

GIGA-BASIC

GIGASOFT

By André Claaßen and Gerd-Uwe Neukamp

Published by ABC Elektronic

(C) 1985

GIGA-SOFT

< page - 2 - >

CONTENTS

Disclaimer___ 3

Introduction:__ 3

Graphics___ 3

Direct Access to medium______________________________________ 4

Base Conversion__ 5

Multitasking Control Commands________________________________ 5

Sprites and Animation__ 6

Sprite Definition Commands___________________________________ 9

MENU Control Commands_______________________________________ 11

Pull-Down-Menus___ 13

Programmable Function Keys__________________________________ 15

Clock Commands__ 15

Other Commands__ 16

Window Commands___ 19

Index___ 20

GIGA-SOFT

< page - 3 - >

DISCLAIMER

All rights reserved. No part of this instruction guide or of

the included programs may be reproduced or distributed in any

form (e.g. as prints) without the explicit permission of GIGA-

SOFT. Copies for personal use are allowed.

The program has been developed and reproduced carefully,

neither the author nor the distributors, however, can

guarantee that the program and this guide are free of errors.

Therefore GIGA-SOFT under no circumstances will be liable for

any direct, indirect, Incidental or consequential loss of use,

stored data, profit or contracts which may arise from any

error, defect or failure of this software.

GIGA-SOFT has a policy of constant development and improvement

of their products. We reserve the right to change manuals and

software at any time and without notice.

INSTRUCTIONS FOR THE BASIC EXTENSION "GIGA-BASIC VERSION 1.00"

INTRODUCTION:
Although the Sinclair QL comes with a real good BASIC, some

commands are missing, which would offer the full power of the

QL. This extension set should increase your motivation to

program in BASIC. With over 70 commands and functions, GIGA-

BASIC is a useful extension for the QL. Before starting work

with GIGA-BASIC you should read this manual carefully. You

should never work with your original copy of GIGA-BASIC. To

obtain working copies a backup program is included. To start

this program enter 'exec_w mdv1_clone'. You can backup GIGA-

BASIC up to three times.

The extension includes the following groups

 graphics

 sprite handling and sprite animation

 base conversion

 full screen BASIC editor

 direct access to medium

 multitasking clocks

 mouse driven screen oriented menus

 pull-down-menus

 multitasking control commands

 programmable function keys

 others

GRAPHICS

 PAINT #dev, x, y

Fills an irregularly bordered area of the chosen

screen with the ink colour.

GIGA-SOFT

< page - 4 - >

dev: device number of the screen

x: x= coordinate

Y: y= coordinate

DIRECT ACCESS TO MEDIUM

 GET #dev, variable (,variable)

Gets a value from medium and writes it into the

variable. The type of the value depends on the type

of the variable.

Example: GET #4, integer%

#dev: device number

variable: any type and number of variables

 BGET #dev, byte (,byte)

Gets byte from medium and puts it into the

variable.

#dev: device number

byte: any type and number of variables

 PUT #dev, variable (,variable)

Writes value to Microdrive. Any variable type is

allowed.

#dev: device number

variable: any type and number of variables.

 BPUT #dev, byte (,byte)

 Writes byte to Microdrive.

#dev: device number

byte: variable which gets a byte

 SET_POINTER #dev, pointer

Sets file-pointer to new position. With this

command it is possible to have direct access to

Microdrive (or FLP, HDK, FDK and so on).

#dev: device number

pointer: longword containing the pointer

 GET_POINTER (#dev)

 Gets the pointer of the selected Microdrive.

Example: pointer = GET_POINTER (#dev)

#dev: device number

pointer: variable containing the pointer

GIGA-SOFT

< page - 5 - >

BASE CONVERSION

The following functions provide an easy way to

convert bases.

hexnum$ = CHEX$(decimal)

Converts a decimal value into a hexadecimal

string

hexnum$: string which will contain the hex number

decimal: variable containing the decimal number

decimal = CHEX(hexnum$)

Converts a hexadecimal string (max. 32 bit)

into a decimal number.

decimal: variable which will contain the decimal number

hexnum$: string containing the hex number

binary$ = CBIN$(decimal)

Converts a decimal number into a binary string

(32 bit).

decimal: variable which will contain the decimal number

binary$: string containing the binary number

decimal = CBIN(binary$)

Converts a binary string into a decimal number.

Decimal: variable which will contain the decimal number

binary$: string containing the binary number

MULTITASKING CONTROL COMMANDS

The following commands are intended to control the

multitasking capabilities of the 04. Now it is possible to

delete, suspend or activate jobs from BASIC.

JOB_INF #dev

This command display, a list of all active Jobs. A

job is a program working in the background.

Additionally you can see the priority, the owner

job, the base address and the tag number. Job 0 is

the BASIC interpreter. For further information on

multitasking refer to the Sinclair User Guide.

#dev: device number

GIGA-SOFT

< page - 6 - >

SUS_JOB jobnr, tagnr, timeout

 Suspends a job for a period.

jobnr: jobnumber

tagnr: tagnumber

timeout: Number of frames the job being deactive (-1:

infinite).

REL_JOB jobnr, tagnr

Releases a suspended job. This command is the reverse

of SUS_JOB.

jobnr: jobnumber

tagnr: tagnumber

PRIOR_JOB jobnr, tagnr, priority

Sets the priority of a job. Priorities are allowed in

the range from 0 to 127, where 127 is the highest

priority. If the priority is high, more time is

available for the job.

jobnr: jobnumber

tagnr: tagnumber

priority: priority

SPRITES AND ANIMATION

GIGA-BASIC offers a great number of efficient commands for

development and animation of sprites. So it is easy to generate

action games or programs using icons. Sprites are organised in a

32 x 20 matrix and are flicker-free

Important definitions:

Sprite-data-block (sprdat): This is a memory block which contains

the bytes for the shape (mask) of the sprite. A sprite shape

contains 160 bytes. Every Sprite-data-block can be attached to

every sprite.

Sprite-number (sprnr): A sprite will be activated under a sprite-

number. Under this number the sprite can be moved over the whole

screen.

 SPRDIM spritenr, datanr, animtenr

Reserve memory for sprites. The defaults are:

 SPRDIM 4,16,4

spritenr: number of possible sprites

datanr: number of possible Sprite-data-blocks

GIGA-SOFT

< page - 7 - >

animtenr: number of the sprites which can be animated

 SPRCLR

SPRCLR releases the memory allocated by SPRDIM. All

defined Sprites are lost.

INVMASK #dev, x, y, sprdat

Prints a sprite mask onto the screen. The coordinates

are relative to the left upper edge of the selected

window. The coordinates have pixel size 4. (This is

not a sprite, only a mask will be drawn).

dev: device number

sprdat: sprite-data-block

 SPRON sprnr, sprdat

Activates a sprite with a sprite-data-block.

Note: This command does not have any effect on the

screen. The sprite will not be visible until it is

activated by the MOVESPR command

sprnr: sprite number

sprdat: sprite-data-block

 SPROFF sprnr

 Removes the selected sprite.

sprnr: sprite number

 REFRESH

Important after "CLS'. All active sprites are

refreshed.

 INVSPRITE sprnr

 The chosen sprite is inverted.

sprnr: sprite number

MOVESPR sprnr, x, y (,sprdat)

Sets a sprite to a new position. The optional sprite-

parameter is intended to change the appearance of the

sprite. If no sprite-data-block parameter is given,

the sprite image does not change.

sprnr: sprite number

x, y: *absolute pixel coordinates

sprdat: sprite-data-block

GIGA-SOFT

< page - 8 - >

Several sprites can be moved using only one command. This type of

motion is named animation. It is a really easy task to move

rockets, men, cars and other things now.

 SETANIMATE sprnr, sprdat(,sprdat1)(,sprdat2)

This command has as many parameters as you want to.

The given sprite-data-block are connected in series.

Note: Before using ANIMATE, you have to initialise the

routine with the SETANIMATE command. A maximum of 16

sprite-data-blocks may be connected.

sprnr: sprite number

sprdat: sprite-data-block

 CLRANIMATE sprnr

The selected sprite entry will not be animated after

the use of CLRANIMATE.

sprnr: sprite number

 STEPSPRITE sprnr, xstep, ystep, statx, staty

This command CIO be used after every SETANIMATE. You

can change the direction and speed of the animation in

your basic program.

sprnr: sprite number

xstep: stepsize x

ystep: stepsixe y

statx: 0 After reaching the border of the screen inverts

 the x-direction.

 1 After reaching the border appear at the other side.

 2 After reaching the border kill the sprite.

staty: Same as statx but referring to the y-direction.

 ANIMATE

Moves all sprites which are declared with the

SETANIMATE command over the screen.

Sprite = COLLISION(sprnr)

Asks whether two sprites are overlaid. If it is true

COLLISION returns the sprite number, otherwise -1.

sprnr: sprite number

sprite: If the sprite isn’t in contact with another sprite -1

will be returned, otherwise the sprite number.

GIGA-SOFT

< page - 9 - >

SPRITE DEFINITION COMMANDS

Sprites can be defined for MODE 4 or MODE 8. The following is an

example of an eight colour sprite:

100 :

110 SPRDEFBLOCK starship

120 :

130 SD8 "................"

140 SD8 "................"

150 SD8 ".......11......."

160 SD8 "......1111......"

170 SD8 "....22222222...."

180 SD8 "..333333333333.."

190 SD8 "...3333333333..."

200 SD8 ".....7....7....."

210 SD8 "....7......7...."

220 SD8 "...7........7..."

The four colour example:

100 :

110 SPRDEFBLOCK disk

120 :

130 SD4 "................................"

140 SD4 ".##############################. "

150 SD4 ".############################..."

160 SD4 ".##############################. "

170 SD4 ".##############################. "

180 SD4 ".#############....#############. "

190 SD4 ".###########........###########. "

200 SD4 ".##########..........##########. "

210 SD4 ".###########........###########. "

220 SD4 ".#############....#############. "

230 SD4 ".##############################. "

240 SD4 ".##############..##############. "

250 SD4 ".##############..##############. "

260 SD4 ".##############################. "

270 SD4 "................................"

The colours are set in the following forms

MODE 4

Red : '1'

green : '2'

white : '3','#'

black :all other characters

MODE 8

blue : '1'

red : '2'

magenta : '3'

green : '4'

GIGA-SOFT

< page - 10 - >

cyan : '5'

yellow : '6'

white : '7','#'

black : all other characters

 SPRDEFBLOCK sprdat

Clears the selected sprite-data-block and prepares it

for a new definition.

sprdat: sprite-data-block

SD4 defblock$

Command to define a four colour sprite. Up to 20

commands can be used after a SPRDEFBLOCK command. The

string must be 32 characters long.

SD8 defblock$

Command to define an eight colour sprite. Up to 20

commands can be used after a SPRDEFBLOCK command. The

string must have a length of 16 characters.

SPRLOAD name$

With this command you can load previously defined

sprite-data-block. Before you use this command enough

space must be reserved by SPRDIM.

Example: PRLOAD *MDV1_PACMAN_SPR*

SPRSAVE name$

If you want to save the allocated sprite area you can

use this command. Only the area for sprite-data-block

will be saved.

flag = SPRACTIVE (sprnr)

With SPRACTIVE you can ask whether a sprite in active.

1 is true and 0 is false.

sprnr: sprite number

x=SPRXPOS(sprar)

y=SPRYPOS(sprnr)

With these functions you can find out the location of

a sprite.

sprnr: sprite number

GIGA-SOFT

< page - 11 - >

MENU CONTROL COMMANDS

The following commands support your friendly screen orientated

menus. Now you can program mouse-driven menus as with the APPLE

MACINTOSH™

The handling is very simple. With commands like MENUPR or

MENUBLOCK you define a BLOCK. This block can be manually inverted

or selected with the MOUSE function. Possible input media are the

cursor keys or a mouse with the ABC-interface (included in the

big ABC package).

Example :

100 :

110 REMark small example menu

120 :

130 CLS

140 PRINT "M E N U"

150 PRINT: PRINT

160 MENUPR 1," Start a program"

170 MENUPR 2," List a program*

180 MENUPR 3," End"

190 :

200 a=MOUSE

210 :

220 SELect on a

230 =1: Start

240 =2: LIST

250 =3: STOP

260 END SELect

After entering and starting the program, the menu points

appear as if they were printed with the PRINT command. An

arrow appears, too. This arrow can he moved over the whole

screen. If the arrow is in range of a menu point this will be

inverted. So you can see exactly what you have chosen. By

pressing the button or space the selected menu number will be

returned.

 SETMDEV mode

Selects input medium for the menu commands.

mode: 0: keyboard (cursor keys / space)

 1: mouse

 MENUDIM number

Reserves memory for the menu points. Space for pull-

down-menus will be automatically allocated.

number: the maximum number of menu points

GIGA-SOFT

< page - 12 - >

 MENUBLOCK #dev, b1knr, x, y, xO, yO

This command marks a block with the chosen menu-block-

number.

#dev: device number of a screen

blknr: menu-block-number

x, y: size of the block

xO, yO: position relative to the selected window (offset)

 MENUPR #dev, blknr, text$

Prints a text an the screen similar to the print

command and activates it as a menu block.

#dev: device number of a screen

blknr: menu-block-number

text$: text

The separator ';' is allowed.

 ICON #dev, blknr, sprdat, x, y

Similar to the INVMASK command it displays a sprite

block on the screen. The difference is that ICON marks

it menu block. With this command it is possible to

access symbols in a similar way as the MENUPR command.

You can define ICONs and use them for defining

MACINTOSH™ style programs.

#dev: device number of a screen

blknr: menu-block-number

sprdat: sprite-data-block

x, y: pixel coordinates relative to the window

 INVBLOCK b1knr

Inverts a block.

blknr: menu-block-number

 CLRBLOCK b1knr

Clears a block.

blknr: menu-block-number

 nr=MOUSE(x, y)

Displays an arrow which can be moved over the screen

by using the mouse. With the arrow you can select an

item.

GIGA-SOFT

< page - 13 - >

nr: if no menu point is chosen, -1 will be returned,

otherwise the otherwise the menu-block-number will be

returned.

x, y: start coordinates of the arrow

 x = MXPOS, y = MYPOS

These functions return the position of the arrow after

pressing the SPACE-key.

PULL-DOWN-MENUS

This a new type of menu technique. On top of the screen you can see

a headline holding the menu points. If you move the arrow to one of

the points, a window will be opened with a submenu. Now you can

choose the point you want in the submenu. With the Pull-Down-Menus

you can handle a great number of menu points on a very small room.

Example:

100 SPRDIM :REMark Reserves space for the arrow

110 MENUDIM :REMark Allocates space for the pull-down-menu

120 :

130 MENU 0,0,1, "Addresses"

140 MENU 1,0,1, "Clear"

150 MENU 2,0,1, "Input"

160 MENU 3,0,11 "Edit"

170 :

180 MENU 0,11,1, "File"

190 MENU 1,1,1, "Load"

200 MENU 2,1,1, "Save"

210 :

220 MENU 0,2,1, "Exit"

230 MENU 1.2,t, "Reset"

240 MENU 2,7,1, "Basic"

250 :

260 SETMENU :REMark Clears the screen and shows the menu headline

270 :

280 GETMENU :REMark Shows the arrow and gets the menu point

290 x = HMENU

300 y = VMENU

310 :

 MENU vnr, hnr, active, string$

Command to define a pull-down-menu.

vnr: Vertical coordinate. The headline has the

 coordinate zero.

Note: The menu points within the headline (vnr=0) must be

defined In ascending order. Every headline point must

GIGA-SOFT

< page - 14 - >

have a submenu. A maximum of 10 Items can be defined

in the vertical direction.

hnr: Horizontal coordinate. The number of horizontal items

is restricted to a maximum of 8. The total length of

the items in the headline must be selected to fit

according to the selected screen mode. This is

important for compatibility between mode 8(256) and

mode 4(512).

active: Flag which selects whether you can access the menu

point or not

string$: Text of the menu point. The length is restricted to 14

characters.

 SETMEMU paper1, paper2, actcol, pascol

Clears the whole screen. Displays the headline.

paper1: is the screen colour

paper2: border colour of the headline

actcol: Colour of the active menu points

pascol: Colour of the passive menu points

 GETMENU x, y

Displays the arrow and allows the user to select menu

points.

x, y: start position of the arrow

Default: GETMENU 256,100

 ACT1VE vnr, hnr, active

Activates and deactivates menu points.

vnr: Vertical coordinate of the menu point

hnr: Horizontal coordinate of the menu point

active: Flag, 1-active, 0-inactive

x = HMENU

y = VMENU

With these functions you can get the position of the

chosen menu point.

Possible range:

HMENU (0-7)

VMENU (1-9)

GIGA-SOFT

< page - 15 - >

PROGRAMMABLE FUNCTION KEYS

Directly after starting the BASIC extension, the function keys

are programmed, information about the assignments can be gained

by pressing "F1". This assignment can easily be changed by the

user. Furthermore the function keys can be switched off if they

would disturb the function of other programs.

 KEYS #dev

Lists all function key assignments to the specified

device.

#dev: device number (default is 1)

 KEY keynr, string$

Allows the user to change the function key assignment.

keynr: Number of the function key (1 to 10), numbers greater

than 5 are activated by pressing the shift key

simultaneously.

String$: String containing the command (max. 32 characters).

Example: KEY 1, 'LIST'&CHR$(10)

 KEYSON

Turns function keys on.

 KEYSOFF

Turns function keys off.

CLOCK COMMANDS

It is possible to display either a digital or an

analogue-clock on the screen. There is also the possibility of

changing colour and size to adapt the clocks to own programs.

 DCLOCK on, x, y, paper, ink1, ink2

Displays a digital clock.

Default DCLOCK 1, 340, 0, 2, 7, 4

on: flag, 0-removes the clock, others activate the clock

x, y: right upper coordinate of the clock in pixel

coordinates

paper: paper colour

ink1: ink colour

ink2: border colour

 ACLOCK on, x, y, size, paper, ink1, ink2, ink3, ink4

Displays an analogue- clock.

Default ACLOCK 1, 0, 0, 40, 0, 2, 2, 4, 6

GIGA-SOFT

< page - 16 - >

on: flag, 0-removes the clock, others activate the clock

x, y: right upper coordinate of the clock in pixel

coordinates

size: vertical size of the clock

paper: paper colour

ink 1-4: ink colour for the hands of the clock and the circle

around it

OTHER COMMANDS

 CAT #mdvnr

Displays the directory of the specified drive in a

formatted form. Furthermore it displays the number of

blocks (512 bytes) each program uses.

#mdvnr: number of drive (default is 1)

 DUMP #dev

Displays all variables with contents, procedures and

functions with line numbers.

#dev: output device (default is 1)

 COMMANDS #dev

Lists all new BASIC commands with their start address

on the output device.

#dev: output device (default is 1)

 HRDCOPY inv

Prints hardcopy on EPSOM-compatible printers. Through

technical restrictions, it is only possible to print a

maximum of 480 horizontal points.

inv: flag, 1-inverted print, 0-normal print

 SYSTEM #dev

Displays the system variables on screen.

#dev: output device (default is 1)

 a = FREE

Returns the amount of free BASIC memory.

 SCREEN #dev, linenr, tab

 Default: SCREEN 11, 1, 3

This command enters the screen editor. It allows the

user to edit BASIC programs in a way similar to QUILL.

Unlike a normal ASCII-Editor all entered lines are

syntactically checked by the interpreter.

GIGA-SOFT

< page - 17 - >

Note: The interpreter will not accept lines after a

program break if the functions and procedures are not

reinitialized. This is possible by using the CLEAR

command, which will produce the message 'PROC/DEF

CLEARED'. After this message the work with the screen

editor can go on.

#dev: window number to edit in

Linenr: line number which will be displayed

Tab first step size of the inbuilt tabulator

 The editor accepts the following key sequences:

Cursor Up

Cursor Down

Cursor Right

Cursor Left

ESC Leaves the editor

TABULATE Tabulator

SHIFT&ALT&UP Jumps to start of program

SHIPT&ALT&DOwN Jumps to end of program

ALT&UP Page up

ALT&DOWN Page down

CTRL&RIGHT Deletes character under the cursor

CTRL&LEFT Deletes character at the left of the

cursor

CTRL&ALT&LEFT Clears basic line

CTRL&ALT&RIGHT Deletes all characters at the right of

the cursor

SHIFT&UP Jumps to the first line of the screen

SHIFT&DOWN Jumps to the last line of the screen

ALT&LEFT Jumps to start of line

ALT&RIGHT Jumps to end of line

 SETFONT #dev, fount1, fount2

Gives the user the possibility of using a self-defined

Character Set. It is possible to define up to two

character sets at one time, in which case a character

is displayed from the first character set, If defined

there, if not defined, it is taken from the second

and, if it also is not defined there, the first

defined character of the second set is displayed. To

select the inbuilt fonts of the QL, just enter 0(zero)

for the start address of the font.

fount1: start address of the first font

fount2: start address of the second font+

Example: (Using the character set 'BIG_CST')

100 a = RESPR (1024) :REMark Reserve space for font

110 LBYTES 'mdvl_BIG_CST',a :REMark Load new font

120 FOR channel = 0 TO 2 :REMark Loop

GIGA-SOFT

< page - 18 - >

130 SETFONT #channel :REMark Activate new for font

140 CLS #channel :REMark for every window

150 END FOR channel :REMark End loop

 MONSCR mode

Activates the switch-on-status of the windows for the

monitor mode

mode: selects 4 or 8 colour mode

 TVSCR mode

Activates the switch-on-status of the windows for the

television mode

mode: selects 4 or 8 colour mode

 SETMON #dev, xsize, ysize, xO, yO, paper, strip, ink,

borderwidth, bordercolour

Changes the default window in monitor mode

 SETTV #dev, xsize, ysize, xO, yO, paper, strip, ink,

borderwidth, bordercolour

Changes the default window in television mode

 Mode = SETMODE

Returns the screen mode

4 - four colour, 8 - eight colour.

GIGA-SOFT

< page - 19 - >

WINDOW COMMANDS

The window commands allow the user to work with the real windows.

With these commands it is possible to save the background of a

window before writing to it and to restore this background after

closing the window. This technique is known as 'refreshing'.

 SCRSTORE nr, xs, ys, x, y

Saves and area of the screen

nr: a number from 0 - 15. This number represents the label

for the saved screen. It has to be specified in the

other commands referring to the saved screen area.

xs, ys: size of the window to be saved

x, y: left upper position of the window to be saved

 SCRLOAD nr

Redisplays a saved area of the screen

nr: label number (0 - 15)

 SCRCLEAR nr

Clears the part of memory containing the saved screen

nr: label number (0 - 15)

GIGA-SOFT

< page - 20 - >

INDEX

ACLOCK, 14

ACT1VE, 13

ANIMATE, 7

BGET, 3

BPUT, 3

CAT, 15

CBIN, 4

CBIN$, 4

CHEX, 4

CHEX$, 4

CLRANIMATE, 7

CLRBLOCK, 11

CLS, 6, 10, 17

COLLISION, 7

COMMANDS, 15

DCLOCK, 14

DUMP, 15

END, 10, 17

FREE, 15

GET, 3

GET_POINTER, 3

GETMENU, 12, 13

HMENU, 12, 13

HRDCOPY, 15

ICON, 11

INVBLOCK, 11

INVMASK, 6, 11

INVSPRITE, 6

JOB_INF, 4

KEY, 14

KEYS, 14

KEYSOFF, 14

KEYSON, 14

LBYTES, 16

MENU, 10, 12

MENUBLOCK, 10, 11

MENUDIM, 10, 12

MENUPR, 10, 11

MODE, 8

MONSCR, 17

MOUSE, 10, 11

MOVESPR, 6

PAINT, 2

PRINT, 10

PRIOR_JOB, 5

PUT, 3

REFRESH, 6

REL_JOB, 5

RESPR, 16

SCRCLEAR, 18

SCREEN, 15

SCRLOAD, 18

SCRSTORE, 17

SD4, 8, 9

SD8, 8, 9

SELect, 10

SET_POINTER, 3

SETANIMATE, 7

SETFONT, 16, 17

SETMDEV, 10

SETMEMU, 13

SETMENU, 12

SETMODE, 17

SETMON, 17

SETTV, 17

SPRACTIVE, 9

SPRCLR, 6

SPRDEFBLOCK, 8, 9

SPRDIM, 5, 6, 9, 12

SPRLOAD, 9

SPROFF, 6

SPRON, 6

SPRSAVE, 9

SPRXPOS, 9

SPRYPOS, 9

STEPSPRITE, 7

SUS_JOB, 5

SYSTEM, 15

TVSCR, 17

VMENU, 12, 13

