover in order
to leam about the Mega-Toolbox’s facilities. Even if you did have time to read the entire
manual, there is so much information to be taken in that it would not be possible to remember
it all. In order to tackle this problem the manual has been organised around three main
chapters:-
Chapter 4 - Summary Of Toolbox Facilities
Briefly describes every new command, together with all commands of a similar nature,
making it very easy to find out exactly what facilities the Mega-Toolbox provides in a
particular area such as windows and graphics or file handling.
Chapter 5 - Description Of Commands And Syntax
Describes the function and detailed syntax of every command, including some examples
and is organised alphabetically for quick reference.
Appendix A - Example Programs
Lists the example programs provided with the Mega-Toolbox and the commands which
are included in them, making it very easy to find an example of the use of a particular
command in an actual program.
1. Introduction

2. What You Get

These sections make it very quick and easy to find out if the Mega-Toolbox can help with a
particular programming problem, what commands are available and how to use them.
Mega-Toolbox	4	Compware

Mega-Toolbox	6	Compware

Mega-Toolbox	5	Compware

The rest of the manual provides useful support including a description of the files supplied,
how to install the Mega-Toolbox for use, notes about how the Mega-Toolbox performs certain
functions, how to use the Mega-Toolbox in compiled programs and what to do if you experi-
ence problems. There is also a chapter explaining how you can arrange to use the Mega-
Toolbox in your own commercial programs.
1.2. QDOS Specific Documentation
This manual provides QDOS specific information that is directly relevant to particular com-
mands, but is unable to provide comprehensive details of QDOS which may be needed by
some programmers. For example, although some commands enable you to access the Super-
basic and system variable areas, and to find the location of channel and job definition headers,
details of the contents of these areas are not provided. If you do require more detailed infor-
mation about QDOS, we strongly recommend the following comprehensive reference book,
which is available from Compware:
"QL Advanced User Guide" by Adrian Dickens, Adder Publishing,
ISBN 0 947929 00 2.
This text provides all the additional information required to use even the most QDOS specific
Mega-Toolbox commands to the full.
With this manual you should have received a single microdrive cartridge containing the follow-
ing files:
BOOT - a simple program to automatically load the Mega-Toolbox.
MEGA_BIN - the Mega-Toolbox itself.
MEGA_BIN% - an integer version of Mega-Toolbox.
BACKUP - a simple to use general purpose backup program.
README_DOC - a Quill document containing any errata to the manual.
The remaining files on the cartridge contain examples which are described in appendix A.
Installing the Mega-Toolbox is a very simple process but before you proceed and start to
explore its many facilities you should make a working copy of the program. Please please
don’t just press on and use your master cartridge, follow the instructions below closely.
3.1. Making A Working Copy
Before you can get started, you will need to make a working copy of the Mega-Toolbox on a
new cartridge; the BACKUP program has been provided to help you do this. First, make sure
you have a blank formatted microdrive to hand. Then, insert the Mega-Toolbox cartridge in
mdv1_ and type "lrun mdvl_backup". The backup program will load and ask you for the
source device, so type "mdvl_". It will then ask for the name of the destination device, so
insert your blank medium in mdv2_ and type "mdv2_". The backup process will proceed,
printing the name of each file as it is copied. When complete, remove the master and store it
in a safe place.
3.2. The BOOT Program
The simplest way to load the Mega-Toolbox is to use the program called BOOT. You can
either type "lrun mdvl_boot", or auto-boot by inserting the cartridge in md\l_, resetting your
QL and pressing FI or F2 as normal.
Once the Mega-Toolbox has been loaded in this way, all the facilities and new commands
described in this manual will be available.
You can also modify the BOOT program to so that it starts another program after loading the
Mega-Toolbox, but you should not include this code within a larger program, or in some
instances commands will not be properly linked into Superbasic.
Chapter 6 gives details of how to customise the parameters used in the BOOT program.
3.3. Mega-Toolbox Demonstration
3. How To Install The Mega-Toolbox

4. Summary Of Mega-Toolbox Facilities

4.1. Keyboard Input Enhancements

To see a demonstration of just some of the things that are possible with the Mega-Toolbox,
insert your working cartridge in mdvl_ and type lrun mdv1_demo.
Mega-Toolbox	7	Compware

Mega-Toolbox	8	Compware

Mega-Toolbox	9	Compware

This chapter describes the features provided by the Mega-Toolbox which fall into the following
main areas:
(1) Enhancements to the keyboard input driver providing easier command line editing.
(2) Improved control over QDOS resources (including memory allocation, keyboard input,
file handling, pipes, job control, alarm clocks and tune playing jobs).
(3) Windows, text and graphics commands (including saving, restoring, copying and mirror-
ing of windows as well as general drawing and text printing commands ideal for con-
structing animated slide-shows for games and advertising etc.).
(4) Commands for handling dual screens (screen copying, swapping and automated screen
mode control).
The rest of this chapter summarises these commands and is divided into the following sections.
(See chapter 5 for details of individual commands.)
4.1 Keyboard Input Enhancements
4.2 QDOS Resources
4.2.1 Memory Management
4.2.2 File Handling
4.2.3 Keyboard Control
4.2.4 Function Key Programming
4.2.5 Job Control
4.2.6 Special Jobs
4.2.7 Channel Control
4.3 Windows Text And Graphics
4.3.1 Window Management
4.3.2 Text And Graphics
4.4 Dual Screen Control
4.5 Miscellaneous Functions
The following additional command line editing facilities have been added. In order to prevent
clashes with special key combinations used by other programs - Quill for instance - which may
occur when using programs enabling you to swap between basic and other jobs, these editing
features can be selectively disabled using the KEY_USE command.
	Key Combination
	Function

	SHIFT/ENTER
	Recalls the last input command line for editing.

	SHIFT/LEFT ARROW
	Moves the cursor eight characters to the left.

	SHIFT/RIGHT ARROW
	Moves the cursor eight characters to the right

	ALT/LEFT ARROW
	Moves the cursor to the start of the fine.

	ALT/RIGHT ARROW
	Moves the cursor to the end of the line.

	CTRL/SHIFT/LEFT ARROW
	Deletes eight characters to the left.

	CTRL/SHIFT/RIGHT ARROW
	Deletes eight characters to the right.

	CTRL/ALT/LEFT ARROW
	Deletes from the cursor to start of the fine.

	CTRL/ALT/RIGHT ARROW
	Deletes from the cursor to the end of the line.

4.2. [bookmark: bookmark2]QDOS Resources
4.2.1. [bookmark: bookmark3]Memory Management
	Command name(s)
	Description

	FREE_MEM
	Returns the amount of free memory.

	ALCHP, ALCHP_L, RECHP,
RESPR_L
	Memory allocation and release including optional load-
ing of files.

	MCOPY, MEXCHANGE, MFILL,
MFILL_W, MFILL_L
	Fast memory manipulation.

	EXCOPY, EXFILL
	Copying and filling rectangular areas of screen
memory.

	STORE, FETCH
	For storing and retrieving groups of values to/from
RAM.

	QPOKE, QPEEK$
	Store and retrieve strings to/from memory in QDOS
format.

	PUTMEM, GETMEM$
	Store and retrieve strings to/from memory as a raw
string of bytes.

	MSEARCH, MSEARCH_W,
MSEARCH_A
	Search for strings in a given area of memory.

	DUMP
	Prints memory contents in hexadecimal and ASCII.

4.2,3. Keyboard Control

4.2.2. File Handling

Mega-Toolbox	10	Compware

Mega-Toolbox	12	Compware

Mega-Toolbox	11	Compware

	Command name(s)
	Description

	FILE_LEN()
	Returns the length of a file.

	FILE_DSPACE()
	Returns the size of an exec’able program’s data-space.

	SPOS, FPOS()
	Setting and reading the position of a file pointer.

	FLUSH
	Forces all buffers belonging to a file to be emptied.

	PUT
	Output mixed list of integer, float or string to a channel
in QDOS format.

	PUT$()
	Returns a string of characters corresponding to the
QDOS format of an expression.

	GET, GET%, GET$()
	Convert a string (or series of bytes read from a chan-
nel) from QDOS representation into an integer, float or
string value.

	INPUT$()
	Read a given number of characters from a file.

	XDIR
	Extended directory listing showing file length, and if
executable, data space.

	XFORMAT
	Multiple formatting of a medium with option to contin-
ue until given number of sectors are good.

	FREE_SECT()
	Returns the number of free sectors on a disc or micro-
drive.

	COPY_X
	Spooled file copying.

	Command name(s)
	Description

	KEYBOARD
	Allows keyboard characteristics to be modified (eg re-
peat speed, capslock, "queue character".)

	ENTER
	Sends strings of characters to the keyboard queue of a
given channel.

	ACTIVATE_Q
	Connects the keyboard input stream to the input queue
of a given channel.

	CLEAR_Q
	Empties the input queue of a given channel.

	PREFETCH$
	Returns the next character available on an input chan-
nel, but leaves the character to be read properly by
another command such as INKEY$.

	PROMPT$
	Issues the user with a given prompt which may be edit-
ed or left unchanged before being returned when the
user presses <ENTER>. This allows for prompted in-
put of the form used by Quill commands.

	INPUT_X0, ANSWER$()
	Enable a basic program to continue executing whilst
the user is prompted for input

	FN_KEY
	Returns value indicating current state of function key in
combination with CTRL, SHIFT or ALT.

	STICK, STICK_READ, STICK_USE
	Allow reading of X,Y coordinates and state of fire
button/space bar under control of a joy-stick or the cur-
sor keys. Coordinates can be restricted to within a
given area, and allow multiplication factors to be ap-
plied to "movement" dependent on the state of CTRL,
SHIFT and ALT.

4.2.4. Function Key Programming
	Command name(s)
	Description

	KEY, KEYS
	For programming a function key with a string of char-
acters and listing the strings currently programmed.

	KEY_USE
	For enabling the function key settings with different
combinations of the ALT, SHIFT and ENTER keys,
and for controlling screen resolution when using dual
screens.

	
	

	Command name(s)
	Description

	JOBS, JOB_ID, JOBS, JOB_ADDR,
JOB_STAT
	For interrogation of QDOS to list the jobs return the
ID of a job, its name address or status.

	REMOVE, SETPRIOR, SUSPEND,
RELEASE
	For removal of, setting priority of, suspending, and
releasing, jobs.

	EXECUTE, EXECUTE_W
	Similar to EXEC and EXEC_W but allowing job prior-
ity and data size to be specified, and a string of charac-
ters to be sent to the job as if read from the keyboard.

	WAIT_R, WAIT_S
	For waiting until a given job is removed and suspend-
ed.

4.2.6. Special Jobs
	Command name(s)
	Description

	CLOCK_X
	Sets up a digital clock in a given window.

	ALARM_X
	Sets up alarms with optional display of a countdown
and optional execution of a Basic command on comple-
tion.

	PLAY_X
	Sets up a job to play a melody defined by a string.

	MULTITASK_X
	Sets up a job which repeatedly calls a machine code
routine.

4.2.7. Channel Control
	Command name(s)
	Description

	CHANJD(), CHAN_ADDR()
	For finding the QDOS ID and address of the channel
control block, given the QL Basic channel number.

	FREE_CHAN
	Returns the number of the first free QL Basic channel.

	PIPE_ID()
	Enables pipes opened by QL Basic to be opened for in-
put.

	CONNECT, CONNECT_C
	For connecting one QL Basic channel in place of
another, enabling input and output to be redirected to
the new channel.

4.2.5. Job Control

4.3. Windows Text And Graphics

Window management continued.

Mega-Toolbox	13	Compware

Mega-Toolbox	14	Compware

Mega-Toolbox	15	Compware

4.3.1. [bookmark: bookmark4]Window Management
	Command name(s)
	Description

	CURS, CURS_INC
	For enabling, disabhng or setting the cursor increments for a
given window.

	FONT_USE, SET_FONT
	For selecting and adding character founts.

	ATTR
	A single command for setting ink, paper, border, border colour,
cursor size and fount of a given window.

	INVERSE
	For exchanging the paper and ink colours of a window.

	XCUR(), YCUR()
	Return the current character cursor positions.

	ROWS(), COLUMNS()
	Return the current character window dimensions.

	XSIZE(), YSIZE()
	Return the current window dimensions (in pixel units).

	XPOS(), YPOS()
	Return the position of the window’s top left hand comer.

	XINC(), YINC()
	Return the current cursor increments.

	XMAP(), YMAP()
	Convert from graphic window coordinates to screen pixel coor-
dinates.

	BACKSPACE
	For moving the cursor back a number of character positions.

	COLOUR()
	Returns the colour of a pixel using either screen or window
coordinates.

	SCR_ADDR()
	Returns the memory address of a pixel using either screen or
window coordinates.

	WSAVE, WSAVE_C,
WLOAD
	For saving/loading the contents of a window, optionally in a
compressed form.

	EXPAND
	Takes a compressed memory image and expands it to its origi-
nal form.

	EXPAND_L()
	Similar to ALCHP_L, but used on images saved by WSAVE
or WSAVE_C. The images are expanded during loading if they
were saved in compressed form, enabling immediate use of the
SHOW AT or ZOOM commands.

[bookmark: bookmark5]Table continued…
	Command name(s)
	Description

	HIDE(), HIDE_C()
	For saving window contents on the common heap. Heap may
be allocated automatically, or a given area specified, and con-
tents may optionally be compressed. Heap can subsequently be
released using RECHP or SHOW_R.

	MEM_LENGTH()
	Returns the length of an area allocated using HIDEO or
HIDE_C0. useful if you want to subsequently copy the con-
tents or save them in a file.

	SHOW, SHOW_R
	For retrieving the contents of a window "hidden" using HIDE
or HIDE_C. The retrieved window can overwrite, show only
selected colours, be AND’ed, be OR’ed, be XOR’ed or have
colours swapped or masked as it is copied to the screen.

	SHOW_S
	For swapping the contents of a "hidden" window with the
current window shown on the screen.

	SHOWAT
	For placing a stored image at a given position on the screen,
optionally masked to appear within a given window. The image
can be turned upside-down and/or mirrored left to right.

	ZOOM
	Will show a stored image at a given position on the screen, en-
larging or reducing it by a given factor.

	MRECOL
	Re-colours a stored image according to a string.

	PANW, SCROLLW
	Versions of PAN and SCROLL which wrap around at the win-
dow boundaries.

	PAN_X, SCROLL_X
	Set up jobs to pan or scroll a given window.

	PANW_X, SCROLLW_X
	As PAN_X, SCROLL_X, but wrapping round at the window
boundaries.

	BORDER_X
	Sets up a job to alternate the colours of a border at a given in-
terval, enabling flashing borders to be implemented.

	RECOL_X
	Sets up a job to re-colour a window repeatedly at a given inter-
val.

	RECOLSHOW_X
	Sets up a job to re-colour and show a stored image at a given
interval.

	WINDOW_OP
	For AND’ing and optionally XOR’ing a window with two
specified values. Used for quickly changing the colours in a
window or suppressing flashing and so on.

4.3.2. [bookmark: bookmark6]Text And Graphics
	Command name(s)
	Description

	PRINT_3D
	Prints text in three dimensions with given depth.

	PRINT_X
	Sets up a job that prints a string a given number of
times. The string can contain instructions to control
colours, flashing, underlining, tab’ing, clearing the
screen, clearing part of the window, position the cur-
sor, scroll or pan the window, re-colour the window,
change character size or founts, pause for a given delay
or until the TAB key is pressed, insert a delay between
printing each character and to display text as a rolling
banner.

	FPRINT_X
	As PRINT_X, but the string is read from a file.

	MPRINT
	Prints a message of any given size with independent X
and Y axis scaling.

	SLIDE_X
	Sets up a job which shows a sequence of stored images
with a given delay between each display.

	DISK
	Draws filled circles or ellipses.

	BOX
	For drawing rectangles.

	PAINT
	For filling irregular shapes.

	See also EXCOPY and EXFILL.
	

4.4. [bookmark: bookmark7]Dual Screen Control
The table summarises facilities provided for access to the QL’s second screen.
	Command name(s)
	Description

	DUAL_SCR, RESET_SCR
	Reserve and de-allocate memory for/from a second
screen.

	DISPLAY
	Controls a routine which acts every 50th of a second.
This enables the source of the displayed screen to be
selected, and its screen mode to be defined for up to
four areas of the screen. Different areas of the screen
can also be disabled.

	DUAL_COPY
	Enables either whole screens or windows to be copied
from one screen to another.

	DMODE
	Returns the current contents of the display mode regis-
ter which is used by the DISPLAY and KEY_USE
commands.

Miscellaneous functions continued.

4.5. Miscellaneous Functions

Mega-Toolbox	16	Compware

Mega-Toolbox	18	Compware

Mega-Toolbox	17	Compware

	Command name(s)
	Description

	SIGN()
	Returns the sign of a numeric string.

	BTST(), BCLR(), BSET()
	Bit test, clear and set.

	ROL(), ROL_W(), ROL_L()
	Byte word and long word binary rotations.

	MIN(), MAX()
	Return the minimum and maximum values in an argu-
ment list.

	FACT()
	Factorial.

	DAYS()
	Used for testing the validity of a date, and for calculat-
ing the number of days between two dates.

	UPPER$(), LOWER$
	Converts strings to upper/lower case.

	CHOOSE$()
	Returns the nth value from a given list.

	COUNT()
	Returns the number of occurrences of one string within
another.

	SEARCH(), SEARCH_N(), SUBSTR()
	For searching one string for matches/non-matches in
another string.

	REVERSE$()
	Returns a the reverse of a given string - i.e. the first
character becomes the last etc.

	RIGHT$()
	Returns the N rightmost characters of a string.

	STR$()
	Concatenates a fist of arguments into a string, eg
PRINT #n,STR$(27,’E’,TITLES);

	TRIM$()
	Trims trailing blanks from a string. Can be used with
REVERSES to trim leading blanks.

	HEX(), BIN(), HEX$(), BIN$()
	Conversion from hexadecimal or binary to decimal and
vice versa.

	DEC$()
	Returns a string containing a floating point number
rounded to a given number of digits up to the max-
imum stored by the QL. This also enables you to print
out the full precision of the QL’s floating point arith-
metic.

	FDEC$()
	"Print Using" function, for controlling the format of
numeric output.

	SWAP
	For swapping the values of two arguments, or rotating
values round a list of arguments.

[bookmark: bookmark8]Table continued...
	Command name(s)
	Description

	QCALL
	For calling machine code routines with given register
values and returning the modified contents of registers.

	QTRAP
	As QCALL, but for executing a single QDOS trap.

	QREG
	Returns the contents of a 68008 processor register fol-
lowing use of QCALL or QTRAP

	OPTION_USE
	Enables functions that return values through their argu-
ments to be used in a compiled program.

	TEST_SET
	Performs the 68000 TAS (test and set) instruction

	BASIC_ADDR
	For finding the address of the QL Basic storage area
and for reading the values of individual interpreter
working variables.

	SYSTEM_ADDR
	Used to find the location of the QL’s system variables
and to read the values of specified system variables.

	VAR_ADDR
	For finding the address of variables or expressions.

	VAR_TYPE
	For determining the type of a variable, expression or
argument.

	BUFF_ADDR
	Returns the address of a permanent lk buffer that can
be used to exchange information between Basic or oth-
er programs.

This chapter details the syntax and describes the function of all Mega-Toolbox commands,
which are listed in alphabetical order for ease of reference. You should refer to chapter 4 in
order to find out what commands are available for given types of function.
The notation used in the descriptions is as follows:-
Keywords are shown in upper case and arguments in lower case.
Optional arguments are enclosed within square brackets []
Parameters inside curly brackets {} may be repeated any number of times (which means
they can also be omitted altogether).
In most cases, a #n (channel) parameter is optional, and unless otherwise stated, channel
#1 will be used by default.
Multi-tasking commands have an _X suffix and in general set up a job whose name (as
returned by JOBS) is the same as the command but without the suffix. For example,
PAN_X sets up a job called PAN.
ACTIVATE_Q
See also:
CLEAR_Q, CURS, ENTER
Syntax:
ACTIVATE_Q #n
Function:
Links the console channel #n to the keyboard; if the keyboard buffer of the console channel
which is currently linked to the keyboard contains some characters, they are transferred to the
keyboard buffer of channel #n.
ALARM_X
See also:
CLOCK_X, PLAY_X
Syntax:
ALARM_X [#n,]time[,commands]
5. Description Of Commands And Syntax

Function:
Mega-Toolbox	19	Compware

Mega-Toolbox	22	Compware

Mega-Toolbox	21	Compware

This command creates a job which waits for time seconds before it either issues an alarm
sound or sends a command string to the Superbasic interpreter.
If commands is omitted, a beep sounds to indicate the alarm, otherwise the basic program will
be stopped (by simulating a break) and the commands string will be sent to the basic inter-
preter and will be executed as if it had been typed on the keyboard. Compiled basic programs
cannot be "broken" in this way, and so should not include a commands string.
If a channel number is given, the number of seconds remaining will be repeatedly printed in
the window indicated by #n. In this case, the given channel should not be used for anything
else.
[bookmark: bookmark9]ALCHPO
See also:
ALCHP_L(), FREE_MEM, RECHP, RESPR_L
Syntax:
address = ALCHP(bytes)
Function:
Allocates memory in the common heap and returns the address of the area, or -3 for "Out of
memory".
[bookmark: bookmark10]ALCHP_L()
See also:
ALCHP(), FREE_MEM, RECHP, RECHP_L
Syntax:
address = ALCHP_L(filename)
Function:
Allocates memory in the common heap and loads a file into it; it may also return a negative
QDOS error code for any I/O error (not found, in use, etc.).
[bookmark: bookmark11]ANSWER$()
See also:
INPUT_X(), PROMPT$()
Syntax:
string$ = ANSWER$(id)
Function:
Used in conjunction with INPUT_X0 to allow input to be obtained from the user whilst a
basic program continues to perform other activities.
INPUT_X() is used to set up the input and ANSWER$0 returns the final result. For full
details, see the explanation of INPUT_X().
[bookmark: bookmark12]ATTR
See also:
FONT_USE, SET_FONT
Syntax:
ATTR #n[,ink[,paper[,border[,bordercol[,csizex[,csizey[,fontl[,font2]]]]]]]]
Function:
This command sets several window attributes in one go; the ink and paper colours, the border
width and color, the size and the fonts of characters. Note that all arguments except the first
one are optional. If border is specified the window is cleared (CLS), the cursor is disabled
and the FLASH, UNDER, OVER and FILL attributes are reset.
Fontl and font2 may be either the addresses of special fonts which you have provided, or
small negative numbers in order to select fonts that have been linked into the Mega-Toolbox
using FONT_USE.
A bordercol of 128 will draw the border with a transparent colour.
[bookmark: bookmark13]BACKSPACE
See also:
XCUR(), YCUR(), ROWS(), COLUMNS()
Syntax:
BACKSPACE #n[,steps]
Function:
Moves the current cursor position backwards by steps character positions (default is one).
Stepping back past the start of the line causes the cursor to jump to the last column of the pre-
vious line unless the current line is the first line of a window, in which case the cursor position
is unchanged.
[bookmark: bookmark14]BASIC_ADDR, BASIC_ADDR()
See also:
SYSTEM_ADDR, VAR_ADDR
Syntax:
address = BASIC_ADDR
address = BASIC_ADDR(n)
Function:
When used without an argument, BASIC_ADDR() returns the address of Superbasic’s working
variables; note that this value cannot be guaranteed to be correct if there is any other job in the
system or if Superbasic itself allocates or de-allocates memory (using DIM, ALCHP etc.).
Hence you should only use the latter form for accessing values held in this area.
In the latter form this function is equivalent to:
address = BASIC_ADDR + PEEK_L(BASIC_ADDR + n)
which is useful for reading the values of interpreter’s working variables. For example,
BASIC_ADDR(0) will return the address of the Superbasic buffer, and BASIC_ADDR(24)
returns the address of the name table.
[bookmark: bookmark15]BCLR()
See also:
BSET(), BTST(), ROL()
Syntax:
value = BCLR(bit, number)
Function:
Resets bit bit in 32-bit value number. Bit 0 is the least significant bit.
[bookmark: bookmark16]BIN$()
See also:
BIN(), DECS(). HEX$()
Syntax:
string$ = BIN$(number[.digits])
Function:
Returns a string containing digits digits representing the value of number in binary. If digits is
omitted, eight digits will be returned by default. For example, to find the binary representation
of thirty one you would type:
PRINT BIN$(31)
[bookmark: bookmark17]BIN()
See also:
BIN$0, DEC$(), HEX()
Syntax:
value = BIN(a$)
Function:
Returns the value of a binary coded string. Zero will always be returned when the string con-
tains invalid characters. Leading and trailing blanks (space characters) must have been
removed (see TRIM$()). For example, to find the decimal value corresponding to 011111
binary, you would type:
PRINT BIN("011111")
[bookmark: bookmark18]BORDER_X
See also:
PAN_X, PRINT_X, RECOL_X, SCROLL_X
Syntax:
BORDER_X [#n,]colour$[,times[,timeout]]
Function:
Sets up a job to repeatedly alter the border colour of a given window.
colour$
is a string containing any number and combinations of the characters 0 to 7, representing
colour 0 to colour 7. The colour of the border will be changed to the colour correspond-
ing to each number in the string in turn.
times
is the number of times that the job is to cycle through all the colours in the string. A
value of -1 causes the process to be repeated indefinitely.
timeout
is the number of fiftieths of a second between each change in colour.
The width of the border will remain unchanged.
Examples:
BORDER_X #2,’70’,-1,20
will create a flashing border
BORDER_X ’01234567’,10,50
will cycle through all the colours ten times, holding each colour for one second.
[bookmark: bookmark19]BOX
See also:
DISK, PAINT
Syntax:
BOX [#n,]xl,yl[,x2,y2]
Function:
Draws a rectangle given the graphic coordinates of the two extreme points of its diagonal. If
only one pair of coordinates is supplied, the current graphics cursor position is taken as the
second pair.
[bookmark: bookmark20]BSET()
See also
BCLR(), BTST(), ROL()
Syntax:
value = BSET(bit, number)
Function:
Sets bit bit in 32-bit value number. Bit 0 is the least significant bit.
[bookmark: bookmark21]BTST()
See also:
BCLR(), BSET(), ROL()
Syntax:

Function:

value = BTST(bit, number)

Mega-Toolbox	26	Compware

Mega-Toolbox	25	Compware

Tests bit bit in 32-bit value number, returning zero or one corresponding to the state of the bit.
Bit 0 is the least significant bit.
[bookmark: bookmark22]BUFF_ADDR
see also:
TEST_SET()
Syntax:
address = BUFF_ADDR
Function:
Returns the address of a permanent 1K buffer which may be used for exchanging information
between programs, jobs, or QTRAP instructions etc. You may find the TEST_SET() instruc-
tion useful for preventing clashes between multi-tasking jobs wanting access to the buffer at
the same time.
[bookmark: bookmark23]CHAN_ADDR()
See also:
CHAN_ID()
Syntax:
address = CHAN_ADDR(#n)
Function:
Returns the address of the QDOS channel entry for channel #n; the organization of data in this
table is depends on which kind of channel it is.
[bookmark: bookmark24]CHAN_ID()
See also:
CHAN_ADDR()
Syntax:
value = CHAN_ID(#n)
Function:
Returns the long word id of the QDOS channel corresponding to the Superbasic channel #n, or
-6 if that channel is not open.
[bookmark: bookmark25]CHOOSE$()
See also:
MAX(), MIN()
Syntax:
value = CHOOSE$(n, arg {,arg})
Function:
Returns the nth argument in the list; n=0 will select the first argument, n-1 the second and so
on. If n is negative the first argument is returned, and if it is greater than the length of the
argument list, the last argument is returned. The n argument may be a logical expression, as in
the following example:
PRINT "The result is
PRINT CHOOSE$(n>100, "less than or equal to", "greater than");
PRINT "100"
In the above example, an IF statement has been replaced but CHOOSE$() may also be used to
replace a SELECT statement as in:
DEFine FuNction MONTH$(n)
RETum CHOOSE$(n-1, ’January’, ’February’, ’March’,
’April’, ’May’, ’June’, ’July’, ’August’, ’September’,
’October’, ’November’, ’December’)
END DEFine
This has not only replaced a long SELECT block, but has also avoided the need to use a string
array or set of DATA statements.
[bookmark: bookmark26]CLEAR_Q
See also:
ACTIVATE_Q, CURS, ENTER
Syntax:
CLEAR_Q [#n]
Function:
Empties the keyboard buffer of console channel #n, or if no channel number is given, of the
channel which is currently finked to the keyboard (indicated by the flashing cursor).
[bookmark: bookmark27]CLOCK_X
See also:
ALARM_X
Syntax:
CLOCK_X #n[,mode]
Function:
Creates a digital clock in the window of #n; if mode is omitted or given as zero, time will be
shown in the format "hh:mm:ss", if mode has any other value, the format will be "hh:mm".
Channel #n should not be used for any other purpose.
[bookmark: bookmark28]COLOUR()
Syntax:
COLOUR([#n,] x, y)
Returns the colour of a pixel. If no channel number is given, the coordinates refer to pixel
coordinates, i.e. referenced to the top left hand comer of the screen. If the channel number is
given, then graphic coordinates are used with reference to the bottom left comer of the given
window. The function works in both high and low resolution modes. In hi-res, white is
returned as 6.
[bookmark: bookmark29]COLUMNS()
See also:
ROWS()
Syntax:
value = COLUMNS(#n)
Function:
Returns the width of the given window in character units (which depends on the current char-
acter size set using CSIZE).
[bookmark: bookmark30]CONNECT, CONNECT_C
See also:
PIPE_ID()
Syntax:
CONNECT #n, newid
CONNECT_C #n, newid
Function:
Replaces the current Superbasic channel id with a new value. This affects only the Superbasic
and not the QDOS channel tables. All subsequent operations on channel #n will act on a
different QDOS channel, providing a convenient way to access input pipes created by
PIPE_ID(). Both CONNECT and CONNECT_C have the same effect, except that the latter
also closes the QDOS channel previously linked to channel #/i. The following example reads a
disc directory into an array.
10 OPEN #3,pipe_5000 : OPEN #4,scr : REMark a dummy channel
20 CONNECT_C #4,PIPE_ID(#3)
30 DIR #3 : CLOSE #3 : DIM file$(50, 32)
40 FOR k=0 TO 50
50 IF EOF(#4) THEN EXIT k
60 INPUT #4,file$(k)
70 END FOR k : CLOSE #4
[bookmark: bookmark31]COPY_X
Syntax:
COPY_X sourcefile, destfile
Function:
Creates a job which copies a file in the background, i.e. while the Superbasic interpreter pro-
gram continues execution. This is useful for spooling files to a printer whilst you continue with
other activities.
[bookmark: bookmark32]COUNT()
See also:
SUBSTR(), SEARCH(), SEARCH_NO
Syntax:
COUNT(a$, b$ [at])
Function:
Returns the number of occurrences of a$ found within b$. If the third argument is given, the
search starts at the nth character in the second string.
[bookmark: bookmark33]CURS
See also:
ACTIVATE_Q, CLEAR_Q
Syntax:
CURS #n[,flag]
Function:
If flag is zero, the cursor of the given window is disabled. For all other values, the cursor will
be enabled.
[bookmark: bookmark34]CURS_INC
Syntax:
CURS_INC [#n,] xinc, yinc
Function:
Sets the cursor increment. This makes it possible to display more text than usual in a window.
If the spacing is less than the current character size and the window extends near the bottom or
right hand edge of the screen, care has to be taken to prevent characters written in this area
overwriting the QDOS variable table which is situated immediately after screen memory.
[bookmark: bookmark35]DAYS()
Syntax:
DAYS(year, month, day)
Function:

Returns the number of days since 31 December 1599, or -15 (a bad parameter error) if the date
is invalid (for example, 29th February 1961). This is useful for calculating the number of days
between two dates, or for validating a date input by the user.
Mega-Toolbox	48	Compware

Mega-Toolbox	47	Compware

DEC$()
See also:
BEN$(), HEX$()
Syntax:
DEC$(number [.digits])
Function:
Returns a string containing all the digits of a floating point number (unlike a normal PRINT
command which reveals up to seven decimal places). The result is rounded to the specified
number of digits (9 max), or to the nearest integer if the second argument is omitted.
DISK
See also:
BOX, PAINT
Syntax:
DISK #n, x, y, radius [.eccentricity, angle]
Function:
Draws filled filled circles or ellipses. It always leaves the fill attribute reset.
DISPLAY
See also:
DMODE, DUAL_COPY, DUAL_SCR
Syntax:
DISPLAY [value, delay {.value, delay}]
Function:
This command is used to control the video display mode by altering the contents of an eight
bit register. The delay determines the amount of time during the video refresh cycle in which
each setting will be in effect. Using multiple pairs of parameters, the effect is to divide the
screen up into horizontal bands with different characteristics. For example, it is possible to
have the top half of the screen in low resolution (8 colour) mode, and at the same time, have
the lower half of the screen in high resolution mode.
The value given will be written to the register for the associated delay (from the start of each
screen refresh cycle). Only the following three bits are significant:-
	Bit
	Function

	1
	when set, disables the screen

	3
	determines the screen resolution (low-res when set)

	7
	when set, selects the alternative screen which starts at $28000

Note: Bit 0 is the least significant bit.
It is possible to divide the display into up to four distinct areas. It is also acceptable to omit
the delay argument for the last pair, in which case the last area will extend to the bottom edge
of the display. Below are a few examples:
DISPLAY 0,2500,8
shows the top half (approximately) of the screen in high resolution, and the rest in low resolu-
tion
DISPLAY 8,2200,128+8
shows the top third of the main screen (in low-res), followed by the QL’s second screen in the
lower two thirds of the display.
DISPLAY 2,2500,128,600
blanks the top half of the screen, shows a portion of the second screen in the middle of the
display (in high-res) then restores the original contents of the display status register, showing
the bottom part of the main screen in the current resolution mode (as set by the latest MODE
command).
DISPLAY with no arguments restores the normal display settings.
See chapter 6 for more details of how to use the QL’s alternative screen.
NOTE: the QL serial port and microdrives have an effect on timing, and so the dual screen
feature is always disabled when either is in use. During use of the dual screen feature, some
problems may also be encountered with keyboard operation.
[bookmark: bookmark36]DMODE
See also:
DISPLAY
Syntax:
value = DMODE
Function:
It is a function which returns the current value of the display control register. See DISPLAY
for details of register contents.
[bookmark: bookmark37]DUAL_COPY
See also:
DISPLAY, DUAL_SCR
Syntax:
DUAL_COPY [#n]
DUAL_COPY #n[,flag]
Function:
This procedure copies part of the displayed screen memory to the area corresponding to the
QL’s second screen or vice versa. The value of flag determines the direction in which the
copy will be performed. Note that this command will not work until DUAL_SCR has been
used to reserve memory for the second screen.
If #n is omitted, the whole screen is copied. If #n is given, then only the area covered by the
corresponding window will be copied. In fact, the second screen is not large enough to cover
the entire QL display and so only the portion of the main screen that corresponds to the
equivalent area of the second screen will actually be copied.
If flag is non-zero, the copying will be from the second screen to the main screen. If it is zero
or omitted, the copy will be in the opposite direction
Various other manipulations can be performed using the MCOPY, MEXCHANGE, MFILL,
EXCOPY and EXFDLL commands which makes it relatively easy to produce animation and
other special effects.
[bookmark: bookmark38]DUAL_SCR
See also:
DISPLAY
Syntax:
address = DUAL_SCR
Function:
This is a function which reserves memory for a second screen and returns its start address. If
the dual screen has already been reserved, its address will be returned and no further action
taken. Because the system variables start at address $28000, the dual screen may be never
completely used, and its precise dimensions depend on how much common heap has already
been allocated. Therefore, programs using this feature should use the DUAL_SCR command
before doing anything else.
[bookmark: bookmark39]DUMP
Syntax:
DUMP #n, address[,bytes]
Function:
Prints the contents of a given portion of memory, both in hexadecimal and ASCII. If the bytes
argument is omitted, the dump proceeds until a break (CTRL-SPACE) key is pressed. Note
that break cannot be used within compiled programs.
[bookmark: bookmark40]ENTER
See also:
ACTIVATE_Q, CLEAR_Q
Syntax:
ENTER #n,a$
Function:
Enters a string of characters into the keyboard buffer related to channel in, which must be a
console channel. A "Not complete" error is issued if the buffer becomes full. (Note that if
you don’t specify a buffer size when opening a CON_ channel, the buffer will default to a
capacity of 128 characters.)
[bookmark: bookmark41]EXCOPY
See also:
MCOPY, MEXCHANGE
Syntax:
EXCOPY addr 1,addr2,bytes,incr1,incr2,times1[,incr3,incr4,times2][,pause]
Function:
This is a sophisticated variant of the MCOPY command, designed specifically for moving "rec-
tangular" areas of memory. It is best used for copying areas of screen memory or un-
compressed stored images (see HIDE()) for fast graphic effects. The following example pro-
gram is equivalent to the form with 6 or 7 arguments:-
10 FOR i=l TO timesl
20 MCOPY addrl,addr2,bytes
30 addrl = addrl + incrl: addr2 = addi2 + incr2
40 SUSPEND -1,pause
50 END FOR i
and next program is equivalent to the form using 8 or 9 arguments:-
10 FOR i=l TO times2
20 EXCOPY addrl,addr2,bytes,incrl ,incr2,timesl
30 addrl = addrl + incr3: addr2 = addr2 + incr4
40 SUSPEND -1,pause
50 END FOR i
In other words, the short form moves a rectangular area of memory, whereas the long one
moves multiple rectangular areas of the same size. In both cases the pause argument defaults to
zero.
[bookmark: bookmark42]EXECUTE, EXECUTE_W
Syntax:
EXECUTE filename[,command$][,priority!,dataspace]]
EXECUTE_W filename!,command$][,priority!,dataspace]]
Function:
The above are enhanced versions of the existing EXEC and EXEC_W commands. They allow
both the job priority (normally 32) and the job’s data space to be specified when the job is
started.
The capability to change the default data space is particularly useful when trying to determine
the most suitable size for compiled programs.
The most interesting feature is the ability to pass a string to the program as if it had been typed
on the keyboard. This makes it possible, for example, to invoke QUILL on a given document:
EXECUTE_W mdvl_quffl,STR$(240,’L’,documents, 10)
Note that the JOB_ID function (no arguments) will not work to read the job id of a job started
with EXECUTE.
[bookmark: bookmark43]EXFILL
See also:
MEXCHANGE, MFILL
Syntax:
EXFILL addr,bytes .value,incr,times [,incr2 ,times2] [,pause]
Function:
This is a variant of MFELL_W, and is mainly used to change the colour of the screen or a win-
dow smoothly. The form with only 5 or 6 arguments corresponds to the following Basic
program:-
10 FOR i = 1 TO times
20 MFILL_W addrl, bytes, value
30 addr = addr + incr
40 SUSPEND -1, pause
50 END FOR i
The form with 7 or 8 arguments corresponds to:-
10 FOR i = 1 TO times2
20 EXFILL addr, bytes, value, incrl, times
30 addr = addr + incr2
40 SUSPEND -1, pause
50 END FOR i
The pause argument defaults to zero.
EXPAND()
See also:
EXPAND_L(), WSAVE_C
Syntax:
address 1 = EXPAND(address2)
Function:
If address2 is the address of an un-compressed stored image, this function returns zero,
otherwise it expands it and returns the address of the new image, or -3 for "Out of
memory". The original image is not de-allocated.
EXPAND_L()
See also:
EXPAND(), WSAVE_C
Syntax:
address = EXPAND_L(filename)
Function:
This function is similar to ALCHP_L0: The file should contain an image saved using ei-
ther WSAVE or WSAVE_C, and will be loaded into memory. If it was stored in
compressed form, the image will be expanded automatically.
The routine returns the address of the expanded image or a negative QDOS error code.
Once loaded, SHOWAT or ZOOM can be used to display the image without restrictions.
[bookmark: bookmark44]FACT()
Syntax:
value = FACT(n)
Function:
Returns the factorial of a number, i.e. l*2*...*(n-l)*n. If n is greater then 300 an overflow
occurs. It is very easy to produce fast versions of various useful functions using FACTO
as in the following examples.
DEFine FuNction PERMUTATIONS(n, k)
RETum FACT(n)/FACT(k)
END DEFine
which returns the number of permutations of k objects taken out of n, and
DEFine FuNction BLNOMIAL(n, k)
RETum FACT(n)/(FACT(k)*FACT(n - k))
END DEFine
which returns the binomial coefficient of (n, k), i.e. the number of combinations of n objects
taken k at a time.
[bookmark: bookmark45]FDEC$()
Syntax:
string$ = FDEC$(number, mask$)
Function:
This is similar to a "PRINT USING" type command sometimes found in sophisticated im-
plementations of Basic. The number is formatted according to the specified mask, which
may contain the following special characters:-
	Character
	Function

	#
	If insignificant, the corresponding digit will be
shown as a space.

	0 (zero)
	The corresponding digit will be shown even if
not significant.

	V
	Indicates the virtual position of the decimal
point. This may be omitted if it is the rightmost
character in the mask.

	S
	Must be the first character of the mask, indicat-
ing that the number should be signed (whether
positive or negative).

	M
	Must be the first character of the mask, indicat-
ing that a minus sign should be shown if the
number is negative, but that no sign should be
shown otherwise).

All other characters in the mask are printed as they are, or are replaced by blanks if they occur
between insignificant digits that are printed as spaces. This makes it possible insert currency
signs, thousands separators, and decimal points/commas for foreign countries which use
different notations.
In all cases, the number is rounded to the number of decimal digits in the mask. If an
overflows occurs, all the digits are replaced by asterisks. If the mask contains only ’#’s, zero
values will not be shown at all.
The number of decimal digits (i.e. those following the decimal point) specified in the mask for
DEC$0 or FDEC$0 should never be greater than the number of digits required to represent the
numeric argument, otherwise all digits in excess will be wrong. (These digits would be ex-
pected to be zero, but rounding errors in the binary to decimal conversion will prevent this.)
[bookmark: bookmark46]FETCH()
See also:
STORE
Syntax:
value = FETCH(x)
Function:
Reads a floating point number stored by the STORE command. X must be in the range
0-15.
[bookmark: bookmark47]FILE_DSPACE()
Syntax:
value = FTLE_DSPACE(filename)
value = FILE_DSPACE(#n)
Function:
Returns the size of the data-space of an executable file. If the file is not executable, a
value of -15 (bad parameter) will be returned.
[bookmark: bookmark48]FILE_LEN()
Syntax:
value = FILE_LEN(filename)
value = FILE_LEN(#n)
Function:
This function returns the length of a file. In the first case, return of a negative value indi-
cates the QDOS error code encountered when trying to open the file. This makes it possi-
ble to test for errors such as non existent files, or files being used already before attempt-
ing to open them.
[bookmark: bookmark49]

FLUSH
See also:
KEY
Syntax:
FLUSH #n
Function:
Forces all buffers relating to the file associated with #n to be written to the medium. (En-
sures that data held in slave blocks has been written to the medium, which can not normal-
ly be guaranteed until the file is closed.)
[bookmark: bookmark50]FN_KEY
See also:
KEY
Syntax:
value = FN_KEY
Function:
This is a function which returns a value corresponding to the function key currently
pressed, or zero if none is being pressed. Shifted function keys return values in the range
6-10, whereas CTRL’ed and ALT’ed function keys return values in the range 11-15 and
16-20 respectively.
[bookmark: bookmark51]FONT_USE
See also:
ATTR, SET_FONT
Syntax:
FONT_USE #n [,font1 [,font2]]
Function:
This function is used to select character fonts. If one or both arguments are zero or are
omitted, the default ROM fonts are selected.
Font1,font2
Should contain the addresses of the fonts to be used in the given window. A zero
value will cause the default QL fonts to be selected. Small negative values refer to
fonts linked into the Mega-Toolbox using SET_FONT. Use FONT_USE #n on its
own to select the default fonts for a given window.
[bookmark: bookmark52]FPOS()
See also:
SPOS
Syntax:
value = FPOS(#n)
Function:
Returns the value of the file position pointer of the file open on the given channel.
[bookmark: bookmark53]FPRINT_X
See also:
PRLNT_X
Syntax:
FPRINT_X #n, filename [,times]
Function:
This command is similar to PRINT_X, except that the controlling characters are collected
from the given file.
[bookmark: bookmark54]FREE_CHAN
Syntax:
value = FREE_CHAN
Function:
This function returns the number of the first free Superbasic channel, i.e. the closed chan-
nel with the lowest channel number. It is useful for saving memory or for writing pro-
cedures which use temporary channels.
[bookmark: bookmark55]FREE_MEM
Syntax:
value = FREE_MEM
Function:
This function returns the amount of free memory. The value returned corresponds to the
amount of RAM available for filing system slave blocks, less the space used by one block.
[bookmark: bookmark56]FREE_SECT()
Syntax:
value = FREE_SECT(devicename)
Function:
This function returns the number of free sectors on a given medium, or a small negative
number indicating the QDOS error encountered when attempting to open the directory. It
is useful for avoiding "Drive fuU" errors or before issuing a DIR or XDIR command.
[bookmark: bookmark57]GET(), GET%(), GET$()
See also:
PUT()
Syntax:
value = GET(#n)
value = GET(a$)
value = GET%(#n >
value = GET%(a$)
strings = GET$(#n)
string$ = GET$(a$)

Function:
These functions allow values stored in QDOS internal format to be read into Superbasic
variables. GET(), GET%() and GET$() read (and return) integer, real and string values
respectively.
In all cases the source may be a channel (i.e. a file) or a string variable. In the latter case
the string must be of exactly the correct length determined by the type of value being read.
That is 6 characters for GET(), 2 characters for GET%(), and 2+n for GET$() (where n is
the length of the resulting string, and is read from the first two bytes in the argument).
NOTE: The first nibble (4 bits) of a real number in QDOS format must be zero, or a "Bad
parameter" error will occur.
[bookmark: bookmark58]GETMEM$()
See also:
QPEEK$, PUTMEM, QPOKE
Syntax:
string$ = GETMEM$(address, bytes)
Function:
This function reads a given area of memory into a string. It may be use together with
GETO to read floating point numbers stored in memory in QDOS format.
[bookmark: bookmark59]HEX$()
See also:
BIN$(), DEC$(), HEX()
Syntax:
string$ = HEX$(number [.digits])
Function:
This function returns a hexadecimal string representing the value of number. Digits is the
number of digits in the result, and is assumed to be two if omitted.
For example, to find the hexadecimal representation of one hundred:-
PRINT HEXS(100)
[bookmark: bookmark60]HEX()
See also:
BINO, DECSO, HEX$()
Syntax:
value = HEX(stringS)
Function:
This function returns the decimal representation of a hexadecimal string, or zero if the ar-
gument contains invalid characters. The case of characters in string$ is not significant.

For example, to find what $64 (hexadecimal) is in decimal:-
PRINT HEX("64")
[bookmark: bookmark61]HIDE(), HIDE_C()
See also:
MEM_LENGTH(), SHOW, SHOWAT, RECHP, ZOOM
Syntax:
address = HIDE(#n)
address = HIDE(#n, address)
address = HIDE_C(#n)
Function:
These functions save the contents of a screen window in the common heap and return the
address of the allocated area. The second form of HIDEO (which has two parameters) al-
lows you to specify the area where the image is to be stored and is faster because the allo-
cation step is not necessary. When an address parameter is given, it should always be a
value originally returned from a previous HIDE(). Hence you should use HIDE(#n) the
first time you save a window, and then subsequently use HIDE(#n, address) afterwards.
HIDE_C0 is similar to HIDEO except that it will save the image in a compressed form if
this will result in a memory saving. This is slower than using HIDE(), and prevents the
use of ZOOM and SHOWAT commands.
[bookmark: bookmark62]INPUT$()
Syntax:
string$ = INPUT$(#n [,timeout[.chars]])
Function:
This function returns a string containing a given number of characters from a channel. If
only a channel number is given, it behaves like a normal INPUT, i.e. it reads until an
ASCII 10 is encountered.
If a channel number and timeout (in fiftieths of a second) are specified, the function may
return before the user has pressed <ENTER> in which only the characters typed so far will
be returned (and no ASCII 10 will be present at the end of the string).
If all three parameters are given, then the function will return prematurely (i.e. before the
user has pressed <ENTER>) if either the timeout expires or the specified number of char-
acters have been typed. In this form, characters typed are not echoed to the screen as they
are typed.
[bookmark: bookmark63]INPUT_X()
See also:
ANSWER$()
Syntax:
id = INPUT_X(#n)
Function:
INPUT_X() and ANSWER$() are used to obtain input from the user whilst a basic pro-
gram continues to execute.
INPUT_X() is given a channel number relating to a console channel that must not be used
by anything else. It sets up a job to read input from that channel and returns the id of the
job so that it may be tested to detect when the user has finished typing. The basic pro-
gram should periodically call ANSWER$() with the relevant job id and then use
JOB_STAT to see if the job has been removed. If the job has been removed, the string
returned by ANSWER$() is the string that was input by the user. If the job still exists, the
user has not yet finished typing his input, and the string returned by ANSWER$() will
correspond to the current state of the fine being typed. In the mean time, the program can
continue to perform other functions.
Several inputting jobs can be set up simultaneously allowing the user to select between
them using CTRL-C. The input channel used by each job must be different in each case
and must not be used by anything else - otherwise the program will crash.
Example:
1000 reply$ = ""
1010 OPEN #ix,"con_"
1020 ixid = INPUT_X(#ix)
1030 REPeat get_input
1040 IF JOB_STAT(ixid) = -2 THEN EXIT get_input
1050 reply$ = ANSWER$(ixid)
1060 do__other_things
1070 END REPeat get_input
[bookmark: bookmark64]INVERSE
Syntax:
INVERSE [#n]
Function:
This function exchanges the ink and strip colours for the given window providing a quick
way of highlighting text. The paper colour is not modified.
[bookmark: bookmark65]JOB$()
Syntax:
string$ = JOB$(jobid)
Function:
This function returns the name of the job (if any) whose jobid was given, or a null string
if such a job does not exist.
[bookmark: bookmark66]JOBS
Syntax:
JOBS [#n]
Function:
This command prints information on all current jobs (apart from the Superbasic inter-
preter). This includes the job name name (if any), job id, address, length, priority, and a
flag which indicates if the job is suspended (’S’) or waiting for another job to complete
(*W).
[bookmark: bookmark67]JOB_ADDR()
Syntax:
address = JOB_ADDR(jobid)
Function:
This function returns the header address of the the given job, or -2 to indicate an invalid
job id. For standard jobs (such as those started by the Mega-Toolbox) the job code starts
$68 bytes after such an address, although this not always so, as in the case of cloned jobs
for example.
The job header contains various information that can be accessed, including the length of
the job, job priority, owner job, register contents, etc.
[bookmark: bookmark68]JOB_ID, JOB_ID()
Syntax:
value = JOB_ID [(jobname$)]
Function:
Returns the id of a given job, or -2 (invalid job) if the job does not exist. If used without
any arguments it returns the id of the most recently created job, or -2 if this job has al-
ready been removed from the system. As a special case, JOB_ID(”) returns the id of the
current job: this enables a program to determine whether it is being interpreted (a zero
value) or if it is a compiled task (any other value).
Note that JOB_ID with no arguments will always return -2 if called after a job created by
an EXECUTE command.
[bookmark: bookmark69]JOB_STAT()
Syntax:
value = JOB_STAT(jobjd)
Function:
This function returns an integer value indicating the status of the job according to the fol-
lowing table.
	Value
	Meaning

	0
	The job is active.

	>0
	The job has been suspended and the value returned is the
number of fiftieths of a second to go before it will be released.

	-1
	The job has been suspended for an indefinite timeout

	-2
	The job has been removed from the system.

	-3
	The job is waiting for another job to complete.

[bookmark: bookmark70]KEY
See also:
KEYS
Syntax:
KEY n,string$
Function:
Assign a string or machine code routine to the n-th function key; shifted keys are refer-
enced with n from 6-10. CTRL’ed keys correspond to the values 11-15 and ALT’ed keys
to 16-20. Values outside the range 1-20 will produce an "Out of range" error.
KEYS can be used to display the current settings.
The maximum number of keys that can be programmed and the number of characters al-
lowed in the programmed string is determined when the Mega-Toolbox is first loaded (see
section 6.1)
If an ordinary string is assigned to a function key, then it will be put into the keyboard
buffer of the currently active channel each time the corresponding function key is pressed.
To assign a machine code routine to a function key, the stringS must have the special for-
mat described below. Imagine the string to be an array of characters where string$(0) is
its first character, string$(1) its second and so on:-
	string$(0)
	should be CHR$(0)

	string$(l)
	should be CHR$(0)

	string$(2)

	string$(3)
	are four "bytes" that represent

	string$(4)
string$(5)
	the address of the routine.

	string$(6)

	string$(7)
	represent a value to be

	string$(8)
string$(9)
	assigned to register D1

	string$(10)

	string$(ll)
	represent a value to be

	string$(12)
string$(13)
	assigned to register D2

The following example shows how you would construct such a string and use it with the
KEY command:-
100 POKE_W BUFF_ADDR,0	: REMark Two starting zeros
110 POKE_L BUFF_ADDR+2,address : REMark Address of machine code routine
120 POKE_L BUFF_ADDR+6,-l	: REMark A value for D1
130 POKE_L BUFF_ADDR+10,169	: REMark A value for D2
140 KEY 1 ,GETMEM$(BUFF_ADDR, 14): REMark Assign to FI (14=string length)
Note that a machine code routine called by pressing a function key will always be invoked
as part of the QDOS scheduler loop. This means that during execution of your routine,
multi-tasking will be suspended and you will not be able to use features such as QDOS in-
put or printing functions, since they are also invoked as part of the scheduler loop.
[bookmark: bookmark71]KEYBOARD
Syntax:
KEYBOARD capslock [,startdelay [,delay [,queuecode]]]
Function:
Sets the following parameters of the keyboard handling routine:
capslock
if non-zero, will enable upper case, otherwise lower case will be enabled.
startdelay
specifies the number of frames (50ths of a second) before a key will start to au-
torepeat.
delay
sets the number of frames between each automatic key repetition.
queuecode
selects the code of the key used to cycle among active windows (normally this is is
3, which corresponds to CTRL-C)
All but the first argument are optional. A negative value for any parameter will leave its
state unchanged. For example:
KEYBOARD -1, -1, 2
alters the delay between key repetitions without affecting anything else.
[bookmark: bookmark72]KEYS
See also:
KEY
Syntax:
KEYS [#n]
Function:
Prints the current assignments of the function keys defined by KEY. Carriage returns
(ASCII 10) are shown as backward arrows.
KEY_USE
Syntax:
KEY_USE mode
Function:
This function enables you to selectively disable the keyboard input enhancements
described in section 4.1.
The first five bits of mode enable or disable each one of the three new keyboard functions
and the QL’s second screen and screen freeze features:
	Bit
	Function enabled/disabled

	0
	Function key programming.

	1
	Recalling the command line using the SHIFT-
ENTER combination.

	2
	Command line editing features related to the
ALT and SHIFT keys.

	3
	The QL’s second screen.

	4
	The ability to pause the QL screen using
SHIFT-F5 (is disabled if the bit is set)

NOTE: Unless stated otherwise, setting a bit enables the corresponding feature and reset-
ting it disables the feature.
For example, use 16 (binary 10000) to disable all the above features, 17 (binary 10001) to en-
able function key programming only, 15 (binary 01111) to enable all of them, and so on.
As a special case, any negative value will not only disable everything, but will also deactivate
the interrupt routine (which might be useful when a program is malfunctioning.)
The Mega-Toolbox is started with a default value of 15, which activates all features.
LOWER$()
See also:
UPPER$()
Syntax:
string2$ = LOWER$(string 1$)
Function:
Converts a string to lower case.
MAXO
See also:
CHOOSE$(), MIN()
Syntax:
value = MAX(x, y {,z})
Function:
Returns the maximum value in a list of arguments. Two or more arguments are allowed.
[bookmark: bookmark73]MCOPY
See also:
EXCOPY, MEXCHANGE
Syntax:
MCOPY sourceaddr, destaddr, bytes
Function:
Copies memory from sourceaddr to destaddr. This operation is performed correctly even
if the two areas partially overlap. Memory is transferred in words or long words if possi-
ble to maximise speed.
[bookmark: bookmark74]MEM_LENGTH()
See also:
HIDE(), HIDE_C()
Syntax:
value = MEM_LENGTH(address)
Function:
Returns the length (in bytes) of an image stored by a HIDE() or HIDE_C0 instruction.
This is useful when you want to copy from from one area to another one, or to save an
image on disk.
[bookmark: bookmark75]MEXCHANGE
See also:
EXCOPY, MCOPY
Syntax:
MEXCHANGE addr1, addr2, bytes
Function:
Exchanges the contents of two areas of memory (which may overlap). Copying is optim-
ised for speed as with MCOPY.
[bookmark: bookmark76]MFILL, MFILL_W, MFILL_L
See also:
EXFILL
Syntax:
MFILL address, bytes, value
MFILL_W address, bytes, value
MFILL_L address, bytes, value
Function:
Fills an area of RAM of length bytes bytes starting at address with the given value.
MFILL writes byte values, MFILL_W word (16 bit) values and MFILL_L long word (32
bit) values.

For example, to clear the whole display area without altering the current cursor positions,
you could use:
MFILL_L 131072, 32768, 0
[bookmark: bookmark77]MIN()
See also:
CHOOSE$(), MAX()
Syntax:
MIN(x, y {,z})
Function:
Returns the minimum value in a list of arguments. Two or more arguments are allowed.
[bookmark: bookmark78]MPRINT
See also:
PRINT_3D, PRINT_X
Syntax:
MPRINT #n, message$, xdim, ydim
Function:
This function enables you to print messages in any character size. The xdim and ydim
values are scaling factors which will be applied to the x and y dimensions of the printed
characters. The scaling factors can take any value greater than or equal to 1 which means
that characters of any width or height can be produced.
This command can be used to produce giant 3D messages as in the following example.
DEFine PROCedure MPRINT_3D(ch, mess$, xdim, ydim, colour, width)
LOCal xtemp, ytemp, inktemp, overtemp, ad
ad = CHAN_ADDR(#ch): xtemp = XCUR(#ch): ytemp = YCUR(#ch)
inktemp = PEEK(ad + 70): overtemp = PEEK(ad + 66)
CURSOR #ch, xtemp - width, ytemp - width: OVER 1: INK #ch, colour
MPRINT #ch, mess$, xdim, ydim
CURSOR #ch, xtemp, ytemp: INK #ch, inktemp
MPRINT mess$, xdim, ydim: POKE ad + 66, overtemp
END DEFine MPRINT_3D
Beware: this routine may crash the system if executed under the interpreter, because of a
Superbasic bug which limits the total number of arguments and local variables in a pro-
cedure or function to eight. If the program is to be interpreted you should change the
second line to
LOC temp(5)
and change the rest of the routine by replacing ’xtemp’ with temp(l), ’ytemp’ with
temp(2), and so on.
[bookmark: bookmark79]MRECOL
See also:
RECOL_X, WINDOW_OP
Syntax:
MRECOL colour$, address
Function:
Changes the colour of a stored image. Unlike the Superbasic RECOL instruction, colours
are specified in a 8-character string. For example "01432657" will exchange red with
green, and cyan with yellow (and vice versa). It works with both normal and compressed
images, but in the latter case only if the colour$ argument does not contain any duplicate
characters (e.g. the string "10123576" will be rejected if the stored image is compressed).
Note that this command uses a faster algorithm than the QL’s built in RECOL functioa
[bookmark: bookmark80]MSEARCH(), MSEARCH_W()
Syntax:
address = MSEARCH(string$, address, bytes)
address = MSEARCH_W(string$, address, bytes)
Function:
MSEARCHO looks for a given string in the specified area of memory, and returns the ad-
dress of the first match, or zero if none is found. MSEARCH_W() is identical, except that
it assumes that the string is word aligned - as with all QDOS format strings. This is faster
and avoids false matches.
Searches are case sensitive.
Using the PUT$() function, it is possible to generate strings corresponding to integer and
floating point numbers, enabling these to be searched for using MSEARCH_W().
[bookmark: bookmark81]MULTITASK_X
See also:
EXECUTE, EXECUTE_W
Syntax:
MULTITASK_X priority, times, timeout, address {,register_value}
Function:
MULTITASK_X creates a job which will repeatedly execute a user-defined machine code
routine.
priority
should be given (as a number from 1 to 127), which will determine the effective
speed of execution.
times
is the number of repetitions (-1 means "forever") before the job will be terminated.
timeout
is the number of frames between one execution and the next.
address
is the entry point of the machine code routine to be called.

All further argument values, if any, will be loaded into the 68008 registers each time the
routine is invoked, i.e. at the beginning of each repetition, from D1 onward. All other re-
gisters will be left unaltered, and will retain their values from the previous repetition. At
the start of each repetition DO.W will be loaded with the number of repetitions so far
(starting with zero).
On exit from the user routine i.e. at the final RTS instruction, DO.L should be set to zero,
a positive value, or a QDOS error code. In the latter case, (DO.L contains a negative
value) the job will be removed. If DO.L contains a positive value, the job will be
suspended for the given number of frame periods instead of the default number specified
by the timeout parameter.
All registers may be used and modified, although the stack pointer must of course be re-
stored to its original value before executing the final RTS. On entry A6 points to a 128-
byte buffer which may be used for the intermediate results of QDOS traps and for other
local storage.
[bookmark: bookmark82]OPTION_USE
See also:
QCALL, QREG, QTRAP, SWAP, VAR_ADDR
Syntax:
OPTION_USE value
Function:
This command determines how values are to be returned through arguments. Only three
Mega-Toolbox commands may return values through their arguments: SWAP, QCALL and
QTRAP.
Normally (by default) if the program is being interpreted, these routines will return values
through their arguments. In a compiled program, the SWAP command will causes a "Not
implemented" error, whereas QCALL and QTRAP will executed normally, but require that
returned values be read using the QREG() function. To enable this, the defaults must first
be modified using the OPTION_USE command.
If value < 0 the Toolbox acts as if the calling program is compiled.
If value > 0 the Toolbox acts as if the calling program is interpreted (i.e. "Not imple-
mented" errors never occur).
If value = 0 the default behaviour is selected.
[bookmark: bookmark83]PAINT
See also:
BOX, DISK
Syntax:
PAINT [#n,]x,y
Function:
Fills an irregular shaped area given the graphic coordinates of an inside pixel using the
current ink colour for the window.
If the current ink is a "stipple" (see QL User Guide), then the pixel specified should not be
the same colour as either of the two colours making up the stipple.
[bookmark: bookmark84]PANW, SCROLLW
See also:
PAN_X, SCROLL_X, PANW_X, SCROLLW_X
Syntax:
PANW [#n,] distance
SCROLLW [#n,] distance
Function:
These are "wrap-around" versions of the Superbasic PAN and SCROLL commands. Pix-
els leaving one edge of the screen reappear on the opposite edge. The movement is al-
ways smooth.
[bookmark: bookmark85]PANW_X, SCROLLW_X
See also:
PAN_X, SCROLL_X, PANW, SCROLLW
Syntax:
PANW_X [#n,] distance [times [.timeout]]
SCROLLW_X [#n,] distance [times [.timeout]]
Function:
These commands create a job which repeatedly pans or scrolls a window while the Super-
basic program continues its execution. Pixels leaving one edge of the window re-appear on
the opposite edge as in the PANW and SCROLLW commands.
distance
is the amount of the pan or scroll.
times
is the number of repetitions (the default value is one, and -1 means ’forever’).
timeout
is the delay between consecutive repetitions, expressed in 50th’s of a second (default
is zero - no delay).
[bookmark: bookmark86]PAN_X, SCROLL_X
See also:
PANW, SCROLLW, PANW_X, SCROLLW_X
Syntax:
PAN_X #n,distance [times [.timeout]]
SCROLL_X #n,distance [times [.timeout]]
Function:
These commands are equivalent to the PANW_X and SCROLLW_X commands, except
that no wrap-around occurs.
[bookmark: bookmark87]PIPE_ID()
See also:
CONNECT, CONNECT_C
Syntax:
channel_id = PIPE_ID(#n)
channel_id = PIPE_ID(link_id)
Function:
Superbasic allows pipes to be opened, but currently provides no mechanism for connecting
them together. A pipe acts like a first in first out (FIFO) buffer enabling data to be put in
at one end and taken out at the other.
The following example opens two output pipes, one capable of holding up to 9000 charac-
ters and the other up to 1000 characters. (Note that both OPEN and OPEN_IN create out-
put pipes.)
OPEN #out,pipe_9000
OPENJN #in,pipe_1000
Thus when you open an output pipe, you can put data into it using the channel opened to
it (#out in the above example) but you have no channel with which to read data from the
other end of the pipe.
PIPE_ID0 will open an input channel for a given output pipe. The channel id returned is a
QDOS channel id and not a Superbasic channel number. In order to access the new chan-
nel from Superbasic you must connect it to a Superbasic channel using the CONNECT
command.
Linkjd is the channel id of the output pipe, and so PIPE_ID(#n) and
PIPE_ID(CHAN_ID(#n)) are equivalent. The latter form is useful in a multi-tasking en-
vironment, when one job sends data to another job via a pipe, perhaps having sent the pipe
id using the STORE command.
In all cases, a negative returned value indicates that an error has occurred, such as no pipe
found corresponding to the given #n or linkjd.
[bookmark: bookmark88]PLAY_X
See also:
ALARM_X
Syntax:
PLAY_X times, melodyS
Function:
Plays a melody while the Superbasic program continues executing.
times
is the number of repetitions (-1 means ’forever’).

melody$
is a string containing one pair of characters for each note in the tune. The first char-
acter is the duration, the second one is the pitch of a note. A pitch of 255 produces
no sound and can be used to introduce pauses.
If this job is removed using a REMOVE command, a BEEP instruction should follow to
turn the sound off.
[bookmark: bookmark89]PREFETCH$()
See also:
PROMPT$(), INPUT_X0
Syntax:
characters = PREFETCH$(#n)
Function:
Similar to INKEY$ but does not actually read the character. That is, the character pressed
will be returned as a single character string, but will still be present in the input buffer of
channel #n.
[bookmark: bookmark90]PRINT_3D
See also:
PRINT_X
Syntax:
PRINT_3D #n, string$, ink, width
Function:
Prints 3D strings. StringS is the text string to be printed, ink is the secondary ink colour
which will be used for the sides of the characters and depth determines the depth of the
three dimensional image (0 to 8). The current ink colour for the given window will form
the "top" or closest "side" of the text.
[bookmark: bookmark91]PRINT_X
See also:
FPRINT_X
Syntax:
PRINT_X [#n,] stringS [.times]
Function:
Creates an independent job which repeatedly prints a message on a given channel. Times
is the number of repetitions (-1 means ’forever’), before the job finishes, and has a default
value of one.
A pair of characters, always starting with a backslash V’, is used to perform special func-
tions. The character immediately following the backslash selects which function is to be
performed (for example to change the ink colour) and is immediately followed by zero or
more parameters. Where more than one parameter is required, they should be separated by spaces or commas. For example, to change a border to a width of 15 with colour 243
the sequence "\bl5,243" or "\bl5 243" should be included in the string$ parameter. The
following table gives full details of the special functions and their parameters.
	Control
	Parameter 1
	Parameter 2
	

	\\
	Prints a backslash.
	-
	-

	\i
	Changes ink colour.
	Colour
	-

	\p
	Changes paper colour.
	Colour
	-

	\s
	Changes strip colour.
	Colour
	-

	\b
	Changes border width and colour.
	Width
	Colour

	\c
	Enables or disables cursor.
	0 or 1
	-

	\f
	Enables or disables flashing.
	0 or 1
	-

	\u
	Enables or disables underlining.
	0 or 1
	-

	\o
	Controls the OVER attribute.
	0 or 1
	-

	\n
	Prints a newline.
	-
	-

	\t
	Tabulate (move) to a given column.
	Column
	-

	\C
	Executes a CLS.
	0, 1, 2, 3 or 4
	-

	\A
	Sets cursor position, as AT in Superbasic.
	Row
	Column

	\a
	Sets cursor position, as CURSOR in Super-
basic.
	Column
	Line

	\S
	Scrolls the window.
	Distance
	-

	\P
	Pans the window.
	Distance
	-

	\R
	Re-colour a window (this is followed by a
string of eight characters, as in the MRECOL
instruction, e.g. "R23456701").
	String
	

	\H
	Changes the size of characters (as CSIZE).
	xsize
	ysize

	\F
	Selects new fonts of characters (parameters as
for font_use).
	Fontl
	Font2

	\W
	Waits for a given timeout or, if the timeout is
-1, until the TAB key is pressed.
	Timeout
	-

	\D
	Sets a delay between each character, in order to
slow down the job and give a ’typewriter’ feel-
ing; a delay of zero restores normal printing.
	Delay
	

	\R
	Invokes rolling messages, i.e. all the text that
follows (until the end or a newline) is shown
on the same line, which rolls to the left to
make room for new characters. The argument
sets the speed; use a delay of zero to return to
normal printing mode.
	Delay
	

Parameters are written using ASCII digits, and if the text that follows starts with a decimal digit another backslash should be used to end the parameter.
Mega-Tool box	49	Compware

Mega-Toolbox	60	Compware

Mega-Toolbox	59	Compware

PROMPT$()
See also:
PREFETCH$(), INPUT_X()
Syntax:
PROMPT$(#n, string$ [,length])
Function:
This function allows you to write input routines similar to those in the four PSION pro-
grams which offer a default reply that can be edited if required.
string$
The string$ is output on channel #/i and the user may accept such a prompt (by
pressing the ENTER key), edit it (by pressing an editing key) or overwrite it (by
pressing any other key).
length
is the maximum length allowed for the answer (the default is 128 which is also the
maximum value allowed for length).
PUT
See also:
PUT$(), GET()
Syntax:
PUT [#n,] arg [,arg]
Function:
Writes data to a channel in QDOS format, i.e. 2 bytes for integers, 6 bytes for floating
point numbers and 2 bytes followed by the characters for strings. If the argument is a vari-
able its type may be deduced by the last character of its name (i.e. $ for strings, % for in-
tegers, real numbers otherwise). If the argument is an expression, it is possible to force it
to become a given type by appending one of the following sequences of characters. In the
examples, "EXPR" represents the expression you wish to force to a given type:-
EXPR||0	forces integer type
EXPR+0	forces real type
EXPR&""	forces string type
PUT$()
see also:
MSEARCH_W(), PUT, GET$()
Syntax:
PUT$(arg)
Function:
Returns a string containing the bytes representing the argument in QDOS format. That is,
a string of 2 characters for integers, 6 characters for floating point numbers, and 2+n char-
acters for strings.
The result can be sent to a file, or stored in a string variable and read afterwards using
GET(), GET$0 or GET%()
See the PUT command for details of how to force conversion of a particular type.
The PUT$() function may also be useful if used in an MSEARCH_WO command, find the
location of a variable containing a given value as in the following example
MSEARCH_W(PUT$(PI), 0, 48*1024)
which returns the address of the floating point representation of n stored in the QL ROM
(which is 48K long).

PUTMEM
See also:
GETMEM$(), QPOKE, QPEEK$()
Syntax:
PUTMEM address, stringS
Function:
Pokes a string into a given address in memory. The address may be an odd number.

QCALL
See also:
QREGO, QTRAP
Syntax:
QCALL address[,d1[,d2[,d3[,d4[,d5[,d6[,d7[,al[,a2[,a3[,a4]]]]]]]]]]]
Function:
This function is similar to the Superbasic CALL instruction but has no bugs and returns
the values of the 68008 registers through the routine’s arguments.
All register arguments are optional and on exit from the routine, assignments are per-
formed only on those arguments which were specified as floating or integer variables. Re-
turned values may also be read using the QREGO function.

QPEEK$()
See also:
QPOKE, QTRAP
Syntax:
string$ = QPEEK$(address)
Function:
Peeks memory for a string stored in QDOS format (i.e. as a word - length - followed by
the bytes of the string). Because the string starts with a word, address must be an even
number.
This can be used to read values from machine code routines or QDOS traps (using
QTRAP).
[bookmark: bookmark92]

QPOKE
See also:
QPEEKS(), QTRAP
Syntax:
QPOKE address, string$
Function:
Pokes a string into memory in QDOS format, i.e. a word for its length followed by the
characters. This is the converse of QPEEKSO and can be used to communicate basic vari-
able values to machine code routines and QDOS traps (using QTRAP).
[bookmark: bookmark93]QREG()
See also:
OPTIONUSE, QCALL, QTRAP
Syntax:
value = QREG(renumber)
Function:
Returns the contents of a 68008 register as passed back by the latest QCALL or QTRAP
command.
In compiled basic programs it is the only way to read such values. Use a regnumber value
in the range 0-7 to access registers D0-D7, or in the range 8-12 for registers A0-A4. This
function must be executed immediately after a QCALL or QTRAP, otherwise it is likely to
return meaningless values.
[bookmark: bookmark94]QTRAP
See also:
QCALL, QPEEKS(), QPOKE, QREG()
Syntax:
QTRAP trapnumber, d0[,d1[,d2[,d3[,a0[,al[,a2[,a3]]]]]]]
Function:
Executes a QDOS trap, passing values to/from 68008 registers, similar to the QCALL
command. Errors are signaled by a non-zero value returned in the DO argument.
trapnumber
may be equal to 1,2,3,-2 and -3. The negative values mean that trap #2 or #3 will be
preceded by a trap #4 (which makes all addresses relative to the A6 register, for use
with the Superbasic interpreter).
All register arguments (apart from DO) are optional. Register values are passed back to the
Superbasic program as in QCALL, and may be also read using the QREGO function.
[bookmark: bookmark95]RECHP
See also:
ALCHPQ
Syntax:
RECHP address {,address}
Function:
Releases memory reserved in the common heap. To prevent crashes, the address
argument(s) are checked and a "Bad parameter" error occurs if one of them is outside the
common heap.
[bookmark: bookmark96]RECOLSHOW_X
See also:
HIDE(), RECOL_X, SHOW, SHOWAT, WLOAD, WSAVE, ZOOM
Syntax:
RECOLSHOW_X [#n,]colour$, address [,times [timeout]]
Function:
This command creates a job which re-colours a stored image and shows it at regular inter-
vals.
colour$
is an 8 character string as for MRECOL.
address
is the location of the stored image.
times and timeout
See PANW_X().
This command makes it easy to create simple but effective colour animations. If the image
is compressed the colour string cannot contain duplicate characters, or a "Not implement-
ed" error will occur.
[bookmark: bookmark97]RECOL_X
See also:
HIDEO, RECOLSHOW_X, SHOW, SHOWAT, WLOAD, WSAVE, ZOOM
Syntax:
RECOL_X #n,colour$ [.times [.timeout]]
Function:
Performs a multi-tasking RECOL of the selected window.
colours
is an 8 character string indicating the colour changes to be made.
For example
RECOL_X ’0234567l’,-1
will cause all colours but black to cycle among themselves (in low resolution mode). Note
that this command makes use of the Superbasic RECOL command in the QL’s ROM,
which takes the control of the system and freezes all other jobs while executing. To avoid
this,use RECOLSHOW_X instead.

times and timeout
See PANW_X().
[bookmark: bookmark98]RELEASE
See also:
JOBS, REMOVE, SETPRIOR, SUSPEND
Syntax:
RELEASE jobid
Function:
Releases a suspended job.
There are two special values for jobid: -1 means "this job", -3 (or lower) means "all jobs
but this one".
[bookmark: bookmark99]REMOVE
See also:
JOBS, RELEASE, SETPRIOR, SUSPEND
Syntax:
REMOVE jobid [.error]
Function:
Forces removal of a job. If another job is waiting for it to complete, the specified error
code will be returned to that job. The default value for error is zero.
There are two special values for jobid: -1 means "this job", -3 (or lower) means "all jobs
but this one".
No error occurs and no action is undertaken if jobid refers to a job which does not exist
Job zero (the Superbasic interpreter) cannot be removed.
[bookmark: bookmark100]RESET_SCR
See also:
DUAL_SCR
Syntax:
RESET_SCR
Function:
This procedure de-allocates the memory used by the alternative screen.
[bookmark: bookmark101]RESPR_L()
See also:
ALCHP_L()
Syntax:
value = RESPR_L(filename)
Function:
This command is similar to ALCHP_L(), but allocates memory in the resident procedure
area instead of the common heap. It is useful for loading in and linking new extensions to
the interpreter, which may be done in just one instruction, for example.
CALL RESPR_L(mdvl_extension_bin)
Note that unlike ALCHP_L(), QDOS errors do not stop execution.
[bookmark: bookmark102]REVERSE$()
Syntax:
string2$ = REVERSE$(string1$)
Function:
Returns stringl$ in reverse order, e.g. REVERSE$(’ABCDE’) returns ’EDCBA’. This can
be used together with SUBSTRO and SEARCH for backward searches, or with TRIM$0
to truncate leading blank, as in the following.
DEFine FuNction TRUNCATE_LEADING_SPACE$(a$)
RETum REVERSE$(TRIM$(REVERSE$(a$)))
END DEFine
Another example:
DEFine FuNction LAST_MATCH(a$, b$)
LOCAL k
k = SUBSTR(REVERSES! a$), REVERSES! b$))
IF k THEN k=LEN! b$) - LEN(a$) - k + 2
RETum k
END DEFine
[bookmark: bookmark103]RIGHT$()
Syntax:
String$ = RIGHT$(a$ [,n])
Function:
This is similar to the Microsoft basic function with the same name, which returns the n
rightmost characters of the string a$, or its last character if the second argument is omit-
ted. Its Superbasic counterpart would be "a$(LEN(a$)-n+1 TO)", which is long-winded
and takes longer to evaluate.
[bookmark: bookmark104]ROL(), ROL_W(), ROL_L()
See also:
BCLR(), BSET(), BTST()
Syntax:
value = ROL(bit, number)
value = ROL_W(bit, number)
value = ROL_L(bit, number)
Function:
These functions are similar to the 68008 assembly instruction "ROL". The returned value
is number rotated left by bit bits or to the right if bit is negative. In both cases bit is tak-
en modulo 32.
[bookmark: bookmark105]ROWS()
See also:
COLUMNS()
Syntax:
value = ROWS(#n)
Function:
Returns the height of the given window in character units (which depends on the current
character size set using CSIZE).
[bookmark: bookmark106]PANW, SCROLLW
See also:
PANW_X, SCROLLW_X
Syntax:
PANW #n, distance
SCROLLW #n, distance
Function:
These commands are "wrap-around" versions of the existing PAN and SCROLL com-
mands. That is, pixels leaving one edge of the screen reappear at the opposite edge.
[bookmark: bookmark107]PANW_X, SCROLLW_X
See also:
PANW, SCROLLW
Syntax:
PANW_X [#n,]distance [times [,timeout]]
SCROLLW_X [#n,]distance [times [,timeout]]
Function:
These commands create a job which repeatedly pans or scrolls a window while the Super-
basic program continues its execution. Pixels leaving one edge of the window reappear at
the opposite edge - i.e. they wrap-around.
distance
is the amount of the pan or scroll.
times
is the number or repetitions. The default value is one, and -1 means "forever".
timeout
is the delay between repetitions expressed in 50th’s of a second. Its default value is
zero (no delay).
[bookmark: bookmark108]PAN_X, SCROLL_X
Syntax:
PAN_X #n,distance [times [.timeout]]
SCROLL_X #n,distance [times [.timeout]]
Function:
These are non wrap-around versions of PANW_X and SCROLLW_X.
[bookmark: bookmark109]SCR_ADDR()
Syntax:
address = SCR_ADDR(x, y)
address = SCR_ADDR(#n, x, y)
Function:
Both functions return the memory address of a pixel. See COLOURO for more details of
syntax.
[bookmark: bookmark110]SEARCH()
See also:
COUNT(), SEARCH_N(), SUBSTR()
Syntax:
value = SEARCH(a$, b$ [,n])
Function:
This is a variant of the SUBSTR() command. The string b$ is searched for any character
contained in a$. The position of the first character in b$ that matches any character in a$
is returned, or zero if none of the characters in the first string appears in the second. The
search is case sensitive, but this can be circumvented by using the UPPER$() or
LOWER$() functions. For example
PRINT SEARCH(’AEIOU’, UPPER$(phrase$))
[bookmark: bookmark111]SEARCH_N()
See also:
COUNT(), SEARCH(), SUBSTR()
Syntax:
value = SEARCH_N(a$, b$ [,n])
Function:
This function is the same as SEARCH(), except that it returns the position of the first
character in b$ which does not appear in a$. The search is case sensitive.
[bookmark: bookmark112]

SETPRIOR
See also:
JOBS, RELEASE, REMOVE, SUSPEND
Syntax:
SETPRIOR jobid, priority
Function:
This command changes the priority of a job. A priority of zero deactivates the job.
There are two special values for jobid: -1 means "this job", -3 (or lower) means "all jobs
but this one".
[bookmark: bookmark113]SET_FONT
See also:
ATTR, FONT_USE
Syntax:
SET_FONT fontnum, address
Function:
Links a font into the Mega-Toolbox,
address
is the memory address of the font.
fontnum
is a small negative integer in the range -1...-16. After a font has been installed, it can
be referenced using this font-number.
If the font is to be read from disk, you may use the ALCHP_L() or RESPR_L0 function.
For example.
SET_FONT -1, RESPR_L(mdvl_boldfont)
[bookmark: bookmark114]SHOW, SHOW_R
See also:
HIDE(), SHOWAT, WSAVE
Syntax:
SHOW #n [.address [,mode]]
SHOW_R #n [.address [.mode]]
Function:
Both commands show a window previously saved with a HIDEO or HIDE_C0 command,
but SHOW_R also de-allocates the storage holding the image.
address
is of course the address of the stored image in the common heap. If this is given as
zero or omitted, then the address returned by the most recent HIDEO instruction re-
lating to the given window will be used instead.
determines the transfer mode, as follows.
	Mode
	Function

	0 (default)
	Normal, i.e. overwrite mode.

	<= 255
	Is an 8 bit value where each pixel corresponds
to a colour (bit 0 to black, bit 1 to blue, etc.)
and only those pixels whose colour is selected
(i.e. whose corresponding mask bit is set) are
transferred.

	= 256
	The image is AND’ed with the current con-
tents of the window.

	= 257
	The image is OR’ed with the current contents
of the window.

	= 258
	The image is XOR’ed with the current contents
of the window. (Two consecutive commands
restore the original contents.)

	< 0
	All the words of the stored image are AND’ed
with the absolute value of this number and then
transferred. This feature allows a (limited)
control over the colours of the resulting image
on the screen. For example a value of -43775
(=-BIN(’1010101011111111’) suppresses all
flashing (in low resolution mode), and the
value -255 turns green to black and white to
red (in high resolution mode).

Note that the image could also have been on microdrive by a WSAVE or WSAVE_C com-
mand, and loaded in memory using ALCHP_L() or EXPAND_L().
[bookmark: bookmark115]SHOW_S
See also:
SHOW
Syntax:
SHOW_S [#n][.address]
Function:
This is a variant of the SHOW command which swaps the window contents and the given
memory area instead of just copying the hidden image to the screen. The transfer mode
is always "overwrite" and the stored image is must not have been compressed.
[bookmark: bookmark116]SHOWAT
See also:
mode

SHOW
Mega-Toolbox	61	Compware

Mega-Toolbox	72	Compware

Mega-Toolbox	71	Compware

Syntax:
SHOWAT [#n,] address,x,y [.mode]
Function:
This command places a stored image anywhere on the screen, at pixel coordinates x, y.
The window tin defines the region of visibility and all pixels outside it will be masked. If
the tin argument is omitted no masking takes place.
address
is the address of the image, which must have been stored by a HIDEO command (i.e.
not in a compressed form), or a "Not Implemented" error will occur
mode
is similar to the equivalent argument in SHOW, but has four additional functions
(values 259-262). The meanings of mode are as follows.
	Mode
	Function

	0 (default)
	Normal, i.e. overwrite mode.

	<= 255
	Is an 8 bit value where each pixel corresponds
to a colour (bit 0 to black, bit 1 to blue, etc.)
and only those pixels whose colour is selected
(i.e. whose corresponding mask bit is set) are
transferred.

	= 256
	The image is AND’ed with the current con-
tents of the window.

	= 257
	The image is OR’ed with the current contents
of the window.

	= 258
	The image is XOR’ed with the current contents
of the window. (Two consecutive commands
restore the original contents.)

	= 259
	Normal (overwrite) mode.

	= 260
	The image is shown upside-down.

	= 261
	The image is mirrored (left-right inversion).

	= 262
	The image is rotated through 180 degrees.

	> 262
	Any other positive value is assumed to be the
address of another stored image (not
compressed) which will be used to mask the
first image. The two images need not have the
same dimensions, and if the mask is smaller
along one or both dimensions, it will be repeat-
ed as many times as required. This transfer
mode may be used for special effects, such as
smoothly revealing a stored image.

	< 0
	All the words of the stored image are AND’ed
with the absolute value of this number and then
transferred. This feature allows (limited) con-
trol over the colours of the resulting image on
the screen. For example a value of -43775
(=-BIN(’ 1010101011111111’) suppresses all
flashing (in low resolution mode), and the
value -255 turns green to black and white to
red (in high resolution mode).

Note that the x, y coordinates may be negative in order to show only part of the image.
SHOWAT works well if the original window was "word-aligned", i.e. its right and left borders
were on the boundary between two memory words in the display RAM or, in other words,
both its width and X-position were multiples of eight.
[bookmark: bookmark117]SIGN()
Syntax:
value = SIGN(string$)
Function:
Returns the sign value of its argument, i.e. -1,0 or 1 for negative, null or positive numbers
respectively. It may also return -17 if the argument cannot be converted into a valid float-
ing number. This function is useful for writing error-trapped input routines or to imple-
ment procedures or functions with default values for their arguments.
Note that if the stringS argument is not a number in a valid format, the QL expression
evaluator may give erroneous results or even crash the system. To avoid this,you should
not use SIGNO inside expressions. So instead of writing
result = SIGN(a$)*100
you should use
t = SIGN(a$)
result = t*100
When checking input from the user, you may find the following function useful:
DEFine FuNction IS_NUMBER(a$)
RETurn "9"&a$<>9
END DEFine
[bookmark: bookmark118]SLIDE_X
See also:
WSAVE, WSAVE_C
Syntax:
SLIDE_X [#n,] times, timeout, address {,address}
Function:
Creates a job which shows a sequence of stored images (compressed or not) the given
number of times (-1 means "forever") with a given timeout (interval) between one image
and the next one.
[bookmark: bookmark119]SPOS
See also:
FPOS0
Syntax:
SPOS #n, pointer
Function:
Sets the position pointer of the file linked to channel #n. The pointer indicates the loca-
tion in the file of the next byte to be read or written. Negative values or values greater
than the actual length of the file do not cause errors, but the pointer will be set to the start
or end of the file respectively.
[bookmark: bookmark120]STICK()
see also:
STICK_READ, STICK_USE
Syntax:
value = STICK(n)
Function:
Returns the current position of a virtual cursor that is controlled by either the joy-stick or
cursor keys. It is also able to read the state of the space bar/joy-stick fire button. The
value of n determines the meaning of the returned value according to the following table.
	n
	Returned value

	0
	The state of the fire button (zero or one).

	1
	The current x-increment.

	2
	The current y-increment.

	3
	The x-coordinate of the virtual cursor.

	4
	The y-coordinate of the cursor.

	5
	The lower limit of the x-coordinate.

	6
	The upper limit of the x-coordinate.

	7
	The lower limit of the y-coordinate.

	8
	The upper limit of the y-coordinate.

	9
	The increment for un-SHIFT’ed keys.

	10
	The increment for SHIFT’ed keys.

	11
	The increment for CTRL’ed keys.

	12
	The increment for ALT’ed keys.

The returned values refer to the latest execution of STICK_READ.
[bookmark: bookmark121]STICK_READ
See also:
STICK, STICK_USE
Syntax:
value = STICK_READ
Function:
This procedure reads the arrows keys (or the CTL1 port) and prepares the values that will
be returned by the STICK function.
[bookmark: bookmark122]STICK_USE
See also:
STICKO, STICK_READ
Syntax:
STICK_USE xstart,ystart [,xmin,xmax,ymin,xmax [,normal,shift,Ctrl,alt]]
Function:
Sets the initial values for the STICK function.
xstart,ystart
are the initial values of the two coordinates.
xminjanax,ymin,ymax
if specified, set limits for the x and y coordinates.
normal,shift,Ctrl,alt
are also optional, and specify scaling factors that will be applied to the cursor move-
ment when the SHIFT, CTRL or ALT keys are being held down. The defaults are
as follows: normal is xl; SHIFT is x4; CTRL is xl6; and ALT is x64. For example,
to ignore all but the arrow keys, use
STICK_USE 0,0,0,512,0,256,1,1,1,1
NOTE: Due to A QL bug, the state of the CTRL and ALT keys cannot be correctly deter-
mined when the left and up arrow keys are pressed simultaneously.
[bookmark: bookmark123]STORE
See also:
FETCH()
Syntax:
STORE x, number {,number}
Function:
This provides a sophisticated POKE command to a protected area of RAM reserved by the
Mega-Toolbox. When used with FETCH, it enables you to communicate floating point
values between programs and jobs or to preserve values during a CLEAR command.
Storage for sixteen values is available, referenced 0-15. You can store several values at
once, with x indicating the reference of the first value in the list Thus
STORE 4,1,2,3
would store 1 in the 5th slot, 2 in the 6th and 3 in the 7th. To retrieve the 5th value (=1),
you would use
value = FETCH(4)
Clashes between multi-tasking jobs trying to access these values simultaneously are au-
tomatically prevented by the Mega-Toolbox which ensures that no job can start a STORE
or FETCHO whilst another job has a STORE or FETCHO in progress.
[bookmark: bookmark124]STR$()
Syntax:
stringS = STR$(arg {,arg})
Function:
This is an enhanced version of the CHR$() function, which will concatenate any number
of mixed numeric and string arguments into a single string.
For example
PRINT STR$("This is ", 49, " example.")
would print "This is 1 example.", and
PRINT #n, STR$(27, "E", "The Tide", 27, "F");
would print "The Title" in bold type on an Epson compatible printer attached to #n.
[bookmark: bookmark125]SUBSTR()
Syntax:
value = SUBSTR(a$, b$ [,n])
Function:
This performs a similar function to the existing Superbasic INSTR operator but works on
the entire ASCII character set. Case is not significant.
The returned value indicates the start of the first occurrence of a$ in b$. Zero will be re-
turned to indicate that no match was found. If n is given, the search starts at the nth char-
acter in b$.
[bookmark: bookmark126]SUSPEND
See also:
JOBS, REMOVE, RELEASE, SETPRIOR
Syntax:
SUSPEND jobid [.timeout]
Function:
Suspends a job for a given timeout expressed in 50th’s of a second. If the timeout is om-
itted, or is given as -1 the job will be suspended indefinitely.
There are two special values for jobid: -1 means "this job", -3 (or lower) means "all jobs
but this one".
[bookmark: bookmark127]SWAP
See also:
OPTIONJJSE
Syntax:
SWAP argl, arg2 [,argN]
Function:
Exchanges the contents of two or more arguments. If more than two arguments are
specified, the value of the first one is passed to the second one, and so on, until the value
of the last is transferred to the first. Arguments may be of any type (integer, floating or
strings), provided that the resulting set of assignments is legal.
NOTE: This command will not work in compiled programs because compilers do not al-
low the return of values through arguments.
[bookmark: bookmark128]SYSTEM_ADDR, SYSTEM_ADDR()
See also:
BASIC_ADDR, VAR_ADDR
Syntax:
address = SYSTEM_ADDR
value = SYSTEM_ADDR(n)
Function:
When used without arguments, this function returns the address of system variables, which
are normally at $28000 (hex), but could theoretically change in future (!) versions of QL.

The latter form is functionally equivalent to
value = PEEK_L(SYSTEM_ADDR+n)
and is useful for reading some system variables. For example SYSTEM_ADDR(28) re-
turns the base of the resident procedure area, and SYSTEM_ADDR(32) the address of the
last byte of RAM plus one.
[bookmark: bookmark129]TEST_SET()
See also:
BUFF_ADDR
Syntax:
value = TEST_SET(address)
Function:
Performs a 68000 TAS instruction. The byte at the given address is tested and set in a sin-
gle indivisible operation, and its former value is returned. This instruction is useful in a
multi-tasking environment to implement "semaphores" to arbitrate between different jobs
accessing the same resource.
For example, to avoid problems where several jobs have access to the Mega-Toolbox
buffer located at BUFF_ADDR, simultaneous access of the buffer can be prevented by us-
ing the first location of the buffer as a "lock". This can be implemented by including the
following code in each compiled program with access to the buffer.
REPeat wait: IF TEST_SET(BUFF_ADDR)=0 THEN EXIT wait
REMark Use the buffer as desired, but of course don’t
REMark alter the byte at (BUFF_ADDR)
REMark When finished...
POKE BUFF_ADDR, 0 : REMark release the buffer
[bookmark: bookmark130]TRIM$()
Syntax:
string$ = TRIM$(a$)
Function:

Removes all trailing blanks from a string. When used with REVERSE$0 it enables you
to remove leading blanks and is also useful for getting round the Superbasic bug which
causes blanks to be appended to a sliced string array.
[bookmark: bookmark131]

UPPER$()
See also:
LOWER$()
Syntax:
string$ = UPPER$(a$)
Function:
Converts a string to upper case.
[bookmark: bookmark132]VAR_ADDR()
See also:
SYSTEM_ADDR, BASIC_ADDR
Syntax:
address = VAR_ADDR(variable)
Function:
This function returns the address (relative to A6) of a given variable, which may be a sin-
gle variable or expression of any type (integer, string or floating), or even an array or
sub-array (in which case the address of its first element is returned). This is very useful
when passing strings, floating point numbers or arrays of parameters to a user-defined
machine code routine, or to QTRAP instructions with negative values for trapnumber
(which forces arguments used by the trap to be relative to A6.
If used from within compiled programs, note that OPTION_USE must be used to alter the
way that parameters are passed. Otherwise, a "Not implemented" error will result.
[bookmark: bookmark133]VAR_TYPE()
Syntax:
type = VAR_TYPE(variable)
Function:
Returns the type of a variable:-
1 means string
2 means real (floating point)
3 means integer
[bookmark: bookmark134]WAIT_R, WAIT_S
Syntax:
WAIT_R jobid [.timeout]
WAIT_S jobid [.timeout]
Function:
These procedures perform a simple form of synchronization between jobs. WAIT_R
suspends the current job until the job whose id is jobid gets removed from the system.
WAIT_S suspends the current job until the referenced job is either suspended or removed.
timeout
in both cases sets a limit to the length of time that the calling job will wait, in
fiftieths of a second. If timeout is omitted, a default value of -1 is used which causes
an indefinite wait.
[bookmark: bookmark135]WINDOW_OP
See also:
MRECOL, RECOL.X
Syntax:
WINDOW_OP [#n,] andvalue [.xorvalue]
Function:
Each word of the screen RAM owned by the window #n is AND’ed with andvalue and if
given, exclusive OR’ed with xorvalue.
This command enables you to very quickly change all colours in the given window, or to
suppress flashing, etc.
The following example shows the values required to leave a window completely un-
changed - most other values will perform some change.
WINDOW_OP 65535,0
[bookmark: bookmark136]WLOAD
See also:
SLIDE_X, WSAVE, WSAVE_C
Syntax:
WLOAD [#n,] filename
Function:
Loads a window previously stored with a WSAVE or WSAVE_C command.
This works well only if the destination window is the same as the saved window or if the
two windows have the same width and their X-positions differ by a multiple of eight.
[bookmark: bookmark137]WSAVE, WSAVE_C
See also:
WLOAD
Syntax:
WSAVE #n, filename
WSAVE_C #n, filename
Function:
Both commands save the contents of a window in a file.
WSAVE_C attempts to save the contents in a compressed form. Compression not only
reduces the volume of storage required, but also reduces the amount of time spent loading
and saving to microdrives or discs.
[bookmark: bookmark138]XCUR(), YCUR()
Syntax:
value = XCUR(#n)
value = YCUR(#n)
Function:
These functions return the x and y position of the character cursor.
[bookmark: bookmark139]XDIR
Syntax:
XDIR #n, devicename
Function:
Extended directory: shows the length of each file, and its data space if it is an EXECutable
program.
[bookmark: bookmark140]XFORMAT
Syntax:
XFORMAT #n, devicename [.sectors]
Function:
Formats a medium five times or, if the sector argument is specified, until the format pro-
cedure returns a number of good sectors greater than or equal to the given value (it tries a
maximum of five times). This is useful for formatting new microdrive cartridges.
[bookmark: bookmark141]XINC(), YINC()
Syntax:
value = XINC(#n)
value = YINC(#n)
Function:
These functions return the current cursor increments.
[bookmark: bookmark142]XMAP(), YMAP()
Syntax:
value = XMAP(#n, x)
value = YMAP(#n, y)
Function:
These functions provide a conversion from graphic coordinates of the given window to the
pixel coordinate system.
The graphic coordinates of a window have their origin at its bottom left hand comer of the
window, whereas the pixel coordinate origin is at the top left hand comer of the screen.
The positive x direction of the pixel coordinate system (which is used to specify the posi-
tion of a window) is downwards, i.e. opposite to that for graphic coordinates.
[bookmark: bookmark143]XPOS(), YPOS()
Syntax:
value = XPOS(#n)
value = YPOS(#n)
Function:
These functions return the position of the upper left hand comer of the given window (in
pixel coordinates).
[bookmark: bookmark144]XSIZE(), YSIZE()
Syntax:
value = XSIZE(#n)
value = YSIZE(#n)
Function:
These functions return the dimension of the given window (in pixels).
[bookmark: bookmark145]ZOOM
See also:
HIDEO, RECOLSHOW, SHOW
Syntax:
ZOOM [#n,] address, xsize, ysize [,xpos, ypos]
Function:
Shows an image (which must not be compressed) stored at address but with the ability to
alter its dimensions. As for SHOWAT, the stored image is must be word-aligned.
xsize resize
specify the number of pixel columns and rows of the resulting image. Hence,
ZOOM can be used to reduce an image along one or both directions, or to enlarge it
along one direction and reduce along the other etc. These (size) parameters need not
be multiples of the stored image dimensions, nor of the #n window dimensions, so
even fractional factors of reduction or magnification are obtainable.
xpos,ypos
are the coordinates of the upper left-hand comer of the area (in the stored image)
which will be zoomed and shown. This makes it possible to zoom the image and
show it one piece at a time.
This chapter gives some details about various toolkit features that may be of interest. This
includes details of the compression method for stored images, and notes for programmers
wishing to use the Mega-Toolkit with compiled programs.
6.1. Installation
You may have noticed that the BOOT program supplied passes parameters to the Mega-
Toolbox when it is first initialised. The statement has the format:-
CALL address, fnkey_number, fnkey_length
The latter two values can be varied according to your needs because they control alloca-
tion of memory for use by the KEY command. By minimising the values of these two
parameters, you will reduce the amount of memory reserved for use by the KEY com-
mand. The meanings of each parameter is as follows:-
address
This is the address of the routine within the Mega-Toolbox that does the initialisation
and should not be changed.
fnkey_number
This sets the maximum number of function keys that can be programmed using the
KEY command. Up to twenty combinations can be defined (using the CTRL, ALT
and SHIFT keys in combination with FI to F5). Set this parameter to the maximum
number of keys that your application will require.
fnkey_length
This defines the amount of memory set aside for storing the strings that will be as-
signed to each function key. You should specify a value long enough to hold the
largest string that you expect to program, up to a maximum of 128 characters.
6.2. Basic Compilers
The Mega-Toolbox has been designed to avoid problems when used by compiled programs
and has been tested with both Supercharge and Turbo compilers. Use with these com-
pilers leads to some restrictions described shortly. The Mega-Toolbox has not been tested
with Q Liberator, the main alternative compiler, but this is unlikely to present more prob-
lems than the others because it is in general much more tolerant.
Neither Supercharge or Turbo support extensions which return values through their argu-
ments, i.e. through the BP.LET vectored routine. For this reason, the Mega-Toolbox deli-
berately avoids this facility wherever possible. There are only three exceptions:
6. General Notes For Programmers

SWAP, QCALL, QTRAP
Mega-Toolbox	73	Compware

Mega-Toolbox	76	Compware

Mega-Toolbox	75	Compware

The QREGO function has been designed to enable values returned by the latter two func-
tions without needing to return the values through their arguments. You have complete
control over which method is used to return values from these functions through the
OPTION_USE command.
A further point to note is that unlike interpreted programs, compiled programs can be more
efficient if functions returning integer values are named with a trailing With this in
mind, a second version of the Mega-Toolbox has been provided in which the following
functions have replaced the existing ones which lack the suffix:
BTST%, COLOUR%, COLUMNS%, COUNT%, DMODE%, FN_KEY%,
FREE_CH AN %, FREE_SECT%, JOB_STAT%, ROL%, ROL_W%, ROWS%,
SEARCH%, SEARCH_N%, SIGN%, STICK%, SUBSTR%, TEST_SET%,
VAR_TYPE% XCUR%, XINC%, XMAP%, XPOS%, XSIZE%, YCUR%, YINC%,
YMAP%, YPOS%, YSIZE%
The integer version is contained in the file "MEGA_BIN%". Examine the BOOT program
for details of how to load it.
6.3. [bookmark: bookmark146]HIDE And SHOW Commands
The Mega-Toolbox uses the long word at offset $24 inside the Superbasic channel
definition block to store the address returned by the latest HIDE/HIDE_C function call on
a channel. This makes it possible to provide a default address for the SHOW/SHOW_R
commands. Normally this long word is not used, but could cause incompatibilities with
other toolkits if they were to use the same location for some other function.
6.4. [bookmark: bookmark147]Image Compression Method
When images are compressed using HIDE_C/WSAVE_C the following simple technique is
used.
Where the data contains consecutive words of the same value, the first two are left un-
changed, but any further identical words are replaced by a word which indicates how
many such occurrences have been replaced. Hence if there were only two identical words
in sequence, the third word would be zero. The method is simple and effective, not taking
too much time to compress and decode. Most images will show significant compression
using this technique, but in cases where the method would actually expand the image, it
will be left unaltered.
6.5. [bookmark: bookmark148]Stored Image Header
The following details are provided for use by programmers who wish to manipulate stored
images themselves, possibly making use of the following Mega-Toolbox commands:
MCOPY, MEXCHANGE, MFILL, EXCOPY, and EXFILL.
There is a header consisting of two 16-bit words at the beginning of all images stored ei-
ther in RAM or in files.
The first word contains the width of the image and must be multiplied by eight to obtain
the width in pixels.
The second word contains the height of the image in pixels, and has its most significant bit
set only if the image has been compressed. Standard file error
6.6. [bookmark: bookmark149]Using The QL’s Alternative Screen
The default (first) QL screen occupies 32K of RAM from $20000 to $27fff. The alterna-
tive (second) screen must sit immediately above this, from $28000 to $2ffff, but unfor-
tunately clashes with the QL’s system variables which occupy approximately the first 5K
of the second screen. This means that the first 6th (5/32) of the second screen can never
display anything meaningful, because to do so would mean overwriting the system vari-
ables causing the QL to crash.
The location of the system variables means that the first 5K of the second screen is
effectively useless. Worse still, the common heap starts to be reserved from immediately
above the system variables. Therefore, in order to write to the second screen it is neces-
sary to reserve memory in the heap, preferably before any of the heap has been taken by
another program (or toolkit etc.). This is done using the DUAL_SCR command, which
reserves memory and returns the start of the second screen. Any heap reserved before the
DUAL_SCR command will eat into the memory available and will reduce the useful area
of the second screen. Therefore, if you wish to use the second screen, the memory should
be reserved as soon as possible after a reset When experimenting, the following com-
mand sequence will show you how much of the second screen can be used:
DUAL_SCR
DUAL_COPY 1
The first command reserves memory, and the second copies the contents of the second
screen to the first, overwriting an area corresponding to that available in the second screen.
Ideally, all but the top 5th of the screen should be overwritten, although you may find that
various QL add-ons such as disc interfaces, ROM toolkits etc. reserve memory from the
heap, shrinking the size of the second screen.
Once memory has been reserved for the second screen, heap reserved by other programs
will not affect it, and the display can be manipulated in a number of ways.
DUAL_COPY
can be used to copy the contents of the two screens from one to the other. The en-
tire area overlapped by the second screen can be copied, or just that part which lies
within a given window.
DISPLAY
can be used to alter the displayed image to show a mixture of both the first and
second screens - in horizontal bands of variable depth. Each band can be taken from
either screen, and can be in either high or low resolution screen mode. Parts of the
screen can also be blanked entirely enabling drawing operations to be performed in-
visibly before being made to appear instantaneously.
6.7. [bookmark: bookmark150]File I/O Errors
FILE_LEN, FILE_DSPACE, FREE_SECT, ALCHP_L, RESPR_L, EXPAND_L
Whenever one of the (above) functions that performs a file operation encounters a non
standard error code the error code returned by that function will be -7 which corresponds
to "File not found". This might occur when using add-on hardware devices that do not re-
turn the standard QDOS error codes, and simplifies error trapping by ensuring that only
standard error codes can ever be reported.

6.8. [bookmark: bookmark151]Sharing Of Facilities Between Multi-tasking Programs
Mega-Toolbox commands and functions have been designed to be re-entrant wherever pos-
sible meaning that multi-tasking programs can all make use of its commands simultaneous-
ly without problems. However, in the following cases, it has either not been practical to
make the routines re-entrant, or for some other reason it is impractical for two programs to
access the same command at the same time:
DISPLAY, DUAL_SCR, KEY, KEYU_SE, KEYBOARD, OPTION_USE,
PLAY_X, RESET_SCR, STICK_USE and STORE.
If you wish to distribute a program that uses the Mega-Toolbox whether for sale or just for
use by others on a friendly basis, then you must obtain a license from Compware before
doing so.
We offer attractive licensing terms to individuals or software houses wishing to distribute
the Mega-Toolbox with their software, but will of course take the necessary steps should
the Mega-Toolbox be distributed without permission or outside the terms of a given
license.
7. Distributing Programs With The Mega-Toolbox

If you wish to find out more about licensing, please write giving brief details of your in-
tention. Please indicate if you would be interested in a cut down version of the Mega-
Toolbox to reduce the amount of memory required.
Mega-Toolbox	77	Compware

Mega-Toolbox	78	Compware

Mega-Toolbox	79	Compware

[bookmark: bookmark152]8. What To Do If Things Go Wrong
This is a chapter to help sort out problems
[bookmark: bookmark153]BAD OR CHANGED MEDIUM
If your Mega-Toolbox cartridge has become corrupted and you do not have a backup copy,
(shame on you!) all is not lost. Return your original cartridge to Compware within 30
days of purchase, enclosing proof of date of purchase (or quoting your invoice number)
and we will replace it free of charge. If the 30 day period has expired, the charge will be
the same as a new version upgrade, which includes the latest version of the software and
documentation. Contact us for pricing.
[bookmark: bookmark154]BAD NAME
If when you type a Mega-Toolbox command, or run a program which makes use of facili-
ties and obtain a "Bad name" message, this may indicate that for some reason the com-
mands have not been properly linked into Superbasic. If you are typing commands at the
keyboard, try again as some software can cause this to happen intermittently. If you still
have problems, first try re-booting your QL and verify that the problem is still present
If you have this problem when using the Mega-Toolbox inside a program, make sure that
you are using the boot program provided to load and link the commands, and that this is
done before your own program is loaded. If you are trying to link the Mega-Toolbox from
within your own program, you are likely to find that some versions of QL refuse to link in
the new commands. Instead, you should modify the boot program provided to load your
program after the toolkit, solving the "Bad name" problem and keeping the loading process
fully automatic.
[bookmark: bookmark155]IF ALL ELSE FAILS
If after thoroughly reading the manual and studying the example programs provided, you
are sure that you have found a problem in the operation of the Mega-Toolbox, we would
be very grateful if you would describe the problem so that we can investigate it. Before
doing this though, you can help us considerably if you first perform a simple investigatioa
If you have any add-on units (such ROM toolkits, disc drives, mice etc.), remove them
and see if the problem is still present. If not, identify which of the add-ons is linked with
the problem by gradually re-introducing them, and let us know the results.
Please use the problem report form at the back of this manual (or a copy of it) to give us
your details and describe the problem. Try and fill in all sections of the form and to give
step by step details of the problem you are having.
[bookmark: bookmark156]Appendix A
	Details of Demonstration Programs

	File
	Notes
	Commands Used

	[bookmark: _GoBack]arrays_eg
	Contains a wide selection of general purpose
routines for fast and flexible manipulation of
arrays.
	VAR_TYP, VAR_ADDR,
BASIC_ADDR, MEX-
CHANGE, EXCOPY,
MCOPY, MFILL,
MSEARCH_A, PUTS

	square_eg
	A routine for drawing a square which shows
how you can implement optional parameters for
SuperBasic routines.
	SIGN, SWAP

	jobinfo_eg
	Shows how to access information in contained
in job headers, and how to use CHOOSES
	JOB_ADDR, JOBS,
CHOOSES

	chaninfo_eg
	Shows how to obtain information about a
screen window from its QDOS header and
shows the use of bit test and manipulation rou-
tines.
	CHAN_ADDR, CHAN_ID,
CHOOSES, BTST, ROL, GET,
GETMEMS

	sysinfo_eg
	Shows how to access QDOS system variables
including the address of heap, resident pro-
cedure area, job headers, display mode etc.
Lots of useful features.
	SYSTEM_ADDR, CHOOSES,
BTST

	bio_eg
	Shows how to verify input using several new
functions, but is also a useful biorhythm gen-
erating program.
	SIGN, DAZYS, YCUR

	fonts_eg
	Shows how to construct your own fonts and
add them to basic.
	FONTJJSE, BIN

	fplot_eg
	Shows error trapping and how to write self
modifying programs - very bad practice of
course, but powerful!
	ENTER, DISPLAY,
KEY_USE, CLEAR_Q

	qtrap_eg
	Contains several useful procedures showing use
of QDOS traps directly from basic. Demon-
strates opening channels, files, directories etc. -
all with full error trapping in basic.
	QTRAP, BUF_ADDR,
QPOKE, JOBJD,
CONNECT_C, BUFF_ADDR,
CHAN_ID, FREE_CHAN,
GETMEMS

	excopy_eg
	Simple graphic demo, including drawing whilst
the screen is turned off and some special
effects.
	EXCOPY, EXFILL,
DISPLAY, CHOOSES, DISK,
HIDE, SCR_ADDR,
SHOWAT

	box_eg
	Simple demonstration of using BOX.
	BOX

	disk_eg
	Simple demonstration of using DISK.
	DISK

	stick_eg
	Shows how to read joystick position and cursor
keys.
	STICK_READ, STICK,
CHOOSES

Mega-Toolbox	Compware

[bookmark: bookmark157]Problem Report Form
Please use this form (or a photocopy) to report any problems/suspected bugs or documentations
errors associated with this software, and return to:
Software Problem Report, Compware, 57 Repton Drive, Haslington, Crewe, CW1 ISA.
[bookmark: bookmark158]Personal Details
Name:
Address:
Telephone:
Program Details
Program: QL Mega-Toolbox
Date Purchased:
Program version:
Purchased From:
Manual issue date: December 7, 1987

[bookmark: bookmark159]QL Configuration
QL Version:	QDOS version:
QL RAM:	RAM Make/model:
Disc interface (make and model):	
Other add-ons (ROMS, mice etc.):	
[bookmark: bookmark160]Problem Details
Please describe the problem in as much detail as possible. If we are to do anything about
it, we must be able to duplicate the fault so please describe all the steps leading up to the
problem explicitly, and note exactly, any error messages produced. Use the reverse of this
form to describe the problem and continue on additional sheets if necessary.
Please supply a microdrive containing a simple program demonstrating the fault.	

