

PSION Xchange / PC FOUR

Quill word processor
Abacus spreadsheet

Archive database
Easel business graphics

ARCHIVE

ACKNOWLEDGEMENTS
The text in this republished manual is taken from the QL THOR
Xchange manuals distributed by Gunther Strube & Erling Jacobsen
on behalf of QUANTA and downloaded from Dilwyn Jones Sinclair QL
Pages. Some of the Xchange references and commands are not
available in the PC FOUR version but the reader will still find the
manual covers the main aspects of the package.

How to use this republished manual
Text in this style is a reproduction of the original manual
Text in bold like this is what is seen or typed in the Computer
Text in this font is taken from Dilwyn Jones and others tips trick and comments
Text in this font are comments from the Author (Martin)

Archive Manual - Page 2 of 93

Contents
Introduction to Archive 1.0
The demonstration file 2.0
Using ARCHIVE 3.0
Using the commands 3.1
The MODE command 3.1.1
The NEW command 3.1.2
ARCHIVE files 4.0
File records and fields 4.1
Files 4.1.1
Records 4.1.2
Fields 4.1.3
ARCHIVE Data files 4.1.4
Other file types 4.1.5
Creating a file 5.0
CREATE 5.1
Adding records to a file 5.2
Physical and logical file names 5.3
Examining a file 6.0
Displaying a record 6.1
Examining other records 6.2
Searching a file 6.3
Find 6.3.1
Continue 6.3.2
Search 6.3,3
Closing a file 6.4
Modifying a file 7.0
Insert 7.1
Append 7.2
Delete 7.3
Changing a record 7.4
Selecting records 7.5
Sorting a file 7.6
Sorting a Read-only-file 7.6.1
Locate 7.7
Closing a modified file 7.8
Screen layouts 8.0
Defining a screen layout 8.1
Background text 8.1.1
Graphics characters 8.1.2
Screen edit commands 8.2
Clear screen (C) 8.2.1
Mark variable (V) 8.2.2
Delete Variable (V) 8.2.3
Ink (I) 8.2.4

Paper (P) 8.2.5
Leaving Sedit 8.3
Activating a Screen layout 8.4
The SPRINT command 8.5
Saving and loading screens 8.6
The DISPLAY command 8.7
An example 8.8
Procedures 9.0
Creating a procedure 9.1
Listing and printing procedures 9.2
Saving and loading procedures 9.3
Examining file records 9.4
Editing procedures 10.0
The line editor 10.1
The program editor 10.2
Selecting a procedure 10.2.1
Selecting a line 10.2.2
Inserting text 10.2.3
Edit a line 10.2.4
Editing commands 10.2.5
Delete procedure (D) 10.2.5.1
New procedure (N) 10.2.5.2
Cut (C) 10.2.5.3
Paste (P) 10.2.5.4
Programming 11.0
A mailing list 11.1
Insertion 11.1.1
Deletions 11.1.2
Payments 11.1.3
Changes 11.1.4
Address labels 11.1.5
Leaving the program 11.1.6
Programming ERRORS 11.1.6
The RUN command 11.1.7
Procedure parameters 11.2
Local procedure variables 11.3
Prompts 11.4
Data entry 11.5
Text 11.5.1
Numbers 11.5.2
Producing a report 11.6
Using multiple files 12.0
Changing a record structure 12.1
The current file 12.2
Stock control 12.3
The stock file 12.3.1

Archive Manual - Page 3 of 93

The suppliers file 12.3.2
The orders file 12.3.3
Enquiries 12.3.4
Stock report 12.3.5
Recording sales 12.3.6
Recording incoming stock 12.3.7
Ordering new stock 12.3.8
ARCHIVE reference 13.0
The function keys 13.1
Variables 13.2
Expressions 13.3
String slicing 13.4
Syntax 13.5
Syntax conventions 13.5.1
Syntactic entities 13.5.2
File names 13.6
ARCHIVE database files 13.7
Construction of a database file 13.7.1
Opening and closing files 13.7.2
Logical file names 13.7.3
Procedures 13.8
Print items 13.9
The program editor 13.10
Select procedure 13.10.1
Select line 13.10.2
The editing commands 13.10.3
Inserting text 13.10.4
Editing text 13.10.5
The screen editor 13.11
The screen driver 13.12
ARCHIVE commands 13.13
ALL 13.13.1
ALTER 13.13.2
APPEND 13.13.3
BACK 13.13.4
BACKUP 13.13.5
CLOSE 13.13.6
CLS 13.13.7
CONTINUE 13.13.8
CREATE 13.13.9
DELETE 13.13.10
DIR 13.13.11
DISPLAY 13.13.12
DUMP 13.13.13
EDIT 13.13.14
ENDALL 13.13.15

ENDCREATE 13.13.16
ENDWHILE 13.13.17
ERROR 13.13.18
EXPORT 13.13.19
FIND 13.13.20
FIRST 13.13.21
IF 13.13.22
IMPORT 13.13.23
INK 13.13.24
INPUT 13.13.25
INSERT 13.13.26
LAST 13.13.27
LET 13.13.28
LLIST 13.13.29
LOAD 13.13.30
LOCAL 13.13.31
LOCATE 13.13.32
LOOK 13.13.33
LPRINT 13.13.34
MERGE 13.13.35
MODE 13.13.36
NEW 13.13.37
NEXT 13.13.38
OPEN 13.13.39
ORDER 13.13.40
PAPER 13.13.41
POSITION 13.13.42
PRINT 13.13.43
QUIT 13.13.44
REM 13.13.45
RESET 13.13.46
RETURN 13.13.47
RUN 13.13.48
SAVE 13.13.49
SCREEN 13.13.50
SEARCH 13.13.51
SEDIT 13.13.52
SELECT 13.13.53
SINPUT 13.13.54
SLOAD 13.13.55
SPOOLOFF 13.13.56
SPOOLON 13.13.57
SPRINT 13.13.58
SSAVE 13.13.59
STOP 13.13.60
TRACE 13.13.61

Archive Manual - Page 4 of 93

UPDATE 13.13.62
USE 13.13.63
WHILE 13.13.64
ARCHIVE functions 13.14
ABS() 13.14.1
ATN() 13.14.2
CHR() 13.14.3
CODE() 13.14.4
COS() 13.14.5
COUNT() 13.14.6
DATE() 13.14.7
DAYS() 13.14.8
DEC() 13.14.9
DEG() 13.14.10
EOF() 13.14.11
ERRNUM() 13.14.12
EXP() 13.14.13
FIELDN() 13.14.14
FIELDT() 13.14.15
FIELDV() 13.14.16
FOUND() 13.14.17
GEN() 13.14.18
GETKEY() 13.14.19
INKEY() 13.14.20
INSTR() 13.14.21
INT() 13.14.22

LEN() 13.14.23
LN() 13.14.24
LOWER() 13.14.25
MONTH() 13.14.26
NUM() 13.14.27
NUMFLD() 13.14.28
PI() 13.14.29
RAD() 13.14.30
REPT() 13.14.31
SGN() 13.14.32
SIN() 13.14.33
SQR() 13.14.34
STR() 13.14.35
TAN() 13.14.36
TASK() 13.14.37
TIME() 13.14.38
UPPER() 13.14.39
USR() 13.14.40
VAL() 13.14.41
VALUE() 13.14.24
Errors 13.15
Error messages 13.15.1
Modify or Create QuizPack Files 14.0
Appendix A Import, Export and Transfer
Appendix B Printer Drivers
Appendix C Zip Files contents

Archive Manual - Page 5 of 93

1.0 INTRODUCTION TO ARCHIVE
ARCHIVE is an intelligent database. You can use it to store any kind of
information that you choose to type in. You are free to decide how to store and
retrieve your information - you can use ARCHIVE as any type of filing system,
from a card index to a full multi-file relational database. You can present
information in the screen layout that ARCHIVE provides, or you can design your
own layout. You can produce printed forms and reports in any format that you
wish. When you have just loaded ARCHIVE it is in the keyboard interpreter mode.
This means that it will accept what you type at the keyboard and try to interpret
and execute it as a known command. ARCHIVE has a comprehensive set of
commands which allow you to make use of its facilities from the moment that you
load it. Although the commands form a powerful programming language for the
construction of specialised applications, you can create a useful card index in a
few minutes, directly from the keyboard. As soon as you have created a file you
can use the available commands to make sophisticated searches or selections
from the file, sort the records with respect to any number of fields and display the
results. At all times you are guided by an informative set of prompt messages
which never leave you in any doubt about what your options are or what you are
expected to do. If you require further information you can always use the Help
files. These contain full details about all the options. You may ask for Help at any
stage, no matter what you are doing, and will automatically be given the
information that is most relevant to your current needs. The real power of
ARCHIVE becomes apparent when you write your own procedures in the
database language. You can create a named procedure to do exactly what you
want and then use it as an additional command, in exactly the same way as you
use the commands provided with ARCHIVE. In this way you can write a complete
program that runs independently of the normal commands. The ARCHIVE
database language has a syntax similar to BASIC and is simple to learn and use.
It is based on named program segments known as procedures. Using procedures
leads naturally to the creation of correct and readable programs. Unlike BASIC,
however, there are no line numbers. This makes it easy to build a library of useful
procedures which you can include, at any position, in later programs. The
mechanics of writing and modifying a program are aided by a full procedure editor
which, together with the input line editor (which is available at all times), make
editing a simple and painless task. The commands include simple and rapid
sorting, searching and selecting records, together with many string manipulation
operators and fast, accurate arithmetic. The data files themselves use variable
length fields and records. Not only does this lead to the most efficient use of
available memory and disk space, but also to simplified file creation. You never
need to decide in advance how large a record needs to be. This manual contains
a number of working examples. You can either use them immediately or you can
make simple modifications to match them to your exact needs. Try out the
examples to see some of the range of things that can be done. All the programs
are fully documented in this manual and contain many general purpose
procedures which you could include in your own programs. ARCHIVE has been

Archive Manual - Page 6 of 93

designed to give you the greatest possible flexibility. As a consequence of its
open-ended programming approach it cannot give as much assistance with the
selection of options as the other PC-FOUR programs. If you are not familiar with
computers and computer programming it may be advisable for you to study an
introductory book on programming in, for example, BASIC before attempting to
write complex ARCHIVE programs.

2.0 THE DEMONSTRATION FILE ARCHIVE is supplied with a
demonstration data file, "gazet.dbf ", which contains a gazeteer of the countries of
the world. You will find this file in the PCFOUR.ZIP. For each country the file
contains the following information:

In addition to being used by the tutorial programs, it is used in many of the
examples for examining and modifying file records in later chapters. Before you try
out these examples you should make a copy of the file onto another disk. Use this
copy when you work through the examples so that there is no danger of
accidentally changing the original file.

3.0 USING ARCHIVE
3.1 USING THE COMMANDS ARCHIVE's commands form a programming
language, so you must type their names in full. At the main level of ARCHIVE you
can press [F3] to see a further list of commands in the control area (there are four
different lists). You can use the vast majority of these commands by typing the
name and pressing [Enter]. (Any command which needs a file name will ask you
to type it in). You can use any of the commands, even if its name does not appear
in the current display in the control area. There is an example of how to use an
ARCHIVE command in the following description of the mode command. Within
the screen and program editors - described in later chapters - you can select an

Archive Manual - Page 7 of 93

editing command by the normal method of pressing [F3] and then the first letter
of the command.

3.1.1 The MODE Command You have the option of combining the control,
display and work areas into a single area by means of the mode command. The
command must be followed by a number, which can be 0 or 1. A value of 0
combines the control, display and work areas into a single area. Type : mode 0
[Enter] With this form of display, your input from the keyboard and anything shown
on the screen - by a command or a program - all share the whole of the screen.
A value of 1 separates the screen back into its three distinct areas. Type : mode 1
[Enter]

3.1.2 The NEW Command All chapters in the ARCHIVE section of this manual
assume that you start with no files in the computer's memory. If you have loaded
any files you will therefore have to erase them. The simplest way to erase all the
files in the computer's memory is to use the new command. It clears any
program or files from the computer's memory, ready for a fresh start. You use the
command by typing in: new [Enter] In addition to deleting all files from memory, it
also clears the display area, ready for you to start again. The new command also
closes any open data files before clearing the memory. Remember that you must
close any open files before you remove the disk containing them from a disk drive.

4.0 ARCHIVE FILES
4.1 FILE RECORDS AND FIELDS An ARCHIVE file behaves rather like a
card index. A real card index consists of a box containing a set of record cards.
Each card has various items of information written on it. For such a card index to
be useful, there have to be rules to determine where each piece of information is
written on the card. Suppose, for example, that we have a name and address
index. You would normally write the person's name across the top of the card,
followed by the address and telephone number (if any). It would be very difficult to
use if some cards had the name written at the top and others had it written near
the bottom. You would normally expect to be able to use the index by flipping
through the cards, reading only the top line, until you found the name you were
looking for. If you had two sets of record cards, such as a name and address
records and a set of stock records, you would not normally store them both in the
same box. You would use two boxes and label them, for example, "Customer
Records" and "Stock Records".

4.1.1 Files The card index system contains most of the ideas necessary to
understand how an ARCHIVE file works. A file is like the card index box and is
given a name to identify it. The file is made up of a collection of records, each of
which serves the same purpose as a record card. A database file, then, is simply
a collection of related records.

Archive Manual - Page 8 of 93

4.1.2 Records The records within a file all contain the same type of information
but each record is different from its neighbours. In a customer record file, for
example, each record would contain the name, address and telephone number of
a particular customer, together with details of his previous dealings with your
company, whether he is entitled to any discount, his credit limit, and so on.

4.1.3 Fields As in a card index, the information in each record is organised in a
regular way. Some of this information might be placed on a record card, where a
specified area of the card is reserved for each piece of information. A record in an
ARCHIVE file is organised in the same way. Each item is stored in a separate
region of the record, known as a field. A record in a customer file, such as that
described above, would contain a name field, an address field, a discount field
and so on.

4.1.4 ARCHIVE Data Files If this were the whole story there would be little point
in using an ARCHIVE data file in preference to a physical card index. There are,
however, many advantages in using computerised records. A customer record
card index would normally be arranged in alphabetical order of customer names
which makes it an efficient way to find the information about a particular customer.
Suppose, however, you want to send a letter to all your customers who have not
placed an order with you during the last six months. It would be a very tedious
task to go through the entire contents of a card index to compile such a list. In
ARCHIVE you can make such a search by using a few simple commands.
Furthermore, it is easy to arrange for a set of address labels to be printed at the
same time.. Example 11.1 Mailing List shows you can save a great deal of
time and effort by using ARCHIVE to store and manipulate your
records.

4.1.5 OTHER FILE TYPES ARCHIVE uses other types of file as well as data files.
Each different type is assumed to have a particular file name extension. Unless
you specify a file name extension yourself, ARCHIVE will assume the standard
extension for that type of file. All data files, for example, are saved and loaded
with an assumed extension of .dbf. There are four main groups of additional files.
These are: Program files - used to store programs written in the ARCHIVE
language. Unless you specify otherwise ARCHIVE assumes that they have a file
name extension of .prg. There is also an option to use program files stored on
disk in ARCHIVE's internal format, rather than the normal plain text format. They
are faster to load and save since they do not have to be translated from one form
to the other in the process. ARCHIVE assumes that such files have an extension
of .pro. Screen layout files - used to contain your own design of screen layout
for the display of your data file records. ARCHIVE assumes that such files have
an extension of .scn. Import and export files - used to transfer information
between ARCHIVE and the other programs in the Psion PC-FOUR family. It is
assumed that such files have an extension of .exp. Print files - used to store
printed output for later printing with an assumed extension of .lis. Print files
created by the dump command have an extension of .dmp.

Archive Manual - Page 9 of 93

5.0 CREATING A FILE Suppose you want to use ARCHIVE to make a
catalogue of your books. To do this, you will have to create a new file called, for
example, "books". The first thing to do when creating a file is to decide what
information it is going to contain, that is, what fields you will use in each record. In
this case you will obviously need to record the author, title and subject; you may
also like to include other details, such as the type (fiction or non fiction), ISBN
(International Standard Book Number) shelf location, a brief description and so on.
In this example we shall simply use three text fields to contain the author, title and
subject and one numeric field which will be used to hold the ISBN.

5.1 CREATE You create a file by using the create command. You must specify
the name of the file to be created and the names of the fields to be used in each
record (the names of fields which are to hold text strings must end with a dollar
sign). When you have finished defining the fields of a record you end the create
command with endcreate. You can create a simple book catalogue file, as
described above, by typing in the following sequence. (From now on we shall not
always show the [Enter] that you must use at the end of every line of input.)

create “books” [Enter]
author$ [Enter]
title$ [Enter]
subject$ [Enter]
isbn [Enter] [Enter]

Note that you do not have to type in the final endcreate command. You can do so
if you want, but you can end the creation of the file simply by pressing [Enter] on
a blank input line. (You must, however, include endcreate if you use create in
an ARCHIVE program.) One of the great advantages of ARCHIVE is that you do
not have to decide in advance how much memory is to be reserved for each field
within a record. If you had to decide the length of each field at the time the file was
created you would have to allow for the longest possible record that you would
expect to appear. This would mean that a record containing less than this
maximum amount of information would have a lot of wasted space, reducing the
number of records that you could keep. ARCHIVE allows each field within a
record to be of variable length; the space used for each field is automatically
adjusted to match the amount of information stored in it. There is no need to
decide in advance how much space should be reserved for each field. This makes
it much easier to create a file and also ensures that the computer's memory is
used to maximum efficiency. ARCHIVE can accept fields as large as 255
characters. Although it is quite straightforward to change the fields used in a file,
it is worth taking a little care in deciding what fields to use before you create the
file.

Archive Manual - Page 10 of 93

5.2 ADDING RECORDS TO A FILE When you have created a file as
described above it is in the computer's memory as a file which is open for both
reading and writing, but as yet it contains no records. There are several ways to
add records to the file and they are fully described later. The simplest way is to
use the insert command as in the following example, which uses the book
catalogue file that we have just created. Type: insert [Enter] The display area will
now appear as shown below, with the names of the fields listed and the cursor
positioned at the first field.

All you have to do is to type in the contents of each field. You step from field to
field by pressing either [Enter] or [Tab]. You can also use [Shift] and [Tab]
together, to move back to the previous field. For example, type in the following
entries, but please do not press [Enter] after typing in the last value: Jensen, J
[Enter] An Excellent Manual [Enter] Computers [Enter] 987654321 The
display area should now appear thus: logical name : main author$: Jensen, J
title$: An Excellent Manual subject$: Computers isbn : 987654321 Ignore,
for the moment, the first line of the display. It will be explained in the following
section.

Each line represents a field of the record. It is made up of two parts; the name of
the field and the a value (eg. the text "Jensen, J") which will change from record to
record and a name (eg "author$"). If the field is to contain text its name must end
with a dollar sign otherwise it will be a numeric field. ARCHIVE will accept any
valid number or constant numeric expression (such as 3+9) as the contents of a
numeric field. The name of a field is sufficient to identify its value if there is only
one data file open. IMPORTANT : In this display format each field occupies a line
on the screen so it is not possible to show more fields than there are lines in the
display area. If you create a file with many fields per record you will have to design
your own screen layout in order to show them all on the screen. This is explained
in detail in the chapter on Screen Layouts.

Archive Manual - Page 11 of 93

The record that you have typed in is inserted in the file when you press [Enter]
after entering the value of the last field. You may also insert the record at any
time, without necessarily entering values for all the fields, by pressing [F5]. In
either case ARCHIVE clears all values you typed in, ready to receive the next
record. If you do not wish to add more records to the file, press [F4] to leave the
insert command. Note that anything you have typed since the last time you added
a record to the file will be discarded. Press [F4] now to leave insert. The file
contains just one record which remains displayed on the screen. Each field name,
in addition to identifying a field, also behaves like a variable, that is, a memory
location whose contents may be changed. The contents of these memory
locations are automatically modified by the values of the fields of the current
record. As you move from one record to another the variables take on the values
of the fields of the new current record. You may also change the values in these
memory locations yourself with the let command. Try typing: let isbn =
123456789 [Enter] The contents of the variable and the display both change to
the new value. The field in the file record, however, does not change and it still
contains the original value of 987654321. It is not altered unless you use the
update command. This forces each field of the current record to take the value of
the variable with the same name as the field. It is dealt with in more detail later in
this manual. You must remember, before you switch off the computer, to make
sure that the file contents are saved on the disk by using the new command.

5.3 PHYSICAL AND LOGICAL FILE NAMES Every file is saved on disk
with a unique name, known as its physical file name. An ARCHIVE data file must
also be given a logical file name at the time it is opened. ARCHIVE uses logical
file names to distinguish between data files when two or more are open at the
same time. You are free to choose this name yourself at the time you open or
create a file. Suppose you want to create a file called "book2" and use a logical
file name "second". You can do this by writing the first line of the create command
as: create "book2" logical "second" The rest of the command follows exactly as
before. The logical file name is always shown in the first line of the simple form of
the display of a record. If you do not specify the logical file name, as in the
previous example, ARCHIVE will automatically supply the logical file name,
"main", when you open or create a file. The logical file name of each open file
must be unique. You cannot therefore open or create another file without including
a logical file name after ARCHIVE has given the name "main" to a file. If you
attempt to do so ARCHIVE will show the message: MULTIPLE FILES - ENTER
LOGICAL NAME and will wait for you to enter a name. ARCHIVE refers to a
specific file by its logical file name and not its physical file name. This means that
you can write a single program that will work with several different files, provided
that the files all have the same structure. For example, you could use a program
that adds, deletes or modifies records in, say, two name and address files - one
for your friends and one for your business contacts. The examples in the chapter
on Multiple Files illustrate how you use logical file names to distinguish one of
several open files.

Archive Manual - Page 12 of 93

6.0 EXAMINING A FILE Before you can use a data file you have to
open it - this makes its contents available to you. There are two commands
which you can use to open a file; look and open. The look command opens a file
in such a way that you may only read its contents - you are not allowed to add or
delete records or to alter them. This therefore removes any risk of accidentally
destroying any of your data. It also enables several tasks to open the same file
simultaneously. All tasks must then use look. The same file can also be opened
more than once in the same task, by using different logical file names. The open
command allows you to read and alter the contents of the file. It is described in the
next chapter. Suppose you want to examine the "gazet" data file, supplied with
ARCHIVE and described in an earlier chapter. Make sure you have a copy of this
file on the default data drive. You can then open the file for reading by typing:

 look "gazet" [Enter]

The look command does not display any file records. If, for example, you want to
examine the "gazet" file in the way just described, but would like to use the logical
file name "g", you can do this by using the look command in the following way:
look "gazet" logical "g" [Enter] This opens the file for reading only, as described
earlier, but with a logical file name "g" instead of the default name "main". All the
commands described in this chapter can be made to act on a specific file by
adding an optional logical file name. This will mainly be of use when you are using
more than one file. When you only have a single file it is not necessary to give the
logical file name in a command, even if you have specified one at the time you
opened the file. All these commands will act on the current file, regardless of its
logical file name if the optional logical file name is not included. If you only have
one file open it is, of course, always the current file. The idea of a current file and
the use of more than one file are described in the chapter 12.0 on Multiple Files.

6.1 DISPLAYING A RECORD To show the first record you type:

first [Enter]
display [Enter]

This produces a display of the first record of the file as a list of the field names and
their contents, using the same format that we saw for the insert command in the
previous chapter. The display command always uses this form, regardless of any
special screen layout that you have designed (see the chapter Screen Layouts). If
you load a designed screen layout and then use the display command, the layout
is replaced by the simple list. If, after using display, you want to use your own
layout again you will have to load it once more from the disk. The reason for this
behaviour is that it allows you to display your file records in a simple way, without
first having to design a display screen. You can always show a file record in this
form by typing the command:

display [Enter]

Archive Manual - Page 13 of 93

6.2 EXAMINING OTHER RECORDS Having looked at the first record of
the file, you may want to move to the following record. You do this very simply
with the next command - type: next [Enter] It moves to the next record in the
file. When you are typing single commands after a display command the display
area is continuously updated to show the contents of the current record. You can
use the next command to step through the file, record by record, until you reach
the end of the file (it will not pass the last record). A quick way of repeating the
last command that you typed in is to press [F5] and then [Enter]. When you press
[F5] ARCHIVE puts the text you last typed back into the input line, exactly as if
you had typed it in again. If you are using your own choice of logical file name
you can, for example, move to the next record in the file by giving its logical file
name after the next command:

next "g" [Enter]

There are three other related commands which you can use to control which
record of the file is displayed. These are:

back - which moves to the previous record,
first - which moves to the first record,
last - which goes to the last record of the file.

Try using these commands to move around the file, displaying any record you like.
Note that the four commands first, last, next and back do not themselves
display the record. They merely move from record to record. You will only see the
contents of the record if you have previously used the display command (or have
produced an active screen layout, as described in the chapter Screen Layouts).

6.3 SEARCHING A FILE The commands described so far allow you to
examine any record within a file and search through the file record by record to
find the information you want. This technique is quite suitable for searching
through a file with only a small number of records but would be very inefficient on
a large file. The commands described in this section will allow you to make such
searches automatically, selecting any one or more records that you require.

6.3.1 Find The first and simplest command is find. This will search from the
beginning of a file, looking for the first occurrence of a specified piece of text in
any of the text fields. For example:

find "africa" [Enter]

When you press [Enter] there will be a slight pause and then the first record
containing the word "africa" in any of its text fields will be displayed. Note that this
search is independent of whether the text is in upper or lower case and will
therefore find "Africa", "AFRICA","aFrIcA" or "africa". If ARCHIVE fails to find a
record which matches the text it will not move from the record which was the

Archive Manual - Page 14 of 93

current record when you used find. You can always find out if the search has
been successful by examining the value returned by the function found(). The
value is either one or zero, depending on whether a record was or was not
found. Try this by typing:

print found() [Enter]

after using find in a situation where it succeeds and one where it fails (eg find
"xxxxx"). The print command displays on the screen the value of any following
expression. Note that, when used directly from the keyboard, it will delete any
display of a file record before printing the value. You will need to restore the
display of the record (for example, with display) before continuing. This will not,
however, be necessary when you use a print command in a program.

6.3.2 Continue If the first record that is found containing the text is not the one
that you want, you can find the next occurrence by typing:

continue [Enter]

The continue command will repeat the previous find, looking for the next
occurrence of the text in any text field of the following records. If, at any stage, no
match is found in the remaining records of the file the display will keep the last
record shown and the value returned by found() will be zero. It is possible that
you may have to repeat a search several times before you find the record you
want. Remember that, if you want to use a command repeatedly, you can use
[F5] to bring back the last text you typed in.

6.3.3 Search A second method of locating a particular record is to use the
search command. Search must be followed by a condition which results in a
numeric value. The records of the file are scanned for the first one in which this
number is non-zero. This allows you to find a record by specifying the contents of
one or more specific fields, for example:

search continent$="EUROPE" and languages$="FRENCH" [Enter]

will find the first record in the file which matches both conditions. Unlike the
find command, which examines all text fields of the records, search will only test
the fields you specify. Also, it is case-dependent - ie it distinguishes between
"EUROPE", "Europe" and "europe". If you want a case-independent search you
can use either of the case-changing functions upper() or lower(). For example:

search upper(continent$)="EUROPE" [Enter]

This example converts the contents of the continent$ field to upper case before
making a comparison. The result is therefore independent of whether the
continent$ field contains upper or lower case text, or any combination. Again you

Archive Manual - Page 15 of 93

can use the continue command to find the next occurrence, if the first is not the
one which you want. As with find, the value returned by found() will tell you if the
search was successful. It may not be obvious that the conditions following
search in these examples result in numeric values. A logical condition such as
continent$="EUROPE" is different from an assignment, eg let
continent$="EUROPE". In the assignment we are just giving the variable
continent$ the value "EUROPE". All assignment statements must start with let.
The condition, however, tests if the variable continent$ already has a value equal
to "EUROPE". If it has, the condition results in a value of one, showing that the
condition is true. If it is false, the result is the value zero. Type in the following
example which uses both assignments and logical conditions. It should help to
make the difference clear.

let x = 10 [Enter] (assignment)
print x [Enter] (prints 10, the value of x)
print x =10 [Enter] (prints 1 because x has the value 10)
print x =11 [Enter] (prints 0 because x is not equal to 11)

A logical condition always results in a value of 1 (true) or 0 (false) depending on
whether the condition is satisfied or not. Several logical values can be combined
with either and or or. If two values are joined by and, the final result is true only if
both of the logical values are true. Combining two logical values with or results in
a true value if either of the two is true. Although the result of such a logical
condition can only result in a value of 1 or 0, ARCHIVE will accept any non-zero
value as meaning true.

6.4 CLOSING A FILE So far, when we have finished using a file, we have
closed it with the new command. This command is rather drastic, as it also
erases all the files in the computer's memory. An alternative way is to use the
close command. This only acts on a data file, leaving any program, or screen
layout, intact. Finally, if you have finished using ARCHIVE, you can quit. This
command closes all open files and deletes the current ARCHIVE task before
closing. Remember that you should never remove a disk from a disk drive while it
contains open files.

7.0 MODIFYING A FILE The open command allows you either to read
the file or to write new information to it. You should not, in general, use the
commands described in this chapter with a file opened with look. If you attempt to
do so you are given an error message to indicate that you are attempting to
modify the file. There are some exceptions which are described later. If you open
a file with the open command, instead of the look command you will be able to
write to the file (ie change its contents) as well as reading it. This means that any
additions, deletions or modifications will make a permanent change to the copy on
the disk. You should therefore work with a copy of the "gazet" file, rather than the
original, when you try out the examples in this chapter. As with look, you have

Archive Manual - Page 16 of 93

the option of specifying your own logical file name when you open a file, as
shown in the following examples.

open "gazet" [Enter]
open "gazet" logical "g" [Enter]

Display the first record of the file with:
first [Enter]
display [Enter]

7.1 INSERT The insert command is used within the context of modifying an
existing file, in exactly the same way as we have seen when creating a file.
Remember, you can use [F5] to enter a record to the file at any time, even if you
have not typed in values for all the fields. New records inserted into a file are
normally placed at the end of the file to maintain historical order. If however, the
file has been sorted, ARCHIVE inserts the new record at the correct position to
maintain the sorted order.

7.2 APPEND A second method of adding a record to the file is with the
append command. This makes a new record whose fields are filled by the current
values of all the field variables for that file. Before using append you should
therefore give the field variables the values you want them to have, eg by using
the let command:

let continent$ = "AFRICA" [Enter]
let country$ = "FRANCE" [Enter] etc.

Any field variable that you do not give a value retains its current value. If you then
type:

append [Enter]

ARCHIVE adds the new record to the file. As with insert, the position in the file
where the new record is inserted will depend on whether the file has
previously been sorted or not.

7.3 DELETE If you want to remove a record from the file, you can do so by
using the delete command. Delete removes the current record (the one shown
by the display command) from the file. All you have to do to remove a particular
record is to display it, and, having made certain that it is the correct one, type:

delete [Enter]

7.4 CHANGING A RECORD It is also simple to modify the contents of any
or all of the fields within an existing record. There are two methods. The first is to
use the alter command. Select the record you want to change (eg by displaying it)

Archive Manual - Page 17 of 93

before you use alter. It works in the same way as insert, except that each field
shows its old contents. You can step over (by pressing [Tab] or [Shift] and [Tab])
those fields whose contents you do not want to change. Type in a new value, or
use the line editor to modify the old one. As with insert, you are allowed to put only
valid numbers into a numeric field. When you have made all the changes you
want, press [F5] to replace the old record with the new one. As with insert, the
new version of the record is also added to the file when you press [Enter] after
typing a value for the last field in the record. If you decide you do not want to
change the record, press [F4]. This leaves alter immediately, without the changes
you have typed since the last addition of a record having any effect on the file.
The second method is by using update. As with alter, you first select the record
which you want to change (eg by displaying it). You then change the contents of
the field variables - for example, with the let command - until the displayed record
is exactly as you want. Finally type the command:

update [Enter]

Suppose, for example, that you decide that Iceland should be classified as being
in Europe, rather than the Arctic. You can modify this record as follows. First
locate it by typing:

find "iceland" [Enter]
display [Enter]

Then use the let command to change the contents of the continent$ field:

let continent$ = "EUROPE" [Enter]

Finally, put this change into the record by typing:

update [Enter]

In both of the above methods the new record will be inserted in the correct
position if the file has been sorted. Otherwise the replacement record is inserted
at the end of the file. The alter command is simpler to use, but always affects the
current record. The append command allows you the option of specifying the
logical file name of the file you want to affect, regardless of the current file.

7.5 SELECTING RECORDS In many cases, you may want to look at a sub-
group of the records within a file. Suppose, for example, you only want to look at
the details of countries in Europe. You can use the select command to pick out
from the file all those records which satisfy a certain condition. The file will then
behave as though only those selected records are present. Try this command on
the "gazet" data file to see how it works. First type:

print count() [Enter]

Archive Manual - Page 18 of 93

which will tell you how many records there are in the file. Then print the value
again, after using a select command, for example:

select continent$="EUROPE" [Enter]
print count() [Enter]

and you will see how many records are left in the file. You can, by using select
again with another condition, remove further reduce the number of records in the
file. There is no limit to the number of times that you can repeat select commands.
The records that are removed from the file are still held in the computer's memory.
You can restore them to the file at any time by using the reset command. Type:

reset [Enter] and print the value of count()

again, to check that the file has been restored to its original state. After a reset
command, the next select will start with all the records in the file. You can
combine more than one condition in a single select command, with the aid of
and or. For example:

select continent$="AFRICA" and instr(languages$,"FRENCH")

which selects all French-speaking African countries. Note that we have used the
instr() function to ensure that we include countries in which languages other than
French are also spoken. The instr() function searches for the second piece of text
in the first. In the above example it searches for the text "FRENCH" in the text of
the languages$ field. If the text is found it returns the position - as the number of
characters from the start - or zero if it is not found. If we had used the command:

select continent$="AFRICA" and languages$="FRENCH"

we would have selected countries which spoke only French.

7.6 SORTING A FILE In an unsorted data file the records are in historical
order, ie next steps through the file records in the same order as you originally
added them to the file. This may not always be the order you want, so you will
need to sort the records into the required order. You can use the order command
to sort the file by the contents of numeric or text fields. You may order a file
opened with look, but there are some restrictions in this case - see later.
Suppose, for example, you want to sort the records of the "gazet" file
alphabetically by capital. You can do this by using the order command as follows:

order capital$;a [Enter]

The 'a' following the semicolon specifies that you want to sort the file in
ascending order. Replace it by 'd' if you want the file sorted in descending order.
The capital$ field becomes the sort key for the file. Only the first eight characters

Archive Manual - Page 19 of 93

of text are taken into account by order. You can specify up to four fields on which
to sort the file - by giving a list of fields after the order command. For each of the
fields you must specify whether the sort is to be in ascending or descending order.
The following command, for example, will sort the "gazet" file into ascending
(alphabetic) order by continent and descending order by population.

order continent$;a,pop;d [Enter]

Note that a semicolon separates each field name from the "a" or "d" that specifies
ascending or descending order, but that each pair (field name and letter) is
separated from the next by a comma. The combination of fields becomes the sort
key for the file. When more than one field is specified for sorting purposes the
records are initially sorted according to the contents of the first field in the list. If
two or more records have the same contents for this field they are ordered
according to the next field in the list. If records exist which are equal in respect of
the contents of both of these two fields they are ordered according to the contents
of the third field, and so on. The order command always starts with all the records
in the file. It can, therefore, take a long time to order a large data file. On many
occasions you may only want a subset of records to be ordered and it would be
wasteful to order the whole file and then select the few records you want.

7.6.1 Sorting a Read-only File You are never allowed to make permanent
changes to a file opened with look. ARCHIVE will not allow you, for example, to
add or delete records in such a file. You may, however, use order on a file
opened with look. If the same file is opened with look more than once using
different logical file names, each logical file can be ordered in a different way.

7.7 LOCATE When a file has been sorted, you can use the locate command
to locate a particular record. Locate is followed by an expression (see section
13.3 for the meaning of 'expression') and finds the record whose primary sort key
is equal to the given expression. If there is no record that is an exact match then
locate will find the following record in the ordering sequence. For example, if the
"gazet" file has been sorted by:

order pop;d,capital$;a then the command:
locate 100 [Enter]

locates the first record in the sorted file which has a population of 100 (million). If
there is no such record ARCHIVE will locate the first record with a population less
than that figure (remember that the file was sorted in descending order of
population). The expression may be either text or numeric, but must be of the
same type as the field used to sort the file. You can locate a record with respect to
the contents of more than one sort key by using locate with multiple expressions,
separated by commas. For example, if the file is ordered by the command shown
above, then:

Archive Manual - Page 20 of 93

let a = 100 [Enter]
let b$ = "D" [Enter]
locate a,b$ [Enter]

will find the first country with a population figure of 100 or less and with a capital
whose name either starts with "D", or is after D in the alphabet. In this example,
ARCHIVE will locate Bangladesh, with a population of 76.1 million and capital
Dakar. The only restriction on the number of expressions that you can use with
locate is the number of fields used to sort the file. As with find and search,
locate affects the value returned by the function found(). Provided a record is
found that exactly matches the specified condition, then found() will return a
value of 1 (true). Note that, as explained above, it does not search through the
records one by one, but uses the knowledge that the records are sorted to go
straight to the record that matches or exceeds the given condition. It will therefore
always locate a record in the file, whether or not there is an exact match. If the
located record is not an exact match to the specified condition then found()
returns a value of zero (false). You cannot use continue after locate, since
repeating a locate with the same condition will always locate the same record.
You would use locate as the fastest way of locating a record in a large,sorted, file.
Because of the uncertainty in the record that is located, you will usually have to
make a further check on the record to make sure it is what you want - eg:

if found() print "Match" else print "Match failed" endif

7.8 CLOSING A MODIFIED FILE After making any modifications to a file
you must close it. This makes sure that the changes are recorded on the disk. If
you do not close a file properly (for example, if you just turn off the computer when
you have finished) ARCHIVE will not be able to make sure that all your changes
are recorded on the disk. Your most recent changes will therefore not be present
when you next use the file. Furthermore, it is possible that your file could be left in
a corrupted - and therefore unusable - state. Always make sure that there are no
open files on a disk before you remove it from the disk drive.

8.0 SCREEN LAYOUTS When you use the display command on a file
that you have created yourself, as in the earlier book catalogue example, the
records are shown in a simple form. The logical file name is shown at the top of
the screen, followed by a list of all the field names in a record of the current file.
The current value of each variable is displayed to the right of its field name. You
can also design your own screen layout, better suited to the information in your
data file. It is very simple to produce a screen layout of your own.

Archive Manual - Page 21 of 93

8.1 DEFINING A SCREEN LAYOUT You select screen editing with the
sedit command - type in:

sedit [Enter]

The display area shows the current screen layout, if any. If you have used display
(since the last time you used new) the layout will be the one that ARCHIVE
creates automatically. Alternatively the screen may show another layout or, if
there is no screen layout in the computer's memory, the display area may be
blank. If a layout is shown, you will see that the values of the fields of any file are
not included. The spaces where these values are normally shown are marked by
rows of dots. You should think of a screen layout as a background, against which
the values of a number of variables are shown in specific positions. ARCHIVE
shows a screen layout in two stages - first it draws the background text and then it
shows the values of the variables at the marked positions on the screen. When
you have just selected sedit you are at the main level of the command and you
have three options: type background text into the screen press [F3] to use a
screen editing command press [Esc] to leave sedit

8.1.1 Background Text You can move the cursor to any point in the display area
by using the four cursor keys. Anything that you type will immediately appear in
the display area at the position of the cursor, becoming part of the background of
the layout. Try pressing the [Shift] key and, while holding it down, pressing one of
the four cursor keys. The last character you typed is repeated and the cursor
moves one character in the direction corresponding to the cursor key. If you keep
the keys pressed the character will be repeated, forming a line. This is useful for
drawing lines or borders in your layout, particularly if you use the graphics
characters described in the next section. The only exception when typing

Archive Manual - Page 22 of 93

background text is if the cursor is positioned within an area of the screen reserved
for the display of a variable. In such a case ARCHIVE shows the name of the
variable in the work area at the bottom of the screen. You cannot type background
text into this area unless you first free the area, as described later.

8.1.2 Graphics characters Although I know this works in QL-Archive it
doesn’t seem to work in PC-FOUR Archive. A set of 11 box-drawing
characters is available in the screen editor. To draw a graphics character in a
screen layout, at the current cursor position, press [F5] followed by one of the
keys from 'a' to 'k' inclusive. The resulting characters are shown below

[F5] followed by: a b c d e f g h i j k l
gives | -+ -+ +- -+- -+- +- --- -+- -+ +- |

8.2 Screen Edit Commands There are four screen editing commands.
You select one of these commands by pressing [F3] and then the key shown in
brackets.

8.2.1 Clear Screen (C) When you create a screen layout, anything that
appears in the display area will be part of the screen. It is probably therefore a
good idea to start by clearing the display area entirely. Press [F3] and then the C
key. ARCHIVE asks you to press [Enter] to confirm that you really want to clear
the screen. If you press any other will cancel the command and ARCHIVE will
return you to the main level of sedit.

8.2.2 Mark Variable (V) Suppose you want to show the value of the variable
name$ at a particular position in the screen. Move the cursor to that point and
press [F3] and then the V key. ARCHIVE asks you to type in the name of the
variable. You type, for example:

name$ [Enter]

Note that this name does not appear in the screen - you are just marking the point
where the value is to be shown. When you press [Enter] ARCHIVE asks you to
mark how much space is to be reserved for showing the value. Press the space
bar to mark the space with a row of dots. Pressing the down cursor key reserves
space on following lines, converting the reserved space to a rectangular area. You
can also use the left and up cursor keys to reduce the size of the box. The ability
to reserve space on more than one line allows strings of up to 255 characters to
be input directly via the commands sinput, alter and insert. When you have
reserved enough space press [Enter] and ARCHIVE takes you back to the main
level of sedit. If you move the cursor into one of the reserved areas (marked by
dots) ARCHIVE shows, in the work area, the name of the variable for which space
is reserved.

Archive Manual - Page 23 of 93

8.2.3 Delete Variable (V) If you press [F3] and then V - to reserve space for a
variable - in a region which overlaps any area that is already reserved, you are
given the option of cancelling the old area. Once you have cancelled the space
reserved for a variable, its value will not be shown in the screen layout. You can, if
you wish, use the option again to allocate the space to a new variable.

8.2.4 Ink (I) Suppose you want to change the ink colour to red. Move the cursor
to the point where you want the red text to start and press [F3] and the I
key. ARCHIVE shows the four available colours in the control area (ARCHIVE
initially selects white ink). To change the colour you press any key except [Enter]
until the colour you want - red in this case - is shown. You then press [Enter] to
record your selection and ARCHIVE takes you back to the main level of sedit.
Anything that you type now appears in red. The colour you select remains in effect
until you use the ink command to change the colour again.

8.2.5 Paper (P) Select the command by pressing [F3] and then the P key. As with
the ink command, you press a key until the paper colour you want is shown in
the control area - then select that colour by pressing [Enter]. ARCHIVE initially
selects black paper. If you want a change of colour to affect only part of a line, you
should move the cursor to the start of the region and select the paper and ink that
you want. You should then move the cursor to the end of the region and make a
second selection of paper and ink, returning them to their original values.

8.3 Leaving Sedit When yoy have completed the display screen design to
your satisfaction you should press [Esc] to leave the sedit command. Use ssave
to save your screen layout on disk.

8.4 Activating a Screen Layout Once you have designed a screen layout
and have left sedit, the screen layout will be left in the active state. This means
that the values of all the variables in the screen layout will be displayed
automatically every time that ARCHIVE completes a command (or a program). If,
for example, you type the command next ARCHIVE moves to the next record of
the current file and shows those fields that are included in the screen layout. If a
screen layout is in the computer's memory but is not active, you can activate it
with the screen command. This displays the background text of the screen layout,
but does not show the current values of the variables. When you are in the
keyboard interpreter mode (ie you are not running a program) a screen which you
have previously designed and saved on a disk is also left in an active state when
you load it into the computer's memory with the sload command, described in
a later section. In a running program you must use screen to activate the layout
after an sload. This allows the program to pre-load a screen layout without
immediately affecting the screen contents. Any active screen is deactivated each
time you use the cls command.

8.5 THE SPRINT COMMAND ARCHIVE will not automatically update an
active screen layout from within a program. Suppose you want to show all the

Archive Manual - Page 24 of 93

records of the current file, one after another, and tried to do so by typing the one-
line program: first: let x =0: while x<count(): next: let x =x+1: endwhile [Enter]
(The while and endwhile commands cause the section of program that they
enclose to be performed repeatedly, while the condition following while is true,
ie non-zero. For correct operation every while command must have a matching
endwhile.) This program would fail to do what you want, since ARCHIVE only
updates the contents of the screen layout at the end of the program. You can,
however, force a display of the values of the variables in an active screen from
within a program with the sprint command. The following one-line program will
show all the records, as required. first:letx=0:whilex<count():sprint:next:let
x=x+1:endwhile [Enter] If there is no active screen you will find that sprint has
no effect. Note that this is a rather artificial example, designed to make a special
point. It would be simpler and more efficient to produce the same effect by using:
first: while not eof() : sprint: next: endwhile [Enter] or even: all: sprint: endall
[Enter]

8.6 SAVING AND LOADING SCREENS You can save your screen
design on a disk by using the ssave command:
ssave "filename" [Enter]

where "filename" is the name of your choice. The screen layout is saved exactly
as it appears. You can reload the screen layout at any future time by typing in the
command:

sload "filename"

When you load a screen layout directly from the keyboard it is automatically
displayed on the screen and made active. From within a program the screen
layout is not automatically displayed and activated by sload. You can load the
screen layout at the start of a program and then use the screen command to
display and activate it at a later time.

8.7 THE DISPLAY COMMAND Once you have an active screen layout
you can use all the display words (first, last and so on). The current values of any
variables in the screen layout are displayed automatically at the end of a
command or a program. Remember that the display command uses its own
layout. It will always replace any screen layout with its own simple list of the fields
of the current record of the current file. You must therefore ssave your screen
layout before you next use display. If you do not, your screen layout will be
replaced by that used by display and you will not be able to get it back again
(unless you redesign it with sedit).

8.8 AN EXAMPLE It is important that you are sure about the distinction
between the text that is shown in the screen background and the value of a
variable. The following example may help to make this clear. Suppose you want to
label an area of the screen with the word "Name", and reserve a 15 character

Archive Manual - Page 25 of 93

space following the label to display the value of the variable name$. You should
move the cursor to the place where you want the label to start and type it into the
screen exactly as you want it to appear. Next you should press [F3] and the V
key, and then type in the name (ie name$) of the variable you want to display,
ending it by pressing [Enter]. Finally you should press the space bar 15 times and
press [Enter] again. That region of the screen will appear as:

Name:............... Leave the screen editor by pressing [Esc].

Now give the variable, name$, a value - for example:

let name$="Hans" [Enter]

As soon as you press [Enter] the value is shown in the screen layout. Try using
the let command to change the value of name$. You will normally use the screen
layout to show the fields of the records in a data file. However, as this example
demonstrates, you can use the layout to show the values of any variables,
including those you use in a program.

9.0 PROCEDURES The commands and functions of ARCHIVE together
form a programming language which you can use to write programs to manipulate
your files. You will find that ARCHIVE programs are simple to write, although the
approach is different from writing programs in BASIC. If you have written
programs in BASIC before you will see one immediate difference - ARCHIVE
programs do not need line numbers. Many of the commands are, however, very
like those used in BASIC so you do not have too many new commands to learn.
An ARCHIVE program is made up of one or more separate sections. Each section
is known as a procedure. A procedure is simply a named section of program. You
can then refer to the procedure by its name. In ARCHIVE you can run a procedure
by typing its name at the keyboard (and pressing [Enter]). It behaves in the same
way as a command - when you write a procedure you are effectively adding a new
command to ARCHIVE. Procedures may be as simple or as complex as you want
to make them. It is, however, good practice to use lots of short procedures rather
than one long one. You will find that you will make fewer programming mistakes. It
will also be much easier to find any mistakes that do slip through. In fact there
can be up to 255 lines in a procedure, and each line can be up to 255 characters
long. A well-written program should never approach either of these limits.

9.1 CREATING A PROCEDURE You must use the program editor
whenever you want to write or change a procedure. This editor provides you with
many powerful tools for adding, deleting or changing the text of procedures. It is
described in detail the next chapter, but in this chapter we shall look briefly at
some of the main features so that we can write a few short procedures. We shall
assume that initially there are no procedures in the computer's memory. Type:

edit [Enter]

Archive Manual - Page 26 of 93

to enter the program editor. You will see that the control area changes to show
that you should type in the name for a new procedure. You have been placed
directly in the option to create a new procedure. Entering the editor will always
lead you to this option if you have not yet defined or loaded any procedures. The
first thing to do, therefore, is to define the new procedure. Let us start with a very
simple task; to rename the display command. (This, described earlier, shows the
contents of the current record in the display area.) The idea is to give the
procedure a single letter name and so reduce the amount of typing necessary
when using display. We shall give it the name 'd'. Just type in the letter 'd',
followed by [Enter]. The sequence of key presses so far, therefore, is:

edit [Enter]
d [Enter]

Once you have named the new procedure you will be shown the full range of
editing options. Their actions are described in the next chapter. The left hand side
of the display area will contain the name of the procedure. The right hand side of
the display area will show a listing of the procedure. After the steps described
above the screen shows:

d
proc d
 endproc

You did not need to type in the 'proc' or 'endproc' which mark the beginning and
the end of a procedure. ARCHIVE always inserts them automatically when you
create a procedure. Once you have given a name to a new procedure, as
described above, you have to add the body - that is the sequence of actions that
it is to perform. In terms of the current example this means that you must now
insert the name of the display command into the procedure. After you have given
a name to the new procedure the contents of the control area changes again to
show that you can insert lines of text into the new procedure. All you have to do is
to type the text of a line, ending it bypressing [Enter]. Type:

display [Enter]

ARCHIVE inserts the new line into the procedure, below the highlighted line. If you
have followed this example so far the display will contain:

Archive Manual - Page 27 of 93

You could add more lines of text - each line followed by pressing [Enter], would be
inserted below the highlighted line. In this case, however, the procedure is
complete so you can leave the edit command by pressing [Esc] twice - once to
leave line insert and a second time to leave the editor. All you have to do to use
the procedure is type its name, followed [Enter]. This new procedure will act in
exactly the same way as the display command. Why not try to use this same
method to give single-letter names to all the other file display commands; first,
last, next, and so on. The next time you use the edit command ARCHIVE will
allow you to select from the full set of editing options - remember that you are only
directed to the option to create a new procedure when there are no procedures in
the computer's memory. You may be puzzled to see that the option to create a
new procedure is not one of those shown in the control area. The reason is that it
is one of a number of sub-commands within edit. You can select one of these sub-
commands by pressing [F3] and then the first letter of the name. To create a new
procedure you will have, therefore, to press [F3] and then the N key (for New
procedure). From this point on the process follows the same method described
earlier.

9.2 LISTING AND PRINTING PROCEDURES Whenever you call the
edit command you will see that you are shown, at the left of the display area, a
list of the names of all the defined procedures present in the computer's memory.
You can list any one of these procedures from within the edit command by
pressing the [Tab] key (to move down the list) or the [Shift] and [Tab] keys
together (to move up the list) until the particular procedure name is highlighted.
The procedure is automatically listed at the right hand side of the screen. If the
procedure is too long to fit in the display area you will be shown the first part of it.
You can then scroll up and down through the procedure with the aid of the up and
down cursor keys. When you have finished looking at the procedure listing you
can leave the edit command by pressing [Esc]. If you want a printed listing of
your procedures you can use the llist command. All you have to do is to type in
llist [Enter] and all the procedures currently in the computer's memory will be
listed on a printer.

9.3 SAVING AND LOADING PROCEDURES If you want to keep the
procedures that you have defined for future use you can do so by using the save
command. This stores all defined procedures in a single named file on the disk. If
you want to save the new display procedures that you have just defined with a file
name "myprocs", you should type in

save "myprocs" [Enter]

At any later time you can bring these procedures back into the computer's
memory by typing:

load "myprocs" [Enter]

Archive Manual - Page 28 of 93

The load command deletes any existing procedures in memory before loading the
new ones from the disk. If you want to add the new procedures to those already in
memory, you can do so with the merge command, eg:

merge "myprocs" [Enter]

This works like load, except that the existing procedures are not deleted. If a new
procedure has the same name as an existing one, the new one will replace the old
version.

9.4 EXAMINING FILE RECORDS Renaming commonly-used commands
with single-character names by the use of procedures is one way of making life
easier for yourself. An alternative way would be to write a longer procedure to
replace several commands by single key presses. Try using the edit command
to define the following procedure - it allows you to open and examine any of your
data files. If you have already defined a procedure, typing:

edit [Enter]

will not automatically give you the option for creating a new procedure. From
within the program editor you must press [F3] and then the N key to name a new
procedure. Don't worry if you make a few mistakes while typing in the example -
you will learn how to correct them in the next chapter. From now on we shall not
always show the [Enter] symbol that you must press at the end of each line of
input.

proc vufile
 cls
 input "which file? ";file$
 look file$
 display
 let key$="Z"
 while key$<>"Q"
 let key$=upper(getkey())
 if key$="F": first :endif
 if key$="L": last :endif
 if key$="N": next :endif
 if key$="B": back :endif
 sprint
 endwhile
 close
endproc

Remember that you leave edit by pressing [Esc]. This procedure assumes that
there are no existing open data files. Close any open files before using it. Then
type: vufile [Enter]

Archive Manual - Page 29 of 93

It will first clear the display area and then prompt you to type in a file name. When
you have entered the name of one of your data files the procedure will open that
file in read-only mode and display its first record. It will then wait for you to press
a key and will respond to the keys f, l, n, b or q. The first four of these will
cause the appropriate display action (first, last, next or back) and pressing the
q (quit) key will close the file and end the procedure. If you find you have made
any typing errors, so that the procedure does not work properly, you can correct
them with the aid of the line and program editors described in the next chapter.
Since this is the first program of any great length that we have written a few
comments might prove helpful. Note how the example is indented to clarify the
structure of the procedure. There is no need for you to type it like this, with all the
indentations. They are added automatically as you write, list or print the
procedure. The main part of the procedure (waiting for a key to be pressed and
performing the appropriate action) is enclosed between while and endwhile. This
repetitive loop will only be left when the condition following while is false (in this
case, when you press the q key). The if command, used several times within
this loop, also requires that each if has a matching endif to mark the end of the
sequence of instructions to be executed if the condition is true. If and endif are,
like while and endwhile, separate commands and can be used on different lines.
We could, for example, have written the first of the if statements in this procedure
as; if key$="F" first endif You may include several lines of statements between
if and endif ; they will all be executed, provided the condition following if is true.
In the vufile procedure these statements are sufficiently short that each can be
written on a single line, using the colon to separate the individual statements. As
you can see, an sprint command is used within the main loop of this procedure to
make sure that each new record is shown on the screen. Remember that,
although the display commands (first, last etc.) always move to the correct
record, the data in the display area is not automatically changed until the end of
the procedure. If we had not included the sprint command no information would
have been shown in the display area until you pressed the q key to leave the
procedure. In that case all you would see would be the result of the last of any
sequence of key presses that you had made. There is more information about
procedures and the use of parameters and local variables, in the Programming
chapter.

10.0 EDITING PROCEDURES This chapter describes the program
editor and how to use it. We shall include a few simple examples, but the best way
to learn is by using them yourself. When you have read this chapter you could try
writing a few simple programs of your own, or you could try modifying the
procedures you typed in while working on the last chapter. If you want to use
longer examples you could use the editor to type in all or part of the the programs
in the following chapters.

10.1 THE LINE EDITOR Suppose you do not notice a mistake before you
press [Enter]. ARCHIVE will detect it when it tries to carry out your instructions
and give you an error message. Even at this stage all is not lost. You can press

Archive Manual - Page 30 of 93

[F5] which will put the last line of text you typed in back into the input line. You
can then use the line editor to correct the mistake and press [Enter] to try again.
You can also use the line editor from within the program editor to change a line of
one of your procedures. This is described in the following section.

10.2 THE PROGRAM EDITOR You enter the main level of the program
editor with the edit command by typing:

edit [Enter]

You can leave edit at any time by pressing [Esc]. When you enter the program
editor the display area changes to show, on the left, a list of the names of any
procedures that are in memory. They are always listed in alphabetical order. The
first procedure in the list is shown in full on the right hand side of the display area.
You will notice that the name of this first procedure is highlighted, as is the first
line of its listing. At all stages during the use of the editor highlighting marks the
current procedure and the current line within it. This is the line that will be
affected by any changes you make. If there are no procedures in the computer's
memory at the time you select the edit command, the display area will be blank
and you are automatically given the opportunity to create a procedure (as
described in the previous chapter). Otherwise the control area changes to show
the list of the main options available to you. We shall examine each option in turn.

10.2.1 Selecting a Procedure You can select a different current procedure by
pressing [Tab] to move down the list of procedures, or by pressing [Shift] and
[Tab] together to move up the list. Each time you change the current procedure
the listing at the right will change so that it always shows the current procedure.
10.2.2 Selecting a Line You use the up and down cursor keys to select a different
current line within the current procedure. The current (selected) line is marked by
highlighting. Insertions, will be added immediately after the current line.

10.2.3 Inserting Text You can select the option to insert lines of text below the
current line by pressing [F4]. Anything you type, up to the next time you press
[Enter], is inserted as a new line of text. This new line then becomes the current
line. ARCHIVE stays in the insert option so that you can type in several lines; you
mark the end of each line by pressing [Enter]. When you have finished inserting
new text you should leave the option by pressing [Enter] twice. You may also
leave the insert option by pressing a cursor key or [Esc] instead of [Enter]. As
an example we can create a procedure and add a couple of statements to it. Start
with no procedures (type new) and then create a new procedure called test,
using the method described in the previous chapter. Press [Esc] twice to leave the
editor without adding any statements to the procedure. Then use the edit
command again to show the procedure. This time, ARCHIVE does not
automatically go to the option for naming a new procedure, and the screen shows:

Archive Manual - Page 31 of 93

test
 proc test
 endproc

Press [F4] to use the option to insert lines of text. The highlighting should mark
the line including proc, so any inserted text will go under this line. Now type:

print "this is a test" [Enter]
print "there are two statements" [Enter] [Enter]

Pressing [Enter] twice in succession takes you out of the insert option. When you
have finished the screen will look like:
test
 proc test
 print "this is a test"
 print "it has two statements"
 endproc
The highlighting marks the line containing the second print statement. If you
make a mistake you can correct it, provided you notice it before you have pressed
[Enter], by using the line editor. Remember that you can use this editor at any
time that you have typed some text into the input line, before you press [Enter].
Once you have pressed [Enter] the line of text is inserted into the procedure and
you will have to use the line editing option, described in the next section, to make
any corrections.

10.2.4 Edit a Line From the main level of edit, press [F5] to edit the current line.
The contents of this line are copied into the input line and you can then edit the
text with the line editor. When you press [Enter] ARCHIVE will replace the old line
in the procedure with the contents of the input line. You are not allowed to edit the
endproc statement at the end of the procedure. You are also not allowed to edit
the word proc in the first line of the procedure, but you may edit the rest of the
contents of this line. You can, therefore, rename a procedure by using the line
editor to delete the old name and replace it with a new one. The list of procedures
at the left of the screen is rearranged automatically to keep the procedures in
alphabetical order.

10.2.5 Editing Commands There are four separate editing commands within the
edit command itself. When you are at the main level of edit you can select one of
them by pressing [F3] and then typing the first letter of its name. At the end of the
action of each of these commands ARCHIVE will go back to the main level of edit.

10.2.5.1 Delete Procedure (D) This command deletes the current procedure from
your program. You must first select the procedure you want to delete by using the
[Shift] and [Tab] keys, as described earlier, to make it the current procedure.
You then select the command by pressing [F3] and then the D key. You must
then press [Enter] to confirm that you really do want to delete the procedure. If you

Archive Manual - Page 32 of 93

change your mind at this stage you can, instead of pressing [Enter], press any
other key to leave the command and go back to the main level of edit without
deleting the procedure. Be careful when you use this command since there is no
way to restore a deleted procedure, except by typing it in again.

10.2.5.2 New Procedure (N) You will need to use this option whenever you want
to start writing a new procedure. As was mentioned earlier you are automatically
given this option if you select the edit command when there are no procedures in
the computer's memory. Otherwise you select it pressing [F3] and then the N
key. As indicated by the prompt, all you have to do is to type in the name of the
procedure you want to create. When you press [Enter] at the end of the name the
new procedure becomes the current one, listed at the right of the screen. You are
presented with an empty procedure - that is, one containing only the proc and
endproc statements - ready for you to add its body. Note that if you type in the
name of an existing procedure the old procedure will be deleted and a new,
empty, one will replace it. As an example of creating a new procedure, select the
new procedure command, by pressing (from within edit) [F3] and then N, and
then type in the name test and press [Enter]. You will find that the display area
contains:

test
 proc test
 endproc

ARCHIVE automatically goes straight to the option to insert lines of text into the
new procedure - exactly as if you had pressed [F4].

10.2.5.3 Cut (C) This command removes one or more lines of text from the
current procedure. The text that is removed can be inserted in another position, or
even in another procedure, by means of the paste command. Before you select
the command you should use the up and down cursor keys to make the current
line be either the first or the last line of the section you want to remove. You can
then select the command by pressing [F3] and then the C key. If you then press
[Enter] the current line will be removed from the procedure. Alternatively you can
use the up or the down cursor key to move the cursor to the other end of a section
of text that you want to remove. The region of text that will be removed is marked
by highlighting. When you have marked the text you want to remove you should
press [Enter]. ARCHIVE will immediately remove the marked text, placing it in a
reserved area of memory known as the paste buffer. The text that is removed
replaces any text removed by a previous use of cut. If you want to insert the text
elsewhere you must therefore use the paste command before you use cut again.
10.2.5.4 Paste (P) This command inserts the text removed by the last use of the
cut command into the current procedure, below the current line. The text can be
inserted in another position, or even in another procedure. Before you select the
command you should, if necessary, use the [Shift] and [Tab] keys to select the
procedure in which you want to insert the text. You should also use the up and

Archive Manual - Page 33 of 93

create "mail"
title$
fname$
surname$
street$
town$
county$
postcode$
issues
(endcreate)

down cursor keys to highlight the line immediately above the position where you
want to insert the text. You can then select the command by pressing [F3] and
then the P key. ARCHIVE immediately inserts the text, underneath the current
line. When you have used paste to insert the text, the paste buffer is empty. You
cannot, therefore, insert the same text in more than one position.

11.0 PROGRAMMING This chapter is about writing programs in the
ARCHIVE database language. In addition to explaining the main features of the
language, it will describe the development of an actual working example. The
example will be developed as we go along, and each new technique will be
described as it is needed. Suppose you are involved in running a club or society
which charges a subscription and produces a newsletter. You will need to send a
copy of each issue to every paid-up member. You will also need to send a
reminder to each member when his or her subscription falls due. This example
allows you to construct a mailing list and will then print a set of address labels on
request. The address label includes a reminder when a subscription is due. The
example assumes that you send out six issues of the newsletter per year and that
a person's subscription falls due when he or she has received six issues. It could
easily be adapted to any situation where you regularly send out some form of
circular letter to a number of people on a mailing list.

11.1 A MAILING LIST In this example we shall make as much use as
possible of the existing facilities. We can, for example, use the insert and alter
commands for all additions and changes to the file records. We shall, however,
need to write special routines to print out the address labels. We shall have to
cater for the following set of requirements:

1) Add a new record to the file
2) Delete a record
3) Modify a record
4) Record subscription payments
5) Produce the address labels
6) Leave the program

We shall write a procedure to handle each of these tasks
and link them together by another procedure which will allow
you to select any of the options. In this application it is quite
clear what fields each record must contain. There will have
to be the name and address plus one field to record the
number of issues the person has received. We can create
the necessary file immediately, as shown below.

We have used three string fields for the person's name; to hold the title (Dr, Mr,
Ms etc), the first name and the surname respectively. We could probably have
managed with just a single field. There are four string fields for the address,
nominally reserved for the street address, the town, county and postcode. You do

Look for MailList.prg
in the Examples.zip.

Archive Manual - Page 34 of 93

not always have to use them in this way, but can
treat them as four general fields to hold the
address. Four fields should normally be quite
sufficient. There is only one numeric field, to hold
the information about how many issues have been
sent. Note: If you expect to use the same
structure for several files you could write a
procedure to create the file, using an input
command to get the file name. Now that we have
the file, we can use it to test the various
procedures as we write them. It is a good idea to
test each procedure as far as possible as you go
along. You can then spot each mistake as it occurs and correct it immediately. If
you leave all the testing to the end it will be much more complicated as several
things may be going wrong at the same time. Keep things as simple as possible
while you are still testing your procedures - try to make sure that each procedure
works correctly before you move on to the next one. That way you will find that
your final program will usually work as soon as you have written the last
procedure.

11.1.1 Insertion We do not need to write a procedure to add a record as we can
simply use insert. You can use insert immediately to add a few records to the file
so that you can test the other procedures on a real file. Remember that you must
use sprint to force the display of the contents of the record from within a
procedure.

11.1.2 Deletions At some time you will want to remove the records of people who
have not renewed their subscriptions. We shall write a procedure, wipe, which
allows you to scan through the file, examining the records of all people who have
not renewed, and to decide whether each one should be deleted. We shall use
the field variable issues to hold the number of issues that a person is entitled to
receive. All records for which the value of issues is zero are therefore candidates
for deletion.

proc wipe
 cls
 display
 select issues =0
 all
 sprint
 print at 10,0;"DELETE (Y/N)? ";
 let ok$ =upper(getkey())
 print ok$
 print at 10,0;
 if ok$ ="Y"
 delete
 print "DELETED";

Archive Manual - Page 35 of 93

 endif
 print tab 20
 endall
 reset
 endproc
Since a deleted record cannot be recovered, the full contents of the record are
displayed and you are asked to confirm that you really want to delete it. We use
the getkey() function which waits for a key to be pressed and then returns the
single-character text string corresponding to that key. Note that upper() converts
the code to the upper case character so that you can type the letter in either upper
or lower case.

11.1.3 Payments You will normally want to record subscription payments from a
list of names and addresses of those people who have sent in their subscriptions.
You will therefore need to locate the record of a particular person. The best
approach is to write a separate procedure, getrec, to locate a particular record and
then incorporate it in the pay procedure. This procedure asks for a text string and
then locates the first record in the file which contains that text. If you reply by just
pressing [Enter], n$ is set to the empty string ("") and no search is made. You
should use this method to indicate that you have finished recording payments.

proc getrec
 rem * * * locate a particular record * *
 let ok$ ="N"
 input "who? "; n$
 if n$ <>""
 find n$
 while ok$ <>"Y" and found()
 print title$; " "; fname$(1); " "; surname$
 print street$
 print "OK (Y/N)? ";
 let ok$ =upper(getkey())
 cls
 if ok$ <>"Y": continue: endif
 endwhile
 if not found()
 print n$; " not found"
 endif
 endif
endproc

The search uses the find command, so that the text is found in any string field.
You can therefore identify a record by name or by address. Of course, the first
record which matches may not be the one you want, so we have to be able to
continue the search. This is the purpose of the while endwhile loop. This prints
out the name and first line of the address, to identify the record, and asks you if
that is the right record. If you do not respond by pressing the Y key, it continues

Archive Manual - Page 36 of 93

the search. The loop ends either when you answer by pressing the Y key or when
the text is not found in any of the remaining records. Note that the function found()
returns a true (non-zero) value if the search is successful. Since ok$ could
initially be " Y " (from a previous successful search) we must give it some other
value at the beginning of the procedure, before entering the loop. This makes sure
that the loop will be used at least once. We can now write the pay procedure:

proc pay
 cls
 let n$ ="X"
 while n$ <>""
 getrec
 if ok$ ="Y"
 let issues =issues +6
 update
 endif
 endwhile
endproc

The loop in this procedure continues until n$ is an empty string. This allows you
to record several payments without having to select the pay option for each one.
When you have finished, just press [Enter] in response to the "who?" prompt. If
the value of ok$ is " Y " after the call to getrec then the payment is recorded by
marking it as valid for a further six issues. Again we have to set the initial value of
n$ to some appropriate value (anything except "") to make sure that the procedure
is not affected by a previous operation.

11.1.4 Changes The procedure to allow you to change the contents of a record is
now very easy. Again you must be able to select a particular record to change, so
the general structure can be identical to pay.
proc change
 cls
 let n$ ="X"
 while n$<>""
 getrec
 if ok$ ="Y"
 alter
 cls
 endif
 endwhile
 endproc
11.1.5 Address Labels We use the lprint command in the following procedure,
to direct the text of the address labels to your printer. When you are writing such
a procedure it would be useful to be able to test it by displaying the result on the
monitor screen, rather than printing it. Use the spoolon screen command for this
purpose. After you have typed: spoolon screen [Enter] all lprint (also llist and
dump) output is directed to the monitor screen, rather than the printer. Use

Look for MailList.prg in the Examples.zip.

Archive Manual - Page 37 of 93

spooloff to cancel a spoolon command. We shall assume that the labels are
eight lines of print-out in length. If this is not right for your printer and label
combination you will have to change the number of blank lines printed by the
following procedure, so that it matches your needs.

proc dolabel
 if issues
 if issues=1
 lprint "REMINDER - Subscription Now Due"
 else
 lprint
 endif
 lprint
 lprint title$;" ";fname$(1);". ";surname$
 lprint street$
 lprint town$
 lprint county$
 lprint postcode$
 lprint
 let issues = issues-1
 update
 endif
 endproc

The procedure includes a reminder
in the address label if the person is
about to receive his or her last issue. Each time a label is printed, that person's
issue count is reduced by one. If this number has reached zero then the label is
not printed. Finally we can write the procedure to print all the address labels:

proc dispatch
 all
 dolabel
 endall
 endproc

11.1.6 Leaving the Program The final option is to leave
the program when you have finished. This procedure can be very simple - all it
has to do is to make sure that the file is closed properly before returning control to
the keyboard interpreter. We have also added a short sign-off message to make it
clear that the program has ended.
proc bye
 close
 print "bye": stop
 endproc

Look for MailList.prg in the Examples.zip.

Archive Manual - Page 38 of 93

Programming ERRORS It is quite likely that sooner or later you will make an
error while using this or some other program. You may, for example, accidentally
press the [Esc] key or you may type in some text when a number is expected.
This type of mistake is detected by ARCHIVE and normally results in the display
of an error message and a return from your program to the keyboard interpreter.
This could be annoying, to say the least! Fortunately, ARCHIVE has a method by
which you can handle all such errors from within the program. You can use the
error command to mark a procedure to be treated specially if any error is
detected. Any error occurring in the marked procedure, or any procedure that it
calls, results in an immediate, premature, return from the marked procedure. The
normal method of handling errors is switched off for the marked procedure and it
is left to you to decide how to deal with it. You can find out the number of the last
error that occurred by using the errnum() function. You can use it to read the error
number more than once as the value is only cleared to zero by the next use of the
error command. If no errors have occurred since the start of the program, or since
the last time error was executed, then errnum() will return a value of zero. This
method, although not easy to understand at first, gives you a very powerful and
flexible way of dealing with errors. The following example shows a typical way of
using error. It gives you an error-resistant method of inputting a number.

proc dotest
 input x
 endproc

proc test
 let n=1
 while n
 error dotest
 let n = errnum()
 if n print "You made error number " ;n ;", try again"
 endif
 endwhile
 endproc

The first procedure
simply waits for your
input to the variable x.
The second procedure
handles any error
during the execution of the input procedure. If any error occurs within dotest it will
be terminated prematurely and the error number will be set. This number is then
read by errnum() and, if it is non-zero, the error message is printed (this error
message could, of course, be anything you like). Since these statements are
enclosed in a while endwhile loop, any error will cause them to be executed
again. The error number is cleared by error, ready for the next try. You cannot
leave test until you have typed in a valid number. This example reports the
number of the error that was detected. On most occasions you will not be

Archive Manual - Page 39 of 93

concerned about which error occurred. The main use of errnum() is to
differentiate between there being no error - errnum() returns zero - and there
being a detected error of any type - errnum() returns a non-zero value. We can
now write a procedure which will allow you to select any one of the six options in
the mailing list application with a single key press. The reason for the local
command will be explained later. Otherwise the procedure is sufficiently simple
that no explanation is necessary.

proc choose
 local c$
 cls
 print
 print " Add Dispatch Pay Change Wipe Quit"
 print "? ";
 let c$=upper(getkey())
 print c$
 if c$ ="A": insert : endif
 if c$ ="D":dispatch: endif
 if c$ ="P":pay: endif
 if c$ ="C":change: endif
 if c$ ="W":wipe: endif
 if c$ ="Q":bye: endif
 endproc

All that remains to be done to complete our program is to write a start-up
procedure which opens the file and calls choose We must include choose in a
loop so that you are offered the options again, each time you complete your
previous selection. You will see that the while endwhile loop in the following
procedure will never end. Such a loop will only come to an end when the
expression following while has a zero value. In the following procedure the
expression (ie 1) is never zero, so the loop will continue indefinitely. The only way
of leaving this loop is to choose th3 Quit option. The stop command in bye
immediately returns control to
the keyboard interpreter.

proc start
 cls
 open "mail"
 while 1
 error choose
 let n=errnum()
 if n print "Mistake - Press any key to continue"
 let m$=getkey()
 endif
 endwhile
 endproc

Look for MailList.prg in the Examples.zip.

Archive Manual - Page 40 of 93

Within this loop is a sequence of statements which handles any errors, using a
similar method to that described at the beginning of this section. If you make a
mistake the program will not continue until you press a key. This allows you to
look at what you have just done so that you can find out how you made the error.

11.1.7 THE RUN COMMAND The main procedure in the mailing list program is
named start. This is so that you can use the run command when using the
program. Suppose that, when we have written all the procedures of the program,
we save them under the name "maillist". When you want to run the program you
will need to load the procedures into the computer's memory and then execute the
main procedure, which will call all the others. One way is to use the load
command and then type in the name of the main procedure, for example:

load "maillist" [Enter]
start [Enter]

The run command will load a named program and then automatically execute the
procedure named start (if it exists). You can run the program exactly as in the
previous example just by typing:

run "maillist" [Enter]

11.2 PROCEDURE PARAMETERS We shall now describe the use of
parameters with procedures. You can use a parameter to pass a value to a
procedure, rather than using the value of a variable. Instead of giving a long
description of the theory of parameters, we shall show you a few examples of how
they can be used. Try the following simple example.

proc test;a
 print 5*a
 endproc

This defines a procedure called test which requires one parameter, " a ". Notice
that the parameter is separated from the name of the procedure by a semicolon.
Whenever you use the procedure you must always supply a value for the
parameter. For example, you could type:

test; 3 [Enter]

which will print the value 15 - the number (3) has been passed to the procedure as
the value of the parameter a. You may specify any number of parameters for a
procedure, provided you separate them by commas. For example:

proc trial; a,b,c
 print a * b * c
 endproc

Archive Manual - Page 41 of 93

which you can call by: trial; 3,4,5 [Enter] The values you supply do not have to be
literal values, but could be variables, as shown below:

let x = 2 [Enter]
let y = 5 [Enter]
let z = 7 [Enter]
trial; x,y,z [Enter]
Note that the names of the variables do not have to be the same as the parameter
names used within the procedure. We can distinguish between the formal
parameters (eg a, b, c) in the definition of the procedure, and the actual
parameters which are the actual values that are passed to the procedure. You
can also pass the results of expressions:

trial; x*2,z/y,(z-y)*x [Enter]

You are not restricted to using numeric variables but can also pass strings (or
string expressions) as parameters, provided you specify string variables in the
definition of the procedure. For example:

proc try; a$
 print a$
 endproc

let t$ = "message" [Enter]
try; t$ [Enter]

The only requirement is that the number and types of parameters supplied must
match the list of formal parameters in the definition of the procedure.

11.3 LOCAL PROCEDURE VARIABLES Most variables that appear in
procedures are global. This means that they are recognised throughout the
program. They may be used or changed in any procedure, and not just the
procedure in which they are first assigned a value. The variables used as formal
parameters in a procedure are local variables in that they are not recognised
outside of the procedure in which they are defined. The following example may
help to clarify the distinction between global and local variables. First we create a
procedure which uses two local variables, a and b$, as well as assigning values
to two normal (global) variables, u and v$.

proc demo; a,b$
 print a;b$
 let u = 3
 let v$ = "text"
 print u;v$
 endproc

Archive Manual - Page 42 of 93

Then we use demo : demo; 5,"words" [Enter]

All four values are printed, showing that all four variables are recognised inside
demo. Typing: print u; v$ [Enter] shows that both of these variables are also
recognised outside the procedure. If, however we try typing:

print a; b$ [Enter]

we find that they are not recognised outside demo. All formal parameters are
local variables, but you can also declare other variables to be local, as in the
following example:

proc myproc2
 print "inside myproc2"
 print p; q; r
 endproc

proc myproc1
 local q,r
 let p = 2
 let q = 3
 let r = 4
 print "inside myproc1"
 print p; q; r
 myproc2
 endproc

If you attempt to use myproc1 by typing: myproc1 [Enter]

you will find that the values of p, q and r are all recognised (and therefore
printed) in myproc1, but myproc2 does not know the values of q and r, which
are local to myproc1. The values of local variables are not defined anywhere
except in the procedure in which they are declared - not even in procedures called
from the declaring procedure. The variable p is global and is recognised
everywhere. You may be wondering why local variables are necessary. To
illustrate their usefulness, suppose you write a program containing several
procedures that you, or someone else, originally wrote for use in other programs.
It is quite possible that two or more of these procedures might use variables with
the same name for quite different purposes. If these variables were global then
one procedure could alter a value so that it would be wrong for another. In such a
situation you would have to check all the procedures that you use and, if
necessary, change the names of the variables. If, however, the variables were
local it would not matter if they had the same name. Provided they were in
different procedures, changing one would have no effect on the other.
Furthermore, it does not matter if a procedure calls another which uses the same
name for a variable - provided at least one of them is local. For example, the
procedure choose in the section on errors, earlier in this chapter, declared the

Archive Manual - Page 43 of 93

variable c$ to be local. This means that there is no need to check whether any of
the many procedures called by choose also uses c$ - the called procedures
cannot change the value of c$ in choose.

11.4 Prompts Displaying a prompt and waiting for a key to be pressed is one
of the most commonly needed actions, so it is worth writing a general-purpose
procedure. The procedure must be able to display a wide range of messages. A
simple way of allowing the procedure to print any message is to pass the
message to the procedure in the form of a parameter.

proc prompt; m$
 print m$+": ";
 let x$=upper(getkey())
 print x$
 endproc

The message to be displayed is passed to the procedure as a parameter in the
local variable m$. The function getkey() waits for a key to be pressed and returns
the ASCII code for the key. In this procedure the ASCII code is converted to upper
case by the function upper(), so that the result is independent of upper or lower
case. Finally the resulting value is assigned to the variable x$. This is a global
variable, so that the key that was actually pressed is available to any other
procedure in the program. A useful procedure is pause. It uses prompt to print a
message and then simply waits until a key is pressed. Since you are not usually
interested in knowing which key was actually pressed, it uses a local variable, y$,
to preserve the original contents of x$.

proc pause
 rem * * wait for any key * *
 local y$
 let y$ = x$
 print prompt; "press any key to continue"
 let x$ = y$
 endproc

Archive Manual - Page 44 of 93

proc getnum; m$,min,max
 local wrong
 let wrong = 1
 while wrong
 print m$; "? ";
 error readnum
 let wrong=errnum()
 if not wrong
 if num<min or num>max
 let wrong=1
 print "Allowed range is ;min; " to ";max
 endif
 endif
 if wrong
 print "Try again"
 endif
 endwhile
 endproc

11.5 DATA ENTRY

11.5.1 Text Accepting text as typed input is quite simple. Any collection of
characters is a valid text string (even if it does not make sense) and will not cause
a system error. You will not normally need to take any special precautions when
accepting text input. It will usually be sufficient to use a line such as the following,
which asks you to type in your name:

input "Please type your name: ";name$

Note that a space is included as the last character of the prompt text; This small
point makes a lot of difference to the appearance of your program when you use
it. You can input several items with one input statement. All you have to do is to
include all the prompts and variable names, separated by semicolons, eg:

input "Your first name? ";fname$;" Your surname? ";sname$; [Enter]

This last input statement also ends with a semicolon - this stops the cursor moving
to the following line after you have typed your input.

11.5.2 Numbers When you use the input command to enter text to a string
variable the computer will accept anything that you type, without complaint. If,
however, you try the same thing with input to a numeric variable you will get an
error message if you type anything except a valid number or constant numeric
expression (eg 3*5+2). Assuming that you do not want to leave your program
every time your finger slips while you are typing in a number, you must make sure
that your program can cope with such errors. The most useful way is to make use
of the error
command,
which was
described
earlier. The
following
procedure, for
example, will
accept any
valid number
within a
specified
range. It even
produces a
prompt
message,
passed to
getnum as a
parameter.

Archive Manual - Page 45 of 93

proc readnum
 input num
 endproc

proc centre; a$,n
 lprint tab(n-len(a$))/2;a$
 endproc

Since error must be followed by the name of a procedure,
we define readnum to input a value for the variable num.

Suppose you want to input a value in the range 1 to 10
inclusive, with a prompt message "Numeric value?". You
can do this with getnum, in the following way:

 getnum; "Numeric value",1,10 [Enter]

11.6 PRODUCING A REPORT Combining print (or lprint for output to a
printer) with an all endall loop gives an extremely flexible way to generate a
report. You can use the print items at and tab to display the report in any
format that you want. The first of these moves to a specific line and column
position, ready for printing at that point. For example: print at 5,7; x

prints the value of the variable x at line 5, column 7. Bear in mind that it is quite
permissible to use at to move upwards or to the left when printing to the screen,
but your printer is unlikely to allow you to do this with an lprint command. The tab
item moves the cursor to a specific column within the current line. It does so by
printing spaces which, on the screen, will erase any characters in the intervening
space. For example: print tab 25; x

prints the value of x starting at column 25 of the current line. Note that tab will
have no effect if the print position is already at, or beyond, the specified column.
Suppose you are considering taking out a full-page advertisement in a magazine.
You have a file containing details of a number of possible magazines, including
the name of each, its circulation and the cost of a full-page advertisement. The
following example shows how you can produce a report for all the magazines,
showing the cost per thousand people reached by the advertisement. It assumes
you have a file containing the fields magname$, circulation and cost. In order to
generate a report with a neatly
tabulated appearance we shall start
with a procedure to produce centred
text in a field of n characters. It is
useful, for example, in printing titles.

Note that the space between the print item tab and any following text is important.
If you do not leave a space, ARCHIVE would attempt to interpret tab(x) as a (non-
existent) function or a variable. You can print text justified right in a field of n
characters with the aid of the dec(), gen() and num() functions. Each takes a
numeric value and a field width as arguments. The gen() and num() functions
produce the text equivalent of the number in general and integer formats
respectively. The dec() function produces the text in decimal format. It needs
another argument, which specifies the number of figures to appear after the
decimal point. If, for example, the variable x has the value 27.3 and you type:
let answer$=dec(x,3,8) lprint answer$

Archive Manual - Page 46 of 93

ARCHIVE will print the text " 27.300" (with two leading spaces).

We can now write the procedure to generate the report, designed for an 80-
column display:

proc report
 rem * * clear screen and move to line 4 * *
 spoolon screen
 lprint chr(0);chr(12)
 rem * * print title and column headings * *
 centre;"ADVERTISING COSTS",80
 lprint at 8,0;"Magazine"; tab 25;"Circulation";
 lprint tab 42;"Advertising";
 lprint tab 63;"Cost per"
 lprint tab 46;"Cost";
 lprint tab 61;"1000 Readers"
 lprint at 10,0
 rem * * print body of report * *
 all
 lprint magname$;
 lprint tab 25;
 lprint num(circulation,8);
 lprint tab 43;
 lprint dec(cost,2,8);
 lprint tab 64;
 lprint gen(1000*cost/circulation,8)
 endall
 endproc

For this example we have used the lprint command, but have included, as the first
line the command: spoolon screen to direct printed output to the screen. If you
want a printed output, remove this line from the procedure. Note that we have
used: lprint chr(0);chr(12) When directed to the screen it clears the screen, in a
similar way to cls. If directed to the printer it causes a form feed, so that the report
starts on a new page. Unlike cls it does not deactivate any active screen layout.

Archive Manual - Page 47 of 93

12.0 USING MULTIPLE FILES This chapter extends the explanation
of how to use the ARCHIVE programming language by describing how to work
with two or more open files. When you have more than one file open at the same
time you must be able to identify which file you want to use for any particular
operation. You must give each file a unique logical file name when you open or
create it and then refer to it by that name in all commands that refer to the file.

12.1 CHANGING A RECORD STRUCTURE Our first example will show
you how to add, delete or rename fields within an existing file. Suppose that you
want to make some changes to the "gazet" file, to create a new file containing only
European countries. In this case the continent$ field need not be included. The
most convenient way of changing the file is to create a second file containing the
fields you want and then to copy the required records from the old file to the new
one. Let us call the new file "europe". The following procedure will do the rest of
the work.

proc start
 create "europe" logical "e"
 country$
 capital$
 languages$
 currency$
 population
 gdp
 area
 endcreate
 look "gazet" logical "g"
 select continent$="EUROPE"
 all "g"
 print at 0,0;g.country$;tab 30
 let e.country$=g.country$
 let e.capital$=g.capital$
 let e.languages$=g.languages$
 let e.currency$=g.currency$
 let e.population=g.pop
 let e.gdp=g.gdp
 let e.area=g.area
 append "e"
 endall
 close "e"
 close "g"
 print
 print "DONE"
12.2 THE CURRENT FILE You can see, from the previous example, that
you can use the same name for a field in both files - they can be distinguished by
including the logical file name. If you do not include the logical file name then it will

Archive Manual - Page 48 of 93

be assumed that the current file is to be used. The last file to be opened
automatically becomes the current file. In this example the current file will be
"gazet" (with logical file name " g ") so we could make use of this by writing the
procedure as:

proc start
 create "europe" logical "e"
 country$
 capital$
 languages$
 currency$
 population
 gdp
 area
 endcreate
 look "gazet" logical "g"
 select continent$="EUROPE"
 all
 print at 0,0;country$;tab 30
 let e.country$=country$
 let e.capital$=capital$
 let e.languages$=languages$
 let e.currency$=currency$
 let e.population=pop
 let e.gdp=gdp
 let e.area=area
 append "e"
 endall
 close "e"
 close
 print
 print "DONE"
 endproc

No logical file reference

If you do not include the logical file name in any case where
it is optional, ARCHIVE will assume that the command

refers to the current file. It is usually safer to include the
logical file name explicitly, to avoid any possibility of

confusion. You can, at any time, specify the current file by
means of the use command. If you included the command:
use "e" in the above example, then "europe" would be the

current file until you changed it again, either by opening
another file or by means of the use command.

Archive Manual - Page 49 of 93

create "stock" logical "sto"
 stockno$
 description$
 qty
 reorderlev
 sellpr
 buyqty
 endcreate

12.3 STOCK CONTROL In a stock control system you will need to:

1) Find information on a particular stock item.
2) Obtain a report on the current stock levels of all items.
3) Record sales and modify the stock records accordingly.
4) Order new supplies, to maintain adequate stock levels.
5) Record deliveries of stock.

You will obviously need a file to hold the details of all items held in stock and it is
convenient to have a second file to hold details of all your suppliers. You will need
to be able to access either file from the other - for example you may want to know
all the possible suppliers of a particular item, or to find out what items are supplied
by a particular company. In order to keep the application as simple as possible
we shall not use the menu-driven approach of the examples in the previous
chapter. We shall write it as a series of separate commands which can be used -
like the standard commands - by typing their names. Since the procedures will be
strongly dependent on the file structure we use, we must first give some thought
to their appearance.

12.3.1 The Stock File The stock file must contain full details of the stock situation
for each item. The following list explains all the fields we shall use.

We can create the file by:

12.3.2 The Supplier File This file
holds the names, addresses and
telephone numbers of the companies
that supply the goods you sell. It will
be useful also to include the name of
a contact person in the company. In
order to be able to access this
information efficiently we shall include
a code for each company. We shall
use the following fields:

Field Name Use Example
stockno$ The internal stock code A101
description$ Item description Widget,
large qty Number in stock 500
sellpr Selling price 1.25

reorderlev Reorder when stock level falls
below this value 200

buyqty How many to order 400

Archive Manual - Page 50 of 93

create "orders" logical "ord"
 stockno$
 code$
 scode$
 price
 delivery
 endcreate

We can create the file by:

12.3.3 The Orders File This file
effectively forms the link between
the previous two files. A typical
record would be like below

Field Name Use Example
stockno$ Your stock code A101
code$ Your code for the supplier a
scode$ The supplier's code for the item 123-456
price The supplier's selling price 0.98
delivery The supplier's delivery time (in days) 20

Each record in this file links one record in the stock file with one record in the
supplier file. The above example shows that Wonder Widgets (supplier code "a")
can supply you with large widgets (stock code "A101"). In addition, we include
details of the price, delivery time and the supplier's own stock code. These items
are useful when you order more stock.
Using this file allows you to cater for the
cases where one supplier supplies more
than one stock item (equal values for
code$, but different values for stockno$)
and where one stock item is obtainable
from several suppliers (equal stockno$
but different code$). Create the file
with:

Field Name Use Example
coname$ The company's name Wonder Widgets plc
street$ First line of address 36 Acacia Avenue
town$ Second line of address Neasden
county$ Third line of address London
postcode$ Last line of address NW10 1AA
contact$ Name of a contact Joe Jensen
tel$ Telephone number 021-356 1234 ext.212
code$ Your code for the company a

create "supplier" logical
"sup"
 coname$
 street$
 town$
 county$
 postcode$
 contact$
 tel$
 code$
 endcreate

Archive Manual - Page 51 of 93

12.3.4 Enquiries You will find that the most frequently-needed facility is to find
information about a particular stock item, in response to customer enquiries. You
will need to find the information as quickly as possible, but may need to find a
particular record from either the part number or the description. We shall therefore
use the find command so that you can give any valid text to start the search.
The procedure must be able to ask for you to confirm that the record is the one
you want. We shall delegate this task to a separate procedure, as we may want to
use it in other situations.

proc confirm
 print : print "Confirm (Y/N)";
 let yes=upper(getkey())="Y"
 endproc

It leaves the variable yes containing 1 if you press the Y key - otherwise the value
is 0. Note the use of the equals sign for assignment and also in a logical condition
(see the description of search in Chapter 5).

proc inquire
 print
 input "Stock item? "; name$
 use "sto"
 find name$
 let yes=0
 while found() and not yes
 display
 sprint
 confirm
 if not yes
 continue
 endif
 endwhile
 if not found()
 print
 print name$; " does not exist"
 endif
 endproc

This procedure merely locates the correct record. A more usable procedure for
interrogating the stock file is query.

proc query
 inquire
 clear
 endproc

This uses another procedure, clear which we shall leave for a moment.

Archive Manual - Page 52 of 93

12.3.5 Stock Report We can also write a simple procedure to produce a general
stock report, using the method described in the previous chapter.

proc report
 cls
 print tab 2; "ITEM"; tab 11; "CODE";
 print tab 20; "QUANTITY"; tab 31; "PRICE";
 print tab 40; "STOCK VALUE"
 print: let total=0: use "sto"
 all
 print description$(to 10); tab 11; stockno$;
 print tab 20; num(qty,6);
 print tab 31; dec(sellpr,2,6);
 print tab 40; dec(sellpr*qty,2,10)
 let total=total+sellpr*qty endall
 print: print "Total stock value = "; dec(total,2,10)
 clear
 endproc

12.3.6 Recording Sales All we need to do to record a sale is to subtract the
number of items sold from the relevant stock record. It is advisable to include
some form of confirmation that we are dealing with the right stock item and that
the stock is sufficient to meet the order.

proc quantity
 inquire
 if found()
 cls
 input "How many? "; num
 print
 print num;" * ";sto.stockno$;" (";sto.description$;")"
 endif
 endproc

proc sale
 quantity
 if found()
 if num<=sto.qty
 print "Order value: "; num*sto.sellpr
 confirm
 if yes
 let sto.qty=sto.qty-num
 update
 display
 sprint: rem **** show the modified record ****
 endif
 else

Archive Manual - Page 53 of 93

 print "Not enough stock"
 endif
 endif
 clear
 endproc

12.3.7 Recording Incoming Stock The following procedure allows you to record
the delivery of stock. Again it requests confirmation of the details you type in
before accepting them and updating the relevant stock record.

proc delivery
 quantity
 if found()
 confirm
 print
 if yes
 print "Accepted"
 let sto.qty=sto.qty+num
 update
 display
 sprint
 else
 print "Delivery not recorded"
 endif
 endif
 clear
 endproc

12.3.8 Ordering New Stock So far our procedures have only referred to the
stock file. When we want to order more stock we shall have to refer to the supplier
and orders files for the name and address of the company, the price, and so on.
Assuming that we have identified the item in the stock file (with inquire) we select,
from the orders file, those records that have the correct stock code. These records
contain the codes for all the companies that can supply the item. Since the
records also contain the price and delivery time for each supplier, we can decide
whether we want the cheapest item or the shortest delivery time. We use locate
as a fast way of finding the required supplier record. This means that the supplier
file must be ordered (with respect to the supplier code, code$) before we use
doorder.

proc doorder
 inquire
 if found()
 use "ord"
 select sto.stockno$=ord.stockno$
 print
 print "fast or cheap (F/C)";

Archive Manual - Page 54 of 93

 if upper(getkey())="F"
 fast
 else : cheap
 endif
 let ycode$=scode$
 reset
 use "sup"
 locate comp$
 doform
 print
 print "Expected delivery is "; del; " days"
 endif
 clear
 endproc

The procedure cheap finds the supplier with the lowest price, and fast works in
the same way to find the supplier with the shortest delivery time.

proc cheap
 use "ord"
 let pri=price
 let comp$=code$
 let del=delivery
 all
 if price<pri
 let pri=price
 let comp$=code$
 let del=delivery
 endif
 endall
 endproc

The procedure doform produces the actual order form. You should modify it to
your own requirements. We shall use a simple version which shows the order
details on the screen.

proc doform
 cls
 print
 print sup.coname$
 print sup.street$
 print sup.county$
 print sup.postcode$
 print
 print "Please supply "; sto.buyqty;
 print " * part number ";
 print ycode$

proc fast
 use "ord"
 let del=delivery
 let comp$=code$
 let pri=price
 all
 if delivery<del
 let del=delivery
 let comp$=code$
 let pri=price
 endif
 endall
 endproc

Archive Manual - Page 55 of 93

proc bye
 confirm
 if yes
 cls
 print : print "bye"
 close "sto"
 close "sup"
 close "ord"
 cls
 endif
 endproc

 print "("; sto.description$; ") ";
 print "at "; pri; " each."
 print
 print "Total value: "; sto.buyqty*pri
 endproc

The final command that we need is one to close all the files when we have
finished using them.

We can now write a short procedure to run
the application. It must open all three files
with the correct logical file names, clear the
display and show you the additional
commands that you have. Note that, in
normal use, the stock file is the only one
whose records will need to be changed. The
other two files are opened as read only files.
It also orders the supplier file so that we can
locate a company by its reference code
.
proc start
 cls
 print at 5,5; "STOCK CONTROL DEMONSTRATION"
 print
 open "stock"logical "sto"
 look "supplier"logical "sup"
 look "orders"logical "ord"
 use "sup"
 order code$; a
 clear
 endproc

An alternative would be to order the supplier file when you create it. Assuming that
the supplier file is already ordered, you could then write the above procedure as:

proc start
 cls
 print at 5,5; "STOCK CONTROL DEMONSTRATION"
 print
 open "stock"logical "sto"
 look "supplier"logical "sup"
 look "orders"logical "ord"
 clear
 endproc

Finally we can write clear, which simply clears the screen and shows a list of the
extra commands available:

Archive Manual - Page 56 of 93

proc clear
 local x$
 print
 print "Press any key to continue ";
 let x$=getkey()
 cls
 print
 print "query report delivery doorder sale bye"
 endproc

Remember that, in this example, you select a command by typing its full name.

Archive Manual - Page 57 of 93

13.0 ARCHIVE REFERENCE
13.1 THE FUNCTION KEYS The function keys are used as follows:

Key Plus Use
[F1] Help
[F2] Turn the MENU on and off

 1. show another command menu
 2. switch trace on and off, in a running programme [F3]
 3. select a command, in edit or sedit
 1. abort, in insert or alter [F4]
 2. insert text, in edit
 1. recover last line of input
 2. accept record, in insert or alter [F5]
 3. edit selected line, in edit

[F6] Freeze the task return to Xchange - Not used in PC FOUR
[F9] Switch between insert and overwrite
[F10] Redraw the screen contents

[F4] CTRL Move the windows, if using the Pointer Environment with
extended resolution - Not used in PC FOUR

13.2 VARIABLES Variable names may be up to thirteen characters in length,
and must not start with a digit (0 to 9). They may contain any combination of
upper or lower case alphabetic characters, underscore or digits. Other characters
are not allowed, except for the dollar sign and the period which have special
meanings. If a variable name ends with a dollar sign it is a string variable. Strings
may be 0 to 255 characters in length. If the name does not end with a dollar sign
the variable is numeric. A variable name may refer to the contents of a record in a
file and is then known as a field variable. Field variables are normally assumed to
refer to the current file but may be made to refer to another open file by including
a logical file name, separated from the variable name by a period. Such a field
variable is written as:

logical_filename.fieldname eg main.surname$

If a variable name includes a dot then it must refer to a field in an open file. If there
is no dot an attempt is made to match the name to an existing variable in the
following sequence:

1) a field of the current file.
2) a local variable (a parameter in the current procedure if any)
3) a global variable. An error message is given if no match is found.

Archive Manual - Page 58 of 93

13.3 EXPRESSIONS An expression is a combination of literal values,
variables, functions and operators which results in a single value. A numeric
expression results in a numeric value and a string expression results in a text
value. Examples are:

3*y*sin(x)+len(a$) (numeric)
"abc"+a$+rept("-",5) (string)

An expression may, as in the above examples, be composed of several sub-
expressions. In such a case you may not mix sub-expressions of different types.
They must all be string expressions or all numeric. A literal string may be
enclosed in either double or single quotation marks. Both "text" and 'text' are
therefore valid literal strings. The program editor will, however, automatically
convert single quotes to double quotation marks if you use them within a
procedure. You can include quotation marks in a text string by putting two
quotation marks where you want one to appear. For example:

let a$="abc""def" : print a$ will print: abc"def

13.4 STRING SLICING You may use a string slicing operation on any string
expression. This operation allows you to extract any sequence of one or more
characters from a text value. You may add one of the following string slicing
operators at the end of any expression that results in a text value.

(n) select the nth character
(n to m) select all characters from the nth to mth character inclusive
(n to) select from character n to end
(to m) select from the beginning to the mth character

For example, if the ARCHIVE text variable, a$, has the value "January":

print a$ (to 3) will print "Jan"
print a$ (2 to 3) will print "an"
print a$ (5 to) will print "ary"
let x=2: let y=5: print a$ (x to y) will print "anua"

Archive Manual - Page 59 of 93

13.5 SYNTAX The term syntax refers to the exact structure of a command or
function. The syntax of a command, for example, specifies the parameters that the
command needs, in what order they must appear, and the symbols (if any) used
to separate them. This section describes the notation used to express the syntax
of ARCHIVE's programming language.

13.5.1 Syntax Conventions The syntax definitions are:
Symbol Meaning

< > denotes a syntactic entity
[] encloses an optional item
{ } encloses items that may be repeated
| the symbol representing "or"

13.5.2 Syntactic Entries
<s.lit> literal string

<s.exp> string expression
<n.exp> numeric expression
<exp> expression, either string or numeric
<ptm> print item
<var> variable name, either string or numeric
<lfn> logical file name

<fnm> physical file name (up to 8 characters)
<pnm> procedure name

A literal string is text enclosed in quotes, eg "text", or 'text'. A string expression is
a literal string, or a combination of literal strings, string variables and string
functions that results in a text value, eg "fred"+a$+chr(72). A numeric expression
is either a number, or a combination of numbers, numeric variables and operators
(+, -, *, /, etc) that results in a numeric value, eg (3+x)/sin(y). Logical file names
and procedure names have the same restrictions as variable names. Physical file
names must, in addition, not exceed eight characters. As an example of a syntax
definition, consider the syntax of the order command. In our notation it appears
as: order <var>;a|d {[,<var>;a|d]} Order therefore needs to be followed by at least
one variable name, separated by a semicolon from a letter which must be either a
or d. In addition you may optionally include up to 3 further pairs of a variable
name and a letter, provided each pair is separated by commas. Clearly, the
syntax notation provides a much more compact description. Note that the syntax
notation does not tell you the meaning or purpose of the symbols - you will have to
read the rest of the description for each command. The syntax only give you a
formal description of the kind of items that go to make up a valid command. In
addition the syntax notation does not tell you the maximum number of repetitions
allowed for the repeated items. Order will accept up to four pairs of a variable and
a letter.

Archive Manual - Page 60 of 93

13.6 FILE NAMES File names may include a drive identifier and an extension
as well as the name of up to eight characters. If you do not supply the drive
identifier, ARCHIVE assumes that you are referring to the default data drive
(which may be specified with the Xchange command, Set). Keep the directory
structure short and without spaces C:\PCFOUR\filename.dbf. You do not
normally need to specify an extension since ARCHIVE supplies a default
extension for every file access (See section 4.1.5 for default extensions).
The look, open and create commands work on database files with an assumed
extension of .dbf. The load and save commands supply a default extension of
.prg to the program files (unless you include the optional object or protect, in
which case they assume an extension of .pro). The default extension for import
and export files is .exp, and when you print to a file the default extension is .lis.
Screen layout files are loaded and saved by the sload and ssave commands,
which assume an extension of .scn. If you include an extension in any file name
then it will be used in preference to the default extension normally provided by
ARCHIVE. If you start a file name with "_", XCHANGE will use what follows the
underscore as the file name, without attempting to add either a default drive or an
extension.

13.7 ARCHIVE DATABASE FILES
13.7.1 CONSTRUCTION OF A DATABASE FILE A field is the space reserved to
hold either a string or a number. In ARCHIVE, each field is identified by a field
variable name, as described in the 13.2 the description of variables. Whether a
particular field can hold a string or a number is dependent on the name given to
the field at the time it was created - string fields have a name ending with a dollar
sign. An ARCHIVE string field may hold up to 255 characters. A numeric field has
a name that does not end with a dollar sign. All numbers are stored in the same
amount of space, regardless of their value. The possible range for a number is the
same as the valid numeric range for the arithmetic operators.

A Record A record is a collection of fields, whose contents are related in some
way. The fields of a record might, for example, be used to hold the name, the
address and the telephone number of a particular person. In ARCHIVE the
records are of variable length so that each record only takes up as much room as
is necessary to hold the information contained in its fields. There may be up to
255 fields in an ARCHIVE record.

A Database File A database file is made up from a number of related records. To
continue the above example, a database file could consist of a collection of name,
address and telephone number records for many different people. The number of
records in an ARCHIVE database file is limited to an absolute maximum of about
10900 records, but in practice the limit will usually depend on other factors, such
as the size of a record and the amount of storage available on a disk drive. A
database file is the basic unit that you can save on, or load from, a disk. Each
database file has a name to identify it. In ARCHIVE you give a name to the file
when it is created.

Archive Manual - Page 61 of 93

13.7.2 Opening and Closing Files When you want to read or write from a
database file you must first open it. You can open a database file in read only
mode (with look) which, as its name suggests, means that you cannot change its
contents. However, you can then share the file with other tasks, or even open it
more than once in the same task. You also have the option of opening a database
file in update mode (with open) so that you are allowed both to read and to
change its contents. In this case, the file can not be shared with other tasks.
Every time you open a database file, ARCHIVE reserves space for the field
variables needed by a record of the file. The field variables always contain the
values of the current record within the file. When you leave ARCHIVE by means
of the quit command, all open files are closed automatically. Do not turn off the
computer, or remove a disk from a disk drive, while the disk contains open files as
this will leave your database file in a corrupted state. If this does happen, which
you will notice by ARCHIVE appearing to do unexpected actions when you
perform a database operation, then you must discard the database file and use a
previous backup.

13.7.3 Logical File Names Each open database file has an associated logical file
name, given to it when the file is opened. If you do not give a logical file name
when you open the first file, it is automatically given the logical file name "main".
You must supply a logical file name when you open a second or subsequent file.
No two open files are allowed to have the same logical name. The logical file
name is used to identify a particular file when you are using several files at once.
One open file is regarded as the current file. All commands will, in the absence of
any other indication, be assumed to refer to this file. It is by default the last file to
be opened, but you can make any open file the current file with the use command.
In addition, many commands allow you to include an optional logical file name to
force them to operate on a particular file, even if it is not the current file.

13.8 PROCEDURES A procedure is a named section of program, starting
with a procedure declaration of the form:

proc <pnm>[;<var>{[,<var>]}]

and ending with:

endproc

It may be referred to by name from any other program or procedure, including
itself. It acts as though its code had been inserted at the point from which it is
called. In ARCHIVE, the proc and endproc commands cannot be used directly
from the keyboard, but are added automatically when you use the procedure
editor to create a procedure.

13.9 PRINT ITEMS A print item is anything, other than a numeric or text
expression, that can be included in the list of items in a print or an input

Archive Manual - Page 62 of 93

statement. A print item is one of four possibilities: at, tab, ink or paper. A full
description of a print item is, in our syntax notation, at <n.exp>,<n.exp> | tab
<n.exp> | ink <n.exp> | paper <n.exp> You would use at to move the cursor to a
specific line and column position, ready to print a value. For example, to print the
value of the variable x starting at line 7, column 12 you could type: print at 7,12; x
[Enter] Similarly, tab moves to a specific column within the current line. It does
so by printing spaces until the cursor reaches the specified column. This means
that any intervening text will be erased. If the cursor is at or to the right of the
specified column, tab will have no effect. Ink and paper are print items, as well
as being commands in their own right (see the Commands section, later in this
chapter). They are also sub-commands in sedit. You may use print items in the
lprint and input commands, as well as in print.

13.10 THE PROGRAM EDITOR The program editor is entered by means
of the edit command. If there are no procedures present in memory you will
immediately be offered the option of creating a new procedure, as described later.
Otherwise you are given a list of all the procedures in memory at the left hand side
of the display area. The first procedure is highlighted, and is listed in full on the
right of the display. The first line of the procedure is highlighted. This highlighting
marks the current procedure and the current line of the procedure. You then have
five options which are to:

1) Select a procedure.
2) Select a line in the current procedure.
3) Call an editing command.
4) Insert text in the current procedure.
5) Edit a line of text in the current procedure.

13.10.1 Select Procedure Press [Tab] to move down the list of procedures.
Press [Shift] and [Tab] to move up the list. The listing on the right of the screen
always shows the current procedure.

13.10.2 Select Line Press the down cursor key to move to a lower line and the
up cursor key to move to an earlier line in the current procedure.

13.10.3 THE EDITING COMMANDS Press [F3] for the menu of editing
commands. There are four commands, selected by pressing the key
corresponding to the first letter.

Delete procedure - delete the current procedure. Press [Enter] to delete the
procedure highlighted on the left of the display. Press any other key to leave the
command without deleting the procedure.

New procedure - creates a new procedure. Type in the name of the new
procedure and [Enter]. If a procedure of that name already exists you will not

Archive Manual - Page 63 of 93

create a new procedure but will be offered the opportunity to edit the named
procedure.

Cut - removes text from the current procedure. Text is transferred into the paste
buffer. Use the up or down cursor keys to make the first (or last) line of the region
to be removed, the current line, before calling this command. Then use the up or
down cursor keys to mark the region of text to be removed. Press [Enter] to
remove the text into the paste buffer. The new text replaces the old contents of
the paste buffer.

Paste - insert text from the paste buffer, below the current line of the current
procedure. After inserting the text, the paste buffer is empty.

13.10.4 Inserting Text Press [F4] to select the option of inserting one or more
new lines of text below the current line of the current procedure. Then type the line
of text and press [Enter]. You can leave this option by pressing [Enter] without
any preceding text.

13.10.5 Editing Text Press [F5] to select the option of editing the current line of
the current procedure. The line of text is copied into the input line, with the cursor
at the start of the editable text in the line. You can then use the line editor to
modify the text. Press [Enter] to replace the old line of text with your new text
and return to the main level of the edit command.

13.11 THE SCREEN EDITOR The screen editor is entered by means of the
sedit command. It allows you to design a new screen layout, or to modify an
existing one. Once you have designed a layout you can save it on a disk with
ssave and, at some later time, load it from the disk with sload. Think of a screen
layout as being composed of two parts - the fixed background text and the
variable values that are displayed in it. The screen command shows the
background on the screen and sprint adds the current values of the variables it
contains. The main level of sedit offers two main options:

1) type text into the screen background.
2) press [F3] to use a screen editing command.

When typing text into the screen background you can move the cursor around the
screen with the four cursor keys and delete existing text. Pressing [Shift] and one
of the four cursor keys repeats the last character and moves the cursor in the
direction of the cursor key. There are four screen editing commands:
a) C - clear the screen
b) V - mark a region to show a variable
c) I - set the ink colour
d) P - set the paper colour

A screen layout is made active by:

Archive Manual - Page 64 of 93

1) sload
2) screen

When a particular screen is active it will show the current values of its variables
after an sprint, or when control returns to the keyboard after executing a program
(or a command). A screen layout is made inactive by clearing the screen with cls.
If there is no active screen, sprint has no effect. You may only have one screen
layout in the computer's memory at any one time. The display command creates
and uses its own screen layout. It will therefore replace any other screen layout
with its own design.

13.12 THE SCREEN DRIVER ARCHIVE controls the screen display by
passing control codes to a screen driver program. Screen driver control codes are
ASCII values in the range 0 to 31 (decimal) inclusive. You may use the screen
driver in ARCHIVE programs, sending the control codes to the screen driver with
the print command. For example: print chr(12) clears the screen and moves the
cursor to the top left corner. Some screen driver control codes require one or
more additional values, or parameters, to specify their action. Screen driver code
4, for example, requires two additional parameters: print chr(4)+"S"+chr(10)
This example displays a line of ten S's. Each screen driver code must be followed
by the correct number of parameters, otherwise Error 92 (Missing I/O parameter)
will result. If the value(s) of the parameter(s) result in an attempt to print outside
the limits of the window then Error 93 (Out of range) will be given.

The screen driver codes are listed here,
in ASCII order, with full descriptions of
their actions. Code 0 No action
Parameters: 0 Code 1 Set ink colour
Parameters: 1 Bits 0 to 2 of the
parameter determine the ink colour,
according to the this table.

If bit 7 of the parameter is set the current
ink colour is saved and the specified
colour is set temporarily. Any previously
saved ink colour is lost. If bit 6 of the
parameter is set the previously saved ink
colour is restored. Any colour specified in the parameter is ignored. Example:
print chr(1)+chr(64) restores the previosly saved ink colour Code 2 Set paper
colour Parameters: 1 Bits 0 to 2 of the parameter determine the paper colour,
according to the table as specified for Code 1 Set ink colour. If bit 7 of the
parameter is set the current paper colour is saved and the specified colour is set
temporarily. Any previously saved paper colour is lost. If bit 6 of the parameter is
set the previously saved paper colour is restored. Any colour specified in the
parameter is ignored. Example:

Value in
bits 0 to 2

40
column

64 and 80
column

0 black black
1 blue black
2 red red
3 magenta red
4 green green
5 cyan green
6 yellow white
7 white white

Archive Manual - Page 65 of 93

print chr(2)+chr(132) saves the current paper colour the colour is set temporarily
to green. Code 3 No action Parameters: 1 Code 4 Repeat characters
Parameters: 2 Repeats a single character up to 255 times. The first parameter is
the character to be repeated and the second parameter is the number of times to
repeat it. Example:

print chr(4)+chr(66)+chr(25) repeats the character B 25 times
Code 5 Underline Parameters: 0 Switches (or toggles) between underline on/off.
Code 6 Cursor right Parameters: 0 Moves the cursor one character to the right.
Code 7 No action Parameters: 0
Code 8 Cursor left Parameters: 0 Moves the cursor one character to the left.
Code 9 Tab Parameters: 1 Moves the cursor to the column specified by the
parameter, printing spaces along the way. This code has no effect if the cursor is
at, or to the right of the specified column. It has a similar effect to the [Tab] print
item.
Code 10 Line feed Parameters: 0 Moves the cursor down one line.
Code 11 Cursor up Parameters: 0 Moves the cursor up one line.
Code 12 Form feed Parameters: 0 Clears the screen and homes the cursor to the
top left corner.
Code 13 Carriage return Parameters: 0 Moves the cursor to the left side of the
screen window, in the current line.
Code 14 Cursor on Parameters: 0 Switch on the display of the cursor.
Code 15 Cursor off Parameters: 0 Switch off the display of the cursor.
Code 16 No action Parameters: 0
Code 17 No action Parameters: 0
Code 18 Character plot type Parameters: 1Modifies the way in which characters
are displayed.

Parameter Display Effect value
0 ink colour on paper colour
1 ink colour on current background (transparent paper)
2 Exclusive - or character with current display

Code 19 Delete character Parameters: 0 Moves the cursor one space to the left
and prints a space. The result is to delete the character to the left of the cursor.
Code 20 Define window Parameters: 4 Defines the size of a window in absolute
screen coordinates. The parameters are, in order, x1 - the left edge (inclusive)
y1 - the top edge (inclusive) x2 - the right edge (exclusive) y2 - the bottom edge
(exclusive) The window is moved and the cursor is homed to its top left corner.
Example:

print chr(20)+chr(0)+chr(0)+chr(40)+chr(12) - defines a screen window which is
40 columns wide and 12 rows deep, starting in the top left hand corner.
print chr(20)+chr(0)+chr(0)+chr(80)+chr(24) - defines a full-screen window (80
column mode).

Archive Manual - Page 66 of 93

Code 21 Scroll screen up Parameters: 1 Scrolls the window contents up by the
number of lines specified by the parameter.
Code 22 Scroll screen down Parameters: 1 Scrolls the window contents down by
the number of lines specified by the parameter.
Code 23 Scroll left Parameters: 1 Scrolls the window contents left by the
number of columns specified by the parameter.
Code 24 Scroll right Parameters: 1 Scrolls the window contents right by the
number of columns specified by the parameter.
Code 25 Set boundary type Parameters: 1 Determines the behaviour of the
cursor at the boundaries of the window. Each bit
of the parameter value controls a specific feature.

Toroidal wrap leaves the cursor on the same line; progressive wrap moves the
cursor to the next line.
Code 26 Swap ink and paper Parameters: 0 Exchanges the ink and paper
colours.
Code 27 Escape sequences Parameters: 1 Provides a range of miscellaneous
extended facilities.

Parameter Action
chr(65) or "A" Clears from cursor to end of line
chr(66) or "B" Clears from cursor to end of window
chr(67) or "C" Saves current cursor position. previously stored position is lost
chr(68) or "D" Restores previously stored cursor position
chr(69) or "E" Scrolls up one line from top of window to cursor.
chr(70) or "F" Scrolls up one line from cursor to bottom of window.
chr(71) or "G" Scrolls down one line from top of window to cursor
chr(72) or "H" Scrolls down one line from cursor to bottom of window

Bit Boundary Action if Bit Set Action if Bit Clear
0 bottom auto scroll up no auto scroll up
1 top auto scroll down no auto scroll down
2 right cursor wrap no cursor wrap
3 left cursor wrap no cursor wrap

The following behaviours will only occur if cursor wrap (bits 2 and 3) is set at the
relevant boundary.

Bit Boundary Action if Bit Set Action if Bit Clear
4 right toroidal wrap progressive wrap
5 left toroidal wrap progressive wrap

Archive Manual - Page 67 of 93

Code 28 CR + LF Parameters: 0 Moves the cursor to the start of the line below.
Its action is the same as a carriage return followed by a line feed.
Code 29 Pass through Parameters: 1 The character corresponding to the value of
the parameter will be printed on the screen without being interpreted as a screen
driver code.
Code 30 Home cursor Parameters: 0 Moves the cursor to the top left of the
window. Code 31 Position cursor Parameters: 2 Positions the cursor at the
coordinates specified by the parameters. The first parameter is the x-coordinate
and the second is the y-coordinate. Its action is similar to the at print item.

Archive Manual - Page 68 of 93

13.13 ARCHIVE COMMANDS ARCHIVE commands must be typed in full.
There is no need to press [F3] beforehand; this will merely show another menu
of commands. The following commands are available:

13.13.1 ALL Syntax: all [<lfn>]:...:endall Scans through all logically present
records of the file. The optional logical file name will force all to refer to a
specified open file. If the logical file is not given it will scan the current file.The
all/endall loop is suitable for situations where you need to examine every
(selected) record in a file. Examples include generating reports, finding totals and
averages, and calculating maximum or minimum values. The following examples
illustrate some of these uses:

rem * find total and average of a field named 'age' *
 let total=0
 all
 let total=total+age
 endall
 let average=total/count()
 rem * * * find oldest and youngest ages * * *
 first
 let oldest=age
 let youngest=age
 all
 if age>oldest
 let oldest=age
 endif
 if age<youngest
 let youngest=age
 endif
 endall

Do not use update inside an all / endall loop, unless you are sure that the length
of the record does not change. You can change a numeric field, or you can
change the contents of a text field, as long as the length remains the same.

13.13.2 ALTER Syntax: alter Uses the current screen layout to display the
current values of the variables. You can change the contents of any of the fields of
the current file whose values are shown in the screen layout. Note that it is not
necessary for all the field variables to be shown. You cannot change a field that is
not shown. If none of the field variables appears in the screen ARCHIVE forces a

Archive Manual - Page 69 of 93

display of the file. First select the field to change by pressing [Tab] or [Enter]
until the cursor is at the correct field (variables that are not fields of the file are
skipped). You can then type a new value or use the line editor to modify the
existing value. Press [Tab] or [Enter] to move to the next field. (Pressing [Shift]
and [Tab] together moves back to the previous field.) Pressing [Enter] at the
end of the last field automatically replaces the old record with the new one.
Alternatively you can replace the record at any time by pressing [F5]. If the file is
ordered the new version of the record is inserted in sequence. Press [F4] to abort
the command - ie to leave alter without the changes you have typed having any
effect on the current record.

13.13.3 APPEND Syntax: append [<lfn>] Adds a record to the specified file, or
to to the current file if the logical file name is not given. The fields of the
record take the current values of the field variables. If the file is ordered the
insertion is in sequence.

13.13.4 BACK Syntax: back [<lfn>] Moves backwards one record in the
specified file, or in the current file if the logical file name is not given.

13.13.5 BACKUP Syntax: backup <oldfilename> as <newfilename> Perform a
copy of <oldfilename> into <newfilename>. Use this for making security copies of
your database files. backup will automatically compress database files (.dbf)
containing redundant (previously deleted) information in the files.

13.13.6 CLOSE Syntax: close [<lfn>] Closes the specified file, or the current file
if no logical file name is specified.

13.13.7 CLS Syntax: cls Clears the display area and switches off any display
screen. See screen, sload, sprint.

13.13.8 CONTINUE Syntax: continue Continues the previous search or find,
from the record following the current record in the current file.

13.13.9 CREATE syntax: create <fnm>[logical <lfn>]:<var>{[:<var>]}:endcreate
Creates a named open file whose records contain the fields given by the list of
variables specified in the command. You have the option of specifying a logical file
name - if you do not, the file is created with the logical file name "main".

13.13.10 DELETE Syntax: delete [<lfn>] Deletes the current record from the
specified file, or from the current file if no logical file name is given. Use this
command with care since you cannot recover the deleted record.

13.13.11 DIR Syntax: dir [<drive>] Displays a list of files on a disk. ARCHIVE
assumes that the drive is the default data drive. You may specify a different drive
by typing, for example, D:\.

Archive Manual - Page 70 of 93

13.13.12 DISPLAY Syntax: display Shows the logical file name of the current file
and a list of the field names and the values of the field variables for the current
record. The command replaces any existing user-defined screen layout with this
list, which becomes the active screen layout. It is not suitable for showing records
containing large numbers of fields.

13.13.13 DUMP Syntax: dump [;<var>]{[,<var>]} Prints the specified fields of the
selected records of the current file in tabular form on a printer. You can direct the
output to a file or to the screen with spoolon. If you do not give a list of field
variable names, all the fields are printed.

13.13.14 EDIT Syntax: edit Calls the procedure editor to create a new procedure
or to edit an existing procedure.

13.13.15 ENDALL See ALL.

13.13.16 ENDCREATE See CREATE.

13.13.17 ENDWHILE See WHILE.

13.13.18 ERROR Syntax: error <pnm>[;<exp>{[, <exp>]}] Marks a procedure for
the purposes of error-handling. Any error which occurs during the execution of this
procedure,or any other procedure which it calls, causes a premature return from
the marked procedure to the procedure which called it, instead of the whole
program aborting. The calling procedure can determine the nature of the error by
using the errnum() function to read the error number. This error number is
cleared each time that error is executed.

13.13.19 EXPORT Syntax: export <fnm> [;<var>]{[,<var>]}[quill] Saves the
named fields of the selected records of the current ARCHIVE file on a disk in a
form suitable for import to the other programs in the PC-FOUR family. If you do
not specify a list of field variable names, all the fields are exported. If you include
the optional parameter quill (separated by at least one space from the last variable
name) the file is exported in a form suitable for importing into a Quill document.
Do not use the optional quill if you are exporting a file to be used as a secondary
file with the mailing list facility in Quill. The export file is named <fnm> and, unless
you specify your own file name extension, ARCHIVE uses the extension .exp.
See Appendix A for a full discussion of import, export and transfer.

13.13.20 FIND Syntax: find <s.exp> Starts at the beginning of a file and
searches for the first record containing a match to the specified string in any
string field. The match is independent of upper or lower case text. You can
continue the search with the continue command, and determine whether the
search was successful by examining the alue returned by the found() function.

Archive Manual - Page 71 of 93

13.13.21 FIRST Syntax: first [<lfn>] Sets the file pointer to the first record of the
specified file, or the current file if no logical file name is specified.

13.13.22 IF Syntax: if <n.exp> : ... [: else : ...] : endif

1) Without the optional else. - If the expression is non-zero the

following statements are executed. If the expression is zero execution
transfers to the statement following endif.

2) With the optional else. - If the numeric expression is non-zero the
statements between if and else are executed. Otherwise the
statements between else and endif are executed. In either case
execution continues with the statements following endif.

13.13.23 IMPORT Syntax: import filename1 as filename2 [logical <lfn>] Reads a
file, "filename1", exported from one of the other programs in the PC-FOUR family
and produces an ARCHIVE database file "filename2". As with open and look
you have the option of specifying a logical file name for the database file. See
'Appendix A' for a full description of import and export file structures.

13.13.24 INK Syntax: ink <n.exp> Sets the foreground colour for all following text
to the colour specified by the value of the expression. The colours are: 0 and 1
black 2 and 3 red 4 and 5 green 6 and 7 white If the expression evaluates to
more than 7, the value is the remainder after division by 8, ie ink 9 is equivalent to
ink 1, both setting the print colour to black. Ink may be used as a print item - ie
within a print, or an input command. In this case it will only change the print
colour for the duration of the print command. Ink colours have no effect on
printed output.

13.13.25 INPUT Syntax: input [<var>|<s.lit>|<ptm>{[;<var>|<s.lit>|<ptm>]}][;]
Requests input from the keyboard to the variables listed in the command. Each
variable in an input list may be preceded by an initial string which will be
displayed as a prompt for the input. All input items must be separated from each
other by semicolons. If the list has a final semicolon the cursor will not move to a
new line after the input. The list of input items may include the cursor-positioning
items at line, column tab column where line: = <n.exp>, column: = <n.exp>
(See the description of Print Items, earlier in this chapter.) You may also use ink
and paper as input items. If used within an input command they will only affect the
ink and paper colours to the end of the input, when the colours will return to their
original settings.

Archive Manual - Page 72 of 93

13.13.26 INSERT Syntax: insert Adds a new record to a file. Uses the current
screen layout to display the current values of the variables. You can type a new
value for any one or more fields of the current file whose values are shown in the
screen layout. Note that it is not necessary for all the field variables to be shown.
You cannot type a value for a field that is not shown. If none of the field variables
appears in the screen ARCHIVE forces a display of the file. First select a field by
pressing [Tab] or [Enter] until the cursor is at the correct field (any values on
screen that are not fields of the file are skipped). You can then type a new value.
Press [Tab] or [Enter] to move to the next field. (Pressing [Shift] and [Tab]
together moves back to the previous field.) Pressing [Enter] at the end of the last
field automatically adds the new record to the file. Alternatively you can add the
record at any time by pressing [F5]. If the file is ordered the new version of the
record is inserted in sequence. Press [F4] to leave the command, when you have
finished inserting records. You can press [F4] at any time during the use of
insert. It leaves insert immediately, without inserting anything you have typed
since the last time you inserted a record.

13.13.27 LAST Syntax: last [<lfn>] Sets the file pointer to the last record of the
specified file, or the current file if you do not specify a logical file name.

13.13.28 LET Syntax: let <var> = <exp> Assigns a value to a variable.

13.13.29 LLIST Syntax: llist Lists all the procedures currently in memory on a
printer. You can use spoolon to divert the listing to a file or to the screen.

13.13.30 LOAD Syntax: load [object] <fnm> Loads the specified program file
from a disk into memory. Any procedures previously in memory will be lost. If you
include the optional object ARCHIVE will expect the file to be in binary, rather
than ASCII, format. (See SAVE)

13.13.31 LOCAL Syntax: local <var>{[,<var>]} Within a procedure, forces the
following list of variables to be local variables. These variables exist only within
the procedure in which they are declared and are undefined in any other
procedure. Their values are destroyed on exit from the procedure.

13.13.32 LOCATE Syntax: locate <exp>{[,<exp>]} Finds - in an ordered file,
according to the current index - the first record whose key field(s) match the
expression(s). If there is not an exact match locate will still find a record. This
record will be the first one whose key fields follow - in the sense of the ordering (ie
'd' follows 'e' if the file is sorted in descending order) - the specified values. This
command affects the value returned by the function found(). The function returns
a value of 1 only if the located record is an exact match to the specified condition.
The record is located much more quickly than if you used find, but the file must
first have been sorted. Each expression must explicitly refer to the contents of a
particular sort field. In the case of a string field the match is case-dependent,
though note that the default collation sequence in PC-FOUR will map lower case

Archive Manual - Page 73 of 93

letters to upper case anyway. If you have ordered the file with respect to more
than one field you can specify several expressions (one for each sort field). The
expressions are separated by commas and must refer to the fields used to order
the file. They must be in the same sequence as in the order command used to
create the current index. For example: order animal$;a,weight;a locate
"Elephant",2000 will find the first record in which the field "animal$" contains the
text "Elephant" and a weight that equals (or exceeds) 2000.

13.13.33 LOOK Syntax: look <fnm> [logical <lfn>] Opens the named file for read
access only. If the logical file name is not specified it is given the default value
"main". Files opened using look can be shared with other tasks.

13.13.34 LPRINT Syntax: lprint [[<exp>|<ptm>{[;<exp>|<ptm>]}][;] Displays the
values of the following list of items on a printer, in the same way as for print. You
can divert the output to a file or to the screen with spoolon.

13.13.35 MERGE Syntax: merge [object] <fnm> Adds the procedures of the
specified program file to the procedures already in the computer's memory. If the
file contains a procedure with the same name as one already in memory, the new
procedure replaces the old one. If you include the optional object ARCHIVE will
expect the file to be in binary, rather than ASCII, format. (See SAVE)

13.13.36 MODE Syntax: mode <n.exp> [,<n.exp>] Changes the form of the
display. The first numeric expression may have a value of 0 or 1. A value of 0
joins the control, display and work areas into a single region and turns off the
display of prompt messages. A value of 1 separates them back into three distinct
areas and restores the display of prompt messages. The second numeric
expression may have the values 4,6 or 8, and if used, sets the display to 40, 64 or
80 columns mode. The initial setting is equivalent to: mode 1

13.13.37 NEW Syntax: new Deletes all the data and procedures from the
computer's memory, ready for a fresh start. Any open files are closed.

13.13.38 NEXT Syntax: next [<lfn>] Moves the file pointer to the next record in
the specified file, or in the current file if you do not specify a logical file name.

13.13.39 OPEN Syntax: open <fnm> [logical <lfn>] Opens the specified file for
both reading and writing. The file is given a logical file name "main" if you do not
specify one. Files opened using open cannot be shared with other tasks. See
look.

13.13.40 ORDER Syntax: order <var>;a|d{[,<var>;a|d]} Orders the records of
the current file according to the contents of the specified fields. The first field
specified in the list is the primary sort field. Records which have equal contents of
their primary sort field are further sorted according to the contents of the next sort
field in the list (if it is specified) and so on. For each specified sort field an ordering

Archive Manual - Page 74 of 93

direction must be given. This must be either 'a' or 'd' to specify ascending or
descending order respectively. The sort fields are combined into a key for each
record. Order only takes account of the first 8 characters of a text field. You may
not specify more than four fields to be used to construct the key. The sort order
used by Sinclair QL-Archive to order text fields can be configured, using the
SuperBASIC program "config.bas".

13.13.41 PAPER Syntax: paper <n.exp> Sets the background colour for all
following text to the colour specified by the value of the expression. The colours
are: 0 and 1 black 2 and 3 red 4 and 5 green 6 and 7 white If the
expression evaluates to more than 7, the value taken is the remainder after
division by 8, ie paper 11 is equivalent to paper 3, both setting the print colour to
red. Paper may be used as a print item - ie within a print or an input command.
In this case it will only change the background colour for the duration of that
command.

13.13.42 POSITION Syntax: position <n.exp> Makes the record whose record
number is given by the expression the current record.

13.13.43 PRINT Syntax: print [[<exp>|<ptm>]{[;<exp>|<ptm>]}][;] Displays the
values of the following list of items - which must be separated by semicolons - on
the screen. If the list has a final semicolon the cursor will not move to a new line
after the display. See also lprint.

13.13.44 QUIT Syntax: quit Closes all files, deletes the current ARCHIVE task
and closes. 13.13.45 REM Syntax: rem Marks the rest of the line as containing a
comment, when used within a procedure. Any following text on that line is ignored
when the procedure is executed.

13.13.46 RESET Syntax: reset Restores all the records in the current file which
were removed by an earlier use of select and restores the current index to be the
one that was current at the time that select was used.

13.13.47 RETURN Syntax: return Used within a procedure causes an immediate
termination of a procedure by returning to the calling procedure.

13.13.48 RUN Syntax: run [object] <fnm> Loads the specified procedure file into
memory and starts execution of the procedure called "start". If you include the
optional object ARCHIVE will expect the file to be in binary, rather than ASCII,
format. (See SAVE)

Archive Manual - Page 75 of 93

13.13.49 SAVE Syntax: save [object]|[protect] <fnm> Saves all procedures
currently in memory as a single named file on a disk. The program is saved as
a file containing ASCII characters. If you include the optional object ARCHIVE will
save the file in binary, rather than ASCII, format. This means that ARCHIVE does
not have to convert the program into ASCII characters before saving it and is
therefore much faster. You can use the load, run and merge commands on
such a program by adding the optional object to the appropriate command.
These operations will also work more rapidly since no conversion is necessary.
Such files have an extension of .pro, rather than the normal .prg. Specifying the
protect parameter prevents the object program from being examined on a
subsequent load.

13.13.50 SCREEN Syntax: screen Displays the formatted screen layout
previously loaded with sload. It does nothing if there is no screen layout present.
It does not display any of the variables in the screen.

13.13.51 SEARCH Syntax: search <n.exp> Searches the current file from the
beginning until a record is found in which the specified expression is true. This
record becomes the current record.

13.13.52 SEDIT Calls the screen editor, to enable you to define a new screen
layout. See the section on the screen editor, earlier in this chapter.

13.13.53 SELECT Syntax: select <n.exp> Scans the whole file selecting only
those records for which the specified expression is true. The file then behaves as
if only the selected records are present. You may use repeated select
commands to further reduce the number of records present. The selected records
are in the same order as in the current index at the time that you used select. If
the file was not ordered then the records will be in historical order. You may add,
delete or modify the records in a selected file. Note that there is no restriction on
the contents of any added or modified records, even if they do not satisfy the
condition originally specified in the select command. You can restore all the
discarded records with the reset command. Any additions, deletions or
modifications that you have made to a selected file are retained after a reset.

13.13.54 SINPUT Syntax: sinput <var>{[,<var>]} Waits for input to the variables
in the following list, using the order specified in the list. All the variables in the list
must be currently displayed in an active screen layout.

13.13.55 SLOAD Syntax: sload <fnm> Loads a previously defined and saved
display screen layout. If called directly from the keyboard it also displays this
screen layout and activates the display of any variables within the screen. The
displayed values are then updated automatically whenever control returns from a
procedure to the keyboard interpreter. If called from a program it does not display
the screen layout. In this case you must use screen to display the loaded screen
layout.

Archive Manual - Page 76 of 93

13.13.56 SPOOLOFF Syntax: spooloff Directs all following lprint and llist
output to the printer. This cancels the effect of spoolon.

13.13.57 SPOOLON Syntax: spoolon <fnm> [export | dump] spoolon screen
Directs all following lprint, llist and dump output to the specified file - or to the
screen - instead of to the printer. If you are directing output to a file it is directed
via the currently installed printer driver so that it contains all the special codes that
your printer needs. If you include the optional export, ARCHIVE ensures that the
file contains only printable ASCII codes, carriage returns and line feeds. The
resulting file is suitable for importing into Quill. The optional dump allows the text
to be transmitted to the file without being processed by the printer driver. In this
case all ASCII codes (including control codes) are passed straight into the file.
Unless you specify a file name extension, ARCHIVE assumes an extension of .lis
(.exp or .dmp if you include the optional export or dump). The alternative
form of the command - spoolon screen directs the output to the monitor screen
instead of the printer.

13.13.58 SPRINT Syntax: sprint Forces a display of the fields of the current
record. There must be an active screen layout (the screen layout is made active
by a previous use of screen, sload or display). If there is no active screen
layout the command will have no effect.

13.13.59 SSAVE Syntax: ssave <fnm> Saves, as a named file on a disk, the
current display area as a defined screen layout. It saves the text of the screen and
a list of the variables in the display, together with their positions. 13.13.60 STOP
Syntax: stop Terminates the execution of all procedures and returns control to
the keyboard interpreter.

13.13.61 TRACE Syntax: trace [<n.exp>] Controls program tracing when you are
debugging a program. When tracing is on, each line of the program is displayed in
the work area of the screen, as it is executed. Press the space bar and keep it
held down to pause. The trace will continue when you release the space bar. The
optional parameter should evaluate to either 0 or 1 If the parameter is 0, tracing is
switched off. This is the initial state when ARCHIVE is first entered. If the parame-
ter is 1, tracing is switched on. If the parameter is missing, then tracing is switched
(if tracing is off then it is equivalent to trace 1; otherwise it is equivalent to trace 0.
You can also switch tracing, but only while a program is running, by pressing [F3].

Archive Manual - Page 77 of 93

13.13.62 UPDATE Syntax: update [<lfn>] Replaces the current record in the
specified file (or the current file if no logical file name is given) with a record
containing the current values of the field variables.

13.13.63 USE Syntax: use <lfn> Makes the specified file the current file.

13.13.64 WHILE Syntax: while <n.exp> : ... : endwhile Repeatedly executes the
statements between while and endwhile for as long as the value of the expression
is non-zero (true).

13.14 FUNCTIONS Think of a function as a kind of recipe which converts one
or more initial values, known as the function's arguments, into a different value,
which is said to be the value that is returned by the function. The functions
provided by ARCHIVE may take three, two, one or no arguments. The arguments
a function are placed in brackets after its name. You must not leave a space
between the name and the opening bracket, but spaces are allowed between
items within the brackets. If a function takes more than one argument, the
arguments are separated by commas. All functions must be followed by the
brackets, even if they take no arguments. The presence of the brackets is a useful
reminder that you are referring to a function. They allow you to distinguish
between a variable and a function, even if they have the same name. The
following functions are provided:

13.14.1 ABS (<n.exp>) Returns the absolute value of the argument, ie ignores
any minus sign.

13.14.2 ATN (<n.exp>) Returns the angle, in radians, whose tangent is <n.exp>

13.14.3 CHR (<n.exp>) Returns the ASCII character whose code is <n.exp>. A
character an ASCII code less than 32 is only sent to the printer if preceded by an
ASCII null. For example: lprint chr(0)+chr(12) passes the ASCII character for a
form feed to a printer. This is useful if your printer needs control code sequences
to produce special effects - refer to your printer manual for any special codes
that it needs. You can, for example, send an 'A' to the screen with: print chr(65)
For a description of chr() used as a screen driver code, refer to the section on
screen driver codes.

13.14.4 CODE (<s.exp>) Returns the ASCII value of the first character found in
the specified text.

13.14.5 COS (<n.exp>) Returns the cosine of the given (radian) angle.

13.14.6 COUNT ([<lfn>]) Returns the count of the number of records in the
current file.

Archive Manual - Page 78 of 93

13.14.7 DATE (<n.exp>) Returns the date as a text string in one of three forms:

<n.exp> date string

0 "YYYY/MM/DD"
1 "DD/MM/YYYY"
2 "MM/DD/YYYY" You must first have set the system clock.

13.14.8 DAYS (<s.exp>) Returns the number of days, from the first of January
1583, to a date given as a text expression of the form "YYYY/MM/DD". The
conversion assumes the Gregorian (modern) calendar, which was first introduced
in 1582, is being used and is therefore only valid for dates after 1582.

13.14.9 DEC (value,dp,width) value: =<n.exp> dp: = <n.exp> width: = <n.exp>
Converts the given numeric 'value' to the equivalent text string, in decimal format
with 'dp' decimal places. The text is justified right in a field of 'width' characters.
For example: dec(1.23e1,3,10) returns the text " 12.300" (with 4 leading
spaces).

13.14.10 DEG (<n.exp>) Takes an angle, measured in radians, and converts it
to the same angle in degrees.

13.14.11 EOF ([<lfn>]) Returns a value indicating whether you have attempted
to read past the end of the current file, or the specified file if a file identifier is
given. The value returned is 1 if you have attempted to read past the end of the
file, otherwise it is 0.

13.14.12 ERRNUM() Returns the number of the last error which occurred (an
error number of zero indicates no errors). The error number is the same as that
displayed together with the error message when ARCHIVE reports a detected
error.

13.14.13 EXP (<n.exp>) Returns the value of the constant e (approximately
2.718) raised to the power of <n.exp>. The returned value will be in error if
<n.exp> is greater than +88, since the result will then exceed the numeric range
of ARCHIVE.

13.14.14 FIELDN (<n.exp>[,<lfn>]) Returns the name of the specified field in the
current record of the specified file (or the current file if no logical file name is
given). Note that fieldn(0) returns the name of the first field.

13.14.15 FIELDT(<n.exp>[,<lfn>]) Returns the type of the specified field in the
current record of the specified file (or the current file if no logical file name is
given). Note that fieldt(0) returns the type of the first field. It returns the value 0 if
the field is numeric, otherwise it returns 1.

Archive Manual - Page 79 of 93

13.14.16 FIELDV(<n.exp>[,<lfn>]) Returns the value of the specified field in the
current record of the specified file (or the current file if no logical file name is
given). Note that fieldv(0) returns the value of the first field.

13.14.17 FOUND() Returns 1 if a record is found by use of search, find or locate,
otherwise it returns 0.

13.14.18 GEN(value,width) value: = <n.exp> width: = <n.exp> Converts the
given numeric 'value' to the equivalent text string, in general format. The text is
justified right in a field of 'width' characters. For example: gen(1.23e1,10) returns
the text " 12.3" (with 6 leading spaces).

13.14.19 GETKEY() Waits for a key to be pressed and returns a single text
character which corresponds to the key that was pressed.

13.14.20 INKEY() Returns the single text character corresponding to any key that
was being pressed at the time the function is called. It does not wait for a
keypress, but will return a null string ("") if no key is pressed.

13.14.21 INSTR(main,sub) main: = <s.exp> sub: = <s.exp> Finds the first
occurrence of 'sub' within 'main' and returns the position of the first character of
'sub' in 'main'. It will return a value of zero if no match is found. The match is
case-dependent.
 i
instr("January","Jan") returns 1
instr("January","an") returns 2
instr("January","AN") returns 0

13.14.22 INT(<n.exp>) Returns the integer value of the number, by truncating
at the decimal point. The truncation always operates towards zero. For
example:

int(3.7) returns 3
int(-4.8) returns -4

13.14.23 LEN(<s.exp>) Returns the number of characters in the specified text.

13.14.24 LN(<n.exp>) Returns the natural, or base e, logarithm of n. An error
results if n is negative or zero, since logarithms are not defined in this range.

13.14.25 LOWER(<s.exp>) Converts the specified text to lower case.

13.14.26 MONTH(<n.exp>) Returns, as text, the name of a month. For example:
print month(4) prints the text "April". If an argument larger than 12 is used, it is
replaced by the remainder after division by 12 so that, for example, month(13) and
month(1) will both give the result "January".

Archive Manual - Page 80 of 93

13.14.27 NUM(value,width) value: = <n.exp> width: = <n.exp> Converts the
given numeric 'value' to the equivalent text string, in integer format. The text is
justified right in a field of 'width' characters. For example: num(1.23e1,10) returns
the text " 12" (with 8 leading spaces)

13.14.28 NUMFLD([<lfn>]) Returns the number of fields in the records of the
specified file (or the current file if you do not give a logical file name). 13.14.29
PI() Returns the value of the mathematical constant pi.

13.14.30 RAD(<n.exp>) Takes an angle, measured in degrees, and converts it to
the same angle in radians.

13.14.31 REPT(<s.exp>,<n.exp>) Returns a string consisting of a number of
copies of the first character of the given text. The resulting text may be up to 255
characters in length. For example, print rept("$",5) prints "$$$$$" print
rept("abc",3) prints "aaa"

13.14.32 SGN(<n.exp>) Returns +1, -1 or 0, depending on whether the
argument is positive, negative or zero.

13.14.33 SIN(<n.exp>) Returns the value of the sine of the specified (radian)
angle.

13.14.34 SQR(<n.exp>) Returns the square root of the argument, which must
not be negative.

13.14.35 STR(n,type,dp) n: = <n.exp> type: = <n.exp> dp: = <n.exp>
Converts a number, n, to the equivalent text string. The second parameter, type,
indicates the form of the converted string as follows;

0 decimal (floating point)
1 exponential, or scientific, notation
2 integer
3 general format

The third parameter, dp, indicates the number of figures after the decimal point in
the converted string. It should always be specified, although its value is ignored
for integer and general formats. For example:

let a$=str(12.3456,0,2) gives a$ the value "12.35"
let a$=str(12.3456,1,4) gives a$ the value "1.2346e1"

13.14.36 TAN(<n.exp>) Returns the tangent of the specified (radian) angle.

13.14.37 TASK() Returns, as text, the name of the current ARCHIVE task. You
can find out the current task name, for example, by typing: print task() [Enter]

Archive Manual - Page 81 of 93

13.14.38 TIME() Returns, as text, the time of day in the format "HH:MM:SS". You
must first have set the system clock.

13.14.39 UPPER(<s.exp>) Converts the specified string to upper case.

13.14.40 USR(<n.exp>,<s.exp>) Please refer to section 13.15 for detailed
information of the machine code interface in ARCHIVE.

13.14.41 VAL(<s.exp>) Converts the text to its equivalent numeric value. It will
only convert text composed of valid numeric characters and the conversion will
stop at the first character that can not be interpreted as a digit. For example,
val ("1.1ABC") will return the numeric value l.l, and val ("ABC") will reurn 0.0.

13.14.42 VALUE(<s.exp>) Returns the value of the variable whose name is
given by <s.exp> - for example:

let a$="len"
let length=15
print value(a$+"gth") will print the value 15.

Note that value(fieldn(y)) is exactly equivalent to fieldv(y).

13.15 ERRORS When ARCHIVE detects an error in a command typed at the
keyboard or in a procedure, it displays an error number and a short error
message. Examples of errors that would be detected are:

attempting to divide by zero
if not matched with an endif
supplying a procedure with the wrong number of parameters

If the error comes from keyboard input, the text of the statement remains visible in
the work area. You can press [F5] to recall the text so that you can use the line
editor to correct the error. You can then press [Enter] to execute the corrected
statement. If the error comes from a program statement ARCHIVE shows the
name of the procedure and the line in which the error occurred. You can then use
the program editor to correct the error. When you use the error command in your
programs, ARCHIVE will not report any error that it detects in a procedure marked
with error. Nor will it enter the Xchange Disk Full handler if you run out of disk
space. You are free to deal with any such error in any way that you want
(including ignoring it). You can find which error has occurred by examining the
value returned by errnum(). This number is the same as the one ARCHIVE gives
when it prints an error message.

Archive Manual - Page 82 of 93

13.15.1 ERROR MESSAGES The following list shows ARCHIVE's error
numbers, together with the corresponding messages. Where possible, the list
includes a short example of a statement that would give the error. The error
messages are not designed to pinpoint the precise error, but are intended to give
you an idea of what type of error to look for. Those error messages for which
there is no short example are marked with an asterisk. They are dealt with in the
notes which follow the list.

No Message Example
0 (no error)
1 command not recognized apend
2 end of statement expected let x=3 let y=4
3 variable name expected let 31=x
4 unrecognized print item print create
5 wrong data type *(1)
6 numeric expression expected let x="fred"
7 string expression expected let x$=4
8 variable not found let x=qq (qq undefined)
10 missing separator print at 5
11 name too long let thisverylongname=4

12 duplicate name create"test":n$:n$:endcreate (in
procedure)

13 string literal expected *(2)
14 missing endproc *(3)
15 bad proc statement *(3)
16 premature end of statement create"test":endcreate (in procedure)
17 program structure fault *(4)
18 too many numbers *(5)
19 key too long *(6)
20 protected code load object "myprog":edit
21 file already exists copy "gazet" as "gazet"
22 too many index files *(7)
25 too many records *(8)
50 missing quote let x$="fred
51 missing exponent after 'E' let x=1.2E
52 number too big let x=1.2E100
53 unknown symbol let x=%
70 evaluator syntax error let x=3+

Archive Manual - Page 83 of 93

71 mismatched parenthesis let x=(3+5)/7)
72 type mismatch let x$="fred"+3
73 wrong number of arguments let x$=str(1,2)
74 string too long let x$=rept("_*",256)
75 divide by zero let a=0: let x=5/a
76 bad function arguments let x$=sqr(-4)
77 string subscript error let x$="fred" (3 to 2)
80 out of memory *(9)
90 no room to open a file *(10)
91 incomplete file transfer *(11)
92 missing i/o parameter *(12)
93 out of range print at 100,100;37
94 file not open append (without first opening a file)

100 can not open file look"xxx" (non-existent)
101 write to read only file look"gazet":insert
103 wrong file type sload"gazet" (database file)
104 bad file name save"3test"
105 error reading file *(13)
107 disk full

Notes
*1) The most likely cause of error 5 - 'wrong data type' - is that you input
literal text when a number is expected, eg in response to an input statement. Note
that the text must be literal, ie enclosed in quotes. It will otherwise be interpreted
as a variable name. If the variable does not exist ARCHIVE will give error 8,
'variable not found'. This error message is also given if the two files you specify in
the copy command with the optional append have different record structures.

*2) Error 13 - 'string literal expected' - can occur, for example, during the
import of a file that you have constructed yourself (without using any of the export
commands in the PC-FOUR programs). It means that ARCHIVE has found a
number, or a numeric or text expression, where it was expecting to find a literal
text value. In most situations where ARCHIVE finds numeric data when expecting
text, or vice versa, it will give error 6 or error 7.

*3) Errors 14 - 'missing endproc' - and 15 - 'bad proc statement'- should never
occur in normal use. They indicate that ARCHIVE has detected a missing endproc
or an error in the structure of a proc statement in a procedure. They are only
likely to occur if you construct a program file with an editor other than the one
included in ARCHIVE.

Archive Manual - Page 84 of 93

*4) Error 17 - 'program structure fault' - usually indicates that an all, if or
while is not paired with a corresponding endall, endif or endwhile in a
procedure. You can also generate this error by including an endproc inside
another program structure, or by using return directly from the keyboard.

*5) Error 18 - 'too many numbers' - indicates that you are trying to input more
numbers than will fit into the memory reserved for input. The error may occur
either in a line of input from the keyboard, or while loading a program that includes
a procedure with many numbers in one of its lines. The exact limit depends on
circumstances - a typical limit wold be 15 to 20 numbers, so you are unlikely to get
this error.

*6) Error 19 - 'key too long' - means that you are attempting to use an order
command with more than four fields in the key.

*7) Error 22 - 'too many index files' - means that you are attempting to use
select or order too many times without deleting any of the index files they create.

*8) Error 25 - 'too many records' - ARCHIVE databases have a maximum size
of about 10900 records, if unsorted.

*9) Error 80 - 'out of memory' - is very unlikely ever to occur. It may be given
if you use a very large program. The size of an ordinary database file is not limited
by the amount of memory in the computer since only part of a large file is in
memory at any one time. If ARCHIVE ever gives you this error you will have to
reduce the size of your program before continuing. You can, if necessary, break
your program into several sections, in different files, and chain them with the run
command. This process will be more efficient if you store the programs as binary
files, and load and run them with run object. If you have open files when this error
occurs, use new immediately, to prevent avoid corrupting them.

*10) Error 90 - 'no room to open a file' - occurs when the area of memory
Xchange reserves to store internal information about the files currently in memory
becomes full. You are not likely to encounter this error unless you work with large
numbers of open files.

*11) Error 91 - 'incomplete file transfer' - means that the loading or saving of a
file has failed for some reason. This may mean that the data has been corrupted,
or that the disk or the disk drive has been damaged.

*12) Error 92 - 'missing i/o parameter' - is only likely to occur if you use a
screen driver control code with the wrong number of parameters.

*13) Error 105 - 'error reading file' - means that some of the data in a file is in
the wrong format, the wrong order, or has been corrupted. This is only likely to
occur if you construct your own import file outside PC-FOUR.

Archive Manual - Page 85 of 93

14.0 Use Archive to Modify or Create QuizPack Files
The PSION Organiser II QuizPack programme uses database files to hold
the question and answer information. Here we will consider using Archive
to modify the QPSION test. You of course could choose any other.

First we should download the existing QPSION
database from the organiser to the PC by
connecting the Organiser & PC with Psi2Win.
Set the Transfer Options to CSV (comma)
and use [Comms][Transmit]B:QPSION.

The CSV file will need modifying slightly, For
this we can use QUILL. Start QUILL and reset
the Margins Left 0, Indent 0, Right 150.

Then we need to import the database into QUILL
[F3] Other Files Import QPSION.CSV by line.
[F2] turns off prompts

Archive needs the text fields to be enclosed in quotation marks and will
need names for the fields. For this exercise we will make all the fields
“text” fields.

(a) Replace the , with “,”
(b) add “ at the start and end of each record
(c) add the field names as shown

Archive Manual - Page 86 of 93

(a) Put the cursor next to the 01
[F3] Other Replace [Enter] , [Enter] “,” [Enter] [R] 100 times [Space]
(b) Put the cursor next to the 01 then “ [End] “ [Home] [] for each row
(c) Insert the field names before the first record

Export this file as QPSION.EXP ready of importing into ARCHIVE..

When you have the file imported iand displayed in Archive you can then
create a data entry screen using SEDIT and SSAVE “QuizPack”

Archive Manual - Page 87 of 93

Using a data entry screen like the one here helps format the questions
and answers to fit on the PSION Organiser LZ screen. To display the
number of records in the file - use something like max=Count(). You can
set this variable ‘max’ on the screen with sedit.

You can practice writing procedures to create
your own MENU of options, two examples are
outlined here - Review and StartUp.

When you have the Questions database to your
liking then it will need to be prepared ready for
sending back to the Organiser.

First.. (for this example)
From Archive… Export “Qarchive.exp”
In Quill [F3] Other Files Import “Qarchive.exp” by line
Then remove the titles from the top line.
Replace all the “,” with ,
Remove the “ from the start and end of each line.
[F3] Other Files Export “Qquill.csv” or some other filename that
represents the questions in the file.
All that leaves is to Transmit this CSV file onto the Organiser.

For those interested who do not own a Organiser LZ then all the filesd
needed are in the Examples.ZIP.

Archive Manual - Page 88 of 93

Appendix A
Import, Export and Transfer
You can transfer information between the programs of the PC-FOUR family with a
comprehensive set of import and export commands. The information used by, for
example, ABACUS, ARCHIVE and EASEL is very similar in nature, in that it can
always be represented in the form of a table. Transferring information between
them is therefore straightforward. QUILL handles formatted text which cannot, in
general, be represented in tabular form. It must be treated in a different way from
the other members of PC-FOUR. Each member PC-FOUR has its own Export and
Import commands, usually as an option within the files command. ARCHIVE,
however has separate Export and Import commands within its programming
language.

First consider the direct use of the Export command of one task and the Import
command of another. These commands are described in the commands section.
Export creates a named file which is automatically saved on disk. This file can
then be imported to another task, or to several tasks. The export file remains
available until you decide to delete it.

Let us first consider export and import between ABACUS, ARCHIVE and EASEL.
The export files produced by all three programs are identical in structure and can
be imported to any of them, regardless of the program of origin. Suppose we
have an ABACUS grid containing the following information ready for Exporting:

If we exported this data and then imported it to EASEL, it would be interpreted as
three sets of figures, named 'sales', 'costs' and 'profits'. EASEL interprets the first
set of text items that it finds - in this case the month names - as the cell labels for
the graph.

The scheme is:
cell labels>January,February,March
sales graph>1000,1050,1100
costs graph>500,530,560
profits graph>500,520,540

Archive Manual - Page 89 of 93

EASEL does not use the first
piece of text 'cashflow'. When you
export a set of figures from
EASEL, it automatically inserts
the text 'label' in this position to
maintain compatibility with
ABACUS and ARCHIVE. If we
were to import this same export
file to ARCHIVE, the result would
be a data file containing three
records, each of which would
have four field names cashflow$
(a text field) costs sales and
profits (numeric fields).

Rules
To make sure that export files are compatible with all
members of PC-FOUR there are a few rules to remember
about exported data. They mainly affect the export of
information from ABACUS.

(1) When you export the contents of a grid from

ABACUS, the section of the grid being exported must have text in the first
cell of each row (or of each column if you export it in column order). The
text must not include spaces but an underscore, for example net_profit is
acceptable.

(2) If the first cell of any row (or column) of an ABACUS grid is empty, that
row (or column) is not exported. There must be data in the cell
immediately following the text cell in each exported row (or column). The
type of this data (numeric or text) determines the data type used for all the
data in the rest of that row (or column). Each row (or column) must
therefore contain all numeric or all text data.

(3) You can export files from ABACUS or ARCHIVE which contain several
sets of textual data. EASEL can only export a file containing one set of
textual data - the cell labels.

(4) If you import a file containing several sets of data to EASEL, it uses the
first set for its cell labels and ignores all following sets of text.

The Export File Structure
The export file consists of a series of records. Each record ends with the two
characters <CR> (ASCII code 13) and <LF> (ASCII code 10). The import
commands will, however, accept either of these characters - or the two together,
in either order - as an end of record marker. The end of the file is marked by a
control-Z (^Z) character (ASCII code 26).Each record consists of a series of
values, separated by commas. The values are either text (which is enclosed in
quotes) or numbers. The first item in each record must be text. If its name ends

Archive Manual - Page 90 of 93

with a dollar sign, the following values must be all text. Otherwise the following
values must be all numeric. The export file produced by exporting the data of from
ABACUS.

"cashflow$","sales","costs","profits"<CR><LF>
"January",1000,500,500<CR><LF>
"February",1050,530,520<CR><LF>
"March",1100,560,540<CR><LF>
^Z

Export and Import for QUILL
Since QUILL works with formatted text, a file imported to QUILL must be a plain
text file, rather than the normal tabular export file structure. QUILL will accept any
ASCII text containing form feeds and line feeds (ASCII codes 12 and 10
respectively) in addition to the printable ASCII characters. Any other characters in
the file are simply ignored. QUILL interprets a line feed as the end of a paragraph
and a form feed as a page break. The Export commands of ABACUS and
ARCHIVE can produce text files suitable for import by QUILL. ARCHIVE can also
export a formatted report to QUILL. You do this by printing (with lprint) the report
to a file, using the export option of the spoolon command. A file exported from
QUILL contains only plain text and line feed characters, marking the end of each
paragraph. In general, a file exported from QUILL is not suitable for import to the
other members of PC-FOUR. The main purpose is to be able to produce text files
that are readable by a wide range of other programs. (You can, however, write
text - containing the necessary quotation marks, dollar signs and commas - that
will result in an export file that can be imported to ABACUS, ARCHIVE or EASEL.)
One obvious use of export from QUILL is to allow you to write or edit programs.
You can, for example, write ARCHIVE programs in QUILL. Once you have
exported them, they are in a suitable form for immediate loading and running.

Import from PSION Organiser II Pocket Spreadsheet
Connect the Organiser to a PC with Psi2Win select [Plan] and [Load]
the pocket spreadsheet file. Use [Mode][File][export][Dif] filename.
In abacus use [F3] File
Transfer Load Diff
filename. This will
transfer the ‘data’ but
all the formulae and
formatting will be lost.

Archive Manual - Page 91 of 93

Appendix B

Printer Drivers
Use PEDIT to create an appropriate printer driver. For any PC FOUR
application to print it requires a printer configuration file: TPRINT.RES
for text based applications and GPRINT.RES for the Easel Application.

To run PEDIT ensure PEDIT.EXE and PRINTER.RES are in the same
directory. Use [Edit] to adapt or create a new printer driver. Using
[Install] will place (or overwrite) the TPRINT.RES in the same directory.

Archive Manual - Page 92 of 93

Appendix C
Zip file contents. PCFOUR.ZIP and Examples.ZIP

PCFOUR.ZIP PCFOUR.ZIP
Group.aba Example Spreadsheet Unnamed.TMP Temporary file
GemEasel.app GEM OS Application ABACUS.TSL
ABACUS.EXE ARCHIVE.TSL
ARCHIVE.EXE EASEL.TSL
EASEL.EXE QUILL.TSL

xchange Task
Sequencing
Language tutorial
files

PEDIT.EXE
QUILL.EXE

PC-FOUR
Applications, including
the printer driver editor
(PEDIT)

Company.dbf Examples.ZIP
Expenses.dbf Birds.doc Birds list document
Payrol.dbf QuillMan.doc Quill Manual
Persons.dbf Template.doc Quill 9.1
Salaries.dbf

PCFOUR.ZIP
Supplied example
database files

Examples.aba Abacus 3.3
Blunders.exp Export file for Quill CashFlow.aba Abacus 5.1
ABBA.HOB BarChart.aba Abacus 5.2
ARCHV.HOB Cheques.aba Abacus 5.4
GRAF.HOB AutoBar.aba Abacus 5.6
QUILL.HOB

Application Help Files

Mortable.aba Abacus 5.7.1
Expenses.IX1 MortCalc.aba Abacus 5.7.2
Payrol.IX1 IRR.aba Abacus 5.8
Persons.IX1 HPC02.aba Abacus 5.9
Salaries.IX1 IECshFlw.aba Abacus Appendix A
Persons.IX2

Example database
index files

MailList.prg Archive 9.0
*.OVL xchange overlay files QPSION.csv
Demo.prg QPSION.exp
Persons.prg

Example database
programme files QuizPack.scn

Printer.res QuizPack.prg
TPrint.res

Printer driver files
Qarchive.exp

Gazet.scn Qquill.csv

Archive 14.0

Helpp.scr CashFlow.exp
Persons.scn

Screen layout files for
Archive

CashFlow.grf
Easel 3.4

Archive Manual - Page 93 of 93

Manual display suggestions
Print the manual pages - 2 up on A4 landscape single sided. Centre cut
to A5 sheets and place in A5 Poly Pocket Ring Binder or A5 Display
book presentation folder.

