
COMPUTER ONE PASCAL

for the Sinclair QL Computer

A USER GUIDE

TABLE OF CONTENTS

... Chapter 1 Introduction Page 1
I . 1 Using this Manual

.. Chapter 2 Getting Started Page 3
2.1 Backing up
2.2 Startup
2.3 Example Session

... Chapter 3 The Commands Page 8
3.1 Filenames
3.2 Commands
3.2.1 Edit
3.2.2 Compile
3.2.2.1 Compiler Options
3.2.3 Run
3.2.4 Directory
3.2.5 Delete
3.2.6 Copy
3.2.7 Format
3.2.8 Make Job
3.2.8.1 Guidelines for Stack sizes
3.2.9 Exit

Chapter 4 The Editor ... Page 17
4.1 Edit File Format
4.2 Edit File Names
4.3 Editing a File
4.3.1 Moving The Cursor
4.3.1.1 Paging
4.3.2 Inserting Text
4.3.3 Deleting Text
4.3.4 Splitting and Concatenating Lines
4.3.5 Finishing the Edit Session
4.4 The Editor File Menu
4.4.1 Creating a New File
4.4.2 Loading a File
4.4.3 Read File
4.4.4 Saving a Copy of a File
4.4.5 Sa\ling the Current File

4.4.6 Saving a Listing
4.4.7 Remove Error Text
4.4.8 Directory
4.4.9 Saving and Exiting
4.4.10 Exiting
4.5 The Edit Menu
4.5.1 Set Marker
4.5.2 Cut
4.5.3 Copy
4.5.4 Paste
4.5.5 Show Buffer
4.6 Search String Facility
4.7 Editor Lift Facility
4.8 Edit Listing Facility

Chapter 5 Language Definition Page 27
5.1 Fundamentals
5.1.1 Numbers
5.1.2 Identifiers
5.1.3 String Constants
5.1.4 Comments
5.2 Pascal Programs
5.2.1 Label Declarations
5.2.2 Constant Definitions
5.2.3 Type Definitions
5.2.4 Variable Declarations
5.2.5 Procedure and Function Definitions
5.2.6 Statements
5.3 Data Types
5.3.1 Standard Scalar Types
5.3.1.1 Integer Type
5.3.1.2 Real Type
5.3.1.3 Boolean Type
5.3.1.4 Char Type
5.3.2 Enumerated and Subrange Types
5.3.3 Array Type
5.3.3.1 String Arrays
5.3.4 Record Type
5.3.5 Set Type
5.3.6 Pointer type
5.3.7 File Type
5.3.8 Type Compatibility
5.3.8.1 Assignment Compatibility

5.4 Statements
5.4.1 Assignment Statements
5.4.1.1 Expressions
5.4.2 Compound Statement
5.4.3 Repetition Statements
5.4.3.1 While Statement
5.4.3.2 Repeat Statement
5.4.3.3 For Statement
5.4.4 Conditional Statements
5.4.4.1 If Statement
5.4.4.2 Case Statement
5.4.5 Goto Statement
5.4.6 With Statement
5.5 Procedures and Functions
5.5.1 Procedures
5.5.1.1 Parameters
5.5.1.2 Forward Declarations
5.5.2 Functions
5.6 Input and Output
5.6.1 Input
5.6.2 Output
5.6.3 Files
5.6.3.1 Textfiles
5.6.3.2 Standard Input and Output Channels
5.6.4 I10 Errors

Chapter 6 Standard Procedures and Functions for the QL Page 69
6.1 110 Procedures and Functions
6.2 Memory Access Procedures and Functions
6.3 Other Procedures and Functions

Chapter 7 Standard Pascal Procedures and Functions Page 80
7.1 Functions
7.2 Procedures

Bibliography Page 83

Appendices

A . Compiler Error Messages Page 84
B . Run-time Errors .. Page 87
C . Pascal Syntax Diagrams Page 90
D . System Errors ... Page 98
E . Example Programs .. Page 100

Index ... Page 102

0 Copyright Computer One Limited 1985

No part of this manual may be adapted or reproduced in any' form without the prior
written approval of Computcr One Limited.

All information is given in good faith. Computer One can accept no responsibility for any
loss o r damage arising from the information contained in this manual or from use of the
product.

C:omputer One rcserves the right to alter the specification of the product without warning.

Computer One wclcomes ideas and comments. These and any bug reports o r furthcr
enquiries should be sent on the report form at the back of this manual to:

Technical Enquiries. Computer One Limited. Science Park, Milton Road. Cambridge
CB3 4BH.

Sinclair and QL arc rcgistered trademarks of Sinclair Research Ltd

CHAPTER ONE

INTRODUCTION

This user guide provides the information required to edit. run and compile
programs using the Computer One Pascal system on the Sinclair QL
microcomputer. The guide is not intended to teach Pascal and the reader is
referred to the Bibliography for a number of references on learning Pascal.

The Computer One Pascal system is a powerful menu driven system which
allows you to edit, compile and run programs with ease - there are n o command
names to remember as all commands are executed by selecting from the
displayed menu. In addition, a help window aids you whenever data input is
required. 'The system editor is a general purpose screen editor. which has been
designed with usefulness and simplicity in mind. You are not restricted to
editing files used by the Pascal system and can use the editor to edit any QL text
files. The editor also allows you to edit Pascal source files while examining
compilation errors for the file.

As well as editing, compiling and running Pascal programs, you also have the
option of formatting and examining microdrive cartridges, using the format and
directory commands, and deleting and copying microdrive files. There is also a
Make Job command, which makes a compiled Pascal program into an
EXECable QDOS job which can run outside the Pascal system.

The Computer One Pascal compiler produces a compact intermediate code
which is interpreted when the program is run. Intermediate code is generally
more compact than equivalent 68000 code.

The language implemented is close to the I S 0 Pascal standard specification,
with a small number of differences. The language is described in Chapter Five.

A number of extra procedures and functions are provided to allow you to make
full use of the QL from the Pascal system. These procedures allow you to use the
QL windowing and graphics features and also to make calls to machine code
routines.

1 . 1 USING THIS GUIDE

This section contains a brief overview of the contents of each chapter in the
guide.

CHAPTER 2 describes how to get started using the Pascal system and works
through an example of an edit. compile, run session.

CHAPTER 3 describes the Pascal system environment and gives a description
of each of the commands.

CHAPTER 4 describes, in detail, the general purpose editor. including the edit
listing option, which allows you to edit a file while looking at the error messages
produced for that file by the compiler.

CHAPTER 5 describes the Computer One version of the Pascal language.

CHAPTER 6 describes the standard procedures and functions which have been
added to the language to allow you to make use of the QL.

CHAPTER 7 gives a brief description of the standard Pascal procedures and
functions.

Appendices - The appendices list the compiler. run-time and system error
messages, give the full syntax of Computer One Pascal, and give some example
programs.

CHAPTER TWO

GETTING STARTED

This chapter describes how to use the Computer One Pascal system and works
through an example of editing, compiling and running a short Pascal program.

2.1 BACKING UP

The supplied microdrive cartridge should be backed up immediately on receipt.
This cartridge should be treated as a Master copy. It is recommended that you
make two backup copies using the Master cartridge only as an emergency
backup and not to run the software. Backing up may be done by running the
supplied 'CLONE' program as follows:

1. Place the Master copy in microdrive 2 (the right hand side drive).

2. Place a blank cartridge in microdrive 1

3. Enter the following command:

L R U N mdv2-clone <ENTER>

4. The QL will respond with various instructions to name the new cartridge and
initiate the copying. MAKE SURE T H E MASTER 1s IN D R l V E 2.

5. The 'cloned' system may be used as soon as the microdrives have stopped
running.

Repeat the procedure with another cartridge, and store the master and one of
the copies in a safe place. Use the remaining copy as your working master -
only use the others in an emergency. Please note that you may only copy the
software for your own use.

2.2 STARTUP

The boot file on the supplied Pascal microdrive cartridge has been set up to load
the system from microdrive one and to use microdrive two as the default device
when file names are required. You can easily change the boot file so that the
system will load from any other device and will use another device as the system
default. Whichever device the system is initially loaded from, it will expect all
system files, such as the editor and the compiler. to be on this device.

To change the boot device and default device you need to alter the string
variables bootdevice$ and defaultdevice$ in the boot file. For example to boot
from floppy drive flpl- and also use f pl- as the default device you should set
bootdevice$ and def;iultdevice$ to the string 'f pl-..

To startup the Pascal system you should load and run the boot file from the
required load device, unless you are loading from the QL's default device, in
which case the system will automatically be loaded when F1 or F2 is pressed
after resetting the system.

The Pascal interpreter. and the environment code are loaded into memory on
startup and remain resident while the Pascal system is being used. These are
kept resident so that the system does not have to reload the interpreter code
from an external device everytime you wish to run a program. The resident
code, the screen map and QDOS work space require about 6UK of memory,
leaving between 65K and 70K in which to run programs, assuming there is no
add-on memory. When the editor is loaded into memory there is approximately
5OK to 55K of free space for editing the file. The compiler is not resident and is
lo;~ded into memory from the load device when you wish to compile a program.

When the system is loaded, a system command menu will appear on the screen,
waiting for you to select commands to be run. T o select an item use the cursor
up (f) and cursor down () keys or enter the number of the command you
wish to select. The currently selected menu item is always highlighted. When a
command has been selected it can be run by pressing the ENTER key.

The window at the bottom of the screen tells you how to select and run menu
items. Help messages will appear in this window to guide you when a command
is waiting for input from the keyboard.

If you choose the EXIT menu option the system will return to BASIC and the
system can then be rerun by inserting the Pascal cartridge or disc into the load
device and typing 'Pascal'. This only applies if you have not reset the QL since
you last exited the Pascal system.

2.3 EXAMPLE SESSION

A number of example programs are included on the system cartridge and we
shall now work through one of the example programs showing how to edit,
compile and run it. The Pascal microdrive cartridge should still be in drive one.
The file containing the program is called 'fib-pas'. It is recommended practice to
use meaningful extensions for file names, so that it is easy to tell what type of file
it is. For example 'fib-dat' might be data file and 'fib-pas' might be a Pascal
source file. For this reason the compiler insists that Pascal text files should have
the extension '-pas'.

The example program generates the first n terms of the Fibonacci sequence,
where each term, beyond the first two. is generated from the sum of its two
nearest predecessors, the first two terms being O and 1. Thus the sequence starts
. -

Before we attempt to run the file we will take a look at it using the editor. Select
the editor command by pressing ' 1 ' or using the cursor control keys. Now press
ENTER to run the editor. The main menu screen will disappear and a new
screen will appear with another menu. This is the Editor File Menu. Use the
cursor keys to select the 'load file' option. When this option has been selected
press ENTER to use this option. In the window along the top of the screen the
prompt

Load which file

will appear. You should now enter

W e shall assume in this example that the system has been loaded from
microdrive one and that the default device is microdrive two. If you wish to
specify a file on drive two there is no need to give the drive name, but to specify
a file on any other drive the name must be given.

The following Pascal program will now appear in the editing window : -

program f i b o n a c c i ;
v a r f i b l , f i b 2 , i, n : i n t e g e r ;
b e g i n

{generate each number f rom t h e sum o f i t s two
p redecessors1
f i b l := 0 ;
f i b 2 := 1 ;
i := 2; C number o f f i b numbers genera ted) ,

w r i t e l n ('Genera te how many F ibonacc i numbers ?I);

r e a d l n (n ;
w h i l e i < n do
b e g i n

w r i t e l n (f i b l , f i b 2) ;
f i b l := f i b l + f i b 2 ;
f i b 2 := f i b l + f i b 2 ;
i : = i + 2 ;

end ;
i f i = n then w r i t e l n (f i b l , f i b 2)

e l s e u r i t e l n (f i b l)

end.

The program does not need to be changed, so when you understand how it
works you can exit the editor. Press F1 to get the editor file menu to reappear.
Use the cursor keys to select the 'leave' option. When this has been selected
press ENTER and the System Command Menu will reappear. We now want to
select the 'Compile' option. When you have selected this option press ENTER.
The following prompt will appear on the screen next to the menu : -

Which file ? [-pas]

The bracketed '-pas' indicates that the compiler will automatically append this
extension to the filename you enter. Notice that the help message at the bottom
of the screen has now changed to tell you that you can press ENTER to return to
the menu and that n1dv2- is the default microdrive. Enter the filename now :-

mdvl-fib

Next you are prompted for the output file name : -

Output file [-qlp]?

We shall make the output name fib-qlp so you should enter

mdvl-fib

The compiler always produces a file with the extension '-qlp' (QL Pascal) and
again you need not specify the file extension when entering the name.

When you have done this the compiler will be loaded and a new screen will then
appear. There is a window along the bottom of the screen, which the compiler
uses to output messages, for example if the compiler could not find a particular
file on microdrive. a message would be output in this window. The compiler
does not produce a full listing to the screen, unless the listing option is switched
on , but only outputs lines with errors and the appropriate error numbers. The
error messages can be displayed and the file re-edited using the 'edit listing'
option in the editor. This is described in section 4.8. Unless you have changed
the file 'fib-pas' there should be no errors and the compiler will output a
message indicating that the file has been successfully compiled. A message will
then be displayed asking you to press the escape key to return to the menu -
this allows you time to examine any errors you might have.

Having compiled the file and returned to the menu we can now try running the
program. Select the 'run' option and press ENTER. You will be given the
following prompt : -

Which file ? [-qlp]

Enter the file name

Next you are prompted for the size of the stack to use. For the moment just
press ENTER to get the default stack size. The file 'fib-qlp' will now be loaded,
a clear screen will appear and the program will run. 'This program will prompt
for a number n and then print to the screen the first n numbers in the Fibonacci
sequence. When the program has finished you will be asked to press the escape
key to return to the menu screen.

A more detailed description of all the menu commands can be found in Chapter
3 of this user guide.

CHAPTER THREE

THE COMMANDS

When the Pascal system has been loaded, the System Command Menu is
displayed. This screen allows you to select commands from the menu and run
them, and to input the data required by some commands when they execute.
The screen has three main windows : -

1) The MENU window displays the names of the seven available commands.
The cursor up () and cursor down () keys or the numeric keys are used to
select menu items, the current item always being highlighted. A command is run
by selecting it and pressing the ENTER key.

2) The CONSOLE window. to the right of the menu window, is used by some
commands to prompt for data and to output data. Error messages are also
displayed in this window.

3) The HELP window, along the bottom of the screen, is used to give
information about what input the system currently expects.

There are currently nine commands available on the system. These are the edit,
compile. run, directory. delete, copy, format, make job and exit commands.
Several of the commands prornpt for filenames and the following section
describes what are valid file names.

3.1 FILENAMES

A valid file name can have up to 36 characters. including a 4 character extension
[-aaa], but not including the device name [e.p. mdvx-1. The system does not
differentiate between upper and lower case letters and they can be used
interchangeably. If the prompt for a file name is followed by an extension in
brackets, the system will expect a file name with no extension and will
autonlatically append the displayed extension to the name. Alternatively a name
with the displayed extension can be entered.

If a file name entered is too long the error message

*** Error - bad name

is output and the system returns to the command menu

Note that the default device name for the system need not be added to file
names on the default device. The system will first attempt to find a file with the
exact name entered, including the required extension if there is one. If this file
cannot be found. the name is prefixed with the default device name and the
system attempts to find this file. The supplied Pascal microdrive cartridge has
the default device set to 'mdvZ' . However by altering the boot file you can
change this (see section 2.2).

When you are promted for a file name you can specify a device name, for
example 'serl ' or 'scr-'. This allows files to copied to a printer, the screen or any
other device.

3.2 THE COMMANDS

The following sections give a description of each of the commands.

3.2.1 Edit

When this command is selected the screen is cleared and the editor is run. 'The
operation of the editor is described in detail in Chapter 4.

3.2.2 Compile

When the compile command is selected the consolc window displays the prompt

Which file ? [-pas]

and the help message at the bottom of the screen changes to remind you of the
default device name and that ENTER can be pre5sed to return to the command
menu. The system will attempt to find the given file, with the '-pas' extension.

If it is not found the error message

*** Error - not found

is displayed and the system returns to the command menu. Otherwise the
prompt

Output file [-qlp] ?

is displayed and you should enter a name for the code file to be produced.

Again ENTER can be pressed to return to the menu. The extension '-qlp' is
added to the name if it is not specified. Note that the code file may be produced
on a device other than that of the source file. Next the compiler is loaded from
the load device and a new screen appears. At the top is a title window and at the
bottom is a message window which is used for messages and prompts. The
Pascal system cartridge or disc should always be kept in the drive from which it
was loaded, as the compiler needs to access the device periodically.

The compiler does not output a full listing of the file being compiled to the
screen, unless the listing option is turned on (see 3.2.2.1). but displays lines with
errors and the appropriate error numbers. In the message window is a prompt
giving you the option of quitting the compilation or of continuing. If no key has
been pressed after thirty seconds the compiler will automatically continue the
compilation. An example of a compilation error is shown below.

for i = 1 to 10 do
4

51 Press ESCAPE to quit, any other key to continue

An error indicator appears under the symbol on the source line which caused the
error. The error indicators appear on the same line, unless two errors occur at
the same symbol, in which case the second indicator for the symbol and
subsequent indicators appear on the next line. The line after the error indicator
line(s) contains the error numbers. These are provided for convenience, since
the error messages can be examined in the source code using the 'edit listing'
facility in the editor (see section 4.8). The compiler produces a file with the
extension '-err', which is used by the editor todisplay the error messages. This
option is particularly useful if you have a number of compilation error messages.
The compiler will halt after twenty errors have been output. A full list of the
compiler error messages and corresponding error numbers can be found in
Appendix A.

If the ESCAPE key is pressed the conipilation terminates. otherwise it
continues and further errors, if they occur. are output in the same manner.
When the compilation has finished it outputs the number of errors found. You
are then asked to press the escape key to return to the Command Menu.

Note that the ESCAPE key can be pressed at any time during a compilation if
you wish to stop the compilation.

3.2.2.1 Compiler Options

There are five options available in the compiler. These are

1) The listing option (I) - if this is turned on at any point in the program, a
compilation listing of that part of the program is produced on the screen. The
listing is not saved on the microdrive cartridge. If the listing option is turned off
only lines with errors and the appropriate error numbers are displayed. The
default listing option is off. This option tends to slow down the compilation.

2) The code option (c) - if this is turned on, the intermediate code file is
produced. If it is turned off at any point in the program no code is produced for
that part of the program. There is little point in turning off the code production,
except at the start of the program, in which case no code will then be produced
and the compilation will run more quickly. If the code option is turned off at any
point after the start of the program, the code file will be deleted by the compiler.
This option is useful while compilation errors are being removed from a
program. The default code option is on.

3) The range-check option (r) - if turned on, this option produces code that
checks all array indices are within the array bounds and that all subrange values
are within the the declared range. It is recommended that this option is turned
on during program development. since values outside the range will cause
run-time error messages, rather than unpredictable results. The default option is
on .

4) The nil-pointer check (n) - if turned on, this option produces code that
checks that no attempt is made to access a variable through a nil pointer. It is
recommended that this option is turned on during program development, since
accessing variables through nil pointers will cause run-time error messages,
rather than unpredictable results. The default option is on.

5) The trace option (t) - if turned, on this option produces code that causes the
name of a procedure to be written to the standard output file whenever it is
called. If turned off again only the names of those procedures which are between
the option being turned on and off in the source file will be output. The default
for this option is off.

Compiler options are written in the program file as comments, with a dollar sign
immediately following the opening comment character. The options are
signified by a letter and a plus or minus sign to indicate whether the option is to
be turned on or off. Thus the default for the five options would be inserted at the
top of the program file as

Note that there must be no spaces between the specified options

3.2.3 Run

When the run command is selected the console window displays the prompt

Which file ? [-qlp]

The system will attempt to find the given file, with the '-qlp' extension, on
microdrive. If it is not found the error message

*** Error - not found

is displayed and the system returns to the command menu. If the file is found a
prompt is made for the stack size required to run the file. If you press ENTER
the default stack size of 10K is used. This should be sufficient for most
applications. See section 3.2.8.1. The system will then load the file, clear the
screen and then run the program. If the interpreter detects an error while
interpreting the program, an error message is output and the user is asked to
press any key to return to the System Command Menu. An example of an error
during execution of a program is an array bounds error. where the program uses
an array index which is outside the dimensions of the array. A full list of
run-time error messages and their possible causes is given in Appendix R .

When a run-time error occurs, a listing of the nested procedure and function
calls is output to assist in debugging, the most recently called procedures and
functions appearing at the top of the list. The name at the top of the list is the
procedure or function in which the error occurred.

3.2.4 Directory

When this command is selected the following prompt is displayed on the console
window : -

Which drive [I ..8] ?

If you enter any number between 1 and 8 the system will attempt to read the
directory of the cartridge or disc in the given drive (8 is the maximum number of
~nicrodrives on one QL). If you press '0' the prompt

Which device ?

is displayed and you can enter a device name. Any characters, other than 1 . 3
and 'o' are ignored and the system will continue to wait for a numeric key or '0'

to be pressed. If there is no cartridge or disc in the given drive or if the specified
drive or device does not exist, the error message

*** Error - not found

is displayed. Otherwise the name and length of each file on the cartridge or
device are displayed as shown below.

fib-pas - 834 bytes
fib-qlp - 510 bytes
letter-txt - 4352 bytes
fib-err - 35 bytes

The system then returns to the Command Menu. Note that the CTRL and F5
keys can be pressed together to stop a window scrolling. Press any key to start it
scrolling again.

3.2.5 Delete

When this option is selected the console window displays the prompt

Which file ?

Note that the full file name must be specified for this command. If the given file
is not found the error message

*** Error - not found

is output. Otherwise the system will display the file name and ask for
confirmation of the deletion :-

Hit Y to confirm deletion >

If either the 'Y' or 'y' keys are pressed the file will be deleted and the system will
return to the Command Menu, otherwise the system returns immediately to the
Command Menu.

3.2.6 Copy

When this option is selected the console screen shows the prompt

Which file ?

Note that the full file name must be specified for this command. If the given file
is not found the error message

*** Error - not found

is output. Otherwise the prompt

T o which file ?

is displayed. The new file name should be specified in full. If the file to be copied
to already exists, the name of the file and the message

File exists. Overwrite ?

are displayed and if you press a 'Y' o r 'y' the file will be overwritten, otherwise
you will return to the Command Menu. When the file has been copied the
system returns to the Command Menu.

3.2.7 Format

This command allows you to format a microdrive cartridge or other storage
medium. When the command is entered the prompt

Which device ?

is displayed and you should enter the device and medium name, for example
'mdv2-testfiles'. You will then be asked press 'y' to confirm the format.

3.2.8 Make Job

This command allows you to make a compiled Pascal program into a QDOS job
which can run outside the Pascal system. Usually you would only use this facility
when you have completely debugged a program. When the command is entered
the prompt

Which file [-qlp] ?

is displayed. If the given file does not exist the error message

*** Error - not found

is output and the system returns to the command menu. Otherwise you are
prompted for the output file name, which has the extension '-exe'

Output file [-exel ?

When you have entered the output file name you are prompted for the job stack
size. This is the amount of data space which will be used when the job is running.
Section 3.2.8.1 gives some guidelines for working out the stack space required
by the Pascal program. If you just press ENTER the default stack size of 10K is
used. Note that the system must have access to the device from which the system
was loaded when this command is used, as a number of the system files are
required.

Note that if you run a QDOS job using the EXEC command you will have to use
CTRL-C before the program can get input from the keyboard. and when the
program has finished you will have to use CTRL-C again to return to another
QDOS job or to BASIC.

3.2.8.1 Guidelines for stack sizes

It is necessary to specify the stack size when making a Pascal program into a
QDOS job so that the job can be given that amount of data space when it is
EXECed. If there is plenty of space available on the machine when the program
is being run then giving a large stack size is unimportant, but if you want the job
to be as small as possible then it is desirable to keep the data space to a
minimum, while making sure that the stack is not going to overflow when the
program is running.

The system also prompts for the stack size when a Pascal program is run within
the Pascal system. This allows you to experiment with the stack sizes while
developing a program. If you are not running very large or highly recursive
programs, then the default size of 10K should be sufficient and you can just press
ENTER when prompted. If you are interested in optimising the stack size then
the following paragraphs are intended to give some help in estimating the
amount of stack required.

Whenever a procedure call is made the procedure parameters and all the data
declared in the procedure have to be put on the stack. In addition a certain
amount of housekeeping information is required on each procedure call. The
housekeeping information and the data for a procedure is called a frame. If the
procedure calls are nested, then there must be enough room on the stack for all
the frames of the nested procedure calls. Space is also required for the global
data declared at the outer level of the program. When a program is compiled
you are informed of the data space required by the data of each procedure and
at the end of the compilation the data space for the main program is the global
data space required. The housekeeping information for a stack frame requires a
maximum of 24 bytes. Thepascal interpreter needs about 200 bytes of stack for
its own use and if real numbers are being used an additional 200 bytes is
required. The data sizes, in bytes, of the standard types is shown below:

integer, subrange, enumerated type, pointer - 4;
boolean, char - 1; real - 6; set - 16;
record - sum of size of components;
file - 8 + size of base type;
array - number of elements * size of base type:

Example: A program with one procedure requires 4Kfor its global data and 1K
for the data declared in the procedure. If the procedure is called recursively to a
depth of 3 then the stack space required is

It is obviously better to give too much stack than too little, although the system
will produce a run-time out of memory error if the stack overflows. In this case a
sufficient stack size would be 7500 bytes. Note that if you enter a stack size of
less than 512 bytes the stack size will be set to 512.

3.2.9 Exit

When this command is entered the screen will be cleared and the system will
return t o BASIC.

CHAPTER FOUR

THE EDITOR

The'editor has been designed with ease of use in mind. It makes use of the
cursor control keys, situated on either side of the space bar, and the function
keys on the left hand side of the QL keyboard. It also provides menus similar to
the system command menu, to allow you to select file saving and loading options
easily and to copy and delete pieces of text.

4.1 EDIT FILE FORMAT

Edit files consist of lines of printable characters, the lines being separated by the
line feed character. These files are called text files. Although the editor only
allows you to create text files it does not check, when loading a file, that the file
only contains printable characters and line feeds. However, you are strongly
reco~nmended to edit only text files.

Edit lines can only be as long as the edit window. However there is a special
character '<<', which, if it occurs as the first character on a line, will be treated
as a concatenation character. When a file is loaded. any lines longer than the
edit window will automatically be split. with the concatenation character being
inserted at the split. When a file is saved. a line will be joined to the previous line
if the concatenation character appears at the beginning of the line. If this
character is deleted it causes a permanent split in the line.

4.2 EDIT FILE NAMES

The editor will allow any file name to be specified (see section 3.1 for valid file
names) except a name with the extension '-err' or '-qlp'. since names with these
extensions have a special meaning in the Pascal system. If, when the editor is
prompting for a file name, an invalid name is given or a file error occurs (for

example when attempting to load a file, a file with the given file name must
exist), an error message is displayed in the helplerror window and the file name
prompt is redisplayed.

4.3 EDITING A FILE

When the editor is invoked from the command menu a new screen appears with
four windows - an edit window, in which the editing of text takes place; a
prompt window, in which the editor displays prompts and receives input (for
example a file name); a helplerror window, in which error and help messages
are displayed; a lift window - the lift facility isdescribed in section 4.7. A menu
will then appear on the screen, allowing you to choose the file you wish to edit o r
to choose to edit a new file. This menu, called the Editor File Menu, is described
in section 4.4.

When a file has been loaded the edit screen will appear with the first few lines of
the file. The cursor, a solid rectangle, will appear over the first character of the
file. If a new file is being edited the edit window will be blank, except for the
cursor which will be at the top left corner. The cursor represents the current
editing position in the file and all editing operations take place at the cursor
position. Whether a new file is being edited or an existing file is being edited, the
operation of editing the file is exactly the same and is described in the following
sections.

4.3.1 Moving the cursor

The cursor can be moved anywhere in the file by using the four cursor control
keys which are situated on either side of the space bar on the QL keyboard.
Each of the keys moves the cursor one character position in the direction shown
on the key. There are several special cases which affect the movement of the
cursor :

1) If the cursor is moved right when it is at the end of a line it moves to the start
of the next line.

2) If the cursor is moved left when it is at the beginning of a line it moves to the
end of the previous line.

3) If the cursor is moved up or down and the previous or next line is shorter than
the current one the cursor moves to the end of the new line.

4) If the cursor moves off the top or bottom of the screen the text is scrolled up
or down by one line.

5) The cursor remains stationary if any attempt is made to move it off the
beginning or end of the file.

If you use the ALT key with either the cursor left or cursor right keys, the cursor
moves to the beginning or the end of the current line.

4.3.1.1 Paging

If the SHIFT key and the cursor up or cursor down keys are pressed together
the window will scroll down or up by the number of lines that will fit in the
window. The cursor is set to the middle of the window.

4.3.2 Inserting Text

T o insert text simply start typing characters at the keyboard. Each character is
inserted at the cursor position, and the character at the cursor position and all
characters to the right are shifted right by one character position. When the
cursor is the last character on a line and a new line is required press the ENTER
key and a blank line will be inserted below the current line, with the cursor at
the start of the new line. The editor has an auto indent facility which sets the
cursor under the first non-blank character of the previous line when a new line is
taken.

Lines can only be as long as the window and any attempt to insert a character
which will make the line too long. will cause the QL to emit a beep and the
character will not be inserted. However the end of line character can be inserted
and if you wish to have the line longer than the edit window, you can continue
the line by inserting the special character '<<' at the beginning of the next line.
This character is keyed in by pressing the CTRL, SHIFT and X keys together.
The editor will automatically remove this character and the preceding end of
line character when the file is saved.

4.3.3 Deleting Text

The character to the left of the cursor can be deleted by pressing the CTRL key
and the cursor left key together. The cursor and all characters to the right are
shifted left by one character position. This is the opposite of inserting a
character and is useful for correcting typing errors as text is being entered.

Thc character under the cursor can be deleted by pressing the CTRL key and
the cursor right key together. The cursor remains in the same position and all
characters to the right of the cursor are shifted left by one character po\ition.

If the CTRL, ALT and cursor left(or right) keys are pressed together all
characters from the cursor position to the start (or end) of the line are deleted.

4.3.4 Splitting and concatenating lines

A line is split by positioning the cursor at the position in the line where the split
is required and pressing ENTER. This causes the character under the cursor and
all characters to the right to be inserted below the line.

Two lincs arc concatenated by deleting the line feed at the end o f the first of the
two lines. The line feed is always the last character in any line and is represented
as a blank. The linc feed is deleted in the same way as any other character. using
the CTRL and cursor right keys if the cursor is ovcr the line feed. or using the
CTRL and cursor left keys if the cursor is at the start of the next line. When the
two lines are concatenated all lines below will be scrolled up by one line. If
concatenating the two lines will make the resulting line longer than the edit
window the QL emits a beep and the line feed character is not deleted. However
the two lines can be concatenated when the file is saved. by inserting the
concatenation character '<<' at the beginning of the second line. This character
is entered by pressing the CTRL. SHIFT and X keys together.

4.3.5 Finishing the edit session

When you have finished editing the file, or wish to save the file and continue
editing the same file or another file. the function key FI can be pressed to select
the Editor File Menu which allows the file to be saved. The Editor File Menu is
described in the next section.

4.4 THE EDITOR FILE MENU

This menu appears on the screen when the editor is run from the Pascal
command menu, or when the function key FI is pressed. When the menu is
displayed it appears with a number of options. Each option is numbered and is
selected by pressing the required number or using the cursor up and cursor down
keys to step through the options. The currently selected option is always
highlighted. When the required option has been selected the ENTER key

should be pressed to use the option. In certain cases some of the options are
unavailable. for example the 'save' options cannot be used when no file is
currently being edited. When an option is unavailable it is displayed in red
(options are normally displayed in white) and cannot be selected using the
numeric o r cursor keys. You can press the F1 key again i f you want to leave the
File Menu and return to the edit window. When you are prompted for a file
name you can just press ENTER to return to the menu.

Each of the options is described below.

4.4.1 Create New File

If no file is currently being edited, the edit window is cleared and you can start
editing a new file. If a file is currently being edited and has been altered. you are
asked if you wish to save the changes. If you answer yes and the current tile is
not a new tile it is saved, otherwise the prompt

save to which tile

appears in the message window and the file will be saved with the entered file
name.

4.4.2 Load File

If this option is selected and a file is currently being edited the same procedure is
carried out as described for the above option 4.4.1. When the current file has
been saved, or no file is currently being edited, the message

load which tile :

appears in the message window. The editor then loads the given file and the edit
window appears with the first few lines of the file. You can now start editing the
tile.

If the tile name given has the extension '-pas1 the editor checks if there is also a
file with the same name, but with the extension '-err'. If one exists the editor
automatically uses the '-err' tile to produce a listing which allows you to see the
error messages produced when the specified file was last compiled. The 'Edit
listing' facility is described in section 4.8.

4.4.3 Read file

If this option is selected you will be prompted for a filename. A copy of the file
will then be inserted at the cursor position.

4.4.4 Save a Copy

This option is only available when a file is currently being edited. The message

save to which file :

appears in the message window and the file is saved with the given file name.
You can then continue editing the same file. Note that saving a copy with a given
file name does not affect the name of the file being edited. i.e. the file being
edited still has its original file name.

4.4.5 Save and Continue

This option is available only if a file is currently being edited. If an existing file is
being edited the file is saved and you can continue editing. If the file being edited
is a new file, the message

save to which file :

is displayed in the message window and the file is saved with the given name.
You can then continue to edit the file.

4.4.6 Save Listing

This option is only available if the edit listing facility is currently being used.

The listing, the file with the embedded error messages, is saved to a file with the
same name as the file being edited, except that the extension '-lis' is used. This
option is useful if you wish to print the listing file. When the listing has been
saved you can continue to edit the file.

4.4.7 Remove error text

This option is only available if you are editing a listing. It should be used only
after you have corrected the errors indicated by the merged error file. When
selected the error text is removed and the file no longer is a listing. Removing
the error text allows a copy of the file to be saved or the save and continue
option to be selected.

4.4.8 Directory

This option allows you to display the contents of a microdrive cartridge or other
device. The prompt

Which device :

appears in prompt window and you can enter any device name, for example
'mdv2-'. The directory, if it exists, is then displayed in the edit window.

4.4.9 Save and Leave

This option is only available if a file is currently being edited. If an existing file is
being edited, the file is saved with the existing file name, otherwise, the file is a
new file and the message

save to which file :

appears in the message window and the file is then saved with the given file
name.

When the file has been saved the editor is exited and the system returns to the
Command Menu.

4.4.10 Leave

This option quits the editor without saving the changes and returns to the
Command Menu. If a file is currently being edited the message

Lose changes (y/n) :

is displayed in the message window and only if you enter 'Y' or 'y' will the editor
be exited. Otherwise the edit window will be redisplayed and you can continue
to edit the file.

4.5 EDIT MENU

This menu appears when the FS key is pressed. It has four options

- cut pieces of text from the edit file - copy pieces of test from the edit file -
paste pieces of text into the edit file - display the last piece of text cut or copied

T o leave the edit menu you press F1. Each of the options are described below.
Some options expect a marker to be set. This is described in the following
section.

4.5.1 Inserting a marker

A marker is set in the text by pressing the CTRL and F4 keys together. The
character at this position is shown in reverse video. Only one position in the file
may be marked at one time. The marker will be removed by any action except
moving the cursor (either with the cursor keys. paging or the lift). The marked
character will only be displayed in inverse video until it moves off the screen.

4.5.2 Cut

This option is only available if a marker has been set. It allows you to remove a
piece of text from the edit file and save it in an internal buffer. The contents of
this buffer can then be pasted into another part of the file. T o cut text, set a
marker (CTRL-F4) at the start of the text to be removed. Then place the cursor
after the text to be cut. Now press F5 to get the edit menu, select the cut option
and press ENTER. The text will be removed from the file but will remain
available to be subsequently pasted. The text cut includes the marked character
but does not include the character at the cursor.

You will only be allowed to cut if there is sufficient space to act as an internal
buffer. In a QL with 128K of memory the buffer space is approximately 3K. In a
QL with more memory the buffer size is about one eighth of the available
editing space. Any existing text in the internal buffer will be deleted before the
cut.

4.5.3 Copy

This is similar to the cut option except that the text selected is copied into the
internal buffer without being removed from the edit file.

4.5.4 Paste

This option is only available if there is some text in the internal buffer. that is, if
you have cut or copied text. The cursor should be moved to where you wish the
text to be pasted. Press F5 to get the edit menu. then select paste and press
ENTER. The text in the internal buffer is inserted at the current cursor position
unless the resulting file is too big for the workspace in which case an error will
occur and the paste will not proceed.

4.5.5 Show buffer

You may examine the contents of the internal buffer by pressing F5 to get the
edit menu, selecting the show buffer option and pressing ENTER. The buffer
contents are then displayed.

4.6 STRING SEARCH

The string search is initiated when the function key F2 is pressed. It searches for
a given string from the current cursor position. When F2 is pressed the message

search for which string :

is displayed in the message window. You should then enter the required string.
If the string is found in the text, the cursor is set to the last character of the
string. If the string is not found, the cursor position remains as it was and a beep
sounds. If F2 is pressed together with the SHIFT key, a search is made for the
string specified in the last search. If, when the prompt for a string is displayed,
just the ENTER key is pressed, you will immediately return to the editor.

4.7 EDITOR LIFT

The lift is a means of moving through a file quickly and easily. While in normal
edit mode the lift arrow moves up and down as the cursor is moved up and down
through the text. The top of the lift window represents the top of the file, the

bottom of the lift represents the bottom of the file and the lift arrow represents
the cursor position in the file.

When the function key F3 is pressed the editor goes into lift mode. Lift mode
allows you to move the lift arrow by using the up and down cursor keys (for
extra speed use the ALT key and cursor up or down). When F3 is pressed again
the editor returns to the normal edit mode with the cursor in the position
implied by the lift arrow. This is most useful for long files where paging many
times becomes tiresome.

4.8 EDIT LISTING FACILITY

This facility allows Pascal programs to be edited, while looking at any error
messages produced when the program was last compiled. The compiler
produces a file with the extension '-err1. which contains information about the
errors. If you choose to edit a Pascal file (a file with the extension '-pas') and an
' - err' file exists for the Pascal file, then the editor automatically uses the '-err5
file to produce a listing, which appears in the edit window as a normal file.
Below each line of the file which had a compilation error, is a copy of the line
and the error messages. Each error message is 'bracketed' by the character '$',
which cannot be deleted or inserted in the editor by the user. When the file has
been loaded the '-err' file is deleted, since the errors will no longer be valid if the
file is changed.

The file may be edited as normal and when it is saved any parts of the file
enclosed in the 'O's are not written to the microdrive file. Thus the error
messages are removed when the file is saved. If, when saving the file, the save
listing option is chosen (see 4.4.6) the whole file. including the error messages,
are saved to a file with the same name as the Pascal file. but with the extension
' - lis'.

CHAPTER FIVE

LANGUAGE DEFINITION

Computer One Pascal is close to the I S 0 Pascal standard specification, with the
following main exceptions :-

1) Procedures and functions may not be passed as parameters.

2) I10 has been expanded and modified slightly, in order to give the user the full
benefits of the QL 110. See section 6.1

3) No checking of assignment to the control variable of a for loop is made. either
direct o r indirect assignment. i.e. whether the variable is actually assigned to in
the body of the loop or whether the variable is assigned to in a procedure or
function called from the body of the loop.

4) Gotos may not jump out of procedures o r functions.

In the following sections describing Pascal the syntax of the part being described
is usually given. The full syntax of Computer One Pascal is given in Appendix C.

The notation used within the text for describing the syntax is similar to Backus-
Naur Form. A n example of a rule is

program = program-heading block '.'

This can be read as 'a program consists of a program-heading followed by a
block followed by a period'. Special symbols in Pascal, defined in section 5.1,
are always enclosed in quotes in a rule. Any entity in a rule enclosed in curly
brackets ({)) indicates that the entity is repeated zero or more times.

A n entity enclosed in square brackets ([I) is optional. If entities are separated
by a vertical bar ((), this indicates that one of the entities is selected.

Examples :
(I) integer = [sign] unsigned-integer
(2) unsigned-integer = digit { digit)
(3) sign = '+"'-' i

These rules can be interpreted as follows :

(I) ;in integer is an optional sign followed by an
unsigned integer

(2) an unsigned-integer is a digit followed by zero or
more digits

(3) a sign is either a plus or a minus

5.1 FUNDAMENTALS

The alphabet of Pascal consists of letters, digits and special symbols. Sentences
are constructed from the alphabet according to the syntax of Pascal. Pascal does
not differentiate between upper and lower case letters, except in strings and
comments, and they may be used interchangeably.

The special synibols in Pascal are shown below

of d o to or if in not div mod set and
end var nil for then type file with goto
case else until while begin const label array
repeat downto packed record program function
procedure

Computer One Pascal contains four additional symbols :

bor hand bsor bnot

The words which are special symbols are reserved words and may not be used
for any other purpose.

5.1.1 Numbers

Pascal numbers may be either integers or reals. A n integer number is a whole
number which may be positive, negative or zero. The number is written as a
sequence of digits. optionally preceded by a sign (+ or -). No other characters

must appear in an integer. In Computer One Pascal the range of integers is

A real number, which may be preceded by a sign, may be written in one of two
forms.

(1) The number has a decimal point, which must be preceded and followed by at
least one digit.

Examples : 1.2
-34.789
+0.45609
-0.0007

(2) The number is expressed as an integer or decimal number multiplied by an
integral power of 10, known as the exponent. The exponent is preceded by the
letter 'E' or 'e' and an optional sign.

Examples : 2.3E6
54E+5
45.6E-3
0.76E2

In Computer One Pascal the range of real numbers is

+I-(IE-615 to 1E+615) with 8 significant digits

5.1.2 Identifiers

Pascal identifiers, which are names used to identify data locations and pieces of
program text, consist of a letter followed by any number of letters and digits.

Examples : a
currchar
x3
extremely longnameindeeed

In Computer One Pascal identifiers can be any length. but only the first eight
characters are significant. Remember that reserved words cannot be used as
identifiers.

5.1.3 String Constants

A Pascal string constant consists of a sequence of characters enclosed in quotes.
If a quote itself is required in a string it should be written twice. A string
constant of length one is a character constant.

Examples : 'hello'
'I don"t know'
.',.

There are a number of characters which have a special meaning when they are
preceded in a string by the single quote character. These characters are

'n : This represents the character line-feed
'r : This represents the character carriage return
't : This represents the TAB character
'p : This represents the form-feed character
'0 : This represents the null character

These characters are useful for formatting output when using the write
statement (see 5.6.2).

5.1.4 Comments

A Pascal comment is a sequence of characters enclosed in curly brackets ({ }).
Comments may appear anywhere in the text, except within an identifier,
number o r special symhol, and have no effect on the execution of the program.

Example : { this is a comment ! }

5.2 PASCAL PROGRAMS

Every Pascal program consists of a program header and a block.

program = program-header block '.'

The program header gives the program name and the parameters. In Computer
One Pascal these parameters need not he specified. They are ignored by the
compiler.

A program block consists of a number of declaration parts followed by a
statement part.

block = [label-declaration-part]
[constant-definition-part]
[type-definition-part]
[variable-declaration-part]
procedure-and-function-definition-part
statement part

5.2.1 Label declarations

Label-declaration-part = 'label' label {'.' label } ';'

Any program statement may be marked by prefixing the statement with a label
followed by a colon. The label is defined in the declaration part and is an
unsigned integer in the closed range 0 to 9999.

5.2.2 Constant definitions

Constant-definition-part = 'const' ident '=' constant ';'
{ ident '=' constant ';'I

Constant definitions are used to give names to constants. Constant identifiers
help to make a program more readable. For example we might define

const If = "n';
cr = "r':

to give names to the ascii control codes line feed and carriage return. In our
program we would then use the identifier If everytime we want to use the control
code line feed.

The use of constant declarations is also useful for constant values, which we may
at a later date wish to change. For example implementation dependent
constants. It is considerably easier to change the definition of a single constant
identifier than to search for and change all the occurences of a particular
constant in the program.

5.2.3 Type definitions

Type-definition-part = 'type' ident '=' type ';'
{ident '=' type ';'I

In Pascal data types can be described in the variable declaration part, or may be
referenced in the variable declaration part using a type identifier, which has
been defined in the type definition part. Section 5.3 contains a detailed
discussion of data types, describing what standard types are available and how
new data types can be defined.

5.2.4 Variable declarations

variable-definition-part =
'var' ident {',' ident } ':' type ';'

{ ident {',' ident } ':' type ';')

Example :
va r a, b : i n t e g e r ;

c : r e a l ;
d : a r r a y C1..101 o f c h a r ;

The type may be a standard type, a type description or a type identifier. Every
variable used in a Pascal program must be declared in a variable declaration,
unless it is predeclared.

Note that a variable may not be declared more than once in the same variable
declaration. i.e. the following is illegal

var x : char;
x : integer;

5.2.5 Procedure and function definitions

Procedures and functions are described in section 5.5

5.2.6 Statements

Statements are described in section 5.4

5.2.7 Scope

In Pascal all declarations have scope. The scope of a declaration is the routine in
which it is declared, together with any routines declared in that routine and any
routines nested deeper within these routines. Declarations in the main program,
which are global declarations, have the whole program as their scope.

Outside its scope a name is unknown and the same name can be used in other
declarations. If a name is declared within the scope of a declaration with the
same name. the inner declaration overrides the outer one. This is known as a
hole in the scope of the outer declaration.

Example :

p rocedure a (b : in teger ; c : r e a l ;
C s t a r t o f scope o f a, b and c 3
v a r d : char ; C s t a r t o f scope o f d 1

procedure b ;
C t h i s i s a h o l e i n t h e scope o f t h e i n t e g e r b 3
v a r d : char ;
C t h i s i s a h o l e i n t h e scope o f t h e o u t e r d 3

b e g i n C body o f procedure b 3

end ; C procedure b and i n n e r d go o u t o f scope
here 3

C i n t e g e r b and o u t e r d back i n scope here 3
b e g i n C body o f procedure a 3

end ;
C b, c, d a r e now o u t o f scope 3

5.3 DATA TYPES

Data types in Pascal can be highly structured and complex, but are all ultimately
built from unstructured types. An unstructured type is either defined by the
programmer or is one of the four standard scalar types.

5.3.1 Standard Scalar types

The four predefined scalar types are integer, real, boolean and char

33

5.3.1.1 Integer type

A value of type integer is a whole number whose range of values is restricted by
the implementation. In Computer One Pascal an integer is 4 bytes long, giving a
range of values -2147483647 to +2147483647.

Arithmetic operators which take integer operands and return integer results are
. -

+ add
- subtract
* multiply
div whole number division
mod modulo (remainder after division)

Example :
8 div 3 = 2
8 m o d 5 = 3
5 - 9 = - 4

The operators + and - can be used to denote the sign of the operand.

Example : -difference
+2

Pascal provides a number of standard functions which may be applied to
integers. The standard functions are described in Chapter 7.

A number of the standard functions that relate to integers and other
unstructured types, except reals, are introduced below.

The type integer defines an ordered set of values whose range depends on the
implementation. Each value has a successor and a predecessor (the least value
has no predecessor and largest value has no successor) and such a type is called
an ordinal type. Pascal provides the functions succ and pred to give the
immediate successor and immediate predecessor of an ordinal type. For integers
these functions are equivalent to adding and subtracting 1.

There exists a standard identifier maxint whose value is +2147483647 , which
can be used for comparison purposes to prevent integer overflow.

5.3.1.2 Real type

A value of type real is an eletnent of a subset of real numbers whose range is
implementation dependent. In Computer One Pascal the range of reals is

+I-(1E-615 to 1E+615) with 8 significant digits

Arithmetic operators which take real operands and return real results are : -

+ add
- subtract
* multiply
1 real division

Example :

The operators + and - can be used to denote the sign of the operand.

Example : -sin (x)
+2.67

Integer types may also be used in real arithmetic. 'The operators +, - and * may
be used with one real and one integer operand to produce a real result. The
operator / may be used with two integer operands to produce a real result.
Retnember if the two operands are integers an integer result will be produced
except when the operator is 1.

Examples : 8 1 5 = 1.6
2.5 + 1 = 3.5
4.5 * 2 = 9.0

A s well as the operators described above Pascal provides a nutnber of standard
functions which may be applied to reals. The standard functions are described in
chapter 7.

Note that real is not an ordinal type and cannot be used with the standard
functions pred and succ. Nor can it be used as an array index or base type of a
set.

5.3.1.3 Boolean type

A value of type boolean is one of the logical truth values true or false. True and
false are predefined ordinals such that

pred (true) = false
succ (false) = true

5.3.1.4 Char type

A value of type char is an element of the Q L character set. The Q L character set
consists ofthe ASCII character set. which is represented by the ordinal values 0 to
127, and the Q L specific characters, which are represented by the ordinal values
128 to 255. The full Q L character set and equivalent ordinal values (ASCII codes)
are given in the QL User Manual. Throughout this manual the character set will
he referred to as the QL ASCII set.

A value of type char is an ordinal value, the ordering being defined by the QL
ASCII codes. Thus

succ ('A') = 'B'
pred ('0') = 'I' since ASCII code for 'I' is 1 less than

the code for '0'

The standard function ord is used to map the character set onto a set of non
negative integers starting at zero and the function chr maps the ordinal number i
onto the equivalent character. The set of integers onto which ord maps the chacter
set is the equivalent QL ASCII code of each character. Similarly chr maps a QL
ASCII code onto the corresponding character. Thus

ord ('0') = 48
o r d (' 1 ') = 49etc.

chr (48) = '0'
chr (ord ('0')) = '0'

5.3.2 Enumerated and Subrange types

Enumerated types are user-defined scalar types whose definition indicates an
ordered set of values by enumerating the identifiers which denote the values.

'type' ident = '(' ident { ',' ident) ')'

Example :

type colour = (black, blue, red, magenta, green cyan,
yellow, white)

The relational operators can be applied to enumerated types, as can the
standard procedures pred, succ and ord. Thus using the above example

succ (green) = cyan
pred (white) = yellow
ord (red) = 2
ord (yellow) = 6

Note that the boolean type is equivalent to an enumerated type

(false, true)

A variable may take a range of values which is a subrange of the value described
by some ordinal type. Its type is then defined to be a subrange of the host type.

subrange-type = constant '. .' constant

The constants must both be of the same ordinal type.

Example :
age : 1..100 ;
subco lour : blue..green; C us i ng t he above co l ou r

d e f i n i t i o n >
a s c i i : "0 ' . . I - ' ; C t h e A S C I I charac te r s e t >

Each value of a subrange is taken as being of the host type and operations on the
host type can also be applied to operands of the subrange. Thus the functions
'ord', 'succ' and 'pred' can be applied to subranges and 'chr' can be applied to a
subrange of type char.

Note that the compiler only allows fifty distinct subranges.

5.3.3 Array Type

array-type = 'array' '1' index-type {','index-type)']' 'of' type

An array consists of a fixed number of components, all of the same type called
the base type. Each component of the array is accessed by the array variable and

an index. The type of the base can be any type, the type of the index must be an
ordinal type.

Example :
va r l e n g t h s : a r r a y C1..81 o f i n t e g e r ;

i d e n t i f i e r : a r r a y C1..2Ol o f char ;
code : a r r a y [l e t t e r] o f i n t e g e r ;
m : a r r a y C1..101 o f a r r a y C1..201 o f char ;

The lower bound of the array must lie in the range -8388608 to t8388607.

Note that Computer One Pascal does not support packed data structures. The
compiler will ignore the word 'packed' when it appears before the word array,
record, set or file.

When accessing arrays the array index can be an expression, which is of the
index type.

Example :

l e n g t h s Cx mod 81 := y * z ;
cur rcode := code C c u r r l e t t e r 1 ;

where x is of type 'integer' and currletter is of some user defined type -letter'

For multi-dimensional arrays the declaration can be abbreviated. For example
the array m declared above can be declared as follows

v a r m : a r r a y C1..10,1..201 o f char

A multi-dimensional array is accessed in the same way as a single dimension
array, using a number of indices. For example m could be accessed as follows

m C2,61 := ' a ' ;
m C21 C61 := ' a ' ; € e q u i v a l e n t t o above 1
c u r r c h a r := m C x, y 1 ;
m C 1 1 C21 := m L31 C21 ;

If two arrays are of the same type, (see 5.3.8 on type compatibility) then it is
possible to assign the values of one of the arrays to the corresponding elements
of the other array in a single assignment statement.

Examples :
v a r x : a r r a y C 1..10, 1..80 1 o f char ;

The statement

copies 80 characters from x [I] to x [2].

t y p e l i n e = a r r a y C1..801 o f char;
v a r t h i s l i n e : l i n e ;

f u l l t e x t : a r r a y C1..1001 o f l i n e ;

f u l l t e x t C c u r r l i n e I := t h i s l i n e ;

In this example fulltext is a hundred line array, each line being 80 characters.
Since thisline is of type line and each element of fulltext is of type line the two are
assignment compatible.

5.3.3.1 String arrays

In Computer One Pascal the data structure of type

a r r a y C l . .n l o f c h a r

is called a string array and has a number of properties which do not apply to
other arrays. For example the string

'hello there'

is a constant string array of type array [I.. 111 of char.

Variables of this type are string array variables of length n. A string array,
whether constant o r variable is assignment compatible (see 5.3.8.1) with any
string array of the same length.

Example : If we have a variable string array declared as

v a r c i t y : a r r a y C1..81 o f cha r

then we can write the statement

c i t y := 'London ' ;

String arrays, unlike other arrays can be used as parameters of write statements.

Example : writeln ('city is ', city)

39

String arrays of equal length may be compared using the relational operators.
These operations use the convention used in dictionary ordering when
comparing string arrays.

Examples : If city = 'London ' then
'ABC' < 'BCD'
'ABC' < 'ABD'

The above two comparisons are only true if all characters are the same case,
either all upper or all lower, since when using the ASCII character set all upper
case letters have lower values than the lower case letters. Thus

'A' < 'a'
'Z' < L a '

'XYZ' < 'abc'

5.3.4 Record Type

It is often convenient to organise a collection of data in which the items are not
all of the same type. For this purpose Pascal provides the record. A record is a
structure with a fixed number of components, called fields. Unlike an array
these fields need not be of the same type.

record-type = 'record' field-list 'end' ';'
field-list = [fixed-part [':' variant-part] 1 '

variant-part [';']I
fixed-part = ident { ',' ident) ':' type ';'

{ident{ ',' ident) ':' type ':')

Example :
t y p e person = r e c o r d

name : a r r a y [I. .201 o f char ;
sex : (male, female ;
age : 1 . . 120 ;
end ;

v a r p : person ;

p can be assigned to as follows

p-name := 'Gunn Ewan A . A .
p . sex := male ;
p - a g e := 2 ;

As with arrays, Computer One Pascal does not support packed records.

In addition to fixed record fields, as shown in the example above, records may
also have a variant part, which allows variables to be of the same type, but to
differ in structure. Using the above example we might wish to add a field to the
record giving the place of birth, if the person is a national, or giving the country
of origin and date of entry if the person is foreigner. The record definition would
be as follows

t y p e o r i g i n = (n a t i o n a l , a l i e n) ;
person = r e c o r d

name : a r r a y C1..201 o f char;
sex : (male, female) ;
age : 1..100 ;
case c o u n t r y : o r i g i n o f

n a t i o n a l : (p l a c e o f b i r t h :
a r r a y C1..151 o f char);

a l i e n : (c o u n t r y o f o r i g n :
a r r a y [I. . I 5 1 o f char;

d a t e o f e n t r y : r e c o r d
day : 1..31 ;

year : 70..90;
mnth : 1..12;

end);
end ;

The structure of the record is dependent on the value of country - if country is
set to national then placeofbirth can be accessed, if country is set to alien then
the two fields of alien branch of the variant part can be accessed. The field
country is known as the tag field.

Example :
p.name := 'Savedra Sean I . I

p - s e x := male ;
p-age := 24 ;
p - c o u n t r y := a l i e n ;
p . c o u n t r y o f o r i g i n := ' A c o u n t r y
p.dateofentry .day := 27 ;
p.da teo fen t ry .year := 65 ;
p - d a t e o f e n t r y - m n t h := 6 ;

Note that having set the country field to 'alien' it would be illegal. for this
particular variable, to attempt to access the 'placeofbirth' field. It is the
resposibility of the programmer to ensure that this does not happen.

Only one variant part is allowed in a record and must follow the fixed part of the
record. However the variant part of the record may itself have variant parts. If a
field of a variant part is empty the form of the field is

lab-list : ()

5.3.5 Set Type

set-type = 'set' 'of' base-type

the base-type must be an ordinal type

Example :
type months = (Jan, Feb, Mar, Apr, May, Jun, Jul,

Aug, Sep, O c t , Nov, Dec);

year = set o f months ;

A set consists of a subset of elements of the base-type. Thus in the above
example the set year can consist of any subset of the twelve months, including
the empty set and the full set of twelve months. In Computer One Pascal sets
can have up to 128 elements, having ordinal values 0..127. Since the QL
character values go from 0 to 255, the set, set of char, cannot be used. However
the predeclared subrange 'ascii'. which is of type char, has ordinal values which
are the ascii codes 0 to 127.

Sets are built by specifying their elements, separated by commas and enclosed in
square brackets. Expressions appearing in the element specification must all be
of the set's base-type.

Example :
[Apr, Jun, Sep, Nov]

['a'.:z3, 'A'..'Z1]

denotes a set of type year
containing the months having
30 days
denotes set of char containing
only the alphabetic characters
as elements.

The set [I denotes the empty set, the set containing no elements.

The following operators can be used on sets

+ Union
* Intersection
- Difference

= <> equality and inequality
< = = > set inclusion
in tests if element of base-type is in a set

Examples :
['a'] + ['b']
['a','b5] - ['a ' , '~ ']
['a','b9] * ['a','c','d']
['a'] = ['a'.'c']
['a'] <> ['a','b']
['a'] <= ['a1,%']
['a'] <= ['cl,'d']
'a' in ['a'. 'b']

gives ['a', 'b']
gives ['b']
gives ['a']
gives false
gives true
gives true
gives false
gives true

5.3.6 Pointer Type

pointer-type = ' ' type-ident

A variable which is pointed at by a variable of type pointer is a dynamic
variable. A static variable is one that is declared in the program and is
subsequently denoted by its identifier. It has storage allocated to it during the
entire execution of the block in which it has been declared. With dynamic
variables storage is allocated by an explicit call, from the program, to the
standard procedure new and the variable created by new is not referenced
directly by an identifier, but by a pointer to the variable. Linked lists and trees
are easily and efficiently constructed and manipulated using dynamic data
structures.

Although a pointer is bound to a particular variable type by its declaration. all
pointers can be set to the value nil indicating that the pointer does not point to
anything. Pointers can be tested for equality with the value nil.

Note that for pointer type declarations only, a type identifier may be used before
it is declared.

Example :
type link = info ;

info = record
number : integer ;
next : link ;

end :

The field next is a pointer which points to a variable of type info. Thus we can
build up a linked list of variables of type info, as shown below

v a r f i r s t , p t r : L ink ;

f i r s t := n i l ; C i n i t i a l i s e t o n u l l p o i n t e r 1
f o r i := 1 t o n do
b e g i n

new (p t r 1; C c r e a t e a new v a r o f t ype i n f o 1
ptrn.number := i; C s e t t h e number f i e l d o f t h e v a r 1
pt rn .nex t := f i r s t C Link i n c u r r e n t v a r t o L i s t 1
f i r s t := p t r ;

end ;

Note that a pointer that has not been assigned to does not have the value nil, but
is an uninitialised variable.

Dynamic variables cannot be allocated space in the same way as other variables
because the space required is not known until run- time. For this reason Pascal
maintains a heap. A heap is just an area of free storage. which is used for
allocating and releasing the space required by dynamic variables. The space, as
mentioned previously, is allocated using the standard procedure new and is
released using the standard procedure dispose.

If we have a pointer to a type t, then the effect of the procedure call

is to allocate enough space on the heap for a variable of type t and to set p to
point to the variable. If t is a record with a variant part (see 5.3.4) the amount
of space allocated is enough for the largest variant. If the tag fields of the nested
variant-parts are t l . .tn then the call

new (p, t l , t2,. . . , tn)

allocates just enough space for the variants specified by the tag values t l . .tn.
The tag values must be constants and must be contiguous and listed in the order
they are declared. The tag values are not allocated to the tag fields by this

procedure, but the user should ensure that the correct tag values are allocated
when the record is used.

Example :
t ype o r i g i n = (n a t i o n a l , a l i e n) ;

person = r e c o r d
name : a r r a y C1..81 o f char ;
age : 1..100 ;
sex : (male, female) ;
case c o u n t r y : o r i g i n o f

n a t i o n a l : (p l a c e o f b i r t h :
arrayC1..81 o f char);

a l i e n : (c o u n t r y o f o r i g i n :
arrayC1. - 8 1 o f char);

d a t e o f e n t r y : r e c o r d
day : 1..30;
y r : 70..90;
mth : 1..12;

end);
end ;

v a r p : -person ;

The country field is the tag-field and to allocate just enough space for a national
we would use the call

new (p, national)

To release space on the heap use the procedure dispose to remove the space
allocated for a dynamic variable. Variables must not be referenced after the
space allocated for them has been released.

Example :
t y p e L i n k = ^ i n f o ;

i n f o = r e c o r d
number : i n t e g e r ;
n e x t : L ink ;

end ;
v a r

p t r , f i r s t : L i n k ;

f i r s t := n i l ;
f o r i := 1 t o n do
b e g i n

new (p t r ;

ptra.number := i ;
pt rn .nex t := f i r s t ;
f i r s t := p t r

end ;
C use t h e L inked L i s t f o r something here 1
C now g e t back t h e heap space used f o r t h e L i s t 1
C by d i s p o s i n g o f each L ink i n t h e L i s t 1
whi Le p t r <> n i L do
b e g i n

f i r s t := p t r - . n e x t ;
d i s p o s e (p t r ;
p t r := f i r s t

end ;

5.3.7 File types

Since many computer applications involve storage of large volumes of data,
which has to be retained from one program execution to another, the data has to
be held on some secondary storage device, such as a microdrive.

Any stream of information which is held on some external storage medium for
input to, or output by, a computer is called a file. Character devices such as
keyboards and VDU can also be considered as files for the input and output of
data, although there is no concept of the data being stored.

Pascal allows the user to structure files according to the type of data required

Example :
t y p e f l = f i l e o f i n teger ;

f 2 = f i l e o f c h a r ;
f 3 = f i l e o f person;

where person is a user defined record.

There is a predeclared type in Computer One Pascal called text, which is a file of
char and there are two standard files. input and output, which are the default
files for reading and writing.

The use of files in Pascal and Pascal 110 in general are described in detail in
Section 5.7.

5.3.8 Type compatibility

Pascal is a strongly typed language. In some contexts two types may be required
to be the same, but not in others. Even if two types are not the same, they may
still be compatible and in certain contexts this may be sufficient, except in the
case of assignments, where the types must be assignment compatible.

Two types must be the same only for variable parameters of procedures and
functions (see 5.5.1.1).

Two types are compatible if any of the following are true

(1) They are the same type

(2) One is a subrange of the other

(3) Both are subranges of the same host type

(4) Both are set types and have the same base-type

(5) Both are string array types with the same number of
elements.

Type compatibility is required in the majority of cases where two or more
entities are used together, for example in expressions.

Example: type t l = integer;
t2 = 1..100;

t l and t2 are compatible since t2 is subrange of t l

5.3.8.1 Assignment Compatibility

The value of an expression 'expv' of type 'expt' is assignment compatible with a
variable. a parameter or a function identifier of type 'vt' if any of the following is
true (Expressions are described in section 5.4.1.1) :

(1) vt and expt are the same type and neither is a file type
and neither is a structured type with a file component.

(2) vt is of type real and expt is of type integer or a
subrange of type integer.

(3) vt and expt are compatible ordinal types and expv is
within the range of possible values of vt.

(4) vt and expt are con~patible set types and all members of
expval are within the range of possible values of the
base-type.

(5) vt is of type array [l . .n] of char and expt is a quoted
string constant containing exactly n characters.

5.4 STATEMENTS

The statement part of a program defines the actions to be carried out as a
sequence of statements. Statements in Pascal are executed one after another.

statement-part = 'begin' statement {';' statement) 'end'

5.4.1 Assignment statement

The assignment statement is used to assign a particular value to a variable. The
value is specified by means of an expression.

assignment-statement =
(variable-access / func-ident) ': =' expression

5.4.1.1 Expressions

An expression consists of constant or variable operands, operators and function
calls (functions are described in 5.5.2). An expression is a rule for calculating a
value, where the rules of operator precedence and left to right evaluation apply.
The precedence of operators is given below in decreasing order. Operators of
equal precedence are on the same level.

not, bnot
*, I , div, mod, and, band
+, -, o r , bor, bxor
=, <>, <, >, <=, >=, in

The operators bnot, band, bor and bxor treat integer values as bit patterns. They
all take two integer operands, except bnot, which takes a single operand. The

table below shows the result of operations using these operators.

operator action
bnot flip all the bits of the given integer

band 'ands' the corresponding bits of the two integers.
Thus only those bits which are set in both numbers
are also set in the result.

bor 'ors' the corresponding bits of the two integers,
setting all the bits in the result which are set
in either of the operands.

bxor 'ors' the corresponding bits of the two integers,
setting only those bits in the result that are
set in either of the operands but not in both.

A n expression in parentheses is evaluated independently of its preceding and
succeeding operators.

Examples : 2 * 8 + 4 * 2 = (2 * 8) + (4 * 2) = 24
not a and b = (not a) and b
4 * 8 1 2 = (4 * 8) 1 2 = 16
6 + 8 div 4 = 6 + (8 div 4) = 8
6 band 12 = 4
9 bor 5 = 13
9 bxor 5 = 12

'The user must make no assumption about the order of evaluation of operands in
boolean expressions.

A n assignment can be made to variables of any type except files. However the
type of the variable and of the evaluated expression must be assignment
compatible (see 5.2.8.1).

Examples :
a : = 3 + 4 * 8 ;
s := ['al..'z'] ; s is of type set of char
ch : = 3 : is illegal if ch is of type char

5.4.2 Compound statement

A compound statement is a sequence of statements that are executed in the
order in which they are written. The sequence is surrounded by the symbols

begin and end. The statement-part of a program is a compound statement.

Example :
b e g i n

a := 3 ;
b : = 5 ;
c : = a * b

end

Note that no semi-colon is required after the statement before the end, since the
semi-colon is a statement separator and is not part of the statement.

5.4.3 Repetion statements

An important class of action in programs is the loop, in which a statement or
group of statements executes repeatedly, subject to some terminating condition.

5.4.3.1 While statement

while-statement = 'while' expr 'do' statement

The expression must be of type boolean. The expression is evaluated and if the
result is true the statement is executed. This is repeated until the expression
evaluates to false, in which case the statement is not executed.

Examples :
w h i l e x < y do x := f (x) + 1 ;

w h i l e (a <> ' ') and (count <> 10) do
b e g i n

read (a) ;
count := count + 1

end ;

Note that if the expression initially evaluates to false, the statement is never
executed.

5.4.3.2 Repeat statement

repeat statement = 'repeat' statement {';' statement)
'until' expr

The repeat statment is similar in action to the while statement, but the statement
part is executed before the controlling expression is evaluated. Again the
expression must be of type boolean. The statements are repeatedly executed
until the expression evaluates to true. Since the statement part is executed
before the expression, it is always executed at least once.

Examples :
repeat a := f (a) + 1 u n t i l a > b ;

repeat count := count + 1; read (c u n t i l c = ' ' ;

5.4.3.3 The for statement

for-stat = 'for' variable ':=' init-expr ('to' 'downto')
final-expr 'do' statement

The variable must be an ordinal type and the expressions must be of the same
type as the variable. The variable must be declared in the innermost block
containing the loop.

O n entry to the for loop the control variable is assigned the value of the initial
expression. Each time round the loop the value of the control variable is
incremented (decremente,d in the case of downto) until i t is greater than (less
than) the value of the final expression. The initial and final expressions are only
evaluated once. on initial entry to the for loop.

If the final expression is less than the initial expression (greater than in the case
of downto), the statement part is not executed at all. On completion of the for
loop the value of the control variable is undefined and no assumptions should be
made about its value.

Note that Computer One Pascal does not check whether the control variable is
assigned to within a for loop, although no assignment should be made to the
variable.

Examples :
f o r i := 1 t o n do w r i t e (i*i ;

f o r day := monday t o f r i d a y d o
b e g i n

r e a d l n (hou rsworked) ;
t o t a l h r s := t o t a l h r s + hou rsworked

end
C assuming d a y i s a u s e r d e f i n e d o r d i n a l t y p e 1

f o r x := m a x downto m i n d o r e a d l n (a C x 1) ;

5.4.4 Conditional Statements

It is often necessary to make the execution of a statement dependent on some
condition or value. Pascal provides two constructs for this purpose - the
if-statement and the case-statement.

5.4.4.1 If statement

This statement has two forms

(1) if-statement = 'if' expr 'then' statement
(2) if-statement = 'if' expr 'then' statement 'else' statement

The expression in both cases must be of type boolean

If the expression evaluates to true, the statement following the then is executed.
If it evaluates to false, then in case (1) execution continues at the statement
following the if statement, and in case (2) the statement following the else is
executed.

Examples :
i f a < b t h e n a := b ;

i f x + y = z t h e n
b e g i n x := 0 ; y := 0 end
e l s e z := 0 ;

A nested if-statement of the form

if exprl then if expr2 then stat1 else stat2

appears to be ambiguous. In Pascal this statement is defined to be equivalent to

if exprl then
begin if expr2 then stat1 else stat? end

i.e. The else is associated with the nearest if.

Note that there is never a semi-colon before the else and that a semi-colon after
a then would indicate an empty statement.

5.4.4.2 Case statement

The case statement consists of an expression (the selector) and a list of
statements, each labelled with a constant of the same type as the the selector,
which must be an ordinal.

case-stat = 'case' expr 'of'
lablist ':' statement

'end'

The statement selected for execution is the one whose label is equal to the
current value of the selector. If none of the labels is equal to the value of the
selector an error occurs.

Examples :
case i o f

0 : x : = o ;
l : x : = i ;
2 : x : = i * i ;
3 : x : = i * i * i ;
4 : x : = i * i * i * i .

end;

case c u r r c h a r o f
I f , c r : n e w l i n e := t r u e ;

' a ' , ' b ' , ' c ' , ' d ' : l e t t e r := t r u e ;

' 0 ' , ' 1 ' , ' 2 ' , ' 3 ' : d i g i t := t r u e ;
end ;

Case labels are not ordinary labels and cannot be used in a goto statement. Also
the labels in a case statement must be unique, no label appearing in more than
one branch of the statement.

5.4.5 The Goto Statement

goto-stat = 'goto' label

The goto statement is used to cause execution to continue at the statement
prefixed with the given label. The scope of the label is the entire block in which
it was declared. No label can be used to prefix more than one statement.

Note that the effect of jumping into a structured statement from outside the
statement is undefined. Further note that Computer One Pascal does not allow
jumps from inside a procedure to a statement outside the procedure.

Goto statements should be used with care and only in uncommon or unusual
situations, for example when an error is detected.

Example :
b e g i n

i f x < 0 then b e g i n e r r o r := t r u e ; g o t o 1 end ;

5.4.6 The With statement

When processing record variables it is quite usual to refer to several fields of the
record within a small region of the program. For convenience Pascal provides
the with statement, within which record field names may be referenced without
the record variable name, provided the record variable has been specified at the
top of the with statement.

with-stat = 'with' record-var { '.' record-var } 'do' statement

Examples :
v a r person : r e c o r d

name : a r r a y C1..101 o f char ;
age : 1..100 ;
sex : (male, female);
end ;

w i t h person do
b e g i n name := ' P a u l I v e s '; age := 24; sex := male end

After the end of the statement references to fields of the record or records
specified in with statement must be made in full.

5.5 PROCEDURES AND FUNCTIONS

Pascal, in common with most other programming languages, provides a facility
for defining a group of actions in the form of a procedure, to which a name,
called the procedure identifier, is given. The procedure is activated by a
procedure statement, which causes the execution of the group of actions defined
in the procedure.

The use of procedures allows us to textually divide the program into sub-units
corresponding to the sub-problems identified during construction of the
program, thus making the program easier to understand and hence maintain. It
also allows us to define once, a piece of code that is executed at different points
in the program, thus saving memory space and typing time.

In section 5.2 we said that a block consisted of a declaration part and a statement
part, and that within the declaration part was the procedure-and-function-
definition-part.

procedure-function-definition-part =

{ procedure-declaration 1 function-declaration }

Functions are dealt with in this section 5.5.2

5.5.1 Procedures

A procedure declaration is defined as follows :

procedure-declaration = procedure-heading (block 'forward')

The procedure heading consists of the word procedure. followed by a name for
the procedure and an optional parameter list. Parameters are dealt with later in
this section. Following the heading can be the word forward or a block. The use
of forward declarations is also dealt with later in this section. A block is the same
as the program block described earlier and consists of a declaration part and a
statement part. Any variablesdeclared in the procedure block are local to the
procedure and cannot be accessed outside the procedure. Note that since a
declaration part can contain procedure declarations, procedures can be declared
inside procedures, the scope of procedure names being the same as the scope of
any other variables.

A procedure is actived by a procedure statement. which consists of the
procedure name and a list of parameters, if there are any.

Example :
procedure readandwritename ;

cons t namelen = 30 ;
v a r i : i n t e g e r ;

ch : char ;

beg i n
f o r i := 1 t o namelen do
b e g i n

read (ch 1 ;
w r i t e (ch 1

end
end ;

T o activate the procedure we would use the statement

readandwritename ;

5.5.1.1 Parameters

Often it is necessary to introduce new variables to represent procedure
arguments and results. These variables are called parameters and are defined in
the procedure header by specifying a formal parameter list. The formal
parameter list specifies the name of each parameter, followed by its type. When
a procedure with parameters is called. the procedure statement must contain the
procedure name and a list of actual paramters. The form of each actual
parameter is determined by the class of the corresponding formal parameter. In
Computer One Pascal there are two classes of formal parameters - variable
parameters and value parameters.

Value parameters can be considered as input parameters, since their only role is
to pass values into a procedure. The actual parameter map be any expression
which produces a value that is assignment compatible with the corresponding
formal parameter. When a procedure is called with a value parameter the formal
parameter is assigned the value and while the value of the formal parameter may
change during the execution of the procedure, this has no effect on the actual
parameter.

Variable formal parameters are used to denote actual parameters whose values
may change during the execution of the procedure. Each corresponding actual
parameter must therefore be a variable of the same type as the formal
parameter. A variable formal parameter is specified in the procedure heading by
preceding the parameter name by the symbol var. Note that file parameters
must always be var parameters.

When specifying the actual parameter list in a procedure call the following rules
must be observed :

(1) The number of parameters in the two lists must be the same.

(2) Each actual parameter corresponds to the formal parametel
occupying the same position in the formal parameter list.

(3) Corresponding actual parameters must agree as described
above for value parameters and for variable parameters.

The examples below shows a procedure with variable and formal parameters
and some calls to the procedure.

procedure max (var m : i n t e g e r ; x, y : i n t e g e r) ;
b e g i n

i f x > y then m := x
e l s e m := y

end ;

The f o l l o w i n g c a l l s t o t h e procedure max a r e Legal :

max (s i z e Cal, 8, 16);

max (maxval, 8*3, 12-6 1;
max (pA.height, a, b) ; C a and b a r e i n t e g e r s 1

The f o l l o w i n g c a l l s t o t h e procedure max a r e i l l e g a l :
max (8, 16,20); Cac tua l parameter f o r a v a r i a b l e

f o r m a l parameter must be a
v a r i a b l e)

max (maxval, 8, ' v '); C a c t u a l parameter t ype does n o t
correspond t o f o r m a l paramter
t ype

Note that a procedure can call itself, or call another procedure which in turn
calls the first procedure. Such a procedure is called a recursive procedure.

5.5.1.2 Forward declarations

If a procedure A calls a procedure B, which it turn calls A either directly or
indirectly. this is called mutual recursion. This presents a slight problem in
Pascal since the scope rules do not allow a name to be used before it is declared,
and with mutually recursive procedures one of the procedures must make a call
to procedure which has not yet been declared. T o get round this problem Pascal
allows a procedure to be declared forward, i.e. the procedure header, followed
by the symbol forward can be placed before the actual procedure declaration
itself. In the forward declaration, the formal parameter list, if there is one, must
be specified and the formal parameter list must not be specified for the actual
procedure declaration. Note that for every forward declaration there must be a
corresponding actual declaration of the procedure.

Example :
p rocedure a (x,y : i n t e g e r) ; f o r w a r d ;

procedure b ;
b e g i n

a (3, 5) ; C c a l l t o fo rward d e c l a r e d p roc

end ;

procedure a ; CNOTE parameter L i s t must n o t be repeated)
b e g i n

b ; C c a l l procedure b

end ;

5.5.2 Functions

A function is a special form of procedure which describes a computation and
produces a single value as a result. The type of the result must be a scalar or
pointer type. However, whereas a procedure is activated by a procedure
statement, a function is activated by a function designator from within an
expression, the result of the function contributing to the final value of the
expression.

A function declaration is similar to a procedure declaration, but following the
formal parameter list the type of the result is specified.

Example :
f u n c t i o n max (x, y : i n t e g e r) : i n t e g e r ;

The function identifier is used within the function body to denote the result of
the computation. Within the body of the function there must be at least one
assignment of a value of the result type to the function identifier. If during
execution this assignment is not executed the result of the function is undefined.

Example :
f u n c t i o n max (x, y : i n t e g e r : i n t e g e r ;
beg in

i f x > y then max := x e l s e max := y
end ;

The function body, as with the procedure body. is a block and may therefore
contain declarations of variables, procedures, functions etc. Parameter passing
is the same for functions as procedures and the rules stated for procedures also
apply to functions.

Note that although the function identifier is assigned to, it cannot be treated as
an ordinary variable and any use of the function identifier in an expression will
result in a recursive call to the function.

If a function alters the value of a variable which is known outside the function,
this is called a side-effect of the function. Care should be taken with side-effects,
since if the altered value appears in the same expression as the function
designator, the resultant value of the expression will depend on the order of
evaluation of the operands. For example if the variable a , which is in scope
outside a function f. is altered inside the function f then

f (x) + a may not give the same value as a + f (x)

For this reason functions with side-effects should be avoided wherever possible.
59

5.6 INPUT AND OUTPUT

Every computer program manipulates data and there must be some means of
supplying the program with data and receiving results from the program. Data
can be input from devices such as microdrive cartridges and keyboards and can
hc output to devices such as microdrive cartridges and VDUs.

Pascal uses an input stream and an output stream to obtain and deliver
information and. to a large extent. the type of device on which the information is
held. is immaterial. Any stream of information held on an external device, for
input to, or output from a Pascal program, is a file. Note that a keyboard can be
considered as a file since it can supply a program with a stream of information.

5.6.1 Input

A Pascal read statement takes the form

read (file. variable-list)

For the moment we shall only consider the file input which is predeclared in
Pascal and is the default input file. In Computer One Pascal the input file is from
the QL keyboard. For the standard input file a read statement has the form

read (input, variable-list) or
read (variable-list)

Since the input file is the default file it can he omitted from the read statement.
The variable list is defined as

variable-list = variable { ',' variable)

The variables must be of type integer. real, char or a subrange of type integer o r
char, and are written as sequences of ASCII characters which conform to the
numbers and string constants described in section 5.1.

The effect of the read statement is to assign to each of the variables in the list,
values from the input stream. If a variable v is of type integer or real, a sequence
of characters representing an integer or real number is read, leading blanks and
end of line characters being skipped. All numbers read must be separated by
blanks or end of lines. If v is of type char, the next character in the input stream
is assigned to v.

If the current character is the end of line marker. the standard function

eoln (input)

becomes true. If a character is read when eoln is true the character returned is a
blank. Note that the values encountered in the input stream must be assignment
compatible with the variables in the variable list, otherwise an error will occur.

A special form of the read statement is provided to skip over the remainder of a
line. The statement is

readln :

Readln can also take a list of variables.

read (v l , v2, v3) ; is equivalent to
read (v l) ; read (v2) ; read (v3) ;

and

read (v l , v2, v3) ; readln ;
readln (v l , v2, v3) ;

is equivalent to

Example : The statement

r e a d (i n t e g e r l , i n t e g e r 2 , c h a r l , char2, r e a l l , ;

with the following input

is equivalent to

i n t e g e r l := 3 6 ; i n t e g e r 2 := 28 ; c h a r l := ' X ' ;
c h a r 2 := ' Y ' ;
r e a l 1 := 3.67 ;

The statement will also read the following input correctly.

The 45 will not be discarded and will be used next time a read statement is
executed. However, if the statement had been a readln and not a read, the 45
would automatically have been skipped over after the other values had been
read.

5.6.2 Output

A Pascal write statement takes the form

write (file, output-list)

For the moment we will only consider the predeclared file output. which like the
input file, is the default and need not be specified in the write statment.

The statement

writeln

may be used to output a new line character and has the more general form

writeln (output-list)

which causes the new line to be output after the output-list. The output-list is a
list of output-values. separated by commas. The output-values, which are
expressions. must be of type real, integer, string-array, boolean or char.

Examples :
w r i t e (' F o r t y = ', 8*5

will output Forty = 40

w r i t e l n (' A B C ' 1; w r i t e (6=3*2); w r i t e (' x y z ');

will output ABC
truexyz

The exact number of characters output for each value is determined by the way
the value is expressed.

output-value = expr [':' field-width [':' fraction-part]]

Field-with and fraction-part must be expressions of type integer. The field-width

specifies the number of characters spaces used to write out the value. When an
output value is written with no field-width a default field-width is used.

For Computer One Pascal the following default widths are used :

type default width

integer 10
real 16
char 1
string The length of the string array
boolean 4 or 5 (for 'true' or 'false')

If the actual value to be output requires fewer characters than the field-width an
appropriate number of blanks is output before the value. If the specified
field-width is too small for integer or real values the field width is increased to
the minimum required. For a string or boolean the right-most characters are
truncated if the field-width is too small.

The fraction-part of the output-value may only be used when outputting real
numbers and specifies the number of characters after the decimal point. If no
fraction-part is specified the value is output in floating point form. Thus if no
fraction-part is specified the output would be of the form

If the fraction-part was 2 the value would be output as

Remember that there are a number of special characters which help to format
output (see 5.1.3).

So far we have only looked at the standard input and output files. We shall look
more generally at Pascal files.

5.6.3 Files

As stated in section 5.3.7 a Pascal file can be declared to be of any component
type t (except a file iself or a structure with a file field).

type f = file o f t ;

The declaration of a file f automatically introduces a buffer variable f f. f f can
be considered as a window through which existing components of type t can be
read, o r new components of type t can be written. The buffer variable
component is the only immediately accessible component of the file f .

Pascal files are sequential files, i.e. the file components are either read or written
in strict sequential order, and reading and writing to a file cannot be
interspersed.

When the window f T has moved beyond the end of a file the standard end-of-
file function

is true. otherwise it is false.

The following standard procedures exist for file handling :

attach (f , fnanie) - Computer One Pascal uses this procedure to
associate a file with a filename. Fname is
a string-array of any length up to
forty-one characters which gives the
name of the file. The file can be a
microdrive file, a console, a screen or
any other named device, for example the
serial port. Consoles, screens and other
character devices should be declared as
textfiles (see 5.6.3.1).

Example :
a t t a c h (f, 'MDV22myf i l ecda t ' 1
a t t a c h (f, 'SCR~512~256aOxO ' 1

reset (f) - This sets the buffer variable to the start
of the file and, except for console files,
assigns the first component to the buffer
variable f T . If the file is not empty
eof (f) becomes false, otherwise it
becomes true and f f is undefined. Attach
must have been used to associate this f le
variable with an existing file.

rewrite (f) - This procedure is used before first
writing to a file. The current value off
is replaced by the empty file. i.e. the
contents of the file are erased. Eof (f)
becomes true and f is undefined. Attach
must have been used to associate the
file variable with a non-existent file.

p u t (f)

close (f)

- This procedure advances the window to the
next component of the file. If no next
component exists eof (f) becomes true and
f is undefined.

- This procedure appends to f the value of
f T . after which eof (f) remains true and
f T is undefined.

- This procedures closes the file. after
which attach must be used to associate
the file with a name before it is used
again.

delete (fname) - This procedure deletes the named file.

read (f, var list) - Similar to the read statement described in 5.6.1.
but the var list must all be variablesof the type of
the file.
Read (f, var) is equivalent to
v a r : = f A ; g e t (f)

write (f. list) - Similar to the write statement described in 5.6.2,
but values in the list must all be of the type of the
file.
Write (f , val) is equivalent to
f A : = v a l ; put (f)

Example : Suppose we have a file of records, the declaration of the record being

t y p e person = r e c o r d
name : a r r a y C1..81 o f char;
sex : (male, female 1 ;
age : 1..100 ;

end ;

and that someone whose name is K.Jones has been married and we wish to
change the name in the record to K.Smith. Since Pascal does not allow reading
and writing to the same file, we have to read the records from one file, change
the name of the required record and write the records to a new file.

program changename ;

t y p e person = r e c o r d
name : a r r a y C1..81 o f char;
sex : (male, female ;
age : 1..100 ;

end ;

v a r p f i l e l , p f i l e 2 : f i l e o f person;
p e r : person;

b e g i n
a t t a c h (p f i l e l , 'mdv2Zpersons' 1 ;
r e s e t (p f i l e l 1 ; C prepare t h e f i l e f o r read ing)
a t t a c h (p f i l e 2 , 'mdv2-persons2' 1 ;
r e w r i t e (p f i l e 2) ; C prepare t h e f i l e f o r w r i t i n g)
u h i l e n o t eo f (p f i l e l 1 do
b e g i n

per := p f i l e l - ;
g e t (p f i l e l) ;
w i t h p e r do
i f (name = 'K-Jones ') and (sex = female) t h e n

name := 'K.Smith ';
p f i l e2" := per ;
p u t (p f i l e 2 1

end ;
c l o s e (p f i l e l 1 ; c l o s e (p f i l e 2 1 ;

end.

Note that we could have used

read (pfile1,per) and write (pfile2,per)

instead of assignments using the file buffer variable and the get and put
statements.

66

5.6.3.1 Text files

A text file is a file whose components are characters. In Pascal there is a
predeclared type defined as

type text = file of char

Text files are usually divided into lines separated by control characters. In
Computer One Pascal the line separator character is the ASCII control code 10 (
line feed). The standard input and output files described earlier are predeclared
textfile identifiers.

Like other files, textfiles must be prepared for writing using the standard
procedures attach and reset or rewrite. Note that reset and rewrite must not be
used for the standard input and output files.

The standard procedures eof, get, put and close may also be applied to textfiles.
Likewise a textfile f has an associated buffer variable f . Note however that
when using reset from a character device f, such as the keyboard, f .T is not
assigned the first component off , since the buffer variable cannot have the next
input component until it has been entered at the keyboard.

For a character device, such as a keyboard, eof (f) is always false.

The function eoln (f) returns true when the next character available is the end of
line control character, or if the textfile is a console when the current character is
the end of line character. If eoln (f) is true the character blank (= chr (32)) is
assigned to the variable of the read statement.

The standard procedures readln and writeln can only be used for textfiles. As
with the standard textfiles, input and output. read and readln can only be used to
read variables of type integer, real or char and the output procedures write and
writeln can only be used to write variables of type integer, char, boolean, string
and real, if the file is a text file. There is a standard procedure page which
outputs a new page character (chr (12)) to a textfile. This procedure is useful
when the file is a print file.

Computer One has a number of predeclared procedures and functions which
allow you to make full use of the windowing and other I10 facilities on the QL.
These procedures and functions are described in chapter 6.

5.6.3.2 Standard Input and Output channels

T h e standard I10 channnels input and output are set up to use the same file
'con-'. which is a console with parameters '448~180a32x16'. Since this window
does not use the whole screen another window. for example a debugging
window, can be used on another part of the screen without disturbing the
contents of the default I10 window. N O T E that the input and output files may
be redefined using the attach and either reset or rewrite procedures, but the
current input and output channels should not be closed before doing so.

5.6.4 I10 Errors

Computer O n e Pascal detects errors which occur in 110 operations. However. it
is the user's responsibility t o check for this. There is a predeclared integer.
ioresult, which contains the error code after an input o r output operation has
been performed. Ioresult can be inspected by the user pmgram. A value of 0
indicates that the operation completed successfully. otherwise the error code
indicates what t he error was. A list of the errors and their causes is given in
Appendix D. Note that when checking for an error condition the following must
not be used :

i f i o r e s u l t <> 0 then w r i t e (' i o r e s u l t = ', i o r e s u l t

sincc the operation to write the error code will corrupt the value. Instead,
ioresult should be assigned to another variable and that variable should be used
in the write statement.

CHAPTER SIX

STANDARD PROCEDURES FOR THE
QL

This chapter contains a description of the predeclared procedures and functions
which have been added to Computer One Pascal to enable you to make full use
of the power of the QL from Pascal.

The following types have been predeclared and are used as parameter types for
some of the procedures and functions to be described :

t y p e address = 0..1048575 ; C = 2-20 - 1 1
c o l o u r = (black, blue, red, magenta, green,

cyan, ye l lou , u h i t e) ;
dreg = a r r a y C0..71 o f i n t e g e r ;
areg = a r r a y C0..51 o f i n t e g e r ;

6.1 QL 110 AND GRAPHICS PROCEDURES AND FUNCTIONS

The following procedures correspond to the procedures available in SuperBasic.
Note, however, that all the parameters of the functions must be specified. Most
of the procedures take a textfile which has been opened as a console or a screen.
Further information on these procedures can be found by looking up the
procedure name in the KEYWORDS section of the QL user-manual. All of the
procedures which take a file parameter set the piedeclared ioresult variable
described in 5.6.4.

For any procedure which takes a file name parameter, a string array of any
length up to 41 characters may be used. Characters up to the first blank or
line-feed in the string are used. If the procedure operates on a window the
operation takes place in the window attached to the specified file.

In the following three procedures the value of 'stipple' is in the range 0. .3. For
values outside the range only the bottom two bits of the given integer are used.

procedure paper (var f : file ; maincol, contrastcol : colour : stipple : integer) ;

Sets a new paper and strip colour for the given file. The paper colour is used by
the cls procedure and will remain in effect until the next use of paper with this
file.

procedure ink (var f : file ; maincol, contrastcol : colour ; stipple : integer) ;

Sets a new ink colour for the given file. This is the colour in which any text
output to the window will appear.

procedure strip (var f : file ; maincol, contrastcol : colour ; stipple : integer) ;

Sets a new strip colour for the given file. This is the background colour for any
text written to the window. It is rather like highlighting the text.

procedure window (var f : file ; width, depth, x , y : integer) ;

Allows the user to change the size and position of the window. The four
coordinates are specified in pixels and the position is relative to the screen
origin.

procedure border (var f : file; width : integer ; maincol,
contrastcol : colour ; stipple : integer);

Adds a border, in the given colour, to the window. For subsequent operations
on the window, except another border operation, the window size is reduced t o
allow space for the border.

procedure cls (var f : file; part : integer) ;

Clears the specified part of the window. The part cleared will be set to the colour
set with last call to paper for this window.

where if part = 0 the whole window is cleared,
if part = 1 the part above the cursor line is cleared,
if part = 2 the part below the cursor line is cleared,
otherwise the whole window is cleared.

procedure at (var f : file; lineno, columno : integer) ;

Sets the print position in the window. The next text written to the window after
the call will start at the specified position. Position O,Q is the top left corner of
the window.

procedure scroll (var f : file; part: integer; numpixels: integer);

This procedure scrolls the window up or down the specified number of pixels.

where if part = 0 the whole hindow is scrolled,
if part = 1 the part above the cursor line is scrolled,
if part = 2 the part below the cursor line is scrolled,
otherwise the whole window is scrolled

procedure pan (var f: file; part: integer; numpixels :integer);

Pans the window the specified number of pixels.

where if part = Q the whole screen is panned,
if part = 3 the whole cursor line is panned,
if part = 4 the right end of the cursor, including the

cursor position is panned,
otherwise the whole screen is panned.

procedure under (var f : file; on : boolean) ;

Turns underlining on in the window, if the on parameter is true. If the on
parameter is false underlining is switched off.

procedure over (var f : file; switch : integer) ;

Selects the type of printing required and remains in effect until over is next called.

where if switch = 0 characters are printed with the strip colour
as background,

if switch = 1 characters are printed with the paper colour
as background.

if switch = -1 characters are printed over the previous
contents of the window,

otherwise switch is assumed to he zero.

procedure Hash (var f : file; on : boolean) ;

Turns character flashing on in the window, if the on parameter is true. If the on
parameter is false flashing isswitched off. Flash is only effective in low resolution
mode.

procedure csize (var f : file; width, height : integer) ;

Sets the new character size for the window.

width param width in pixels height param height in pixels
0 6 0 10
1 8 1 20
2 12
3 16

procedure recol (var f: file; cO,cl,c2,c3.c4,c5,c6,c7: colour);

Recolours all the pixels in the window,

where cO is the new colour for all black pixels.
c l is the new colour for all blue pixels
c2 is the new colour for all red pixels
c3 is the new colour for all magenta pixels
c4 is the new colour for all green pixels
c5 is the new colour for all cyan pixels
c6 is the new colour for all yellow pixels
c7 is the new colour for all white pixels

The following nine procedures are graphics procedures. The graphics origin of a
window is (0.0) and is the bottom left corner of the window. The origin can be
altered using the scale procedure. All positions are relative to the graphics origin
and not to the current graphics plot position.

procedure arc (var f : file ; sx, sy, fx. fy, angle : real) ;

Draws the arc of a circle in the window from the start point (sx-sy) to the finish
point (fx,fy). The 'angle' parameter is the angle subtended by the arc.

procedure block (var f : file ; width. height, x, y : integer ;
main, contrast : colour : stipple : integer) ;

Fills a block of the specified width and height at the specified (x,y) position in
the window

procedure gcursor (var f : file ; x, y, xrel. yrel : real) ;

Positions the screen cursor at the position (xrel,yrel) relative to the graphics
position (x,y). Note that xrel and yrel are specified in the pixel coordinate
system and x and y in the graphics coordinate system.

procedure curGor (var f : file ; x, y : real);

Positions the screen cursor at the specified (x,y) position, x and y being specified
in the pixel coordinate system.

procedure ellipse (var f: file; x, y , radius, eccentricity, angle : real) ;

Draws an ellipse at the specified (x,y) position in the window. If the
'eccentricity' parameter is 1 a circle is drawn. (See under keyword 'Circle' in the
QL User Manual).

procedure grafill (var f : file: fill : boolean) ;

Switches the 'graphics f i l l ' on or off. If the value is true shapes are filled when
drawn. (See under keyword 'Fill' in QL User Manual).

procedure line (var f : file ; sx. sy, fx. fy : real) ;

Draws a line from the specified start point (sx.sy) to the finish point (fx,fy) in the
window.

procedure point (var f : file ; x, y : real) ;

Draws a point at the specified position (x,y) in the window.

procedure scale (var f : file ; scalev. x, y : real) ;

Alters the scale factor of the window. The default scale is 100. i.e. the window is
divided vertically into 100 units. The position (x,y) specifies the graphics origin.

procedure mode (resolution : integer) ;

Sets the resolution of the screen and the number of colours that can be
displayed,

where if resolution = 8 or 256 resolution is low,
if resolution = 4 or 512 resolution is high,
otherwise resolution is low

procedure baud (rate : integer) ;

Sets the baud rate for communication via the two serial channels. Both channels
are set to the same baud rate. Allowable values for the baud rate are

The baud rate 19200 can be used for transmitting only. The effect is undefined
for other values.

function inkey (var f : file; duration : intcger) : char ;

Waits for the given duration for a character from the given file f . The character.
if input from the keyboard, will not be echoed on the screen. The duration is
specified in fiftieths of a second.

6.2 MEMORY ACCESS PROCEDURES AND FUNCTIONS

The following procedures allow access to memory, with the exception of the
function byte, and should be used with extreme caution. since ANY area of
memory can be accessed.

function byte (whichbyte: intcger; from : integer) : integer

Takes a values in the range 0. .3 and selects that byte value from the given
integer. Byte 0 is the most significant byte of the given integer.

prncedure call (add : address; var datareg : dreg ; var addrreg : areg);

Calls a machine code subroutine. whose start address is the specified address.
The datareg and addrreg arrays contain the values which will be loaded into the
registers dU-d7 and a0-a5. The types dreg and areg are predeclared array types.
Calling this procedure causes the registers to bc loaded from the arrays and a
'JSR' instruction to be executed. The machine code routinc should return using
an 'RTS' instruction. The stack pointer value (a7) immediately before the RTS
must be the same valuc as on entry. The stack beneath this must NOT be
changed in any way. On return, the arrays datareg and addrreg contain the
values which were in do-d7 and a0-a5 when the machine code subroutine
finished.

procedure fill (cuur~t : intcger; from : address; ch: char) ;

Fills count bytes of memory with the character ch starting at the specified
address.

procedure move (count : integer ; from, tto : address) ;

Moves count hytes from the address from to the address tto ;

function peek (add : addrcss) : integer
function peekw (add : address) : integer
function peekl (add : address) : integer

The three functions return the byte, the word and longword at the specified
address. Addresses are rounded down to an even houndary for peekw and peekl.

procedure poke (add : address : val : integer)
procedure pokew (add : address ; vat : integer)
procedure pokel (add : address ; val : integer)

The three procedures poke the given value, a byte, word or long word into
memory at the given address. Addresses are rounded down to an even boundary
for pokew and pokel. Fol- pokew and pokeb the least significant word and byte of
the given value are poked into memory.

function loc (variable-name) : address ;

Returns the address of the given variable. The variablc may be of any type.

function getbytes (var f: file; count: integer; addr: address) : ~nteger :

Attempts to get the specified number of bytes from the given file and puts it in
memory starting at the givcn address. Returns the number of bytes actually
read. This function sets the ioresult variable.

function getline (var f : file; count: integer; addr: address) : integer ;

Reads the specified number of bytes from the given file. or a sequence of bytes
terminated by a line-feed character. Returns the number of bytes read.
including the line-feed. ioresult is set to 'buffer-full' (-5) if no linc-feed is read.
This function allows the cursor control keys to edit the line if it is entered from
the keyboard.

procedure putbytes (var f: file; count: integer; addr: address);

Copies to the given file. the specified number of bytes. starting at the given
address.

procedure sbytes (name : filename; start : address ; length : integer) ;

Saves to the given file the number of bytes specified by length and starting at the
given address. If the file already exists it will be overwritten.

procedure Ibytes (name : filename ; start address) ;

Loads the specified file into memory at the given address.

6.3 OTHER QL PROCEDURES AND FUNCTIONS

procedure beep (pitchl, pitch2, interval, duration, step, wrap,
rand, fuzzy : integer) ;

Activates the QL sound functions. The best way to to use this procedure is to
experiment with different parameter values. The range of values for each of the
parameters is as follows :

duration : -32768..32767
pitchl : 0. .255
pitch2 : 0..255
wrap : 0..15
interval : 0.. 15
step : -8..7
fuzzy : 0.. 15
rand : -32768. .32767

procedure bell ;

Causes the QL to emit a short beep.

function isTV : boolean :

Returns true if the T V option was chosen when the QL was reset.

function islowres : boolean ;

Returna true if the TV or monitor being used is currently in low resolution
mode.

function digit (ch : char) : boolean ;

Returns true if the given char is a digit, i.e. if the char is in the range '1'..'9'. It
returns false otherwise.

function letter (ch : char) : boolean ;

Returns true if the given char is a letter, lower or upper case, false otherwise.

function lower (ch : char) : char :

Returns the given character in lower case. If the character is not a letter the
function returns the given character.

function upper (ch : char) : char ;

Returns the given character in upper case. If the character is not a letter the
function returns the given character.

procedure randornise (seed : integer) ;

Provides a seed for the random number generator.

function rnd (r : integer) : integer

Returns a random number between 0 and r-1.

function rad (degrees : real) : real

Converts the given angle in degrees to radians.

function deg (radians : real) : real

Converts the given angle in radians to degrees.

procedure halt

Halts execution of the program.

procedure setclock (secs : integer) ;

Sets the clock to the given number of seconds.

procedure adjustclock (secs : integer) ;

Adds the given number of seconds to the clock.

function readclock : integer ;

Reads the clock.

CHAPTER SEVEN

STANDARD PASCAL PROCEDURES
AND FUNCTIONS

This chapter contains a description of the standard Pascal procedures and
functions to be found in this and most Pascal implementations.

7.1 FUNCTlONS

En name Argument
type

abs integer o r
real

arctan integer o r
real

chr integer

cos integer o r
real

eof

exp

In

file

integer or
real

integer o r
real

Action type of result

Absolute value of integer o r
arg. real

Arctangent of real
arg.

character whose ascii char
code is the arg.

Cosine of arg. real

true if end of file
reached

e to power arg.

natural log of arg.

boolean

real

real

Fn name Argument
type

odd integer

ord ordinal type

pred ordinal type

round real

sin integer or
real

sqr

sqrt

SUCC

trunc

integer or
real

integer or
real

ordinal type

real

true if arg. is odd

ordinal value of arg.

predecessor of arg.

round to nearest
integer

sine of arg.

square of arg.

square root of arg.

successor of arg.

truncated value of
arg.

type of result

boolean

integer

same ordinal

tYPe
integer

real

integer or
real

real

same ordinal

tY Pe

integer

7.2 PROCEDURES

Proc name Argument Action
type(s)

get file assigns the next component of the
file to the buffer variable.

new pointer and Allocates storage on the heap for a
optional tags dynamic variable of the type pointed

at by the pointer.

Page textfile Writes a new page character
(chr (12)) to the given file.

Proc name Argument
ty pe(s)

Put file

read file and
variable list

readln textfile and
variable list

dispose pointer

reset file

rewrite file

write file and
value list

writeln textfile and
value list

Appends the contents of the variable
buffer of the file to the file.

Reads data items from the file into
the variables in the list.

Similar to read. but move5 to next
end of line indicator.

releases the space allocated on the
heap for the dynamic variable
pointer at by the given pointer.

positions file buffer to start of
file.

creates the file, and prepares it to
accept output.

writes data from the list to the
file.

writes data from the list to the
file and terminates it with an end
of line.

BIBLIOGRAPHY

Pascal from BASIC P.J Brown (Addison-Wesley)

Introduction to Pascal Welsh & Elder (Prentice-Hall)

Pascal User Manual and
Report Jensen & Wirth (Springer-Verlag)

Programming in Pascal P.Grogono (Addison-Wesley)

Software Tools in Pascal Kernigan & Plauger (Addison-Wesley)

Specification for the British Standards Institution
Computer programming BS 6192:1982
Language Pascal

APPENDIX A

COMPILER ERROR MESSAGES

This appendix lists all the compiler error numbers and the corresponding
messages.

error in simple type
identifier expected
'program' expected
')' expected
':' expected
illegal symbol
error in parameter list
'of' expected
'(' expected
error in type
'[' expected
'I' expected
'end' expected
';' expected
integer expected
'=' expected
'begin' expected
error in declaration part
error in field list
'.' expected
'*' expected

error in constant
': =' expected
'then' expected
'until' expected
'do' expected
'to'l'downto' expected
error in factor
error in variable

identifier declared twice
low bound exceeds high bound
identifier not of appropriate class
identifier not declared
sign not allowed
number expected
incompatible subrange types
file not allowed here
type must not be real
tagfield type must be scalar or subrange
incompatible with tagfield type
index type must be scalar or subrange
base type must not be real
base type must be scalar or subrange
error in type of standard procedure parameter
unsatisfied forward reference
forward declared; repetition of parameter list not allowed
function result type must be scalar, subrange or pointer
file value parameter not allowed
forward declared function; repetition of result type not
allowed
missing result type in function declaration
F-format for real only
error in type of standard function parameter
number of parameters does not agree with declaration
type conflict of operands
expression is not of set type
tests on equality allowed only
strict inclusion not allowed
file comparison not allowed
illegal type of operand(s)
type of operand must be Boolean
set element type must be scalar or subrange
set element types not compatible
type of variable is not array
index type is not compatible with declaration
type of variable is not record
type of variable must be file or pointer
illegal parameter substitution
illegal type of loop control variable
illegal type of expression
type conflict
assignment of files not allowed

label type incompatible with selecting expression
subrange bounds must be scalar
index type must not be integer
assignment to standard function is not allowed
no such field in this record
type error in read
actual parameter must be variable
control variable must not be declared on intermediate level
multidefined case label
too many cases in case statement
missing corresponding variant declaration
real or string tagfields not allowed
previous declaration was not forward
again forward declared
parameter size must be constant
multidefined label
multideclared label
undeclared label
undefined label
error in base set
standard file was redeclared
assignment to function identifier not allowed here
rnultidefined record variant
control variable must not be formal

error in real constant: digit expected
string constant must not exceed source line
integer constant exceeds range
empty string not allowed
integer part of real constant exceeds range
label too long
too many nested scopes of identifiers
too many nested procedures andlor functions
too many errors o n this source line

further errors surpressed
too many subranges

element expression out of range

implementation restriction
not implemented

APPENDIX B

RUN-TIME ERRORS

This appendix gives all the run-time error messages and their possible causes.

1. Out of Store
- this error is output when their is no space left

for dynamic variables on the heap or there are
too many nested procedure calls, causing the
stack to run out of space.

2. UnknownInstruction
- A n unimplemented standard procedure or function

function has been used.

3. Arithmetic Overflow
- A n integer expression has a value greater than

maxint or less than -maxint
o r a real expression has a value outside the range

of reals.

4. Divide by zero
- A n attempt has been by to divide by zero.

5. Bad Number
- A read statement, expecting an integer or a real

value received an invalid value.

Example : If x is an integer the statement

read (x)

will cause this error if the input is 'x'.

6. Value outside range
- An attempt has been made to index an array with

array with a value outside the array bounds
or an attempt has been made to a assign a value to

a variable which is outside the range of values
allowed for that variable.

or the value of the selector expression of a case
statement was less than the minimum value or
greater than the maximum value of the case
statement labels.

Example :
va r a : a r ray C1..101 o f i n tege r ;

x : 1..20 ;

a C2*61 := x ; C 12 outs ide index range-
1..10 1

x := 12 - 12 ; C 0 outs ide range 1..20 1

7 . Case value outside range
- The value of the selector expression of a

case statement was within the minimum and
maximum value of the case labels, but was not
equal to any of the labels.

Example :
ch := ' 5 ' ;
case ch o f

end ;

This produces the error because '5' lies between 'I ' and '9', but is not one of the
values of the case statement labels.

8. Nil pointer - An attempt has been made to access a dynamic
variable using a pointer with a value nil.

Example :
t y p e person = r e c o r d

sex : (male, female ;
age : 1..100 ;
end ;

v a r p = -person ;

p := n i l ;
p".age := 20 ; C t h i s causes t h e e r r o r s i n c e p i s n i l 1

The standard procedure new should be used to allocate space for the dynamic
variable and to point p to the variable.

9. End of file - An attempt has been made to read from a file when
eof (f) was already true. i.e. an attempt to
read past the end of the file.

10. Odd Address - The start address in lbytes or sbytes call is odd

11. Can't open default channel
-When a program starts to run there is

insufficient memory to open the standard input
and output files. Try rebooting.

12. File not open for reading
- Read operation attempted on file not open for

reading.

13. File not open for writing
- Write operation attempted on file not open for

writing.

14. File not attached
- Attempt to open a file which has not been

attached.

15. File already open
- Attempt to open a file that is already open.

APPENDIX C

COMPUTER ONE PASCAL SYNTAX
DIAGRAMS

Syntax diagrams provide a convenient notation for defining the syntax of a
programming language. The rule for using a syntax diagram is very simple - if
you can make up a set of symbols by following the arrows of a syntax diagram
then that set of symbols is syntactically correct.

In the diagrams names that are in rectangular boxes refer to other syntax
diagrams ; symbols or words in circles or ovals are the basic symbols of the
language. The name on left hand side of the diagram says what syntactic entity
the diagram is defining.

Example :

From this diagram it can be seen that a program consists of the reserved word
program, followed optionally by a list of identifiers, separated by commas and
enclosed in brackets, followed by a semi-colon, a block and a period. The arrow
going round the bracketed identifier list indicates that the identifier list need not
be specified. The part of the diagram describing the identifier list

indicates that there can be any number of identifiers separated by commas.

The full syntax of Computer One Pascal is given on the following pages.

block L-cI--+

block label declaration

type declaration

variable dedaration C
subprogram def i i t ion m

label -
declaration

Cunslant
declaration

type
declaration

END

variable
declaration

directive

wlmment nriable access statement

function identifier -
variable access vahble identifier

field identiflcr

expression

CASE
slstcmcnl

W H I L E
statement s l a t ~ m ~ n t C

REPEAT
statement

F O R
statement

G O T 0 t
statement

APPENDIX D

SYSTEM ERRORS

This appendix gives the QDOS system error messages. The error number given
for each message is the value to which the predeclared variable ioresult is set
when an error occurs during an 110 operation. Note that the error code 1 is not a
QDOS error.

Number Error Message Possible Cause

not complete

invalid Job
out of memory
out of range

buffer overflow

channel not open
not found

already exists

in use

end of file

drive full
bad name

An invalid reset or rewrite was
attempted on a file. For example.an
attempt to reset a screen, which is
a write only device.
An IiO operation did not complete
before it timed out.

The QL has no memory available.
Parameters for creating a window were
invalid values.
The input is longer than the input
buffer.
Specified channel has not been opened.
File does not exist or no cartridge in
microdrive.
Attempt to create a file that already
exists.
The specified file is already being
used.
The last component of a file has
already been read.
Microdrive cartridge is full.
Specified device does not exist.

Number Error Message Possible Cause

transmission error
format failed
bad parameter
bad or changed medium
error in expression
arithmetic overflow
not implemented
read only Cartridge is write protected.

APPENDIX E

EXAMPLE PROCEDURES

This appendix gives a number of procedures which shows how some of the QL
specific features of Computer One Pascal are used.

program openf i l e ;
cons t maxlen = 41 ;
v a r f : t e x t ;

fname : a r r a y Cl..maxlenl o f char ;
e r r c o d e : i n t e g e r ;

procedure g e t f i l e n a m e ;
E prompts f o r a f i l e name and a t tempts t o open i t 3
v a r i n l e n g t h : i n t e g e r ;
b e g i n

w r i t e (' I n p u t f i l e name : ' ;
E use g e t l i n e t o g e t t h e name so t h a t e d i t L ine f e a t u r e s can

be used 3
i n l e n g t h := g e t l i n e (inpu t , maxlen, l o c (fname)) ;
a t t a c h (f, fname) ;
r e w r i t e (f) ; E open f o r w r i t i n g 3

end ;

b e g i n
repea t E keep t r y i n g t o open f i l e u n t i l success 3

g e t f i lename ;
i f i o r e s u l t <> 0 then
b e g i n

e r r c o d e := i o r e s u l t ;
w r i t e ('Open f i l e f a i l u r e : er rcode =I,
er rcode:3) ;

end

e l s e e r r c o d e := 0 ;
u n t i 1 e r r c o d e = 0 ;
E t h e f i l e f i s now open f o r w r i t i n g . Assume i t i s a

window 3

C now c l e a r t he window, se t up t he i n k and paper c o l o u r and
draw an e l l i p s e 3

paper (f, white, white, 0 ; C no s t i p p l e 1
i n k (f, black, black, 0) ;
c l s (f , 0) ; C c l e a r t h e whole window 1

I draw e l l i p s e a t (50,50) w i t h r a d i u s 30, e c c e n t r i c i t y 0.5
and ang le 45 degrees 1

e l l i p s e (f, 50, 50, 30, 0.5, 45 ;
c l o s e (f ;

end.

program machinecodecal l ;
const codelen = 512 ; C machine code r o u t i n e no more than-

1/2K 1
va r addrregs : areg ; C address r e g i s t e r s 1

data regs : dreg ; C da ta r e g i s t e r s 3
code : a r r a y C l . .codelen1 o f char ;

b e g i n
C l oad t h e machine code r o u t i n e i n t o t h e code a r r a y 3
l b y t e s ('mdv2-mcroutine-cde', Loc (code)) ;
C i f necessary cou ld se t up r e g i s t e r va lues here 3
c a l l (Loc (code), dataregs, addrregs) ;
C can now examine r e g i s t e r s a f t e r the r o u t i n e has r e tu rned 1

end.

INDEX

Address, predeclared type
Areg, predeclared type
Array Type
Assignment compatibility
Assignment statement
Attach predeclared procedure
Available memory

Backing up
Boolean type
Boot Device

Case statement
Char type
Close predeclared procedure
Colour, predeclared type
Commands
Comments
Compile command
Compiler errors
Compiler options
Compound statement
Conditional statements
Console window
Constant definitions
Copy command

Data types
Default device
Delete command
Delete predeclared procedure
Devices

Directory command
Dispose standard procedure
Dreg, predeclared type

Editor
Edit command
Enumerated types
Errors

Compiler
110
Run-time
System

Expressions
Exit command

File names
Files
File type
For statement
Format command
Forward declarations
Functions

Standard
QL specific

Get standard procedure
Goto statment
Graphics procedures and

functions

Help window

Identifiers
If statement
Input and Output
I10 errors
Integer type

Label declaration 31

Machine code routines 75
Maxint 34
Memory access procedures 75
Menu

System menu 4 3
Editor menus 20,24

Menu window 8

New standard procedure 43,44,81
Numbers 28

Output 62

Parameters of procedures and
functions 56
Pascal Syntax 27,90
Pointer type 43
Printing files 9
Procedures 55
Put standard procedure 65,82

QL graphics
QL windows

Read standard procedure 60,65,82

Real type 35
Record types 40
Repeat statement 51
Repetition statements 50
Reset standard procedure 64,82
Rewrite standard procedure 65,82
Run command 12
Run-time errors 12.87

Scalar types 33
Scope 33
Set type 42
Stack sizes 15
Standard Input and Output 68
Startup 4
Statements 48
String arrays 39
String constants 30
Subranges 36
System errors 98

Text files 67
Type compatibility 47
Type definitions 32
Types, data 33

Variable declarations 32

While statement 50
Window procedures and

functions 69
With statement 54
Write standard procedure 62,65,82

Computer One - Software Problem Report - PASCAL

Name ... 1 Return to

Address/ Computer One Ltd.,
(Science Park,

... 1 Milton Road,
1 Cambridge CB4 4BH.
I ...

Telephone Number :

Nature of Problem (tick): Documentation error[] Software error[]

QDOS Version No.

... Master Cartridge Name

Software Error : Please describe problem in as much detail as possible, giving
the keystroke sequence which caused the error. (enclose listing i f possible) -

Documentation Error : Please include page number in error description

Comments or Enquiries :

