About Sprited

Jerome Grimbert

[image: image1.jpg]
As the author of sprted reviewed in issue 3, I would like to give some precisions to the reader of QL-Today. Since the 25 October 2000 (and not before), the sprite editor program can be used on QPC2 v2 (the prerelease with High colour) and QXL (also with high colour), in fact any system with a display big enough and a GD2 driver should be ok. Previously, running sprted (the sprite editor) was only possible on a Q40 (also with high colour). Nevertheless, when not on a Q40, you cannot have the Q40 specific sprite (Just tell me how to display 65535 accurently on 256 colour system). I'm sorry for the other systems (such as a standard QL), but I probably won't make it possible to run on a mode 4 only (yet, you can design a mode 4 only sprite on the supported systems). I would like also to correct the reviewer about saving capability: there is no output in pic format. Only assembler is possible. It is possible to load a pic as a mask and this button was near the 'save asm' one, so I can understand the misunderstanding.

Let's now have a guided tour of the hundreds of buttons in sprted, from the top to bottom at the center of the main window.

[image: image2.jpg]
[image: image3.jpg]
The heart is my 'Quit' buttons then there is the 'sleep' and then the resize which does currently nothing because I found the window is already large enough. Still on the classical PE buttons, we have the 'Wake' which redraws the windows, the 'change mode' which is unavailable and the 'Move' which allows you to put the big window where you want on a big resolution system.

The sizing control.

[image: image4.jpg]

The current sprite is delimited by two sets of parallel lines, one red and one black, which define a rectangular area You can either move a line by one stop (usually one pixel, except in mode 8 where the horizontal move is two pixel at a time, due to the implementation of the mode 8 on the original QL remember in mode 8, the 512x256 pixels of mode 4 get seen and addressed as onlv 256x256 pixels]) with the first two lines of buttons or directly set the position with the last two lines. Also on the last two lines, there is the current width and height of the sprite.

[image: image5.jpg]

On this line, you can choose which sprite version you want to edit. When choosing a new mode, the previous size-lines are automatically copied in the new mode. So on a Q40, you can choose between mode 8, mode 4, mode 33 (the 040 native mode) and the 256 fixed colours (mode 16). I do not really see the interest of having a paletted sprite so mode 31 is not supported (even it it is supported by all GD2 compatible display). On a non-Q40 system, as already said, the 040 native mode is unavailable.

[image: image6.jpg]

On the right of the main column of flashy buttons, lies the buttons which deal with the automated conversion between the various modes of the pattern (the part of the sprite which gives the colours informations). The Q40 mode is represented as a colourful checker, mode 4 and 8 by respectively 4 and 8, and the lately arrived 256 colours by a 6 (because 256 ends with a 6). The first colums has all buttons which convert from mode 8, the second from mode 4, the third from Q40 and the fourth from the 256 colours mode Similarly, the first row holds all the buttons that have to deals with mode 4, the second row wit! mode 8 and the third row about the 256 colour; mode. The disposition has therefore some kind of logic even if a true matrix of conversion would have required a 4 x 4 grid with an empty diagonal (no point to convert from mode 4 to mode 4!). The last two big buttons at the bottom allow to read a _pic for the pattern (either in mode 4, mode 8 and mode 33, I have not yet made the loader for a pic taken under QXL or QPC2 in high colour mode) and to explore a binary file (such as a program file) looking for some possible sprites (this scanner works for the four possible modes).

[image: image7.jpg]

On the top right corner, we have the preview of the sprites. The order from the left to the right is similar to the mode selection buttons: mode 8, mode 4, Q40 and 256 colours. There is under the preview a quick choice from the eight basic colours to use as the background colour lor tne preview. Beware nevertheless, the mode 8 preview is emulated as a mode 256, so the display may not be accurate, and handling of mode 4 may differ according to the underlying hardware and software (especially when it is a true mode 4 hardware, there is no such thing as yellow, cyan blue or magenta). The main interest of being able to change the background colour is to check for visibility and readability of your sprite (the cute one on white may be very hard to understand when on black or red).

[image: image8.jpg]

In the middle of the right side, there is the current mask: blue for opaque pixels and light green for transparent pixels. It you HIT on the area, the mask is transfered into the main editing window so you can edit it, and if you DO again, the main editing window comes back to edit the pattern. Under the mask window, we find again a set of buttons to perform automatic transfers of the mask between the various modes (same logic than with the pattern transfer)

Then we have a small button to inverse the mask (transparent become opaque and vice-versa) as well as a button to load a pic as a mask (black is transparent, other is opaque). On the last line, from the left to the right, there is:

- a button to compute the mask from the pattern, where bright white is transparent and others is opaque.

- a button to set the whole mask opaque (keyboard shortcut is S)

- a button to set the whole mask transparent (keyboard shortcut is D)

- a button to compute the mask from the pattern where black is transparent and others is opaque.

[image: image9.jpg]

Going back to the middle of the main window, we encounter two really big buttons which allow you to choose the colour for the pattern edition. The one with the brush is only available on Q40, the other one (with the computer monitor) displays the choice of 256 colours. Under them, there is the 'Save to assembly' button. You can choose if you want to generate assembly for QMAC or AS68 via a config block. You can choose which modes of the sprite to save, as well as the name of the file to write the sprite to and the name that will have the sprite when used in C. If the designated file already exist, you are prompted to check if you want erase it with the new sprite.

[image: image10.jpg]

Right above the very center of the main window are the buttons to quickly select a basic colour and to adjust the White/Red/Green/Blue components, as well as the values of each components. The fine adjustment is unavailable when working with a mode 4 or a mode 8 sprite.

[image: image11.jpg]
Then we have on the leftmost part a button to fill the current sprite with the current colour (which is displayed next to it), as well as a button to inverse the colours of the current pattern. On the right of the preview of the current colour there are two buttons which deal with a secondary colour: the top button exchange the current colour with the secondary one (whose preview is on the right), while the other button will scan and replace in the current pattern the secondary colour with the current one (very useful to replace a shade of red with another shade of blue without having to do it by hand & eyes)

[image: image12.jpg]
And finally some basic manipulations of the pattern and the mask. On the left, the manipulation applies to the pattern and on the right to the mask. The top rows make a rotation the part which goes out of the sprite is put back at the other extremity, while the bottom rows perform a translation: the part which goes out of the sprite is lost and the other extremity get the current colour. For each manipulation, you can have any of the four directions (up, down, left, right) and it is one pixel at a time.

So this end the guided tour of the buttons.

A last word about the mouse click on the main editing window When in pattern mode, a HIT puts the current colour in the cell under the pointer (you can keep HIT down and move the mouse, it should paint the cells which are moved upon [you may have some gaps due to your mouse settings]), and a DO takes the colour of the cell under the pointer as the colour. When in mask mode, HIT will set the pixel opaque and DO will make it transparent.

Last recall; sprted is available as freeware from

http://grimbert.cjb.net/

(this is a redirection, but it can be bookmarked)

and http://www.crosswinds.net/~grimbert/

(this is the actual hosting server but it may change, so beware)

