

()

Prospera Software
7 LANGUAGES FOR MICROCOMPUTER PROFESSIONALS

/LICENCE AGREEMENT

All material on the enclosed disc(s) and in any accompanying manual Copyright © 1982,
1983, 1984, 1985 Prospero Software ("the Licensor''). The Software recorded on the enclosed
disc(s) is proprietary and its use is offered to you subject to the terms set out below.

PLEASE READ THESE TERMS
BEFORE BREAKING

THE
SEALING STRIP

If you cannot accept the terms, then return the unopened packet to the dealer from whom
you bought it: he will refund the price which you paid. If you accept the terms, then (a) break
the seal on the disc:your doing so will constitute acceptance of the offer on the terms set out
below: the contract will be made at the time of opening: the Licensorwaives the requirement
that acceptance must be communicated to the offeror.
(b) complete the registration card and send it to the Licensor: only if you do so will you
receive notification of updates and qualizy for technical support.

Terms Governing the Use of the Software

1. These terms govern the following material ("the Proprietary Material") (a) The software
encoded onto the disc(s) ("the Software") and (b) Updates to the Software issued by the
Licensor and taken by the User from time to time during the currency of these terms ("the
Updates"). If the User completes the registration card and sends it to the Licensor1 the
Licensor will from time to time send notification of Updates to the User at the User's
registered address and the user will have the opportunity of taking those Updates on
payment of the relevant handling charges.
2. On breaking the seal and in consideration of that part of the payment made by the User to
the dealer which is made to the dealer as agent for the Licensor, the Licensor grants to the
User a non-exclusive, non-transferable licence ("the Licence") to use the Software and the
Updates on the single microcomputer which is specified on the registration card.
3. The term of this Licence shall commence on the date of opening of this packet and shall
be indefinite but the licensor shall have the right to terminate the Licence on not less than
fourteen days' notice in the event of (a) breach by the User of these terms or of the terms of
any other agreement between the Licensor and the User (b) the User (being a corporation)

)

entering into liquidation whether compulsory or voluntary except for the purpose of
amalgamation or reconstruction or (being an individual) committing any act ofbankruptcy
or making any assignment for the benefit of creditors. Immediately upon termination the
User shall return all Proprietary Material to the Licensor.
4. (a) All intellectual property and copyright in the Proptietary Material are and will remain
the property of the Licensor. (b) The User may make such copies of the Software as are
reasonably required for the proper use of the Software and for security or archival
purposes provided that each such copy carries a full and sufficient eye-readable copyright
notice in acknowledgement of the Licensor's intellectual property rights. Such copies will

1-..J -'7- ~-;

LJ;>. ':}'L;) 'f " -h. (l. 'fi, I ~ I ;.. ' 1- Prospera Software (tv\\ ..\¢(_ (: \)." (., ? .. \ Yi"v I

7 LA.\ '(a ''\(;1-:s H >H ~ IICHOCOi\ 11'1 "''EI\ 1'1\0FJ.'.SSIO:\!J\I.S
u f ~tq'\- F ~' t -'.= tQ '~

C ,._lt...G" 5 + M ff' ,........., 1't~:;J\I~ r-.;9
•

r

(

1\1 ,(H :1' < :,\I'IT,\I .S I'I .E: \SI•:

PHO D l JC' 1 · N/\ iVt E P.N .. fqr_tr.sm~ 77.. Version rrmQ .. l.L for .. QL

SI•:Hi t\ I, NUMBEH1.326.

Pl J IH :IJ ,\SEH'S N/\l\1 E ···'· · ,.·-···· ·' ··· ····· ·· ·· ·· -'"' ' ···

J '()S I' I 'I ()1\1 :-:-: =:-:-.... :

C :C) ;\:11': \ NV -....

i\ I J IJ BESS

..... ,

..-... ' -.. - ' , .. -..... .. -.... -.. -.. -... ... · -.. .

' l't·:J .t·:-Pti(JNE , ~ _ .. _

SIG N!\' ['(JHE ,,_. ~

OPEHi\TI N(; SYSTI~ i\-1 ...

N:\~1 E OF I H :i\1 .EH · ... • .. . --.. : 7. -~· -""' _, __ _ , : .. ~-...... • ,

lli\'1'1 ·: \VII

......... ~.;:.:- .. :•. -:-: ~ ,. ····· · ·- ······

• •I • • • • • • • • ~ o o · : • •, • • , • • • • • •• •• f, • •• • ,. t • . , , • ., . , ,., , • • • , , • ••••• , • • • 0 • • • • ·.

To quali(v for technical support a nd til ~ \\ J'{' lc'dS(~S il l
concessionary pric<~s . y ou HlUS/J'(~gisl<'l' _\'<HI! ' pt1 1·ch<1s<' ol'
this sol'lw aru hy r< ~turning this <'ttl'd l() tiH' addJ ·t~ss l>clo\\ .

P•·osper·o Soft vvare Li 111 i ((~d
HJO Castdnau
London SVVt:3 DDll
England

'I'll . \ ,\'1\.)'()(I

·---

PRO FORTRAif-77

USER MANUAL

Version mmq 1.1
for Sinclair QL

with QDOS

March 1986

Copyright (C) 1985 Prospero Software

190 Castelnau
London SW13 9DH England

PRO FORTRAN-77

USER MANUAL

Version mmq 1.1
for Sinclair QL

with QDOS

March 1986

Copyright (C) 1985 Prospero Software

190 Castelnau
London SW13 9DH England

PART I ... PRO FORTRAN-77 OVERVIEW

1 Program units 1

1.1 Compilation input 1
1.2 Matching of actual and dummy arguments . 2

2 Data types 3

2.1 Standard types 3
2.2 Additional types ~
2.3 Additional constants ~

3 Statements 5

3.1 Standard statements 5
3.2 Additional statements 6

4 Input and output 7

4.1 Files and records 7
4.2 Unit numbers 7
4.3 Sequential access 7
4.4 Direct (random) access 8
4.5 END, ERR and IOSTAT options 8
4.6 BACKSPACE, ENDFILE and REWIND 8
4.7 OPEN statement 9

5 Implementation notes 10

5.1 68000 implementat~ons 10
5.2 Resident Library 10
5.3 QL and QDOS 11

Pro Fortran-77 User Manual

1 PROGRAM UNITS

1.1 Comoilation input

The input for a compilation is a file
Fortran program units (main program,
block data).

containing
subroutine,

I -

one or more
function, or

If desired, commonly used sequences of statements may be kept on
separate files, and incorporated in the source at compile time by
use of the statement

INCLUDE 'filename'

where filename is the name of the file containing the statements
to be included at that place in the source. (These statements may
not, themselves, contain any INCLUDE statements.)

The object file contains a relocatable module combining the source
program units. (There should not therefore be more than one main
program in a compilation input.) Listing and map options are
provided - see Part III.

Compilation is terminated by end-of-file on the input.

Main program unit

A main program unit may start with a PROGRAM statement in the form

PROGRAM name

If there is no PROGRAM statement the ~ame .MAIN is supplied. The
name of the first unit in the compilation input becomes the object
module name.

1. 1. 2 SUBROUTINE

A subroutine subprogram must start with a SUBROUTINE statement in
the form

SUBROUTINE name [(dummy-argument-list)]

where "name" becomes the entry name in the object file, and also
the module name if this is the first unit in the compilation
input.

Pro Fortran-77 User Manual I - 2

FUNCTION

A function subprogram must start with a FUNCTION statement in the
form

[type] FUNCTION name (dummy-argument-list)

where "name" becomes the entry name in the object file, and may
also become the module name as above.

1. 1. 4 BLOCK DATA

A block data subprogram must start with a BLOCK
which may optionally specify a name for the unit.
given, the default name .BDATA is supplied.

1.2 Matching of actual and dummy arguments

DATA statement,
If no name is

In the call of a subroutine or function, each actual argument must
match the corresponding dummy argument in length as well as type
(for instance INTEGER*2 does not match INTEGER). When the actual
argument is an expression, rather than a variable or array
element, it is evaluated as an INTEGER. , ___ ./

Pro Fortran-77 User Manual I - 3

2 DATA TYPES

2.1 Standard types

The standard data types are implemented as follows.

INTEGER A 4-byte integer in the range -2147483647
to +2147483647.

REAL A 4-byte floating-point value in a format
corresponding to the proposed IEEE
standard. The 32 bits are allocated as
follows (from most to least significant):
1-bit sign
8-bit binary exponent biassed by 127
23-bit mantissa with an implied 1 in the

most significant (24th) position.
Approximate decimal equivalents:
7-digit precision
range E-38 to E+38

DOUBLE PRECISION An 8-byte floating-point value in the IEEE
format:

COMPLEX

LOGICAL

CHARACTER

1-bit sign
11-bit binary exponent biassed by 1023
52-bit mantissa with an implied 1 in the

most significant (53rd) position.
Approximate decimal equivalents:
16-digit precision
range E-308 to E+308

A pair of values of type REAL, real part
in low memory, imaginary in high.

A 4-byte quantity taking the values O, 1
for .FALSE., .TRUE. respectively.

One byte per element, in ascending address
order.

(Thus a "numeric storage unit" is 4 bytes, and a "character
storage unit" is 1 byte.)

Pro Fortran-77 User Manual I - 4

2.2 Additional types

The following shorter types are provided to allow economy of data
space and for compatibility with other implementations. In
machines based on 8086 or related processors, the shorter types
will also tend to result in more compact object code also. The
68000 architecture on the other hand gives little advantage in
code size from the use of shorter types, and indeed it may even be
adversely affected.

INTEGER*2 A 2-byte value in the range -32768 to 32767.

INTEGER*1 A 1-byte value in the range -128 to 127.

LOGICAL*2 A 2-byte equivalent to LOGICAL.

LOGICAL*1 A 1-byte equivalent to LOGICAL.

INTEGER*4 and LOGICAL*4 are recognised, and treated exactly as
INTEGER and LOGICAL. REAL*B is recognised and treated as DOUBLE
PRECISION. COMPLEX*8 is recognised and treated as COMPLEX.

The shorter types may be used in place of the standard equivalents
in any circumstances where the reduced range is still sufficient.
Any necessary extension is supplied automatically. However, when
supplying variables or array elements as actual arguments in a ·~

subroutine or function call, the user must ensure that length as
well as type matches the dummy argument. {If the actual argument
is a constant or an expression, it will always be automatically
passed as a 4-byte integer.)

In the 68000, all 2- and 4-byte variables must be placed at even
addresses. Declaring INTEGER*1 or LOGICAL*1 may require that a
"slack" byte is introduced before the next variable. Normally
this is done quite automatically by the compiler, but it is
possible to write EQUIVALENCE statements which cannot be correctly
processed, and in such cases the compiler will signal an error.

2.3 Additional constants

Hexadecimal constants may be written anywhere an integer constant
is allowed, for example:

$3AF

Pro Fortran-77 User Manual I - 5

3 STATEMENTS

3.1 Standard statements

The statements of Fortran-77 are all provided. Furthermore, the
Fortran rules about statement ordering within program units (as
illustrated in the diagram below) are fully implemented.

-------------~~~---PROGRAM I SUBROUTINE I FUNCTION I
BLOCK DATA

---~-~---IMPLICIT
PARAMETER 1---------------FORMAT I Any other

Comment l specification
and -------------------------------lines

ENTRY
Statement
functions

DATA 1---------------
Executable

-~---END

~--

3.1.1 Non-executable statements

Type statements (INTEGER etc.)

DIMENSION statement (u~ to 7 dimensions)

COMMON statement (blank and named common)

EQUIVALENCE statement

IMPLICIT statement

PARAMETER statement

EXTERNAL statement

INTRINSIC statement

SAVE statement

DATA statement

FORMAT statement

ENTRY statement

Pro Fortran-77 User Manual I - 7

4 INPUT AND OUTPUT

4.1 Files and records

There are four kinds of file, distinguished by the records they
contain. A record may be

formatted or unformatted
variable-length or fixed-length.

These distinctions are made in the OPEN statement. Formatted and
unformatted records cannot be mixed in the same file, nor can
variable-length and fixed-length.

Unformatted records are normally confined for practical reasons to
filestore files, as are fixed-length formatted records. Variable
length formatted records may be read from or written to filestore
files or devices such as console or printer. However the Fortran
run-time routines are written to avoid .device-dependence, and will
attempt to do whatever they are asked.

Output of variable-length formatted records always includes
interpretation of the first character of a record as carriage
control, to preserve device-independence.

Formatted records are limited in size to a maximum
Fixed-length unformatted records are limited in
bytes. Variable-length unformatted records may
long.

4.2 Unit numbers

of 200 bytes.
size to 32767
be arbitrarily

A unit number is associated with a file, and is the means by which
a program refers to that file. Unit numbers can be in the range 0
to 255.

The standard input and output (unit •) are preconnected when
execution starts. Any other unit must be connected to a file by
means of an OPEN statement before it can be used. At most 15
files (in addition to standard input and output) may be open at
one time.

4.3 Seguential access

Sequential processing is supported only for files of
variable-length records, i.e. no RECL= parameter must be given in
the OPEN statement.

Pro Fortran-77 User Manual I- 8

4.4 Direct (random) access

A file of fixed-length records (RECL specified in the OPEN
statement) must be specified as ACCESS='DIRECT'. Individual
records are addressed using the REC= option in READ or WRITE, and
the file may be updated using a mixture of READ and WRITE
operations to the same unit.

When a direct access file is being
records may be written in any order.
are automatically filled in with null
user is responsible, however, for not
they have been properly written.

4.5 END. ERR and IOSTAT options

created or extended, the
Any "holes" thereby formed
records by the system. The
reading such records before

Generally, if an error occurs during input or output, or
end-of-file is detected during input, a message is issued and the
program is terminated. The END, ERR and IOSTAT options allow the
user to modify this behaviour.

The ERR= and IOSTAT= options can be used in all input/output
statements, except PRINT and the simple form of READ. The END=
option can only be used in a READ statement for sequential input.

In the set of values which can be returned by IOSTAT, zero
indicates successful completion, -1 indicates end of file detected
during READ, and a positive (non-zero) value indicates an error
condition. (For error status values, see Appendix C.) If neither
END nor ERR is also specified, program execution continues at the
next statement, and it is the user's responsibility to detect and
handle abnormal conditions.

In the event of end of file or error during a READ operation, the
values of any variables in the input list are indeterminate.

4.6 BACKSPACE. ENDFILE and REWIND

The syntax for these statements allows the unit number to be
quoted either with or without parentheses, for example

REWIND 6
REWIND (J)

On a sequential input file, the BACKSPACE operation causes the
file to be repositioned so that the next record obtained will be
the one which has just been read. On a sequential output file,
BACKSPACE causes the file to be repositioned so that the next
record written replaces the last record written. (In both cases,
if the file is already at its initial position, BACKSPACE is
equivalent to CONTINUE. On output, a backspace may leave
undefined information in the file.)

·· .. ~

Pro Fortran-77 User Manual I - 9

4.7 OPEN statement

An OPEN statement must be executed to establish a connection
between a unit number and a file before the unit is used for input
or output. The main options in OPEN are described below, and more
detail will be found in Part II.

1. The FILE= option allows the unit to be connected to a
filestore file, a device, or in some cases a window. If no name
is specified, a scratch filestore file is connected; all such
files are deleted at the end of the execution.

2. The RECL= option specifies a record length in bytes and
defines fixed-length records of this length. (A "numeric storage
unit" is 4 bytes, a "character storage unit" is 1 byte.) The file
should be a (named or unnamed) filestore file. If it already
exists the record length must be consistent with the RECL value.

3. The ACCESS= clause must be present if access is DIRECT.

4. The FORM= clause must be present if the file is formatted and
access is direct, or unformatted and access is sequential.

s. The ERR= or IOSTAT= options may be used to allow errors in the
file open operation to be handled within the program. Note however
that a failure to find a named file will not be detected at the
time of the OPEN statement, but when the first READ or WRITE is
executed.

Pro Fortran-77 User Manual

5 IMPLEMENTATION NOTES

The purpose of this section is to bring together a number
relating to the implementations of Pro Fortran-77 on
hardware and/or operating system environments.

5.1 68000 imPlementations

I - 10

of points
different

The instruction set of the Motorola MC68000 and related processors
(68008, 68010, 68020) uses in many situations a signed 16-bit word to
contain address displacements. The Pro Fortran-77 implementation for
68000-based machines generally avoids any limitation of program
components arising from this format, but there are inevitable
consequences for efficiency, and the developer of large programs
should be aware of this underlying fact.- Thus for example there is no
restriction on the sizes of Fortran COMMON blocks, but if a block
exceeds 32K bytes some of the data becomes more difficult to access,
and if a program is to be "tuned" Cor the machine it may be best to
rearrange or split such a block.

One specific limitation is made: it is that the generated code for one
program unit (main program, subroutine or function) cannot exceed 32K
bytes. As many program units as desired may be linked to form a
complete program.

No hard restrictions are placed on the sizes of arrays, on COMMON
blocks, or on local data storage.

5.2 Resident Library

This implementation introduces the concept of a "resident library"
which contains commonly-used routines (concerned for example with
input/output). By removing these routines from the conventional
library, link times and object program sizes are reduced. In a
multi-tasking environment, the resident library ("PRL") is shared
between concurrent tasks. There is also a facility for one object
program to execute another, and again the resident library is shared
between parent and child. The PRL must be installed before executing
the compiler or any Fortran object program; installation is described
in Part III. Once installed it remains available, and each execution
of the compiler or an object program establishes a connection with it
as part of its initialisation process.

(It should perhaps be made clear that the PRL is a set of slave
routines, and is not in any sense an interpreter. Each object program
is compiled, and linked selectively with the non-resident library.
The resident routines are simply a selection from the complete library
of those which are likely to be needed by a majority of programs.)

Pro Fortran-77 User Manual I - 11

5.3 QL and ODOS

On the QL, two versions of the resident library (PRL) are supplied. A
ROM version is needed to run the compiler. This will also run Fortran
object programs. In addition, a "software" PRL is supplied, to enable
Fortran object programs to be run on other machines.

Fortran object programs may be run under the QL Toolkit ("EX"), in
which case the standard input and output, which become unit * in the
Fortran program, can be specified. If the Toolkit is not used
("EXEC") there is an opportunity to specify them before the main
program is entered. In either case, the default is to keyboard and a
standard window.

In each object program (and in the compiler) there is a field which
can be used to define a default device for the program, and a utility
is provided to modify this field in the linked binary file. The
default device in an object program determines where anonymous files
(that is, having no name given in the OPEN statement) are placed. In
the compiler, it defines the device which will be searched for a file
with further configuration details. More information will be found in
Part III.

A number of routines are provided as Fortran analogues of the
window/graphics output routines available in SuperBASIC. These are
described in Part II, sections 8.2.13 thru 8.2.17.

PART II - PRO FORTRAN-77 LANGUAGE DEFINITION

1 Lexical aspects 1

1. 1 Characters 1
1. 2 Lines 1

1. 2. 1 Comment line 2
1. 2. 2 Initial line 2
1. 2. 3 Continuation line 2

1. 3 Statements 2
1.4 Tokens 3

1. 4. 1 Special symbols 3
1. 4. 2 Names 3
1.4.3 Constants 4
1. 4. 4 Statement labels 6

1. 5 Source file inclusion 6

2 Programs and subprograms 7

2.1 Main program 7
2.2 SUBROUTINE subprogram 8
2.3 FUNCTION subprogram 9
2.4 ENTRY statement 10
2.5 BLOCK DATA subprogram 1 1

3 Specifica4ion statements 12

3.1 Data types 12
3.2 Type statements 12
3-3 IMPLICIT statement 13
3.4 DIMENSION statement 14
3.5 COMMON statement 15
3.6 EQUIVALENCE statement 16
3.7 SAVE statement 16
3.8 EXTERNAL statement 17
3-9 INTRINSIC statement 17
3.10 PARAMETER statement 18

4 Definition statements 19

4.1 Statement function definition 19
4.2 DATA statement 20
4.3 FORMAT statement 21

4.3.1 Real descriptors 22
4.3.2 Integer descriptor 25
4.3.3 Logical descriptor 26
4.3.4 Character descriptor 26

4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13

Apostrophe editing
H editing
T editing
X editing
Slash editing
Colon editing
S editing
P editing
BN and BZ editing

Executable statements

5.1 Assignment statements
5.1.1 Arithmetic assignment
5.1.2 Logical assignment
5.1.3 Character assignment
5.1.4 Label assignment

5.2 Control statements
5.2.1 GOTO statements
5.2.2 Arithmetic IF statement
5.2.3 Logical IF statement
5.2.4 Block IF statement
5.2.5 ELSE IF statement
5.2.6 ELSE statement
5.2.7 END IF statement
5.2.8 CALL statement
5.2.9 RETURN statement
5.2.10 PAUSE statement
5.2.11 STOP statement
5.2.12 CONTINUE statement
5.2.13 DO statement
5.2.14 END statement

5.3 Input/output statements

6.1
6.2
6.3

5.3.1 READ statement
5.3.2 WRITE statement
5.3.3 PRINT statement
5.3.4 BACKSPACE statement
5.3.5 ENDFILE statement
5.3.6 REWIND statement
5.3.7 OPEN statement
5.3.8 CLOSE statement
5.3.9 INQUIRE statement

Expressions

Arithmetic expressions
Logical expressions
Character expressions

27
27
27
27
28
28
28
29
29

30

30
30
31
31
31
32
32
33
33
34
35
35
35
36
37
38
38
39
39
40
41
44
46
46
47
47
47
48
49
49

51

52
53
54

7 Function references 55

7. 1 Statement functions 55
7.2 Intrinsic functions 56
1·3 External functions 59

8 Implementation-dependent aspects 60

8.1 Fortran-77 files and QDOS 60
8. 1. 1 Files and records 60
8. 1. 2 File formats 63
8. 1. 3 Unit numbers 65
8. 1. 4 Random access 65
8. 1. 5 Operations on External and Work files 66
8. 1. 6 Input/output restrictions 67

8.2 Additional library routines 68
8. 2. 1 GETCOM 68
8.2.2 RANDOM 68
8.2.3 I AD DR 68
8.2.4 I PEEK 69
8. 2. 5 POKE 69
8.2.6 EXECPG 69
8.2.7 EXITPG 71
8. 2. 8 AFFIRM 72
8.2. 9 IHANDL 72
8. 2. 10 DATE 73
8. 2. 11 TIME 73
8. 2. 12 TRAP 73
8. 2. 13 MODE 73
8. 2. 14 Window routines 74
8. 2.15 Print style routines 78
8. 2. 16 Cursor positioning routines 79
8. 2. 17 Graphics drawing routines 80

8.3 Storage allocation 82
8. 3. 1 Overall layout 82
8.3.2 Formats of variables 84

8.4 Interfacing to assembler 85
8. 4. 1 Use of assembly language 85
8.4.2 Choice of assembler 85
8.4.3 XDEF/XREF linkage 85
8. 4. 4 COMMON data 88
8.4.5 Preservation of registers 89
8.4.6 Arguments 89
8.4.7 Function results 89
8.4. 8 Reserved section names 89

Index 90

·- - - -----·-·-··-·-------·-·--- ----

Pro Fortran-77 User Manual II - 1

1 LEXICAL ASPECTS

Considered from the aspect of its representation on the printed page,
rather than with regard to its syntax or meaning, a Fortran program
unit can be viewed as being constructed of characters grouped into
lines and statements.

(The notation used, throughout this manual, for defining the Fortran
syntax is described at the start of Appendix A.)

1.1 Characters

Except within comments and character constants (see below), a program
unit is written using 3 kinds of characters:

character = letter digit

letter = A I B I C D I E
N I 0 I p I Q I R

digit = o I 1 I 2 I 3 I 4
special-character = blank

(I)
blank = ASCII-code-32
tab = ASCII-code-9

special-character

F I G I H I I I J K L
I s I T I u I v I w X y
51617 819
tab = + : - : • I I f

I I t
J I • I

M
z

Letters may be in upper- or lower-case, and, except within character
constants (see 1.4.3.6) and Hollerith descriptors (see 4.3.6), no
distinction is made between the upper and lower case of a letter.

After the first six positi ons on a line- see 1.2 below- blanks and
tabs have no meaning (again, except within character constants), and
may be freely used to improve the layout of the program text. In
particular, names (see 1.4.2) may contain embedded blanks, and
word-symbols (see 1.4.1) need not be separated by blanks from
neighbouring names.

1. 2 Lines

Lines consist of up to 72 characters. The character-positions are
called "columns", starting at 1 for the left-most character position.
Any characters beyond column 72 are ignored.

Tab characters encountered in the source file are expanded into one or
more blanks, until the next "tab stop" is reached, these being at
columns 1, 9, 17 and so on (every 8 columns).

A program unit is composed of 3 kinds of lines.

Pro Fortran-77 User Manual II - 2

1.2.1 Comment line

If column 1 of a line contains the character 'C' {or 'c') or '*', the
line is a comment line; or, if columns 1 onwards of a line contain
only blanks, the line is a comment line. Such a line must be
immediately followed by an initial line or by another comment line,
and does not affect the meaning of the program in any way.

1.2.2 Initial line

If the line is not a comment line, and if column 6 is a blank or the
character 0 (zero), then the line is an initial line. It is the first
line of a statement.

1.2.3 Continuation line

If the line is not a comment line, and if column 6 is any
other than blank or 0, then the line is a continuation line.
line may only follow an initial line or another continuation
statement must not have more than 19 continuation lines.

1.3 Statements

character
Such a

line. A

A statement consists of an initial line optionally followed by up to
19 continuation lines.

Columns 1 thru 5 of the initial line may, optionally, contain a
statement-label (see 1.4.4). In determining the meaning of a
statement, only columns 7 thru 72 of the initial and of any
continuation lines are significant. The contents of these columns
consists of a sequence of lexical "tokens".

An END statement must not have any continuation lines.

Pro Fortran-77 User Manual

1.4 Tokens

These are of 4 kinds:

token = special-symbol name constant statement-label

1. 4. 1 Special symbols

The special-symbols are tokens with special fixed meanings.

special-symbol = = I , I (I
+ I - I • I
.LT. I .LE.
• OR. I .AND.
word-symbol

) • I
• I

I I •• I
• EQ. I

I .NOT •
.NE. I .GE. I .GT •
I . EQV. I . NEQV. I

II - 3

word-symbol = ACCESS I ASSIGN I BACKSPACE I BLANK I BLOCKDATA
CALL I CHARACTER I CLOSE I COMMON I COMPLEX I

CONTINUE I DATA l DIMENSION I DIRECT I DO I
DOUBLEPRECISION I ELSE I END I ENDFILE I ENTRY
EQUIVALENCE I ERR I EXIST I EXTERNAL I FILE I
FMT I FORM I FORMAT I FORMATTED I FUNCTION I
GOTO I IF l IMPLICIT I INCLUDE I INQUIRE I
INTEGER l INTRINSIC I IOSTAT I LOGICAL I NAME
NAMED I NEXTREC I NUMBER I OPEN I OPENED I
PARAMETER I PAUSE I PRINT I PROGRAM I READ I
REAL l REC I RECL I RETURN I REWIND I SAVE I
SEQUENTIAL I STATUS I STOP I SUBROUTINE I TO
UNFORMATTED I UNIT I WRITE

Note that the word-symbols are not "reserved words"; that is, it is
possible to use STOP, IF, etc. as names (see 1.4.2). The syntax of
Fortran is such that it is always possible to deduce from the context
whether a sequence of characters belongs to a word-symbol or a name.

1. 4.2 Names

Names are used to denote constants, data items (variables or arrays),
procedures (functions or subroutines) and common blocks. They consist
of from 1 to 6 characters, starting with a letter:

name = letter { letter I digit }

Because the case of a letter, and embedded blanks, are not
significant, the following represent one and the same name:

LARRY
Larry
1 a rr Y

Pro Fortran-77 User Manual

Constants

Constants can be classified into three kinds:

constant = arithmetic-constant l logical-constant
character-constant

The first kind, in turn, consists of 4 types:

II - 4

arithmetic-constant = integer-constant I real-constant l
double-precision-constant l complex-constant

Integer constants

integer-constant = [sign] unsigned-integer
sign = + l -
unsigned-integer = decimal-integer I hexadecimal-integer
decimal-integer = digit-string
hexadecimal-integer = $ hexdigit {hexdigit}
digit-string = digit {digit}
hexdigit = digit I A l B I C I D l E l F

The value of the unsigned-integer must not exceed 2147483647.

Examples:

0 -128 1000001 $FF

Real constants

real-constant = [sign] unsigned-real
unsigned-real = <basic-real [E exponent] l digit-string E exponent>
basic-real = <digit-string • [digit-string] I . digit-string>
exponent = [sign] digit-string

E means "times 10 to the power of", and may be in upper or lower case.

Examples:

10.0 1e-10 .314159265E1

1.4.3.3 Double precision constants

double-precision-constant = [sign] unsigned-double
unsigned-double = <basic-real l digit-string> D exponent

D means "times 10 to the power of", and may be in upper or lower case.
Double-precision constants are held to greater precision than real
constants (see 8.3.2). Examples:

1DO .1234567890123456789d-99

Pro Fortran-77 User Manual II - 5

Complex constants

A complex constant is written as a pair of real or integer constants,
the first representing the real part, the second the imaginary part:

complex-constant = [sign] (real-part , imaginary-part)
real-part = real-constant I integer-constant
imaginary-part = real-constant I integer-constant

Examples:

(0 . 5 ' 1.5) -(2.1,-9.5e-6) (1, 0)

Logical constants

The values taken by quantities of type LOGICAL are true and false, and
the corresponding constants are written as .TRUE. and .FALSE.:

logical-constant = .TRUE. I .FALSE.

character constants

character-constant = ' string-element {string-element} '
string-element = string-character I apostrophe-image
apostrophe-image= ''

The string can contain between 1 and 255 (inclusive) 8-bit characters.

Examples:

'INPUT'
''' is an apostrophe'

Pro Fortran-77 User Manual II - 6

1.4.4 Statement labels

A statement label is a sequence of 1 to 5 decimal digits, representing
a value in the range 1 to 99999:

statement-label = digit-string

As usual, blanks may be embedded. The label is uniquely determined by
the value of the digit-string, so that, in particulart leading zeros
are not significant.

1.5 Source file inclusion

It is sometimes useful, particularly when developing large programs,
to be able to keep declarations etc. which are used in more than one
program unit as separate files, and cause them to be included in the
source at compile time. In Pro Fortran-77, the INCLUDE statement is
provided for this purpose. The syntax of the statement is:

INCLUDE character-constant

where the character constant is the name of a source file. The
extension _FOR is automatically supplied by the compiler.

Example:

INCLUDE 'MDV1_commdefs'

Note that only one level of source file inclusion is supported; that
is, an INCLUDEd file may not itself contain INCLUDE statements.

Pro Fortran-77 User Manual II - 7

2 PROGRAMS AND SUBPROGRAMS

The input to the compiler consists of one or more program-units, each
of which may be either a main program or one of 3 kinds of subprogram:
subroutine, function or block data. Formally:

compilation-input = program-unit {program-unit}
program-unit = main-program I subroutine-subprogram I

function-subprogram I block-data-subprogram

In each case, an END statement terminates the program unit, and the
compilation process itself terminates when an END statement is
followed by end-of-file.

An executable Fortran program is composed, in source terms, of a main
program together with zero or more subprograms. The latter may form
part of the same source file as the main program, or be in separate
source files which are compiled individually and then linked together
with the main program to · form the executable program. Execution
commences at the first executable statement of the main program.
Control passes (temporarily) to a subroutine or function subprogram
only when that subprogram is the subject of a CALL or function
reference, respectively. Execution terminates when a STOP statement,
or the END statement of the main program, is encountered.

2.1 Main orogram

If a program unit does not start with a SUBROUTINE, FUNCTION or BLOCK
DATA statement, it is taken to be a main program. A main program can
optionally be given a name, by starting it with a PROGRAM statement.

main-program = (program-statement] program-body
program-statement = PROGRAM name
program-body = specifications

definitions
executable-part
end-statement

specifications = { specification-statement I
format-statement I entry-statement }

definitions = { statement-function-definition I
data-statement I format-statement I
entry-statement }

executable-part = { executable-statement I data-statement
format-statement I entry-statement }

end-statement = END

The "specifications", "definitions" and "executable-partn are each
optional but, if present, must appear in that order. They are treated
in sections 3, 4 and 5, respectively.

Pro Fortran-77 User Manual II - 8

Within the "specifications"
statements must precede all
PARAMETER statements.

part
other

of a program
specification

unit, IMPLICIT
statements except

(For a pictorial representation of the constraints on statement
ordering within each program unit, refer to Part I, section 3.1.)

An example of a trivial but complete main program is:

PRINT *, ' Hello'
END

2.2 SUBROUTINE subprogram

A subroutine subprogram consists of a SUBROUTINE statement, which
specifies both the name by which the subroutine is CALLable from other
program units and any arguments which it needs, followed by a
"program-body", which is structured precisely as for a main program.

subroutine-subprogram = subroutine-statement program-body
subroutine-statement = SUBROUTINE subroutine-name

[([dummy-argument-list])]
subroutine-name = name
dummy-argument-list = dummy-argument {, dummy-argument}
dummy-argument = variable-name I array-name I procedure-name
variable-name = name
array-name = name
procedure-name = subroutine-name I function-name

I * I

As an example of a complete subroutine, the following subprogram
interchanges the contents of two real variables (the actual parameters
could also be array elements):

SUBROUTINE SWAP (X,Y)
W = X
X = y
y = w
RETURN
END

Pro Fortran-77 User Manual II - 9

2.3 FUNCTION subprogram

A function subprogram consists of a FUNCTION statement followed by a
nprogram-body". As for a subroutine, the first statement specifies
the name of the subprogram and any arguments which it needs. It is
possible to specify a type for the function, either as part of the
FUNCTION statement or by a type-statement {see 3.2) or IMPLICIT
statement (see 3.3) within the function's program-body.

function-subprogram = function-statement program-body
function-statement = [type-specifier] FUNCTION function-name

{ [dummy-argument-list])
type-specifier = < arithmetic-type I logical-type I

CHARACTER [* len] >
function-name = name

In order that the function shall return a value to the calling
program-unit, the function-name must appear on the left-hand-side of
at least one assignment-statement within the program-body.

As an example of a complete function subprogram, the following returns
as its (real) result the cube of its (real) argument:

FUNCTION CUBE {X)
CUBE = X ** 3
END

5. \ . \ . ··•. . ' .. ··,· .. ·, \ ;_)_. '.
~ \•,j

=_··-~. ~-

. ' ., .

) ~J \
,. . r4

'II!'/

Pro Fortran-77 User Manual II - 10

2.4 ENTRY statement

A subroutine or a function subprogram may optionally contain one or
more ENTRY statements.

entry-statement = ENTRY name [([dummy-argument-list])]

The name in the ENTRY statement becomes accessible outside the program
unit in the same way as the subroutine- or function-name, enabling it
to be called from other program units, with an optional actual
argument list. Execution begins with the first executable statement
following the ENTRY statement, which itself may appear anywhere within
the program unit except inside a DO loop or a Block IF.

The number and types of the dummy arguments do not have to be the same
as the number and types of the dummy arguments in the SUBROUTINE or
FUNCTION statement.

If the ENTRY is in a function subprogram, the name in the ENTRY
statement refers to a variable which is associated with, in the sense
of sharing storage with, the function-name variable. The two do not
have to be of the same type, except when they are of character-type
when they must be of identical type. This variable must have been
assigned a value at the time of exit from the function.

In the following example, the main program calls the subroutine two
different ways, once using the SUBROUTINE name and once using the
ENTRY name:

PROGRAM main
A = 1.0
B = 2.0
c = 3.0
CALL PERM3 (A,B,C)
CALL PERM2 (A,B)
END

SUBROUTINE PERM3 (X, Y, Z)
T = Z
Z = X
GOTO 10
ENTRY PERM2 (X, Y)
T = X

10 X = Y
y = T
RETURN
END

Although not realistic, this example serves to point up, in
particular, the fact that a dummy argument in an ENTRY statement and a
dummy argument in a SUBRQUTINE/FUNCTION statement which have the same
name are one and the same variable, so far as references within that
program unit are concerned.

Pro Fortran-77 User Manual II - 11

2.5 BLOCK DATA subprogram

The purpose of a block data subprogram is to give initial values {via
DATA statements) to items in named common blocks. This is the only
way common items may be initialised. {Items in blank common may not
be initialised at all.) The statements which can appear in a block
data subprogram are a subset of those which can appear in the other 3
kinds of program unit; in particular, there is no "executable-part",
and no INTRINSIC or EXTERNAL or FORMAT statements may be present.

block-data-subprogram = block-data-statement
block-data-body

block-data-statement = BLOCK DATA [name]
block-data-body = block-data-specifications

block-data-definitions
end-statement

block-data-specifications = {specification-statement}
block-data-definitions = {data-statement}

Example:

BLOCK DATA
COMMON ICBI A, B, C, D
DOUBLE PRECISION D
DATA A, B, C, D I 3*0.0, 1.000 I
END

Pro Fortran-77 User Manual II - 12

3 SPECIFICATION STATEMENTS

Specification statements are non-executable: they are concerned with
specifying to the compiler the types and sizes of data items, and how
storage should be allocated for them.

specification-statement = type-statement I implicit-statement I
dimension-statement I common-statement
equivalence-statement I save-statement 1

external-statement I intrinsic-statement
parameter-statement

3.1 Data types

Named items (constants, variables, arrays and functions) can be of 6
basic types: integer, real, double-precision, complex, logical or
character. Constants corresponding to each of these data types can be
written, as described in section 1.

3.2 Type statements

The most explicit way to give a type to a named item is by use of a
type statement:

type-statement = < non-character-type-statement I
CHARACTER [• len [,]] character-item-list >

non-character-type-statement = <arithmetic-type I logical-type>
typed-item {, typed-item}

len = decimal-integer I (integer-constant-expression) I (•)
integer-constant-expression = constant-expression
character-item-list = character-item {, character-item }
arithmetic-type = integer-type I real-type l

double-precision-type complex-type
logical-type = LOGICAL [* <1 1214>]
typed-item = variable-name I array-name array-declarator
character-item = typed-item [• len]
integer-type= INTEGER [* <11214>]
real-type = REAL [*4]
double-precision-type = < DOUBLEPRECISION REAL*8 >
complex-type = COMPLEX [*8]

If the typed-item is a variable- or function-name,
takes on values of the stated type; if the
array-name or an array-declarator (see 3.4), then
array elements take values of that type.

the item itself
typed-item is an
the corresponding

If an arithmetic- or logical-type includes a "*" qualifier, the
after the "*" specifies the storage allocation; in bytes, for
type. INTEGER is synonymous with INTEGER*4, REAL with REAL*4,
LOGICAL with LOGICAL*4.

digit
that

and

Pro Fortran-77 User Manual II - 13

The following table summarises the properties of the various types:

Type Size Values
-~-~~--~-------------~~---------------------------~--------~~----

INTEGER
INTEGER*4
INTEGER*2
INTEGER*1
REAL
REAL*4
DOUBLEPRECISION
REAL*8
COMPLEX
COMPLEX*8
LOGICAL
LOGICAL*4
LOGICAL*2
LOGICAL*1
CHARACTER*n

4
4
2
1
4
4
8
8
8
8
4
4
2
1
n

-2147483647 to +2147483647
ditto
-32768 to +32767
-128 to +127
approx. 7 digit accuracy, range E(+-)38
ditto
approx. 16 digit accuracy, range D(+-)308
ditto
2 reals (real-part, imaginary-part)
ditto
.FALSE. or .TRUE.
ditto
ditto
ditto
n (>= 1) 8-bit characters

It will be observed that, with a "storage unit" equal to 4 bytes, the
rules of Fortran-77 concerning storage allocation are satisfied,
namely: that a DOUBLE PRECISION or COMPLEX item occupies two
consecutive storage units, and an INTEGER, REAL or LOGICAL item one
storage unit.

The following are examples of legal type statements:

INTEGER*2 I2, K
REAL MONEY, MEALS(7)
COMPLEX CARR(10,_20, 10), CSUM, CSQR
CHARACTER*10 CA(20), CB, CC*12, CF * (*)

3.3 IMPLICIT statement

An IMPLICIT statement is provided as a way of altering the default
type associations based on the first letter of the name (i.e. I thru N
corresponding to INTEGER, the remaining letters to REAL). The syntax
is:

implicit-statement = IMPLICIT implicit-declaration
{, implicit-declaration}

implicit-declaration = type-specifier
(implicit-item {, implicit-item})

implicit-item = letter [- letter]

For the definition of "type-specifier", refer to section 2.3.

Pro Fortran-77 User Manual II - 14

As an example, the following statement classifies as double-precision
all constants, variables, arrays and functions whose names begin with
T thru Z and which are not explicitly typed in a type statement:

IMPLICIT DOUBLE PRECISION (T-Z)

It is important to realise, however, that IMPLICIT statements have no
effect on the types of the Intrinsic functions (section 7.2).

3.4 DIMENSION statement

A DIMENSION statement is used to specify the size and dimensionality
(number of subscripts) of arrays.

dimension-statement = DIMENSION array-declarator
{, array-declarator }

array-declarator =
array-name (subscript-bounds {, subscript-bounds})

array-name = name
subscript-bounds = [lower-bound :] upper-bound
lower-bound = integer-expression
upper-bound = integer-expression I •

The dimensionality of the array may range from 1 to 7.

If the lower bound is omitted, the value 1 is assumed.

The bounds may take any positive or negative values. If all the bound
expressions are constants, the array declarator is a "constant array
declarator", otherwise, it is an "adjustable array declarator". The
upper-bound of the last dimensi~n may, optionally, be an asterisk, in
which case the array declarator is an "assumed-size array declarator".

Adjustable and assumed-size arrays must be dummy arguments.

If a bound expression is not constant, it must have a value at the
time the procedure is entered; it may not contain function calls and
any variables or arrays referenced must either be dummy arguments or
be in COMMON.

The elements of an array are held in storage in a definite order,
which is given by the "subscript value" function. The effect of this
is that, when moving through sequential storage locations, the first
subscript of the array "cycles" fastest. As the simplest example, the
elements of an array declared as

DIMENSION A(2,2)

are held in storage in the sequence A(1,1), A(2,1), A(1,2), A(2,2).

Pro Fortran-77 User Manual II - 15

The following example contains a declaration of an adjustable
dimension array (the first dummy argument), with its size being given
by the second and third arguments (number of rows and number of
columns, respectively):

SUBROUTINE
DIMENSION
. . .
END

INVERT (A, M, N)
A (M,N)

3.5 COMMON statement

A COMMON statement defines the contents of named common block(s)
and/or blank common:

common-statement = COMMON [common-block] common-item-list
{ (,]common-block common-item-list}

common-block = I [block-name] I
common-item-list = common-item {, common-item}
block-name = name
common-item = variable-name I array-name I array-declarator

If the "block-name" is omitted, the items in the corresponding
common-item-list are allocated storage in blank common. A particular
block-name (or blank common) may occur more than once in one COMMON
statement, and/or in more than one COMMON statement; in such cases,
the meaning is the same as if all the common-items had been specified
in one common-item-list, in the order in which they occur in the
source program.

Character and non-charac~er items may not be mixed in the same common
block.

A common-item may not be a dummy-argument.

A block-name may not be the same as that of any subroutine-name or
function-name occurring in that program unit (but may be the same as
the name of a variable, array or statement-function).

Storage is allocated sequentially for the items within each common
block, in the order in which they occur in the source program.

As an example, the following statements define two common blocks: a
named common block contai ning 3 real variables, and blank common
containing an integer array:

COMMON /CB1/ A, B
COMMON IARR(1000), /CB1/ X

Pro Fortran-77 User Manual II - 16

3.6 EQUIVALENCE statement

The EQUIVALENCE statement is used to cause two or more data items to
be allocated storage starting at the same address.

equivalence-statement = EQUIVALENCE equivalence-group
{, equivalence-group}

equivalence-group = (equiv-item , equiv-item {, equiv-item})
equiv-item = variable-element I substring I array-name
variable-element = variable-name I array-element

If the "equiv-item" is an array element, then the number of subscripts
must be equal to the dimensionality of the array (as specified in a
type-, dimension- or common-statement), and each subscript must be an
integer constant expression.

If the effect of EQUIVALENCE statement(s) is to
share storage, then at most one of those items
block.

cause
may be

two
in

EQUIVALENCE statements may have the effect of extending
block, but only beyond the end of the storage allocated for
item (not before the first item).

As an example of an EQUIVALENCE statement, the contents of
data item can be accessed as a byte array by the
specification statements:

COMPLEX C
INTEGER*1 BA(8)
EQUIVALENCE (C, BA(1))

3.7 SAVE statement

items to
a common

a common
the last

a complex
following

The SAVE statement is provided by Fortran-77 to enable the programmer
to ensure that certain variables and arrays retain their values after
execution of a RETURN or END statement in a subprogram. The syntax
is:

save-statement = SAVE [save-item { , save-item }]
save-item = /block-name/ I variable-name I array-name

A SAVE statement with no save-items is treated as referring to all
allowable items in that program unit.

If a common-block name is specified, it refers to all data items in
that common block.

In Pro Fortran-77, all data items, in COMMON or
their values on exit from a procedure (except for
- which are not permitted in a SAVE statement
statements are recognised but have no effect.

otherwise, retain
arguments, of course

anyway). So SAVE

Pro Fortran-77 User Manual II - 17

3.8 EXTERNAL statement

The purpose of EXTERNAL statements is to declare names to be those of
external procedures (subroutines or functions) rather than variables
or arrays. This is only necessary (i.e. there can only be confusion)
if the name is to be passed as an actual argument.

external-statement =EXTERNAL procedure-name {, procedure-name}
procedure-name = subroutine-name I function-name

The name may not be that of a statement function, since this may not
be passed as an actual argument. If the name is that of an Intrinsic
function (see 7.2), then that becomes the name of an external
procedure, and is not available as an intrinsic function within the
program unit containing the EXTERNAL statement.

Example:

EXTERNAL SUBA, SUBB, F

3.9 INTRINSIC statement

An INTRINSIC statement declares names to be the names of intrinsic
functions. In particular, if the specific name of an intrinsic
function (see section 7.2) is to be passed as an actual argument, then
that name must appear in an INTRINSIC statement in the calling program
unit.

intrinsic-statement = INTRINSIC function-name {, function-name }

Example:

INTRINSIC LEN, ATAN

Pro Fortran-77 User Manual II - 18

3.10 PARAMETER statement

The PARAMETER statement enables constants to be given names.

parameter-statement = PARAMETER (param-item {, param-item})
param-item = constant-name = constant-expression
constant-name = name
constant-expression = expression

If the constant-name is of arithmetic type, the expression must be an
arithmetic expression, and the same rules of type conversion apply as
in an arithmetic assignment statement (see 5.1.1). If the
constant-name is logical type, so must the expression be. If the
constant-name is character type, so must the expression be, and the
expression is truncated or blank-filled to fit the length of the
constant-name's type.

Examples:

CHARACTER*20 CC
LOGICAL LC

• •
PARAMETER {LENGTH= 178, CC = 'PERIMETER')
PARAMETER (LC = LENGTH .LT. 200)

Pro Fortran-77 User Manual II- 19

4 DEFINITION STATEMENTS

There are three further types of non-executable statements that have
not been described in sections 2 and 3, and were classified as
"definitions" in section 2. These are:

statement function definition
data statement
format statement

Arbitrarily many (or none) of each of these 3 kinds of
appear, inter-mixed with one another, after the last
statement and before the first executable statement.

statement can
specification

As described in section 2, only the second kind of definition
statement may appear in a block data subprogram.

As is also clear from the formal
statements may appear anywhere at
program unit.

4.1 Statement function definition

syntax in
all within

section 2, format
a (non-block-data)

A statement function is a sort of "local" function subprogram: when
referenced, with an actual argument list, it returns a value, but it
is only accessible within the program unit in which it is defined.

statement-function-definition =
function-name ([stf-argument-list]) = expression

stf-argument-list =variable-name {, variable-name}

The names in the argument-list must be distinct from one another, but
may be the same as variable names occurring elsewhere in the program
unit. In particular, a type-statement can be used to give a dummy
argument a type other than the default type associated with the first
letter of its name.

The expression (see section 6) must be of a type which is assignable
to the type of the function name; for example, if the latter is
logical-type, the expression must be a logical expression. If the
expression contains references to other statement functions, then the
latter must already have been defined earlier in the program unit.

As an example, the following defines a statement function which
converts a lower-case letter to upper-case:

CHARACTER*1 UPPER, CH . . .
UPPER(CH) = CHAR(ICHAR(CH) - 32)

Pro Fortran-77 User Manual II - 20

4.2 DATA statement

DATA statements are used to define initial values of variables, array
elements or whole arrays.

data-statement = DATA data-initialisation
{ [,] data-initialisation }

data-initialisation = variable-list I constant-list I
variable-list = initialised-item {, initialised-item}
constant-list = initial-setting {, initial-setting}
initialised-item = variable-element I substring I

array-name I data-implied-do
initial-setting = [<unsigned-integer I constant-name> •]

< constant I constant-name >
data-implied-do = (implied-do-item {, implied-do-item}

, do-control)
implied-do-item = array-element I data-implied-do

The syntax of "do-control" is given with that of DO statements, in
section 5.2.13.

The "variable-list" may not contain any dummy arguments, nor any items
in blank common. An item in a labelled common block may only be
initialised in a DATA statement in a BLOCK DATA subprogram.

Specifying an array-name in a variable-list is equivalent to
enumerating all its elements in the order determined by the subscript
value function (see 3.4). For example, in the fragment:

INTEGER IA(2,2)
DATA IA I 1,2,3,4 I

the data statement is completely equivalent to:

DATA IA(1,1), IA(2,1), IA(1,2), IA(2,2) I 1,2,3,4 I

The number of items in a variable-list (with an array name counting as
N items, where N is the number of elements in the array) must be equal
to the number of constants in the associated constant-list (with a
repeat-count of M causing the constant to be counted M times). For
example, the following data statement is correct in this respect:

REAL RA(3), RS
DATA RA,RS I 2*0.0, 2*1.0 I

Pro Fortran-77 User Manual II - 21

Character constants may appear in the constant-list. If the size M
bytes of the corresponding character variable is smaller than the
number of characters N in the character constant, then the variable is
initialised to the left-most M characters of the constant; if an the
other hand M is larger than N, the right-most (M-N) bytes of the
variable are initialised to blanks. For example, the following
statements cause C1 and C4 to be initialised to 'A' and 'AB •,
respectively:

CHARACTER*1 C1
CHARACTER C4
DATA C1,C4 I 2*'AB' I

4.3 FORMAT statement

FORMAT statements are used to control
data during "formatted" input and
statement must be labelled, the label
format from an input/output statement.

the editing
output (see
being used

and conversion of
5.3). A FORMAT

to reference the

format-statement = FORMAT format-specification
format-specification = ([format-list])
format-list = format-item { , format-item }
format-item = [repeat-count] repeatable-descriptor

nonrepeatable-descriptor I
[repeat-count] (format-list)

repeat-count = decimal-integer
repeatable-descriptor = D-descriptor

F-descriptor
!-descriptor
A-descriptor

nonrepeatable-descriptor =

E-descriptor
a-descriptor
L-descriptor

apostrophe-descriptor I H-descriptor l
T-descriptor I X-descriptor I
slash-descriptor f colon-descriptor
S-descriptor I P-descriptor l
B-descriptor

Note the mutual recursion in the definitions of "format-list" and
"format-item". The maximum depth of(••) bracketing permitted is 7.
A group of descriptors enclosed within parentheses is called a "basic
group". Basic groups and descriptors can, in turn, be enclosed within
parentheses to form a "group", and this nesting then be repeated (up
to a maximum depth of 7).

The presence of a repeat count before a descriptor or
that descriptor or group to be used for format control
the stated number of times.

group causes
repetitively,

The syntax of the various kinds of descriptor, and the format control
interaction of each with the associated input-output list element, are
described in the following sub-sections. A more general discussion of
"format control" will be found in section 5.3.

Pro Fortran-77 User Manual II - 22

4.3.1 Real descriptors

There are 4 of these:

D-descriptor = D w • d
E-descriptor = E w d [E e]
F-descriptor = F w • d
G-descriptor = G w • d [E e]
w = decimal-integer
d = decimal-integer
e = decimal-integer

The D descriptor is intended for use with double-precision list
elements, but can also be used with real (or complex) elements. The
E, F and G descriptors are intended for use with real (or complex)
list elements, but can also be used with double-precision elements.
If the list element is complex-type, its conversion is specified by a
pair of consecutive real-descriptors, the first of which controls the
real part and the second the imaginary part.

Any of these descriptors may optionally be preceded by a P edit
descriptor (see 4.3.12) to establish a scale factor. Once
established, such a scale factor remains operative for the remainder
of the format-specification, or until replaced by another scale
factor. The "current" scale factor will be denoted by k in the
following subsections. (If no scale factor is explicitly specified, k
is zero.)

D-descriptor

The real descriptor Dw.d specifies an external representation of width
w character positions, with a fractional part consisting of d decimal
digits.

For input, the · w character-positions may contain an integer-constant,
a real-constant or a double-precision-constant, where these terms are
as defined in 1.4.3 above; in the case of a real- or double-precision
constant with a signed exponent, the D or E character may, optionally,
be omitted. Leading blanks are ignored; embedded blanks are ignored
or treated as zeros, depending on BN/BZ editing (see 4.3.13). If a
decimal point is supplied, its position overrides the position implied
by d; if no decimal point is supplied, the position of the implied
decimal point is d digits before the end of the mantissa. If no
exponent is present in the external representation of the constant,
the value assigned to the list-element is the value of the external
constant divided by 1.0Dk, where k is the current scale factor. If
the external constant includes an explicit exponent, the scale factor
has no effect. Reading stops when w characters have been read or (as
a Pro Fortran-77 extension to the Standard) when a comma (,) or
end-of-record is encountered. Use of a comma or end-of-line to
terminate a number is particularly useful when inputting from an
interactive device.

Pro Fortran-77 User Manual

For output, assuming a current scale factor of k,
character-positions consist of the following:

blank(s), if necessary, to make the total width up tow

-, if the value is negative

0, if k is negative or zero, or
first k significant digits of mantissa

• (decimal point)

(-k) zeros and (d+k) digits, if k is negative or zero, or
remaining (d-k+1) digits of decimal representation

D, if magnitude of exponent less than 100

+ or - (sign of exponent)

II - 23

the w

2-digit exponent, if magnitude of exponent less than 100, or
3-digit exponent

If w is less than 6, the value can not be represented in this format
and the output field is filled with asterisk (*) characters.

As an example of output, if the internal value of the list element is
0.123456789D13 and k = 0 and the descriptor is D16.9, then the output
field contains ' 0.123456789D+13'. If k = 3, or if the descriptor
was 3PD16.9, then ' 123.4567890D+10' would be written.

E-descriptor

The real descriptor Ew.d specifies an external representation of width
w character positions, with a fractional part consisting of d decimal
digits.

The rules governing input under this format descriptor are as for the
D-descriptor.

The rules governing output are also as for the D-descriptor, with the
difference that E rather than D is used to introduce the exponent.

The optional "Ee" in an E- or G-descriptor specifies that, on output,
the exponent part is to have e digits; it has no effect on input.

As an example of output, if the internal value of the list element is
-3.14159265 and k = 0 and the descriptor is E14.7, then the output
field is '-0.3141593E+01'. If k = -2, or if the descriptor was
-2PE14.7, then '-0.0031416E+03' would be written.

Pro Fortran-77 User Manual II - 24

F-descriptor

The real descriptor Fw.d specifies an external representation of width
w character positions, with a fractional part consisting of d decimal
digits.

The rules governing input under this format descriptor are as for the
D-descriptor.

For output, assuming a current scale factor of k, the w character
positions consist of the following:

blank(s), if necessary, to make the total width up to w

-, if v is negative

integral part of v

• (decimal point)

d digits representing the fractional part of v rounded to d digits

where v = the internal value of the list element divided by 1.0Ek.

As an example of output, if the internal value of the list element is
0.987654E+2 and the descriptor is F6.2 (and k = 0), then the output
field is ' 98.77'·

a-descriptor

The real descriptor Gw.d specifies an external representation of width
w character positions, with d significant digits.

The rules governing input under control of this format descriptor are
as for the D-descriptor (see 4.3.1.1).

For output, an equivalent E- or F-descriptor is employed, depending on
the internal value, X say, of the list element. Define

Y = ALOG10(10•X)
N = IFIX(Y)

Pro Fortran-77 User Manual II - 25

If N is in the range 0 thru d, then the output field is formed just as
it would be for a scale factor of zero and under control of the format
descriptors

Fu.e, 4X

where u = (w-4)
and e = (d-N)

(See 4.3.8 for an account of the X descriptor.)

If N is outside the range 0 thru d, then the output field is formed as
for the descriptor Ew.d (see 4.3.1.2), with due account being taken,
in this instance, of the scale factor too.

As an example, suppose X= 0.1234E+5 and the
2PG10.6. Then N = 5. This is in the range 0
equivalent descriptor used is

F6.1, 4X

format
thru d

descriptor
(=6)' so

is
the

and, by the rules
consists of ' 123.5

given

'
in the output field therefore

•

Integer descriptor

!-descriptor = I w [• m]
m = decimal-integer

The integer descriptor is for use with integer-type list elements.

For input, the external representation must contain a decimal
integer-constant, as defined in 1.4.3.1 above. Leading blanks are
ignored; embedded blanks are ignored or treated as zeros, depending
on BN/BZ editing (see 4.3.13). A field consisting of all blanks is
treated as zero. Reading stops when w characters have been read, or
when a comma or end-of-record is encountered, whichever is the
earlier. An Iw.m descriptor is treated identically to an Iw
descriptor.

For output, the w character-positions of the output field contain a
right-justified integer constant; that is to say:

blank(s), if necessary, to make the total width up tow

-, if the value of the list element is negative

digit(s) representing the value of the list element

If w is too small for the value to be represented in this way, the
output field is filled with asterisk (*) characters.

Pro Fortran-77 User Manual II - 26

The output for an Iw.m descriptor is the same as for Iw, except that
the decimal integer representing the value of the list item consists
of at least m digits, and if necessary has leading zeros. The value
of m must not exceed w.

As an example of output, if the internal value of the list element is
-32768 and the descriptor is I8, then the output field will consist of

-3276 8'.

Logical descriptor

L-descriptor = L w

The logical descriptor is for use with logical-type list elements.

For input, the external representation must consist of optional
blanks, optionally followed by a decimal point, followed by the
character T or F followed by optional additional characters, for true
or false, respectively. In particular, these rules imply that .TRUE.
and .FALSE. are acceptable.

For output, the w character-positions of the output field consist of
(w-1) blanks followed by the character T or F, according as the
internal value of the list element is true or false, respectively.

As an example of input, if the record consists of the characters TRUE,
then the value true will be assigned to the logical-type list element.

Character descriptor

A-descriptor = A [w]

The A-descriptor is for use with character-type list elements. Let
len be the length of the list item. If w is omitted, the value of len
is assumed.

For input, if w >= len, the rightmost len characters will be taken;
if w < len, w characters will be taken from the input field and (len -
w) trailing spaces will be appended.

Reading stops when w characters have been read or (as a Pro Fortran-77
extension to the Standard) when a comma (,) or end-of-record is
encountered.

For output, if w > len, the output field will consist of
leading blanks followed by len characters from the list item;
len, the left-most w characters of the item will be output.

(w-len)
if w <=

As an output example, a character list item containing the value
'ABCD' will be written, under control of the format descriptor A3, as
'ABC'.

Pro Fortran-77 User Manual

Apostrophe editing

apostrophe-descriptor = character-constant

This descriptor causes characters to be transferred
descriptor itself to the external record. No list item is
This edit descriptor must not be used on input.

II - 27

from the
involved.

As an example, the descriptor 'Hello' causes those 5 characters to be
written to the external record.

H editing

H-descriptor = n H {string-character}
n = decimal-integer

The n characters (including blanks) following the H of the descriptor
are written to the output record. No list item is involved. This
edit descriptor must not be used on input.

As an example, the descriptor 5HHello causes Hello to be written to
the external record.

T editing

The function of T editing is to alter the position at which characters
are transferred to or from a record.

T-descriptor = < T I TL I TR > c
c = decimal-integer

The Tc edit descriptor makes the next character transfer to or from
record occur at the c 'th character position • . · L t' · { · i · t

~ _-.,_ · ''.·- ~ .. : !!~ / .:.r.· .. :· ••. • .. . f -~ ... \ .:f!..· _ ---- ,·,.., .. •J •• ~ - ~ . •••
" 'l "' ~ / · • •• ' . / -, _ _ ,~. "; • il .'\ ~-. .• ~-~- ~ i ... " ·., __ ' \:

a

The TLc descriptor sets the transfer position c · characters backwards
from the current position.

The TRc descriptor sets the transfer . position c characters forward
from the current position.

4.3.8 X editing

The function of X editing is to alter the position at which characters
are transferred to or from a record.

X-descriptor = n X

The effect of nX is the same as the effect of TRn (see 4.3.7).

Pro Fortran-77 User Manual II - 28

4.3.9 Slash editing

The function of the slash edit descriptor is to indicate the end of
data transfer on the current record.

slash-descriptor = I

A format describes the layout of data, generally in an external file.
Fortran uses the word "record" to describe groupings of data within a
file, and in any "formatted" file a record is effectively equivalent
to a line of text. One format may describe the layout of one or more
records (lines), and for this purpose the slash symbol (I) denotes the
separation of records.

For example, the format

(2I10 I 1X, F12.4, 2E14.4)

describes a data layout with two integer values on one line and three
real values on the next line.

4.3.10 Colon editing

colon-descriptor = :
The colon edit descriptor terminates format control (see 5.3) if there
are no more items in the input/output list; otherwise, it has no
effect.

4.3.11 S editing

S-descriptor = S I SP SS

These descriptors control optional "+" characters in numeric output
fields. They have no effect on input.

At the start of each input-output statement, the printing of a + in a
real (D, E, F, or G edit descriptor) or integer (I descriptor) output
field is under control of the Fortran system. By using an SP
descriptor, the program can force printing of a +; by using an SS
descriptor, the program can force suppression of a +; by using an S
descriptor, printing reverts to being under control of the Fortran
system.

Pro Fortran-77 User Manual II - 29

4.3.12 P editing

A P edit descriptor establishes a scale factor, which affects the
interpretation of real edit descriptors (see 4.3.1).

P-descriptor = k P
k = [sign] decimal-integer

At the start of processing an input-output statement, the scale factor
is zero.

The effect of a P descriptor lasts until another such descriptor is
encountered. For example, in the format statement

FORMAT (-2PE10.6, 010.6)

both the E- and the G-descriptors will be processed with a scale
factor of -2.

4.3.13 BN and BZ editing

These descriptors enable a program to control the interpretation given
to blanks encountered in numeric input.

B-descriptor = BN [BZ

At the start of a formatted input statement, blanks are either ignored
or interpreted as zeros, depending on the BLANK= specifier in the OPEN
statement (see 5.3.7).

A BN descriptor causes all such blank characters in succeeding numeric
input fields to be ignored~

A BZ descriptor causes all such blank characters in succeeding numeric
input fields to be treated as zeros.

These descriptors affect only real (D-, E-, F- or G-descriptors) or
integer (!-descriptor) editing. They have no effect on output.

Pro Fortran-77 User Manual II - 30

5 EXECUTABLE STATEMENTS

Apart from block data subprograms, every program unit has an
"executable part", as defined in 2.1. This consists primarily of
"executable statements", but these·can be mixed with DATA, ENTRY and
FORMAT statements.

Executable statements can be classified into three gro~ps:

executable-statement = assignment-statement I control-statement
input-output-statement

5.1 Assignment statements

These are of four kinds, depending on whether the thing being assigned
is an arithmetic quantity, a logical quantity, a character quantity,
or a statement label:

assignment-statement = arithmetic-assignment
logical-assignment I
character-assignment
label-assignment

5.1.1 Arithmetic assignment

An arithmetic assignment statement causes the value of an arithmetic
expression {see 6.1) to be assigned to a variable or array element of
arithmetic (i.e. integer, real, double-precision, or complex) type.

arithmetic-assignment = variable-element = arithmetic-expression
variable-element = variable~name I array-element
array-element = array-name (subscript {, subscript})

All combinations of "left-hand-side" and "right-hand-side" types are
allowed, values being converted to the target type, by truncation if
necessary, before the assignment takes place. For example, if a real
or double-precision-type expression is assigned to an integer-type
variable, the value is converted before assignment to the nearest
integer whose magnitude does not exceed the magnitude of the
expression. For example, after the assignment statement

K = -3.7

K (assuming it to be of type integer) will have the value -3.

Pro Fortran-77 User Manual II - 31

5.1.2 Logical assignment

A logical assignment statement causes a logical expression (see 6.2}
to be assigned to a logical-type variable or array-element:

logical-assignment = variable-element = logical-expression

Example:

LOGICAL L, L1, L2
•••
L = L 1 • AND. L2

5.1.3 Character assignment

A character assignment statement causes a character
6.3) to be assigned to a character-type variable,
substring:

expression (see
array-element or

character-assignment = character-field = character-expression
character-field = variable-element I substring
substring = variable-element ([substring-expression]

[substring-expression] }
substring-expression = integer-expression

If the right-hand side expression is shorter than the
destination, blanks are added on the end; if longer,
characters are stored.

(For more details on "substring", see section 6.3.)

Example:

CHARACTER•(L) C1, C2, C3
•••
C1(5:I} = C2(1:4) // C3

5.1.4 Label assignment

left-hand side
the left-most

This kind of assignment statement is used, preparatory to an "assigned
GOTO" statement (see 5.2.1.2} or input-output statement (see 5.3}, to
assign (the address of) a statement-label to an integer-type variable:

label-assignment = ASSIGN statement-label TO integer-variable
integer-variable = variable-name

The type of the variable must be INTEGER (i.e. INTEGER•4).

Example:

ASSIGN 90 TO ILABEL

Pro Fortran-77 User Manual II - 32

5.2 Control statements

Control statements have to do with with the flow of control within a
program. There are 14 kinds:

control-statement = goto-statement l arithmetic-if-statement I
logical-if-statement l block-if-statement I ·
else-if-statement f else-statement I
end-if-statement I end-statement l
call-statement l return-statement l
pause-statement l stop-statement I
continue-statement I do-statement

5.2.1 GOTO statements

There are 3 of these:

goto-statement =
unconditional-goto

5.2.1.1 Unconditional GOTO

assigned-goto computed-goto

An unconditional GOTO causes control to be transferred to a specified
statement label.

unconditional-goto = GOTO statement-label

Example:

GOTO 100

5.2.1.2 Assigned GOTO

An assigned GOTO causes control to be transferred to the statement
label whose address is currently held in a specified integer-type
variable (having been put there by a preceding ASSIGN statement).

assigned-goto = GOTO integer-variable [[,] label-list]
label-list = (statement-label {, statement-label})

The type of the variable must be INTEGER. The label list, which is
optional, does not affect the execution of the statement in any way.

Example:

GOTO !LABEL , (10, 20, 90)

Pro Fortran-77 User Manual II - 33

5.2.1.3 Computed GOTO

A computed GOTO causes control to be transferred to one from a list of
statement labels, which one depending on the value of an integer-type
expression.

computed-goto = GOTO label-list [,] integer-expression

(This is the Fortran analogue of the Pascal CASE statement.)

Let m be the number of labels in the list, and i the value of the
integer expression. If i is less than 1 or greater than m, then the
statement acts as a CONTINUE (i.e. does nothing), otherwise control is
transferred to the i'th label in the list.

Example:

GOTO (10, 20, 90), K

5.2.2 Arithmetic IF statement

An arithmetic IF causes an arithmetic expression (see 6.1) to be
evaluated and then control to be transferred to the first, second or
third of three labels, according as the value of the expression is
less than, equal to or greater than zero, respectively.

arithmetic-if-statement =
IF (arithmetic-expression) statement-label ,

statement-label , statement-label

The expression may be inte~er-, real- or double-precision-type.

Example:

IF {Y - SIN(X)) 40, 50, 50

5.2.3 Logical IF statement

A logical IF causes a logical expression (see 6.2) to be evaluated and
then a second statement to be conditionally executed; namely, the
second statement is executed if, and only if, the logical expression
has the value true.

logical-if-statement =
IF (logical-expression) executable-statement

The "executable-statement" may not be another logical IF statement,
nor may it be a DO, Block IF, ELSE IF, ELSE, END IF or END statement.

Example:

IF ((I .EQ. 0) .OR. (I .LE. J)) GOTO 190

Pro Fortran-77 User Manual II - 34

5.2.4 Block IF statement

The Block IF statement is used, with the ELSE IF, ELSE and END IF
statements, to control the flow of execution, dependent on the values
of logical expressions.

block-if-statement = IF (logical-expression) THEN

To describe the control flow, the concept of "IF-lever" is introduced.
The IF-level of any statement S is defined to be

n1 - n2

where n1 is the number of Block IF statements from the start of the
program unit up to and including s, and n2 is the number of END IF
statements from the start of the program unit up to but not including
s.

An "IF block" consists of all the executable statements following a
Block IF statement up to, but not including, the next ELSE IF, ELSE or
END IF statement with the same IF-level as the Block IF.

If the logical expression in a Block IF statement evaluates to true,
execution continues with the IF block.

If the logical expression is false, execution continues with the next
ELSE IF, ELSE or END IF statement with the same IF-level as the Block
IF.

The following source fragment illustrates the features provided by the
Block IF and its associated statements.

IMPLICIT LOGICAL (L)

• •
IF (LOG1) THEN

X = 1.0
IF (LOG2) THEN

y = 2.0
ELSE

y = 0.0
END IF

ELSE IF (LOG3) THEN
X = 3.0

ELSE
X = 0.0

END IF

Pro Fortran-77 User Manual II - 35

5.2.5 ELSE IF statement

else-if-statement = ELSE IF (logical-expression) THEN

An "ELSE IF block" consists of all the executable statements following
an ELSE IF statement up to, but not including, the next ELSE IF, ELSE
or END IF statement with the same IF-level as the ELSE IF.

If the logical expression in an ELSE IF statement evaluates to true,
execution continues with the ELSE IF block.

If the logical expression is false, execution continues with the next
ELSE IF, ELSE or END IF statement with the same IF-level as the ELSE
IF.

5.2.6 ELSE statement

else-statement = ELSE

An "ELSE block" consists of all the executable statements following a
Block IF statement up to, but not including, the next END IF statement
with the same IF-level as the ELSE.

Execution of an ELSE statement has no effect.

5.2.7 END IF statement

end-if-statement = END IF

Execution of an END IF statement has no effect.

Each Block IF in a program unit must have a matching END IF statement,
i.e. one with the same IF-level.

Pro Fortran-77 User Manual II - 36

5.2.8 CALL statement

A CALL statement causes control to be transferred to a named
subroutine; optionally, a list of arguments may be passed at the same
time. Control returns to the statement next in sequence after the
CALL statement when a RETURN or END statement is executed in the
subroutine, or to a label in the program unit containing the CALL
statement if an alternate return specifier is activated.

call-statement = CALL subroutine-name
[([actual-argument-list])]

actual-argument-list = actual-argument {, actual-argument}
actual-argument = expression I variable-element I

array-name l procedure-name l
alternate-return-specifier

alternate-return-specifier = • statement-label

In this context, "expression" (see section 6) must be understood to
mean any expression other than "variable-element".

The actual arguments must agree in number, order, kind and type with
the dummy arguments in the SUBROUTINE statement (see 2.2) at the start
of the subroutine being called.

By agreement in "kind" of argument is meant the following. As is
clear from 2.2, a dummy argument can name a variable or an array or a
procedure (i.e. a subroutine or function). If the dummy argument is a
variable-name, the corresponding actual argument may not be a
procedure-name; furthermore, if the dummy argument is defined (that
is, has a value assigned to it) in the subroutine, then the actual
argument must be a variable-element (i.e. a variable or an array
element) or an array-name. If· the dummy argument is an array-name,
the corresponding actual argument must be an array-name or an
array-element. If the dummy argument is a subroutine- or
function-name, then the actual argument must also be a subroutine- or
function-name, respectively.

By agreement in "type" of argument is meant the following. If the
dummy argument is a variable- or function-name, then the actual
argument must be of exactly the same type (REAL matching REAL,
INTEGER*1 matching INTEGER*1, and so on). Further, if the dummy
argument is a variable-name and the actual argument is an expression
(other than "variable-element"), then the dummy argument cannot be
INTEGER*1, INTEGER*2, LOGICAL*1 or LOGICAL*2. This is because actual
argument expressions which are more general than "variable-element"
are evaluated, placed in a temporary store, and the address of that
temporary location passed to the called procedure. In the case of
integer or logical expressions, the temporary location contains an
INTEGER*4 or LOGICAL*4 result, respectively; so that, by the
above-mentioned type-matching rule, the corresponding dummy argument
must be of type INTEGER*4 or LOGICAL*4, respectively.

Pro Fortran-77 User Manual II - 37

As an example of CALL statements, suppose a subroutine subprogram
begins:

SUBROUTINE S(ARRAY, IARG, LARG)
REAL ARRAY(100)
INTEGER IARG
LOGICAL LARG
•••

then, in a program unit with the following specification statements:

REAL A (1 0) , X
INTEGER I(10), J
LOGICAL*1 L1
...

the following CALLs of the subroutine S are all legal:

CALL S(A, J, .NOT. L1)
CALL S(A(9), 3, .TRUE.)
CALL S(A(J), (300-J), L .OR. J .LT. 1)

and the following CALLs are all illegal:

C Wrong number of arguments
CALL S(A, I)

C Wrong kinds of arguments
CALL S(X, MAX, S)

C Wrong types of arguments
CALL S (I, (J. EQ. 0)., L 1)

In section 7.2 are listed a number of "intrinsic functions" which are
often useful when a value has to be coerced to the correct type to
match a dummy argument. The function FLOAT, for instance, can be
applied to an integer value to convert it to real type, and INT
performs the reverse process. Continuing the example above, INT(X)
would be legal as the second argument of a call, whereas X alone is
wrong.

5.2.9 RETURN statement

The purpose of a RETURN statement is to leave the subprogram
containing it and return control to the calling program unit.

return-statement = RETURN [integer-expression]
integer-expression = expression

A RETURN statement is not allowed in a main program.

Pro Fortran-77 User Manual II - 38

In a subroutine subprogram, a RETURN may optionally be followed by an
integer expression. If this expression e lies in the range

1 <= e <= n

where n is the number of asterisks in the SUBROUTINE (or ENTRY)
statement for this execution of the subprogram, then the effect of the
RETURN is to transfer control to the label of the e'th alternate
return specifier in the CALL statement for this execution of the
subprogram.

In a function subprogram, execution of a RETURN (or END) statement
makes the value of the function available to the calling program unit.
No alternate return expression may be given.

Example (as the subsidiary statement of a logical IF):

IF (X .GT. 1E37) RETURN 1

5.2.10 PAUSE statement

A PAUSE statement causes execution to be suspended with, optionally,
the output of up to 5 digits, or a character constant, to the console
device:

pause-statement = PAUSE [digit-string f character-constant]

Depending on the operator's response, the program will be resumed (at
the statement following the PAUSE) or terminated. For more details,
see Part III, section 4.2.5.

Example:

PAUSE 'Initialisation complete'

5.2.11 STOP statement

A STOP statement causes execution to be terminated with, optionally,
the output of up to 5 digits, or a character constant, to the console.

stop-statement = STOP [digit-string I character-constant]

Example:

STOP

Pro Fortran-77 User Manual II - 39

5.2.12 CONTINUE statement

This is the "no-op" statement: it does nothing.

continue-statement = CONTINUE

Its most common use (and this is good Fortran coding practice) is as
the recipient of a statement label; programs are thereby made more
maintainable and often more readable.

As an example, a CONTINUE may be used to terminate a DO loop:

DO 120 I = 1, 1000
A(I) = A(I) I FLOAT(!)

120 CONTINUE

5.2.13 DO statement

A DO statement is used to define a loop.

do-statement = DO statement-label [,] do-control
do-control = control-variable = initial-value ,

terminal-value [, increment-value]
control-variable = variable-name
initial-value = arithmetic-expression
terminal-value = arithmetic-expression
increment-value = arithmetic-expression

The control-variable must be of integer-, real- or double-precision
type, as must the initial-, terminal- and increment-value expressions.

If an increment value is not supplied, the value 1 is assumed.

The statement-label must be the label of a statement (called the
terminal statement) which is in same program unit as, but physically
following, the DO statement.

The terminal statement may not be an unconditional-goto-statement,
assigned-goto-statement, arithmetic-if-statement, block-if-statement,
else-if-statement, else-statement, end-if-statement, return-statement,
stop-statement, end-statement, or another do-statement. If the
terminal statement is a logical-if-statement, it may contain any
executable statement except a do-statement, block-if-statement,
else-if-statement, else-statement, end-if-statement, end-statement or
another logical-if-statement.

Pro Fortran-77 User Manual II - 40

When a DO statement is executed, the following occurs. The initial-,
terminal- and increment-values are computed say e1, e2 and e3,
respectively. (e3 must not be zero.) The control-variable is given
the value e1, converted if necessary to the type of the
control-variable as in an arithmetic assignment. An "iteration count"
is computed, as the value of:

MAX (!NT ((e2 - e1 + e3)/e3), 0)

Now "loop control processing" is performed, as
iteration count is zero, the body of the DO
Otherwise, processing continues with the statement
statement.

follows.
loop is
following

If the
skipped.

the DO

When the terminal statement is reached, it is executed, and then the
following "incrementation processing" is performed. The
control-variable is incremented by e3. The iteration count is
decremented by one. Then control jumps back to the "loop control
processing" of the DO statement (i.e. test the iteration count for
zero, etc).

Example:

DO 100 I = !FIRST, ILAST
ISUM2 = ISUM2 + I*I

100 ISUM3 = ISUM3 + !**3

5.2.14 END statement

The END statement is the last line of every program unit.

end-statement = END

The characters "END" must be written in columns 7 thru 72 of an
initial line, and there may not be any continuation lines.

If executed in a subroutine or function subprogram, an END statement
has the same effect as RETURN (see 5.2.9). If executed in a main
program, it has the same effect as STOP (see 5.2.11).

Pro Fortran-77 User Manual

5.3 Inout-output statement§

Input-output statements provide for the
internal storage and external devices or
storage and internal files, and for the
devices or files.

transfer of
files, or
control and

II - 41

values between
between internal

positioning of

Both sequential and random {or "direct") processing of files is
supported.

There are 9 kinds of input-output statement:

input-output-statement = read-statement l write-statement I
print-statement l backspace-statement
endfile-statement I rewind-statement I
open-statement : close-statement
inquire-statement

All input-output statements, apart from PRINT and INQUIRE, require a
"unit specifier".

unit-specifier = [UNIT =] unit-identifier
unit-identifier = integer-expression I * l

array-name l character-field

A unit-identifier which is an integer expression identifies an
external unit. The value of the expression must be in the ~ange 0 to
255. At any one time, a number of devices or files are "active", in
the sense of being known to the program, and each of these is
associated with one or more unit numbers; a unit number can be
associated with at most one device or file at any one time.

A unit-identifier which is·an asterisk identifies one of two
which are "pre-connected" for sequential formatted access,
input and one for output.

devices
one for

A unit-identifier which is an array-name or character-field {i.e.
character-type variable, array-element or substring) refers to an
"internal file". If an array-name is used, the array must be of
character type, and the internal file consists of as many records as
there are elements in the array. If a character-type variable, array
element or substring is used, the internal file consists of just one
record. In either case, the record size is equal to the length of the
character item.

Pro Fortran-77 User Manual II - 42

READ, WRITE and PRINT statements make use of the concepts of "format
specifier" and "format identifier":

format-specifier = [FMT =] format-identifier
format-identifier = statement-label l integer-variable l

array-name l character-expression I •

The presence of a format identifier
input-output operation.

signifies a "formatted"

If a statement-label is specified, it must be the label of a FORMAT
statement, and the corresponding format-specification is used.

If an integer variable-name is specified, the variable
time of execution of the input-output statement, have
the label of a FORMAT statement.

must,
been

at the
ASSIGNed

If the format-identifier is an array name, the array must be of
character type, and the contents of the array, taken in order from its
beginning, must constitute a valid format-specification as defined in
4.3, beginning with a left parenthesis and ending with a right
parenthesis. (The contents of the array beyond the right parenthesis
are immaterial.) The format specification may have been inserted into
the array by means of a DATA statement, or by means of a READ
statement with an A-descriptor (see 4.3.4), for example.

If the format-identifier is a character expression, the value of the
expression must represent a valid format format-specification (see
4. 3).

"Formatted" input-output operations take place under what is known as
"format control", according to the following prescription. The start
of execution of a formatted inpu·t-output statement initiates format
control. Each action of format control depends on information
provided jointly by the next io-element (if one exists) and the next
descriptor. Records are read or written only as the format
specification demands; in particular, each slash (/) causes a new
record to be started (cf. 4.3.9). During an input operation, any
unprocessed characters from the current record are skipped at the time
the next record is started. Whenever format control encounters a D,
E, F, G, I, L or A descriptor {see 4.3), it determines whether there
is a corresponding io-element specified by the ·io-list (see 5.3.1);
if so, appropriate information is transmitted between the internal
element and the record, and format control proceeds; if not, format
control terminates. Whenever format control reaches the last outer
right parenthesis of the format specification, it determines whether
another io-element is specified; if so, a new record is started, and
control reverts to the beginning of the "group" (see 4.3) terminated
by the last preceding right parenthesis, or if none exists, then to
the first left parenthesis of the format specification; if not,
format control terminates. When format control terminates, for an
input operation any remaining characters in the current record are
skipped, and for an output operation the current record is written.

Pro Fortran-77 User Manual II - 43

If the format-identifier is an asterisk, "list-directed" input/output
is selected. In this case, there is no "format control" (see above),
but rather the type of the io-list item determines the processing.

For list-directed input, each external record
values, separated by blanks, tab characters,
In addition, a value may be preceded by
asterisk, as in:

12. 3.142

contains
commas or

a repeat

one or more
semi-colons.

count and an

which is equivalent to 12 successive occurrences of 3.142 (separated
by spaces). The length of each input record may not exceed the
maximum variable-length formatted record size (see section 8.1.1).
For numeric items, the valid form of external representation is as for
F-descriptor input editing (see 4.3.1.3). A complex value must be
represented by a pair of real-type values separated by a comma, all
enclosed in parentheses. For logical items, the valid form of
external representation is as for L-descriptor input editing (see
4.3.3). In the case of character items, the external representation
consists of a non-empty string of characters enclosed in apostrophes;
such a literal may extend over more than one line, but is limited in
length to not more than 255 characters.

In list-directed output, records are not more than 81 characters in
length, the first of which is a blank to give single-spaced printing
(cf. 8.1.2.1). Items are separated by blanks. Integer-type items are
written with an I edit descriptor (see 4.3.2), real- and double
precision items are written with either E or F edit descriptors (see
4.3.1), depending on the magnitude of the value. Complex-type values
are written as a pair of real values separated by commas and enclosed
in parentheses. Logical-type values are written as T (for true) or F
(for false). Character-type values are written without apostrophes.

The individual input-output statements are described in the following
subsections.

Pro Fortran-77 User Manual II - 44

5.3.1 READ statement

A READ statement causes record(s) to be read from an external device
or file, or an internal file, and the values optionally to be assigned
to variables and/or array elements and/or arrays.

read-statement = < READ (read-write-control) [io-list]
READ format-identifier [,io-list] >

read-write-control = unit-specifier
[, format-specifier]
[, REC = integer-expression]
[, IOSTAT = integer-variable-element]
[, END = statement-label]
[, ERR = statement-label]

integer-variable-element = variable-element
io-list = io-item {, io-item}
io-item = io-element I io-implied-do
io-element = variable-element I array-name

substring I expression
io-implied-do = (io-list , do-control)

The second form of READ statement is equivalent to the following
variant of the first form:

READ (*, format-identifier) [io-list]

If a format-specifier (see 5.3) is present, the statement is a
formatted READ, and execution of the statement proceeds under format
control {see 5.3). If the format-specifier has no "FMT=", it must
appear immediately after the unit-specifier.

If no format-specifier is present, the statement is an unformatted
READ. In this case, the next record is read from the external device
or file. This must be an unformatted record, that is, it must have
been previously written by an unformatted WRITE statement (or by
equivalent non-Fortran methods). If there is an io-list, the values
in the record are assigned to the sequence of io-elements specified by
the io-list.

The remaining 4 options in "read-write-control" are each "keyword
parameters", and may be specified in any order.

If REC= is specified, the integer expression determines the record
number at which the READ operation is to commence. This value must be
greater than zero. (The first record in the file is numbered 1.)
This parameter may be used for either formatted or unformatted
operations. The file must be an external file, and have been defined
to contain fixed-length records by use of the RECL= parameter in the
OPEN statement (see 5.3.7).

Pro Fortran-77 User Manual II - 45

If IOSTAT= is specified, the integer variable or array element (which
must be of type INTEGER*4) will be set to a status value on completion
of the READ statement. Zero indicates successful . completion, a
negative value end-of-file and a positive value an error condition
(the exact values used are implementation-specific, and are described
more fully in section 8 and Appendix C).

If END= or ERR= is specified, the statement label must be the label of
an executable statement in the same program unit. Control will be
transferred to this label if, during execution of this READ statement,
end-of-file is encountered (END=) or an error condition is detected
(ERR=), respectively.

In general, an •io-list• is made up of variables, array-elements,
array-names, substrings and general expressions (these are the
•io-elements•). In a READ statement, however, substrings and
expressions (other than variable-element) are not allowed. Variables
and array-elements stand for themselves, while an array-name stands
for all its elements (in the order dictated by the subscript value
function, see 3.4).

In an "io-implied-do", the "do-control" causes all the items in the
•io-list" to be selected repeatedly, in order from left to right, the
repetition being governed by the initial-, terminal- and
increment-values just as for a DO statement (cf. 5.2.13).

As an example of a formatted READ, the following will cause a
number of integers to be read in, the number being specified
first digit in the record:

INTEGER*1 !,LENGTH
INTEGER IARR(9)
• • •
READ (1, 800) LENGTH, (IARR(I), I = 1, LENGTH)

800 FORMAT(I1, 9110)

varying
by the

As an example of an unformatted READ, the following fragment will
obtain the 12000th complex value from a work file:

COMPLEX C
• • •
OPEN (6, RECL=8, ACCESS:'DIRECT')
• • •
READ (6, REC=12000) C

Pro Fortran-77 User Manual II - 46

5.3.2 WRITE statement

A WRITE statement causes record(s) to be written to an external device
or file, or to an internal file.

write-statement = WRITE (read-write-control) [io-list]

"Read-write-control" and "io-list" have the same syntax as in a
read-statement.

If a format-specifier is present, the statement is a formatted WRITE,
and execution of the statement proceeds under format control (see
5.3) . If the format-specifier has no "FMT=", it must appear
immediately after the unit-specifier.

If no format-specifier is present, the statement is an unformatted
WRITE. In this case, an io-list must be present, and one record is
written to the external device or file. The record consists of the
sequence of values of the elements specified by the io-list.

The meaning of the remaining 4 options in read-write-control is as
described in 5.3.1, except that the END= exit can never be taken, and
should not therefore be specified, for a WRITE.

An example of a formatted WRITE is:

INTEGER*2 I, J, !UNIT
...
WRITE (!UNIT, 900) I, J

900 FORMAT(1X, 'Value of I= ', !5, ', and of J = ', !5/)

An example of an unformatted WRITE (using direct access) is :

INTEGER NUM
DOUBLE PRECISION DARR(100)
CHARACTER*14 FNAME
...
OPEN (56, FILE= FNAME, RECL = 800, ACCESS = 'DIRECT') ...
WRITE (56, REC = NUM) DARR

PRINT statement

print-statement = PRINT format-identifier [, io-list]

This statement has precisely the same effect as the following WRITE
statement:

WRITE (*, format-identifier) [io-list]

Example:

PRINT •, •computed value of xis: •, X

Pro Fortran-77 User Manual II - 47

5.3.4 BACKSPACE statement

A BACKSPACE statement has the effect of positioning an external file
so that what had been the preceding record becomes the next record.

backspace-statement = < BACKSPACE unit-identifier
BACKSPACE (pos-control) >

pos-control = unit-specifier
[, IOSTAT = integer-variable-element]
[, ERR = statement-label]

The BACKSPACE statement is applicable to a file open for sequential,
not for direct, input or output. It may be used to backspace over an
endfile record (see 5.3.5). If the unit is already at its initial
position, the statement has no effect.

Example: BACKSPACE (!UNIT)

ENDFILE statement

The ENDFILE statement causes an output file to be marked as "at
end-of-file".

endfile-statement = < ENDFILE unit-identifier l
ENDFILE (pos-control) >

The ENDFILE statement is applicable to a file open for
output - not for direct access output, nor to a file open
The output buffer is flushed, and a notional "endfile
written (no physical bytes are in fact transferred).
output operation may be performed on the file without an
BACKSPACE (or REWIND) statement.

Example: ENDFILE (UNIT=IU, IOSTAT = IS)

REWIND statement

sequential
for input.
record" is
No further
intervening

A REWIND statement causes the external device or file to be
repositioned at its initial position.

rewind-statement = < REWIND unit-identifier l
REWIND (pos-control) >

The REWIND statement is applicable to a file open for sequential, not
direct, input or output. In the case of output, the file's buffer is
flushed. If the unit is already at its initial position, the
statement has no effect.

Example: REWIND 6

Pro Fortran-77 User Manual II - 48

OPEN statement

The OPEN statement permits files to be named, and also allows a fixed
record length to be specified for the purpose of direct (or "random")
access.

open-statement = OPEN (open-control)
open-control = unit-specifier

[, IOSTAT = integer-variable-element]
[, RECL = integer-expression]
[, FILE = character-expression]
[, STATUS = character-expression]
[, ACCESS = character-expression]
[, FORM= character-expression]
[, BLANK = character-expression]
[, ERR = statement-label]

Only the "unit-specifier" is mandatory; zero or one of each of the
other specifiers may be given.

If no FILE= parameter is present, the file is treated as a "work" file
and is given a default name which is generated by the system (see
8.1.1.3).

If RECL= is specified, that defines the file
fixed-length (formatted or unformatted) records,
length. (See 8.1.2.3 for details.) The file must
(e.g. disc) file, and be processed using
(ACCESS='DIRECT').

to consist of
of the stated
be a filestore
direct access

The possible values for STATUS are: 'OLD', 'NEW', 'SCRATCH'
'UNKNOWN'. The effect of specifying one of these is described
section 8. If no STATUS= parameter is specified, the effect is
same as STATUS='UNKNOWN'.

or
in

the

The possible values for ACCESS are: 'SEQUENTIAL' or 'DIRECT'. If no
ACCESS parameter is specified, 'SEQUENTIAL' is assumed.

The possible values for FORM are: 'FORMATTED' or 'UNFORMATTED'. If
no FORM parameter is specified, 'FORMATTED' is assumed for sequential
access, and 'UNFORMATTED' in the case of direct access.

The possible values for BLANK are: 'NULL' or 'ZERO'. If BLANK: 1ZER0'
is specified, all blanks (except leading blanks) in numeric input
fields are treated as zeros; if BLANK='NULL' is specified, such
blanks are ignored. If no BLANK= option is given, BLANK='NULL' is
assumed. See also section 4.3.13.

In the following example, the OPEN statement defines unit 10 to be
associated with a disc file called NUMBERS which consists of
fixed-length records of size 128 bytes:

OPEN (10, FILE= 'FLP1_NUMS', RECL = 128, ACCESS= 'DIRECT')

Pro Fortran-77 User Manual II - 49

5.3.8 CLOSE statement

CLOSE causes the connection (established by OPEN) between the unit and
the file to be severed: to access the file again, an explicit OPEN
must be performed.

close-statement = CLOSE (close-control)
close-control = unit-specifier

[, IOSTAT = integer-variable-element]
[, STATUS = character-expression]
[, ERR = statement-label]

The possible values for STATUS are: 'KEEP' or 'DELETE'. If the
latter is specified, the file will be closed and then erased.

Since all open files are closed automatically by the run-time system
at program termination, it is only necessary to execute a CLOSE
statement if the unit is to be allocated to a different device or
file.

Example:

CLOSE (INPUT, STATUS= 'DELETE', ERR= 999)

5.3.9 INQUIRE statement

The INQUIRE statement enables properties of a particular named file,
or of a unit, to be made available to a program.

inquire-statement = INQUIRE (inquire-control)
inquire-control = < unit-specifier I FILE = character-expression >

[, IOSTAT = integer-variable-element]
[, RECL = integer-variable-element]
[, NEXTREC = integer-variable-element]
[, NUMBER = integer-variable-element]
[, EXIST = logical-variable-element]
[, OPENED = logical-variable-element]
[, NAMED = logical-variable-element]
[, NAME = character-variable-element]
[, ACCESS = character-variable-element]
[, SEQUENTIAL = character-variable-element]
[, DIRECT = character-variable-element]
[, FORM = character-variable-element]
[, FORMATTED = character-variable-element]
[, UNFORMATTED = character-variable-element]
[, BLANK = character-variable-element]
[, ERR = statement-label]

logical-variable-element = variable-element
character-variable-element = variable-element

Pro Fortran-77 User Manual II - 50

Either a unit-specifier or a FILE= specifier must be present (but not
both); zero or one of each of the other specifiers may be present.

The IOSTAT, RECL, NEXTREC and NUMBER specifiers require an INTEGER(•4)
variable or array element to be given, which will be set to a value by
the INQUIRE statement; the value represents, respectively, the
input/output status (zero for OK), the record length (if a direct
access file), the next record number (if a direct access file) and the
unit identifier (if an external file).

The EXIST, OPENED and NAMED specifiers require a LOGICAL(•4) variable
or array element to be given, which will be set to true of false by
the INQUIRE statement; the value represents, respectively, whether
the specified unit or file exists, whether the file or unit is
connected, and whether the file has a name.

The NAME specifier requires a character variable or array element to
be given, which will be set to the file name by the INQUIRE statement.

The ACCESS specifier can return the values 'SEQUENTIAL' or 'DIRECT'.

The FORM specifier can return the values 'FORMATTED' or 'UNFORMATTED'.

The BLANK specifier can return the values 'NULL' or 'ZERO'.

The remaining specifiers which require a character variable or array
element to be supplied are: SEQUENTIAL, DIRECT, FORMATTED and
UNFORMATTED; in each case, the INQUIRE statement can return either
'YES' or 'NO' or 'UNKNOWN' •

Examples:

IMPLICIT CHARACTER•20 (C), LOGICAL (L)
••

INQUIRE (10, IOSTAT = IO, FORM : CFORM)
INQUIRE (FILE = CFNAME, OPENED = LOPEN)

Pro Fortran-77 User Manual II - 51

6 EXPRESSIONS

as +)
time

An expression describes the application of operators (such
operands (such as variables and constants). At execution
possesses a value, which is of a particular type.

to
it

If an expression involves several different operators, the order in
which the operations should be performed is governed by the "binding
strength" of the operators: operations with greatest binding strength
are performed first. The following list shows operators of equal
strength on the same line, with operators of greater strength on
earlier lines:

Type of operator

Arithmetic
Arithmetic
Arithmetic
Character
Relational
Logical
Logical
Logical
Logical

Operator

**

*
+
II

I

.LT. .LE. .EQ. .NE. .GE. .GT.

.NOT.

.AND.
• OR.
• EQV. .NEQV.

For example, in the expression (I + J * K), the* is performed before
the+. (This accords with normal algebraic conventions.) If the
order of evaluation needs to be different from that dictated by the
implicit binding strengths, parentheses can be used: a parenthesised
expression is always evaluated completely before performing any
operation in which it is an operand. For instance, in the expression
((I + J) * K), the +is p~rformed before the *·

Not all combinations of operators and operand types are permissible
(e.g •• EQ. may not be used with logical-type operands).

There are three kinds of expression:

expression = arithmetic-expression logical-expression
character-expression

These are defined in sections 6.1 thru 6.3, respectively.

Pro Fortran-77 User Manual II - 52

6.1 Arithmetic expressions

Expressions of this kind have values which are integer-, real-,
double-precision- or complex-type.

arithmetic-expression = [sign] arithmetic-term
{ <+1-> arithmetic-term }

arithmetic-term = arithmetic-factor { <*II> arithmetic-factor }
arithmetic-factor = arithmetic-primary [•• arithmetic-factor]
arithmetic-primary = variable-element I function-reference l

arithmetic-constant I constant-name
(arithmetic-expression)

The first form of arithmetic-primary is a "variable-element", which is
syntactic shorthand for "variable or array-element":

variable-element = variable-name l array-element
array-element = array-name (subscript {, subscript})
subscript = integer-expression

The second form of arithmetic-primary is a "function-reference", which
is treated in section 7.

The third and fourth forms of arithmetic-primary are literal and named
constants, defined in sections 1.4.3 and 3.10 respectively.

The fifth and last form which an arithmetic-primary can take is any
arithmetic expression enclosed in parentheses. In this way
expressions of arbitrarily complex nested form can be written.

An arithmetic-primary is of type integer, real, double-precision or
complex.

For each of the 5 arithmetic operators, an operand may be combined
with another of any arithmetic type, with the exception that a
double-precision and a complex operand may not be combined with one
another. The result type is the same as the "senior" of the two
operand types, where the arithmetic types are ordered as follows, in
increasing seniority:

integer-type
real-type
double-precision-type
complex-type

Examples:

arithmetic-primary:
arithmetic-factor:
arithmetic-term:
arithmetic-expression:

A(I)
A(I)**2
A(I)**2 I B
A(I)**2 I B + 3.1 * G(Q) - 5.

Pro Fortran-77 User Manual

6.2 Logical expressions

Expressions of this kind have logical-type values.

logical-expression = logical-disjunct
{ <.EQV. I.NEQV.> logical-disjunct }

logical-disjunct = logical-term { .OR. logical-term }
logical-term = logical-factor { .AND. logical-factor }
logical-factor = [.NOT.] logical-primary
logical-primary = variable-element I function-reference

II - 53

logical-constant I constant-name I
relational-expression I (logical-expression)

The first form of logical-primary is a "variable-element", which is
described in 6.1 above.

The second form of logical-primary is a "function-reference", which is
treated in section 7.

The third and fourth forms of logical-primary are literal and named
constants, defined in sections 1.4.3.5 and 3.10 respectively.

The fifth form of logical-primary is a "relational-expression", which
is a comparison of two arithmetic-type or two character-type
expressions, and has a logical-type value: true if the expressions
stand in the stated relation to one another, otherwise false.

relational-expression = arithmetic-relational-expression
character-relational-expression

arithmetic-relational-expression = arithmetic-expression
rel-op arithmetic-expression

character-relational-expression = character-expression
rel-op character-expression

rel-op = .LT. I .LE. l .EQ. l .NE. I .GE. I .GT.

In an arithmetic-relational-expression, the two arithmetic expressions
can each be of type integer, real or double-precision (in any
combination); if the operator is .EQ. or .NE., then one or both of
the operands may, also, be complex.

The meanings of the relational operators are:

.LT. less than

.LE. less than or equal to

.EQ. equal to

.NE. not equal to

.GE. greater than or equal to

.GT. greater than

The sixth and last form which a logical-primary can take is any
logical expression enclosed in parentheses.

Pro Fortran-77 User Manual II - 54

The type rules are simple: a logical-primary must be of logical-type,
and the result of any of the 5 logical operations (.NOT., .AND., .OR.,
EQV. or .NEQV.) is also of logical-type.

Examples:

L(I)

.AND. L2

.AND. L2 .OR. I .LT. J

logical-primary:
logical-factor:
logical-term:
logical-disjunct:
logical-expression:

.NOT. L(I)

.NOT. L(I)

.NOT. L(I)

.NOT. L(I) .AND. L2 .OR. I .LT. J .EQV. L2

6.3 Character expressions

A character expression is formed, in general, by concatenating a
number of character-type "primaries", the concatenation operator being
//. In the simplest case, the expression consists just of a single
primary (a character constant, for example).

character-expression = character-primary {// character-primary}
character-primary = variable-element I substring :

function-reference I character-constant I
constant-name I (character-expression)

The first form of character-primary is a "variable-element", which is
described in section 6.1 above.

The second form of character-primary is a "substring".
portion (which may be the whole) of a character datum,
being a character-type variable or array element:

substring = variable-element ([substring-expression] :
[substring-expression])

substring-expression = integer-expression

This
the

is a
latter

If the first substring-expression is omitted, 1 is assumed. If the
second substring-expression is omitted, the length of the character
variable or array-element is assumed. The first substring-expression,
if present, must be less than or equal to the second one.

The third form of character-primary is a "function-reference", which
is treated in section 7.

The fourth and fifth forms of character-primary are literal and named
constants, defined in sections 1.4.3.6 and 3.10 respectively.

The sixth and last form which an character-primary can take is any
character expression enclosed in parentheses.

Pro Fortran-77 User Manual II - 55

7 FUNCTION REFERENCES

Function references are one of the basic ingredients of arithmetic,
logical and character expressions (see 6.1, 6.2 and 6.3,
respectively). A function reference consists of the function name
followed by a (possibly empty) list of actual arguments enclosed in
parentheses:

function-reference = function-name ([actual-argument-list])

The "actual-argument-list" is as defined for the CALL statement in
5.2.8, except that alternate return specifiers are not permitted.

Functions are of 3 kinds: statement functions, Intrinsic functions
and External functions. The following subsections contain further
details about referencing these 3 kinds of function.

7.1 Statement functions

Definition of statement functions was treated in section 4.1. When a
statement function is referenced, the actual arguments must agree in
number, order and type with the dummy arguments in the statement
function's definition. Each actual argument must be an expression
(see section 6) of the same type as the corresponding dummy argument.

For example, if the statement function is defined by:

INTEGER K
REAL AFUNC, X, PI
DOUBLE PRECISION D, D1
•••
AFUNC (K, X, D) = ·2.0 +X* IDINT(D) ** K

then the right-hand-side of the following arithmetic assignment is a
valid statement function reference:

I = AFUNC (3, PI, DSQRT(D1))

Pro Fortran-77 User Manual II - 56

7.2 Intrinsic functions

Intrinsic functions have names, argument types, result types and
meanings which are predefined. (They are, to some extent, like
predefined statement functions.) The Intrinsic functions are
enumerated in the following table.

Table of Intrinsic Functions

-------------------~--------~-------------------------------------Generic Specific No. of
name name args.

Arg.
type

Result
type Meaning

------------------------------~-----------------------------------INT

REAL

DBLE

CMPLX

INT
!FIX
!DINT

REAL
FLOAT

SNGL

1
1
1
1
1

1
1
1
1
1

1
1
1
1

1 or 2
1 or 2
1 or 2
1

Int Int
Real Int
Real Int
Daub Int
Camp Int

Int
Int
Real
Doub
Camp

Int
Real
Daub
Comp

Int
Real
Doub
Camp

Real
Real
Real
Real
Real

Daub
Doub
Daub
Doub

Comp
Comp
Comp
Comp

Conversion to INTEGER

Conversion to REAL

Conversion to DOUBLE PREC.

Conversion to COMPLEX

---------~--!CHAR 1 Char Int Conversion to INTEGER

------------------~---

AINT

CHAR

AINT
DINT

1

1
1

Int

Real
Doub

Char

Real
Doub

Conversion to CHARACTER*1

Truncation

--ANINT ANINT
DNINT

1
1

Real Real
Doub Doub

Nearest whole number

--NINT NINT
IDNINT

1
1

Real
Doub

Int
Int

Nearest integer

--ABS IABS
ABS
DABS
CABS

1
1
1
1

Int
Real
Daub
Comp

Int
Real
Daub
Real

Absolute value

Pro Fortran-77 User Manual II - 57

Table of Intrinsic Functions (ctd)

~---Generic Specific No. of
name name args.

Arg.
type

Result
type Meaning

--
MOD MOD

AMOD
DMOD

2
2
2

Int
Real
Doub

Int
Real
Doub

arg1 - int(arg1/arg2)*arg2

--SIGN !SIGN 2 Int Int abs{arg1) if arg2 >= 0
SIGN 2 Real Real - abs{arg1) if arg2 < 0
DSIGN 2 Doub Doub

--DIM !DIM 2 Int Int arg1 - min(arg1 1 arg2)
DIM 2 Real Real
DDIM 2 Doub Doub

--DPROD 2 Real Doub Double precision product

--
MAX MAXO

AMAX1
DMAX1

>=2
>=2
>=2

Int Int
Real Real
Doub Doub

Largest value

--
AMAXO
MAX1

>=2
>=2

Int Real Largest value
Real Int

--MIN MINO
AMIN1
DMIN1

AMINO
MIN1

>=2
>=2
>=2

>=2
>=2

Int Int
Real Real
Doub Doub

Int Real
. Real Int

Smallest value

Smallest value

~---LEN 1 Char Int Length of string

--

SQRT

EXP

LOG

INDEX

AI MAG

CONJG

SQRT
DSQRT
CSQRT

EXP
DEXP
CEXP

ALOG
DLOG
CLOG

2

1

1

1
1
1

1
1
1

1
1
1

Char Int

Comp Real

Comp Comp

Real Real
Doub Doub
Comp Comp

Real Real
Doub Doub
Comp Comp

Real
Doub
Comp

Real
Doub
Comp

Location of arg2 in argl

Imaginary part

Complex conjugate

Square root

Exponential

Natural logarithm

--

Pro Fortran-77 User Manual II - 58

Table of Intrinsic Functions (ctd)

Result Generic Specific No. of Arg.
name name args. type type Meaning

LOG10 ALOG10
DLOG10

1
1

Real Real
Doub Doub

Common logarithm

-----------------------------~-------~---------~------------------SIN SIN
DSIN
CSIN

1
1
1

Real Real
Doub Doub
Comp Comp

Sine

--~-----------cos

TAN

ASIN

ACOS

cos
DCOS
ccos

TAN
DTAN

ASIN
DASIN

ACOS
DACOS

1
1
1

1
1

1
1

1
1

Real
Doub
Comp

Real
Doub
Comp

Real Real
Doub Doub

Real Real
Doub Doub

Real Real
Doub Doub

Cosine

Tangent

Arcsine, with result in
range -pi/2 to +Pi/2

Arccosine, with result in
range 0 to pi

--ATAN ATAN
DATAN

1
1

Real Real
Doub Doub

Arctangent, with result in
range -pi/2 to +pi/2

--------------------------~---------------------------------------ATAN2 ATAN2 2

SINH

COSH

DATAN2 2

SINH
DSINH

COSH
DCOSH

1
1

1
1

Real Real
Doub Doub

Real Real
Doub Doub

Real Real
Doub Doub

Arctangent(arg1/arg2), with
result in range -pi to +pi

Hyperbolic sine

Hyperbolic cosine

--~-------------------TANH TANH
DTANH

LGE

1
1

2

Real Real
Doub Doub

Char Log

Hyperbolic tangent

arg1 >= arg2

--~---~-----LGT 2 Char Log arg1 > arg2

LLE 2 Char Log arg1 <= arg2

-----------------------------------~----------~--------~----------LLT 2 Char Log arg1 < arg2

~-----~--~--------~---

(In the "type" columns, the following abbreviations have been
employed: Int for INTEGER, Doub for DOUBLE PRECISION, Comp for
COMPLEX, Log for LOGICAL and Char for CHARACTER.)

Pro Fortran-77 User Manual II - 59

The actual argument(s) in an intrinsic function call must agree in
number and type with the specification in the above table, and may be
any expressions of the stated type. It is an error to supply a second
argument of zero to the functions AMOD, MOD or DMOD; or, more
generally, to supply an argument to a transcendental function for
which the result is not mathematically defined (for example: a zero
argument to LOG).

A function reference is classified as an intrinsic function reference
if the name of the function is one of the names in the above table,
and is not an array name, statement function name, subroutine name or
dummy argument name. Note that IMPLICIT statements have no effect on
the result-types of intrinsic functions.

If a specific Intrinsic function name is passed as an actual
(procedure-name-type) argument in a CALL statement or function
reference, then that name must appear in an INTRINSIC statement (see
3.9) in the calling program unit . The following specific Intrinsic
names may not be passed as actual arguments: INT, IFIX, IDINT, REAL,
FLOAT, SNGL, ICHAR, CHAR, MAXO, AMAX1, DMAX1, AMAXO, MAX1, MINO,
AMIN1, DMIN1, AMINO, MIN1, LGE, LGT, LLE, LLT. A generic Intrinsic
name may not be passed as an actual argument.

Examples of Intrinsic function references (assuming all variables to
have their default types):

I = MAX1(X/Y, 1.0) + MOD(J, 10)
X = DIM(ABS(Z), FLOAT(K))

7.3 External functions

Function references which are not statement function or intrinsic
function references are classified as external function references.
The reference is either to a Fortran function subprogram of that name,
or to an external module coded in some other language but presenting
the same interface. In the former case, the actual arguments must
agree in number, order, kind and type with the dummy arguments in the
FUNCTION (or ENTRY) statement at the start of the subprogram. The
remarks in section 5.2.8 about agreement in "kind" and "type" apply
here, too.

The permissible kinds of actual argument are as defined for the CALL
statement in 5.2.8, except that alternate return specifiers are not
allowed.

Examples:

X = F(Y-Z)
J = IFUNC()

Pro Fortran-77 User Manual II - 60

8 IMPLEMENTATION-DEPENDENT ASPECTS

8.1 Fortran-77 files and ODOS

8.1.1 Files and records

A Fortran-77 file is composed of "records" arranged in sequence, just
one record being accessible at any one time. A record may be

formatted or unformatted,
variable-length or fixed-length.

Formatted and unformatted records cannot be mixed in the same file,
nor can variable-length and fixed-length. Formatted records are
written and read by the formatted forms of the WRITE and READ
statements, and unformatted records by the unformatted forms.

In the case of files allocated on external media such as a disc,
variable-length records can only be processed sequentially, and
fixed-length records can only be processed using direct access, i.e.
with ACCESS='DIRECT' in the OPEN statement and using the direct-access
forms (REC = •••) of READ and WRITE statements. In the case of
"internal" files, however, which are allocated to a program's data,
the records can only be fixed-length and accessed sequentially.

In this implementation, fixed- and variable-length formatted records
are limited in size to a maximum of 200 characters. Fixed-length
unformatted records are limited in size to a maximum of 32767 bytes.
Variable-length unformatted records can be arbitrarily long.

Fortran files may be classified into the following types:

pre-connected
external
work
internal.

8.1.1.1 Pre-connected files

Such files, referenced by a program in READ, WRITE and PRINT
statements specifying (or, in the case of PRINT, implying) UNIT=*,
must be used with formatted I/0 and accessed sequentially. No other
types of I/0 statement may be used to reference them. In particular,
no OPEN statement is needed. Formatted numerical input fields are
processed by default as if the OPEN option BLANK='NULL' applied.

Pro Fortran-77 User Manual II - 61

Pre-connected files are named and opened automatically before program
execution begins. The default pre-connected files are associated with
the program's window, and this will be used for UNIT=* references if
no explicit files are specified by the user for pre-connection (see
part III, section 4.2).

8.1 . 1.2 External files

Except for the pre-connected files (see above), External files require
an OPEN statement with a unit-identifier which is an integer
expression. If no FILE= parameter is supplied, a work file is implied
(see 8.1.1.3); otherwise, a file name of up to 36 characters must be
given. This may represent the name of a filestore-type file, such as
one on disc or microdrive, or a device-type file such as SER, SER1,
etc. Files to be accessed by direct-access operations must be
allocated to devices that support such operations.

8.1.1.3 Work files

If an OPEN statement has no FILE= parameter, a workfile is implied,
with a name which will be chosen by the library software at run time.
For such files, STATUS cannot be specified as 'OLD' or 'NEW'.

All workfiles used by a program at run-time are allocated to the same
device, which is defaulted but can be configured by the user (see part
III, section 5). In particular, the use may choose the device at
run-time. Workfiles are deleted automatically by a CLOSE statement or
when the program terminates.

Workfile names chosen by the library software have the following ASCII
character format:

where

<device>_F77$_<job id>_<sequence no>

<device> is the chosen/default device name, e.g. MDV2, <job
id> is the QDOS job id for the program (8 hex characters),
<sequence no> is a unique sequence number, starting at 0001
and incrementing by 1 for each workfile opened (4 hex
characters).

Pro Fortran-77 User Manual II - 62

8.1.1.4 Internal files

Internal files are distinguished from External files by having
unit-identifiers which are array-names or character-fields (see 5.3).
They are memory-allocated "files" containing fixed-length formatted
records. READ, WRITE and PRINT are the only I/0 statements which may
be used with internal files. List-directed input/output (see 5.3) is
not permitted. Only sequential access is allowed. The maximum record
length possible with an internal file depends entirely on the
declaration of the character variable or array used.

8.1.1.5 File existence

This concept is largely involved with the INQUIRE and OPEN statements.
A closed file will be said to exist if an open-input operation on the
file succeeds; otherwise, the file will be said to "not exist". If
the file is already open, then it must exist.

8.1.1.6 File access

Both sequential and direct access are supported for all filestore type
files, and sequential access for device-type files. Files for
sequential access consist of variable-length records, files for direct
access consist of fixed-length records.

It is the user's responsibility to only apply those I/0 operations to
a file or device that it is capable of accepting.

Pro Fortran-77 User Manual II - 63

8.1.2 File formats

Fixed length records and variable length unformatted records can only
exist on filestore devices. Variable length formatted records can also
be written to a printer or the screen, and read from the keyboard.

8.1.2.1 Variable-length formatted records

A Fortran program typically uses a file of variable-length formatted
records for input of data or display of results. In this kind of
file, each "record" becomes one line of input or output. On
filestore, the file layout follows the conventions of the operating
system for text files.

When reading such records from a filestore (e.g. disc) file,
end-of-file will be set either by encountering the physical end of the
file or by a line consisting of <CTRL-Z> (decimal code 26) followed by
<LINEFEED> (decimal code 10).

To signal end-of-file when inputting from the keyboard, a separate
line consisting of <CTRL-SHIFT-QUOTE> followed by <ENTER> must be
supplied, i.e. decimal codes 130 followed by 10.

On output, the first character of the record is interpreted to
determine printer carriage-control according to the standard Fortran
conventions:

Blank
0
1
+

Advance one line
Advance two lines (double-spacing)
Advance to top of page
No advance

Any other character is treated as blank, i.e. producing
spacing. In all cases the first character does not appear
actual output. If such a file is produced by list-directed
each line of the file will begin with a blank character
single-spacing when printed.

single
in the
output,

to give

Note that this "interpretation" is
being output to filestore or to
intended for printing may either
to filestore and then spooled or

performed whether the records are
an actual printer. Thus a file

be printed directly, or first output
copied to a printer device.

Note also that the control characters produced as a result of
carriage-control interpretation are output at the beginning of the
corresponding line, i.e. before outputting the remaining characters of
the line.

Pro Fortran-77 User Manual II - 64

8.1.2.2 Variable-length unformatted records

A file of variable-length unformatted records must be a filestore
file. Each Fortran "record" is divided into logical records,
consisting of 2 control bytes and user data. It follows that small
records may be associated with a relatively large amount of control
information. In all cases, however, filestore is used as efficiently
as possible; and there is effectively no limit on the size of the
Fortran records.

Each Fortran record consists of one or more contiguous logical records
not exceeding 128 bytes in size, constructed as follows:

+-~-~---------------------+
I C1 I C2 I user data

+-------------------------+
where C1 and C2 are control bytes, and the user data does not exceed
126 bytes (it can be of zero length).

C1: equal to $FF if this is the start of the file; otherwise it
contains the number of user data bytes in the previous logical
record, with bit 7 set if this is the first logical record of the
Fortran record.

C2: bit 7 is set if this is the last logical record of
record, otherwise it is zero; bits 6 to 0 contain the
the user data {0 to 126 inclusive).

the Fortran
length of

For example, a file consisting of 2 Fortran records with 9 and 129
bytes of data respectively would consist of the following sequence of
144 bytes:

+-------------------------~~-~--~---------+
$FF $89 I 9 data bytes (record 1) I

+-----~-~~~-~~-~~--~~~~-------------------+

+-------------~---~---------------------------+ $89 I 126 I first 126 bytes of record 2 I
+-----------------------------------~------~~-+

+--+ I 126 $83 f last 3 bytes of record 2 I

+-~--+

Pro Fortran-77 User Manual II - 65

8.1.2.3 Fixed-length records

Fixed-length records are restricted to filestore files, and are
limited in size to 200 characters (formatted) and 32767 bytes
(unformatted). The Fortran records are stored adjacent to one
another, with no control information or "slack" bytes. The RECL=
value used for reading such a file must be such that the file size is
an exact multiple of the record size.

The first character of fixed-length formatted records
interpreted as a printer control character.

8.1. 3 Unit numbers

is not

A unit number is associated with a file or device, and is the means by
which a program refers to that file. Unit numbers can be in the range
0 to 255 inclusive. The OPEN statement (see 5.3.7) allows any valid
unit number to be connected to a named filestore file (e.g.
MDV1_DATAFILE) or to a device (e.g. CON_20x50 or SER1).

At most 15 units (excluding the 2 pre-connected units) may be open at
one time.

.......
8. 1. 4 Random access

Random access files are always OPENed with ACCESS='DIRECT' and RECL=
g1v1ng the record size in characters or bytes. Section 8.1.2.3 gives
the maximum allowed record sizes.

If the OPEN statement specifies STATUS='OLD', the file must exist, and
it is possible to update the file by a mixture of READ and WRITE
operations quoting REC= to address the records directly.

If the OPEN statement specifies STATUS='SCRATCH', a workfile
library-chosen name (see section 8.1.1.3) will be created if
not already exist or overwritten if it does. If,
STATUS='NEW', the specified file must not already exist.
either case, the first operation on the file must be WRITE.

with a
it does
however,

Then, in

It is quite permissible to write records to the file in any desired
order using the REC= parameter, but it is the user's responsibility to
ensure that no record is read before it has been written. If by the
time the file is CLOSEd an incomplete set of records has been written
by the program, all unwritten records will actually exist in the file
but they will not, of course, contain any user data. They will in
fact contain binary zero bytes or ASCII blank characters according as
the records are unformatted or formatted respectively.

Pro Fortran-77 User Manual II - 66

8.1.5 Operations on External and Work files

These are the operations of opening, closing and deleting files on
filestore media.

8.1.5.1 Opening files

An OPEN statement associating a unit number with a' file must be
executed before any data transfer I/0 statement refers to that unit.
OPEN may be used to effect one of the following operations:

(a) Associate the unit number with an already existing file in
preparation for formatted or unformatted, direct or sequential,
I/0. The file may be read, updated or completely overwritten
prior to a REWIND or CLOSE on the same unit.

(b) Associate the unit number with a file that is to be created, i.e.
that does not already exist, in preparation for formatted or
unformatted, direct or sequential, I/0. The file may be written
or updated prior to a REWIND or CLOSE on the same unit.

(c) Perform either of operations (a) or (b) when the
currently connected to another file. The latter
closed with an internal CLOSE(unit) operation, and
association is made as before.

unit
file

then

number is
is first
the new

(d) Alter the BLANK= specifier for the file already connected to the
unit number.

It is important to realize that an OPEN statement does not cause a
physical file-open operation. The latter takes place when the first
data transfer I/0 statement for-the associated unit is executed. For
example, consider the fragment:

•
•
OPEN (u,FILE='MDV2_DAT~IN',STATUS='OLD 1 ,ERR:100)
READ (u,*,ERR:200)
•

Then if the file DATA_IN does not exist on the cartridge in MDV2 at
the time these statements are executed, the statement with · label 200
will receive control rather than the statement with label 100.

In the sense of the Fortran-77 Standard, the term "connected" when
applied to a file means that a successful file-open operation has been
performed.

Pro Fortran-77 User Manual II - 67

The following table shows the open modes used for various OPEN
options:

Status Open mode

'NEW' New exclusive
'SCRATCH' New overwrite
'OLD' (Input) Old exclusive
'OLD' (Output) New overwrite
'OLD' (Direct) Old exclusive

The effect of omitting STATUS= in the OPEN statement is
specifying STATUS: 1UNKNOWN', and causes the status to be
time according to the following rules:

(a) If FILE= is omitted, then STATUS is set to 'SCRATCH'.

the same as
set at run

(b) If FILE= is supplied, then if the file exists STATUS is set to
'OLD' else to 'NEW'.

To send a formatted output file directly to the printer, the OPEN
statement must specify STATUS='NEW', e.g:

OPEN (iprin, File= 'SER1', Status= 'NEW')

An alternative method is to write to unit n•n, and reply SER or SER1
to the "Standard output file?" question at program start-up (see Part
III, section 4.2).

8.1.5.2 Closing files

The CLOSE statement breaks the connection between a unit number and
the associated file, so that the unit number may no longer be used to
access that file, but may, if desired, be associated with another file
by means of an OPEN statement.

8.1.5.3 Deleting files

There is no single Fortran-77 statement that will cause a particular
file to be deleted, but the following sequence may be used:

OPEN (u,FILE='filename',STATUS='OLD')
CLOSE (u,STATUS='DELETE')

This sequence will not cause an error if the file does not exist.

8.1.6 Input/output restrictions

There is a general restriction on the execution
namely, that no function reference made during an
cause another I/0 statement to be executed.

of I/0 statements,
I/0 statement may

Pro Fortran-77 User Manual II - 68

8.2 Additional library routines

There are a number of routines in the Fortran library which can be
called on when required. Use in a program causes the appropriate
selection to be made during the link-edit process.

8. 2.1 GETCOM {options)

The subroutine GETCOM may be called at any time during a program, to
obtain the program option string.

The parameter "options" must be a character variable or array element,
and the program option string will be copied to this as if an
assignment to the character variable was being made. Thus if the
option string is shorter than the receiving variable, the latter is
filled out with blanks, but if the option string is longer, truncation
occurs. If there is no program option string, the receiving variable
will be set to all blanks.

Example: CHARACTER SHORT*6, LONG*16

CALL GETCOM (SHORT)
CALL GETCOM (LONG)

If the program option string is ' Weather Report', then the variables
SHORT and LONG will be set to ' Weath' and ' Weather Report '·

8.2.2 RANDOM {i)

The function RANDOM yields at each call a pseudo-random real value,
uniformly distributed in the range 0.0 to 1.0. The parameter i must
be an INTEGER*4 variable or expression. If {i.LE.O) the next value in
the pseudo-random sequence is returned; if (i.GT.O) then the value of
i is taken as a new "seedn, and another sequence started.

Example: X = RANDOM {0)

8.2.3 IADDR (variable)

This function has as argument any variable reference, and returns an
integer result, being the 32-bit absolute address of the variable.

A particular use for this function is in supplying address-type
parameters to some of the QDOS function calls (cf. 8.2.12).

Example: IV = IADDR(V(I,J))

Pro Fortran-77 User Manual II - 69

8.2.4 !PEEK (iaddr)

The INTEGER•l function !PEEK returns the value of the byte at memory
location iaddr. The parameter iaddr must be an INTEGER•4 variable or
expression, representing an absolute machine address.

Example: INTEGER•1 !PEEK
• • •
!VAL = !PEEK (128+J)

8.2.5 POKE (iaddr,ival)

Subroutine POKE stores ival (truncated to one byte if necessary) at
memory location iaddr. Both parameters are INTEGER•4 variables or
expressions, with iaddr representing an absolute machine address.

Example: CALL POKE (192+J,IVAL)

8.2.6 EXECPG (commanQ_string,returq_code)

EXECPG allows a user program to dynamically execute other separately
linked Fortran-77 programs.

The currently executing Fortran program, the "parent", uses EXECPG to
execute a separately linked Fortran program, the "child". A string,
the "program options", can be specified for passing to the child
program, which can obtain the string by means of subroutine GETCOH
(see 8.2.1).

While the child program runs, the parent program is suspended, and
only continues when the child terminates. The child itself may cause
child programs of its own to be executed in the same way. The parent
program and each child program run by it are separate QDOS jobs, these
jobs together forming a dependent job tree.

When the child terminates, a numeric return code is passed back to its
parent (see 8.2.7).

EXECPG requires the following parameters -

(a) A character expression "command_string" in the form

'<chilQ_program_file>[<program_options>]'

Examples:

1. The command string 'MDV1_MENU' specifies program MENU on MDV1,
and a null program options string is passed.

Pro Fortran-77 User Manual II - 70

2. The command string 1MDV2_PRINT_BIN MYFILE_DAT' specifies that
program PRINT_BIN on MDV2 is to be executed, and the options
string ' MYFILE_DAT' is to be made available to the program
(which uses subroutine GETCOM to get this string). Note that
the space separating the options string from the program name
is part of the string.

(b) An INTEGER*4 variable "return_code" that will receive the child's
return code when it terminates (see 8.2.7).

Example:

A parent program could include the following statements -

•
•
INTEGER*4 rc
•
•
CALL EXECPG ('MDV2_HOME PARK',rc)
IF (rc) 70, 80, 90
•

The statements cause program HOME to be loaded from MDV2 and executed.
A call of GETCOM in HOME will yield the 5-character string PARK'.
When HOME terminates, the return code it sets is stored in variable
rc, which the parent then tests. Normally, a negative return code
will indicate an error condition (see 8.2.7).

A hierarchy of programs can be executed in this manner, as in the
following example.

IAI A is executed by operator command

IBI B is executed by A

ICI C is executed by B

Program A is loaded and executed by an operator command, and uses
EXECPG to load and execute B. B, in turn, uses EXECPG to load and
execute C. Thus when C has control, all three programs are in memory.
A and B are known as parent and child programs respectively, as are B
and C. Each of A, B and C is a separate QDOS job with B dependent on
A and C dependent on B.

Pro Fortran-77 User Manual II - 71

When C terminates, it is deleted from memory and control returns to B,
which then continues execution. When B terminates, it is deleted from
memory and control returns to A, which then continues execution. When
A terminates, control passes back to the operating system in the usual
way.

This example demonstrates that at each level of the program hierarchy,
there is just one program loaded. Thus suppose for example that B
executes further programs D and E after C, then D and E are
successively loaded, executed and deleted from memory.

The user is of course limited by the amount of
user programs, and to make maximum use of this
Part III) for specifying stack/work area size
linking programs to be dynamically executed.

memory available
the Linker option
should be used

for
(see
when

A parent program's standard input/output
accessed) are also available to each of its
any number of levels, via UNIT = •

files
child

(even if
programs,

8.2.7 EXITPG (retur~code)

EXITPG may be used by a program to terminate
time, and to pass a non-negative return code
parent program (if any).

its execution
back to the

not yet
through

at any
calling

If a program terminates normally without calling EXITPG, a return code
of zero will be passed back. Sometimes, the run-time library will
detect an error condition and force termination of a child program
with one of the negative return codes below.

The retur~code given to EXITPG can be any integer expression and
should be in the range 0 to 127 inclusive. The library-generated
negative return codes that can be generated are as follows:-

•1 child terminated by run-time error
-2 error in format of command string
-3 child program file could not be opened,

or error reading child program's file header
-4 child program file not marked as executable
-5 failure to load child program file
-6 child program incompatible with PRL software
-7 insufficient memory to run child program
-8 error during initialization of child program
-9 no PRL installed, or PRL is corrupt
-10 error opening/reading/writing child program's window
-11 only one channel passed to child program
-12 error when linking child program
-13 unable to create a job to run child program

Pro Fortran-77 User Manual II - 72

For an explanation of run-time errors, see Appendix C; for further
details of the other errors listed above, see Part III section 4.4

Example:
CALL EXITPG (8)

causes the issuing program to terminate with a return code of 8.

8.2.8 AFFIRM (prompt)

AFFIRM is a LOGICAL function which is given the argument "prompt", a
character expression intended for display on . the screen. The user
must respond with either Y (or y) for an affirmative response or N (or
n) for a negative response, and the function then returns the
corresponding value .TRUE. or .FALSE. respectively.

Example:
LOGICAL AFFIRM
•
•
IF (AFFIRM ('More data files')) THEN

•
•

END IF
•
•

The effect of these statements is to display "More data files? n

on the screen (the "? " is appended automatically) and flash the
cursor to invite input. The reply is echoed on the screen and the
function value returned as described above. If an invalid reply is
entered, the cursor continues to flash until a valid reply is given.

8.2.9 IHANDL (unit_number)

IHANDL is an INTEGER*4 function which is given a unit number
expression as argument. If the unit number is connected to a file
which has been physically opened, i.e. at least one READ, WRITE or
PRINT statement for the unit has been successfully executed, the
function will return the 32-bit QDOS channel ID for the unit in
question; otherwise, it returns the value -1.

Example: IC = IHANDL (10)

Pro Fortran-77 User Manual II - 73

8.2.10 DATE (year,month,day)

Subroutine DATE puts the current date into the 3 arguments, which must
be INTEGER•4 variables (or array elements).

Example: CALL DATE(IYEAR,MONTH,IDAY)

/ '\ . ,,_ __

8.2.11 TIME (hours,mins,seconds,h~ndred1ibs)
(___...../ .

Subroutine TIME puts the current time into the
be INTEGER•4 variables (or array elements).

Example: CALL TIME(IHOURS,MINS,ISECS,IHUNDS)

8.2.12 TRAP (trap_no,regarray)

() .

4 arguments, which must

This subroutine enables QDOS trap calls to be made from a Fortran
program. The first parameter is an integer expression which is
truncated to 4 bits to der.ive the trap number in the range 0-15. The
second parameter is the name of an INTEGER•4 array having the layout
given by the supplied INCLUDE file TRAPREG_FOR. The user is
responsible for setting all necessary parameters required by the QDOS
call to be issued including, of _course, the call number. The
subroutine loads the machine registers from regarray before issuing
the TRAP machine instruction. On return, the machine registers are
stored into regarray where they can be examined by the user program.

Example:

• Read the display mode (TRAP $1, call 10 hex)

DO = 16
D1 = -1
D2 = -1
CALL TRAP (1,MCREGS)

• The display mode and display type are returned in the l.s. 8 bits
• of registers D1 and D2 respectively. Normally, at this point one
• would test the contents of DO to detect any error condition.

Note: Care should be taken that the QDOS trap call does not interfere
with the operation of the Fortran run-time routines, in particular
those concerning files.

8.2.13 MODE (highres)

Subroutine MODE sets the QL screen to either high resolution 4-colour
mode or low-resolution 8-colour mode. The argument must be a logical
expression or a LOGICAL•4 variable or array element. For example, the
following statement will set the display to 4-colour mode:

CALL MODE(.TRUE.)

Pro Fortran-77 User Manual II - 74

8.2.14 Window routines

This group of subroutines enables the programmer to associate a screen
output window with a Fortran unit number, and to set and inquire about
its attributes. Where there is a related SuperBASIC command, this is
stated, and the QDOS documentation for that command should be
consulted for more details.

A program may create several windows, but there is an 'overall limit of
15 on the number of units (windows and other Fortran files) which may
be open simultaneously (see 8.1.3).

All the routines in this section and in sections
operate on "window"s. Note that the window
explicitly in each subroutine call - there is no
SuperBASIC idea of the "default channel".

8.2.15 thru 8.2.17
must be specified
equivalent of the

Before calling any other subroutine referencing a window, the window
must first be opened, i.e. associated with a Fortran unit number, by a
call of WOPEN.

It is possible to output text to a window using formatted WRITE
staments, but since the window is for output only, READ statements are
impermissible.

8.2.14.1 WOPEN (unit, width, height, Xorigin, Yorigin)

Related SuperBASIC keyword: OPEN

Opens a screen output window.
expressions. The last four
example, the call

All five
~rguments

CALL wopen (10, 448, 180, 32, 16)

arguments must
are in pixel

be integer
units. For

associates unit 10 with the QL console device SCR_448x180a32x16 (which
is in fact the default sc~ device}.

8. 2.14.2 WINDOW (unit, width, height, Xorigin, Yorigin)

Related SuperBASIC keyword: WINDOW

Allows the user to change the size and/or position of a window. All
five arguments must be integer expressions, the last four representing
pixel values.

Example: CALL WINDOW (iwind, 30, 40, 10, 10)

Pro Fortran-77 User Manual

8.2.14.3 WSTATC (unit, width, height, Xcursor, Ycursor)

Related SuperBASIC keyword: none

An inquiry subroutine, which returns the window
position, both in terms of character coordinates.
arguments must be INTEGER*4 variables/array-elements.
top left cursor position is 0,0.

Example: CALL wstatc(10, iw, ih, ix, iy)

size
The
Note

8.2.14.4 WSTATP (unit, width, height, Xcursor, Ycursor)

Related SuperBASIC keyword: none

II - 75

and cursor
last four
that the

An inquiry subroutine, which returns the window size and cursor
position, both in terms of pixel coordinates. The last four arguments
must be INTEGER*4 variables/array-elements. Note that the top left
cursor position is 0,0.

Example: CALL wstatc(iwind, iw, ih, ix, iy)

8.2.14.5 RECOL (unit, c1, c2, c3, c4, c5, c6, c7, c8)

Related SuperBASIC keyword: RECOL

Changes the colour values for this window. Each of the last 8
arguments must be integer expressions in the range 0 (= black) thru 7
(= white).

Example: CALL recol (iwind, 2,3,4,5,6,7,1,0)

8.2.14.6 BORDER (unit, width, colour)

Related SuperBASIC keyword: BORDER

Adds to the window a border of the specified size and colour. The
arguments must be integer expressions. "width" is in pixels.
"colour" is in the range 0 to 255; considered as an 8-bit byte, the
bottom three bits define the base colour (0 = black thru 7 = white),
the next three bits give the exclusive OR of this base colour and the
stippling colour (if these three bits are zero, the colour is
therefore solid), and the top two bits select one of the four stipple
patterns. The special value $80 for "colour" will produce a
"transparent" border, i.e. the previous border is unchanged.

Example: CALL BORDER (10, I1-I2, $40+J*NEWCOL)

Pro Fortran-77 User Manual II - 76

' (' . t i .. .

8.2.14.7 INK (unit, colour)

Related SuperBASIC keyword: INK

Sets the ink colour for the given window. Both arguments must be
integer expressions. The second argument should be in the range 0 to
255, the associated colour being as described in 8.2.14.6.

Example: call ink (iw3, icolor[j])
'! - .

..;..:

8.2.14.8 PAPER (unit, colour)

Related SuperBASIC keyword: PAPER

Sets the paper colour for the given window. Both arguments must be
integer expressions. The second argument should be in the range 0 to
255, the associated colour being as described in 8.2.14.6.

Example: call paper (10, icol)

8.2.14.9 STRIP (unit, colour)

Related SuperBASIC keyword: STRIP

Sets the strip colour for the given window. Both arguments must be
integer expressions. The second argument should be in the range 0 to
255, the associated colour being as described in 8.2.14.6.

Example: call strip (10, 7-icol)

8.2.14.10 BLOCK (unit, width, height, Xorigin, Yorigin, colour)

Related SuperBASIC keyword: BLOCK

Fills a block of the specified size and position with the given
colour. All arguments must be integer expressions. The middle four
arguments are in pixel units. The meaning of "colour" is as described
in 8.2.14.6.

Example: call block (iwind, 10,10, 5,5, 7)

Pro Fortran-77 User Manual II - 77

8.2.14.11 CLS (unit, part)

Related SuperBASIC keyword: CLS

Clears the window to the current PAPER colour. Both arguments are
integer expressions. The second argument determines how much of the
window area will be cleared, according to the scheme:

part = 0 whole window
part = 1 top excluding the cursor line
part = 2 bottom excluding the cursor line
part = 3 whole of the cursor line
part = 4 right end of cursor line (including cursor)

Example: CALL CLS (10, 0)

8.2.14.12 PAN (unit, distance, part)

Related SuperBASIC keyword: PAN

Pans the window "distance" pixels to the
negative, pans to the left. All arguments
The last argument determines how much of
panned, according to the scheme:

right; if distance is
are integer expressions.

the window area will be

part = 0
part = 3
part = 4

whole window
whole of the cursor line
right end of cursor line (including cursor)

Example: CALL PAN (10, IXNEW-IXOLD, 4)

8.2.14.13 SCROLL (unit, distance, part)

Related SuperBASIC keyword: SCROLL

Scrolls the window "distance" pixels downwards; if distance is
negative, scrolls upwards. All arguments are integer expressions.
The last argument determines how much of the window area will be
scrolled, according to the scheme:

Example:

part = 0
part = 1
part = 2

whole window
top excluding the cursor line
bottom excluding the cursor line

CALL SCROLL (10, IYNEW-IYOLD, 0)

Pro Fortran-77 User Manual II - 78

8.2.15 Print style routines

This group of subroutines enables the programmer to influence the
style in which text is output to a window. In each case, there is an
associated SuperBASIC command, and the QDOS documentation should be
consulted for further details.

-~·I"· _,,. . ,-:: '1·-, / . ' .) .. '

8.2.15.1 CSIZE (unit, width, height)

Related SuperBASIC keyword: CSIZE

Sets the character size for the window. All
expressions. "Width" should be in the range
should be 0 or 1.

Example: call csize (iwind, 0, 0)

8.2.15.2 FLASH (unit, onoff)

Related SuperBASIC keyword : FLASH

....
~ \ . ! \ ~ i f -'

arguments
0 to 3,

are integer
and "height"

Sets the FLASH state on or off. The second argument must be a logical
expression; if it is true, the flash state is set on, else off.

Example: CALL FLASH (10, .TRUE.)

8.2.15.3 UNDER {unit, onoff)

Related SuperBASIC keyword: UNDER

Turns underlining on or off. The second argument must be a logical
expression; if it is true, underline is set on, else off.

Example: . CALL UNDER (10, .NOT. L)

8.2.15.4 OVER (unit, mode)

Related SuperBASIC keyword: OVER

Both arguments are integer expressions. The second argument selects
the type of over-printing required, according to the scheme:

Example:

mode = -1
mode = 0
mode = 1

print in INK over previous screen contents
print INK on STRIP
print in INK on transparent STRIP

call over (10~ 1)

Pro Fortran-77 User Manual II - 79

8.2.16 Cursor positioning routines

This group of subroutines enables the programmer to position the
cursor within a window. In each case, there is an associated
SuperBASIC command, and the QDOS documentation should be consulted for
further details.

8. 2.16 . 1 ATC (unit, line, column)

Related SuperBASIC keyword: AT

Positions the cursor in the window using character coordinates, with
0,0 corresponding to the top left corner of the window. All arguments
are integer expressions.

Example: CALL ATC (iwind, 0, 0)

"' • ;"\ , , • . ;;-\ - 1'< f. 1'-n.. .. · ~ •\;:_ ... d. . .

8. 2. 16.2 ATP (unit, Xpos, Ypos)

Related SuperBASIC keyword: CURSOR (with 2 parameters}

Positions the cursor in the window using pixel coordinates, with 0,0
corresponding to the top left corner of the window. All arguments are
integer expressions.

Example: CALL ATP (iwind, 20, 30)

8.2.16.3 ATG (unit, Xorigin, Yorigin, Xoffset, Yoffset)

Related SuperBASIC keyword: CURSOR (with 4 parameters)

Positions the cursor in the window,
coordinates (the second and third
expressions) and pixel offsets (the
must be integer expressions).

using a combination of . graphics
arguments, which must be real

fourth and fifth arguments, which

Example: CALL ATG (iwind, gx, gy, 0, 0)

Pro Fortran-77 User Manual II - 80

8.2.17 Graphics drawing routines

This group of subroutines enables the programmer to output points,
lines and arcs to a window. The facilities provided correspond to
those of the SuperBASIC graphics procedures, and in each case the
corresponding SuperBASIC keyword is given. The QDOS documentation
should be consulted for further details.

8.2.17.1 FILL (unit, onoff)

Related SuperBASIC keyword: FILL

Turns the graphics fill on or off. The second argument is a logical
expression; if it is true, fill is set on, else off.

Example: call fill (10, .TRUE.)

8.2.17.2 SCALE (unit, scalefactor, Xorigin, Yorigin)

Related SuperBASIC keyword: SCALE

Allows the scale factor used by the graphics procedures (POINT, LINE,
ARC, CIRCLE and ELIPSE) to be altered. The last 3 arguments are real
expressions.

Example: call scale (10, 0.5, 0.1, 0.1)

8.2.17.3 POINT (unit, X, Y)

Related SuperBASIC keyword: POINT

Plot a point at the specified position relative to the graphics
origin. The last two arguments are real expressions.

Example: call plot(10, x, 0.0)
J

.. ~··
\

,., r · , .. ;"
', ~ .:~ t , ~ r .. ·;~ l

·:.., ·

8.2.17.4 LINE (unit, Xfrom, Yfrom, X to, Yto)

Related SuperBASIC keyword: LINE

Draw a straight line between two points, whose locations are specified
in absolute graphics coordinates. The last four arguments are real
expressions.

Example: call line (iwind, 0.0, 0.0, xdest, ydest)

Pro Fortran-77 User Manual II - 81

8.2.17.5 ARC (unit, Xfrom, Yfrom, Xto, Yto, angle)

Related SuperBASIC keyword: ARC

Draw an arc of a circle between two points, whose locations are
specified in absolute graphics coordinates. The last five arguments
are real expressions. The last argument gives the angle subtended by
the arc, in radians. The following will draw a semi-circle, for
example:

CALL ARC (10, XL, YL, XR, YR, 3.141593)

8.2.17.6 CIRCLE (unit, Xcentre, Ycentre, radius)

Related SuperBASIC keyword: CIRCLE (with 3 parameters)

Draw a circle whose centre and radius are given in graphics
coordinates. The last three arguments are real expressions.

Example: CALL CIRCLE (10, XCEN, YCEN, SIN(GRAD))

8.2.17.7 ELIPSE (unit,Xcentre,Ycentre,majoraxis,eccentricity,angle)

Related SuperBASIC keyword: CIRCLE (with 5 parameters)

Draw an ellipse whose centre and major axis are given in graphics
coordinates, with a specified eccentricity and orientation. The last

· five arguments are real expressions. The "eccentricity" is the ratio
between the major and minor axis. The "angle" is the orientation of
the major axis relative to the vertical, in radians.

Example: call elipse (10, xcen, ycen, 12.0, 0.5, 0.0)

Pro Fortran-77 User Manual II - 82

Storage allocation

8. 3· 1 OVerall layout

Object programs can in general contain requirements for the following
kinds of storage.

Program code.
Constants (literals).
Static data areas.
COMMON data blocks.
Stack/work area.

All program variables, whether in COMMON or not, are allocated static
data space. Thus any SAVE statements in the program source are
effectively redundant.

In the object code from the compiler, the static data for each module,
and each COMMON block, is located on a word boundary. The stack is
kept word-aligned throughout execution of the program.

The result of compiling a program unit is a relocatable module in
Sinclair object format which consists of a number of "sections".
There are up to four sections generated:-

(1) .CODE (if the program unit contains executable statements),
contains object code and constants (integer, real, character,
The code generated per program unit cannot exceed 32K bytes.

which
etc.).

(2) .ATAB, which contains control information enabling run-time access
to COMMON blocks and linked-in routines such as other program units
and library procedures

(3) .!NIT, which contains control information enabling the run-tlme
initialization of COMMON blocks and local variables (corresponding to
DATA statements in the source program).

(4) .NAME, which by default contains just the main program's name. If
the /N compile-time option is selected, it also contains the names of
files and subroutines compiled, for utilization . in the event of a
run-time error, when producing a subroutine call trace-back.

Each COMMON block is converted into a COMMON section with the same
name as the common block, the name .BLANK being used for blank common.
A program unit's local static data also becomes a COMMON section, but
is only addressable by that program unit. Note however that a program
file contains no COMMON areas within it, since the COMMON DUMMY
directive is used at link-time. The actual COMMON areas used by a
program are created and initialised dynamically at run-time.

Pro Fortran-77 User Manual II - 83

The user stack pointer SP is set to the highest address in the
workspace area plus one, and the stack "grows" from higher to lower
addresses. Almost all of this area is used for the stack, and if at
run-time the library finds that the stack is about to overflow,
execution of the user program is terminated. The program must be
re-run with a larger amount of workspace (see part III section 5).

Depending on a program's requirements, extra memory areas may be
allocated dynamically at run-time by the library heap manager.

The detailed layout of a program in memory is as follows:-

There are two separately allocated memory areas:

(1) the executable code image and heap/stack area
{2) the COMMON blocks and local static data.

(increasing addresses -->)

1----~----~---~---------+------------------~-1
Code Image <--Stack

1-----~-----------------+------~---~-------~-1

:-------------~------~~----------1
I
I

I COMMON blocks + local static I
I

:-----~------------~----------~-~1

Initial user SP

In addition, there is one further area allocated dynamically by the
library, containing global run-time information shared by the top-most
job and its dependent child jobs. The size of this area is a few
hundred bytes.

(The description above relates to an individual object program, which
may be run as a job by operator command or as a child by a parent
program. The Prospero Resident Library, or PRL, is a fixed area of
code, of rather less than 16K bytes, which is distinct from the areas
just described. Only one copy of the PRL is in the machine at one
time - it is typically in ROM, in fact - and it is shared between any
active jobs.)

Pro Fortran-77 User Manual II - 84

8.3.2 Formats of variables

Variables of type INTEGER (INTEGER*4) occupy 4 bytes, arranged
most-significant to least-significant in ascending addresses. Type
INTEGER*2 occupies 2 bytes, with the normal high-low convention of the
68000; the range of values accommodated is -32768 to 32767. Type
INTEGER*1 occupies 1 byte, the range of values being -128 to 127.

The types LOGICAL (LOGICAL*4), LOGICAL*2 and LOGICAL*1 are
the corresponding integer types, with the values .FALSE.
being represented by 0 and 1 respectively in the · least
byte only, the other bytes (if any) being unused.

similar to
and .TRUE.
significant

REAL values occupy 4 bytes in a format corresponding to the proposed
IEEE Standard. The 32 bits are made up as follows (from most to least
significant) :

1-bit sign
8-bit binary exponent, biassed by 127
23-bit mantissa, with an implied 1 in the most

significant (24th) bit position

DOUBLE PRECISION values occupy 8 bytes in the IEEE format:
1-bit sign
11-bit binary exponent, biassed by 1023
52-bit mantissa, with an implied 1 in the most

significant (53rd) bit position

In both formats, the implied binary point is between the implied 1 1'
bit and the most significant actual bit of the mantissa. Thus the
value 1.0, for example, is represented by the following bit-patterns:

32-bit
64-bit

$3F800000
$3FFOOOOOOOOOOOOO

Values of COMPLEX type occupy 8 bytes and are represented by two REAL
numbers, the imaginary part being in higher addresses than the real
part.

CHARACTER values occupy the declared number of bytes, with one
character stored per byte, in ascending locations.

Arrays are arranged with the element having the lowest subscript value
in the lowest address. Array elements are stored in successive
locations according to the "subscript value" (see section 3.4).

Variables and arrays of type other than INTEGER*1, LOGICAL*1 and
CHARACTER are word-aligned.

Pro Fortran-77 User Manual II - 85

8.4 Interfacing to assembler

8. 4. 1 Use of assembly language

To use machine features not available through the Fortran language,
for example interrupts, routines may be written in assembly language
and combined with the generated code during the link-edit process.

8.4.2 Choice of assembler

The Fortran compiler generates relocatable object code. Assembler
language modules may be processed by any assembler which generates the
same format, and linked with the other components of the program. In
particular, the GST Macro Assembler will be found satisfactory.

8.4.3 XDEF/XREF linkage

8.4.3.1 Calling assembler from Fortran

An assembler-coded routine can be called from Fortran in the normal
way as a subroutine with a CALL statement, or may be invoked as an
external function if it returns a value. In the assembler module, the
name is quoted in an XDEF directive, or made global in some equivalent
way. More than one routine can be in the module. Return is made by
an RTS instruction or equivalent.

To make these remarks more specific, consider the Fortran fragment:

• 0

CALL SUBA(X,Y) ..
The assembler code for a routine SUBA which is called in this way
should be structured as shown below • .
• Fortran calling assembler •.........

SUBA

XDEF SUBA

SECTION • CODE

MOVEA.L 4(SP),AO
MOVEA.L 8(SP) ,A1
••
• •
MOVE.L (SP)+,AO
ADDA. W ~8, SP
JMP (AO)

Get address of argument Y
Get address of argument X

Caller's link
Remove SUBA's arguments from stack
Return to Fortran

Pro Fortran-77 User Manual II - 86

8.4.3.2 Calling Fortran from assembler

A Fortran subroutine or function can be called from assembler code.
The subprogram name must be quoted in an XREF directive {or
equivalent), and called by a BSR.L instruction (this assumes that the
distance between the BSR and the called routine is expressible as a
long BSR operand; if this is not the case, another technique must be
used which is explained below). If the subprogram requires arguments
(see 8.4.6) they must be pushed on the stack before the call.

To make these remarks more specific, consider the Fortran fragment:

SUBROUTINE SUBF(I,J)
• •
END

The assembler code for a routine which calls subroutine SUBF, should
be structured as shown below. In particular, in the large program
example, the .ATAB section name must be used, so that code base
addresses will be relocated correctly •

•
• Assembler calling Fortran {small program example)
•••

•

I
J

XREF SUBF

SECTION • CODE

••
••
PEA
PEA
BSR

I
J
SUBF

Set up SUBF's arguments on stack

Direct call to Fortran subroutine

(SUBF must be withiri 32K bytes of this BSR)
• •
• •

DS.L
DS.L

••

1
1

Pro Fortran-77 User Manual II - Err

•••
* Assembler calling Fortran (large program example)
tf •

This linkage can always be used, but must be used if the distance
between the calling and target routines exceeds 32K bytes.

XREF.L SUBF (The .Lis essential!)
XREF .ATABS .ATABS is a reserved public symbol

SECTION .ATAB .ATAB is a reserved section name

JMPSUBF JMP SUBF Direct 6-byte jump to SUBF

*

I
J

SECTION • CODE

• •
•• Set up SUBF's arguments on stack
PEA I
PEA J
JSR JMPSUBF-.ATABS(A4) Indirect call to SUBF

• •

DS.L
DS.L

1
1

(A4 contains the address of .ATAB at run-time)

Pro Fortran-77 User Manual II - 88

8.4.4 COMMON data

Fortran variables which have been declared in COMMON can be referenced
from assembler code as shown below. The use of section .ATAB is
necessary in order that program initialization can relocate the common
block address at run-time.

In the general case, the assembler declarations must describe the
layout of the Fortran common block. Section 8.3.2 gives details of
storage layout for different data types.

As an example, the following might appear in a Fortran program:

INTEGER*1 HOURS,HINS,SECS
COMMON /TIMER/ HOURS,MINS,SECS

PRINT 100, HOURS,MINS,SECS
100 FORMAT(' Time is: ',I2,':',I2,':',I2)

The method of accessing the common block TIMER is as follows

••••••••••••••••••••••••••
• Accessing a COMMON block
••••••••••••••••••••••••••

XREF .ATABS

• (.ATABS is a reserved public symbol defining
• the start of section .ATAB)

COMMON TIMER

• Layout of TIMER

HOURS DS.B 1
MINS DS.B 1
SECS DS.B 1

SECTION .ATAB .ATAB is a reserved section name

A TIMER DC.L TIMER Address of /TIMER/ at run-time

SECTION .CODE

• •
MOVEA.L ATIMER-.ATABS(A4),AO Get base addrs. of /TIMER/

• (A4 contains the address of .ATAB at run-time)

MOVE.B HOURS(AO),DO Get contents of HOURS ..

Pro Fortran-77 User Manual II - 89

8. 4. 5 Preservation of registers

The generated Fortran code depends upon the contents of registers A3
to A6 being unchanged on return from a subroutine. Assembler-coded
subroutines or functions must conform with these requirements. On
return, the link and all argument addresses must have been removed
from the stack.

8.4.6 Arguments

When a subroutine or function has arguments, the actuals are pushed on
the stack prior to the call. The first argument is pushed first, and
so is furthest from the return link on entry to the procedure.

-~+-----------------~------~--+---
I I
l Link I P3 p2 p1
J f

--+---------------------------+--- (increasing addresses -->)
~SP

On return, arguments as well as link must have been removed.

In all cases, the stack contains the addresses of the actual
arguments, each address occupying 4 bytes. If the actual argument is
a variable, array or array element, the address is that of the item
concerned (and so results can be returned), but if the actual agument
is a more general expression, the address is that of a temporary
workspace which is not addressable by the calling program. In the
case of character variables and expressions, the address passed is
that of a CVD (Character Variable Descriptor), a 6-byte datum,
consisting of a 4-byte address followed by a 2-byte length, that
describes the character variable or expression being passed.

8.4.7 Function results

A function call passes an additional "hidden" argument on the stack
before the actual arguments are passed. The extra argument is the
address of a location in the caller's data space that is to receive
the function result. In the case of a character function, the extra
argument is the address of a CVD.

8.4.8 Reserved section names

The section names • CODE and • ATAB and public symbol • A TABS are
reserved and should only be used as s~own by the examples above. The
section names .!NIT, .NAME, .ENTRY and .LWT are also reserved and must
not be used by any assembler routine under any circumstances.

Pro Fortran-77 User Manual II - 90

INDEX

In this index, word-symbols (IF, INTEGER, etc.) and standard names
(AMAXO, SIN, etc.) are distinguished by the use of capital letters.
Words from the formal syntax (program-unit, common-block, etc.) are
distinguished by not having a capital letter •

• AND., 53
• EQ., 53
.EQV., 53
.FALSE., 5
.GE., 53
.GT., 53
.LE., 53
.LT., 53
.NE., 53
.NEQV., 53
.NOT., 53
.OR., 53
.TRUE., 5

ABS, 56
ACCESS, 4 8-4 9
ACOS, 58
actual-argument, 36, 89
actual-argument-list, 36
Address, 6 8, 89
A-descriptor, 26
Adjustable array, 14
AFFIRM, 72
AIMAG, 57
AINT, 56
ALOG, 57
ALOG10, 58
alternate-return-specifier, 36
AMAXO, 57
AMAX1, 57
AMINO, 57
AMIN1, 57
AMOD, 57, 59
ANINT, 56
apostrophe-descriptor, 27
apostrophe-image, 5
ARC, 81
arithmetic-assignment, 30
arithmetic-constant, 4
arithmetic-expression, 52
arithmetic-factor, 52

Pro Fortran-77 User Manual

arithmetic-if-statement, 33
arithmetic-primary, 52
arithmetic-relational-expression, 53
arithmetic-term, 52
arithmetic-type, 12
Array, 3 , 12, 1 4, 84
array-declarator, 14
array-element, 30, 52
array-name, 8, 14
ASIN, 58
Assembler, 85-89
ASSIGN, 31
assigned-goto, 32
assignment-statement, 30
Assumed-size array, 14
ATAN, 58
ATAN2, 58
ATC, 79
ATG, 79
ATP, 79

BACKSPACE, 47
backspace-statement, 47
basic-real, 4
B-descriptor, 29
BLANK, 4 8-4 9
blank, 1
Blank common, 15
BLOCK, 76
BLOCK DATA, 11
block-data-body, 11
block-data-definitions, 11
block-data-specifications~ 11
block-data-statement, 11
block-data-subprogram, 11
block-if-statement, 34
block-name, 15
BORDER, 75
Brackets, see Parentheses
Byte, 69, 84

c, 27
CABS, 56
CALL, 36
call-statement, 36
ccos, 58
CEXP, 57
CHAR, 56
CHARACTER, 9, 12-13
character, 1

II - 91

Pro Fortran-77 User Manual

character-assignment, 31
character-constant, 5
character-expression, 54
character-field, 31
character-item, 12
character-item-list, 12
character-primary, 54
character-relational-expression, 53
character-variable-element, 49
CIRCLE, 81
CLOG, 57
CLOSE, 49
close-control, 49
close-statement, 49
CLS, 77
CMPLX, 56
Code, 82-83
colon-descriptor, 28
Column, 1-2
Comment line, 2
COMMON, 15, 82, 88
common-block, 15
common-item, 15
common-item-list, 15
common-statement, 15
compilation-input, 7
COMPLEX, 12-13
complex-constant, 5
complex-type, 12
computed-goto, 33
Concatenation, 54
CONJG, 57
Console, 74
constant, 4
constant-expression, 18
constant-list, 20
constant-name, 18
Continuation line, 2
CONTINUE, 39
continue-statement, 39
control-statement, 32
control-variable, 39
cos, 58
COSH, 58
CSIN, 58
CSIZE, 78
CSQRT, 57
CVD, 89

II - 92

Pro Fortran-77 User Manual

d, 22
DABS, 56
DACOS, 58
DASIN, 58
DATA, 20
data-implied-do, 20
data-initialisation, 20
DATAN, 58
DATAN2, 58
data-statement, 20
DATE, 73
DBLE, 56
DCOS, 58
DCOSH, 58
D-descriptor, 22-23
DDIM, 57
decimal-integer, 4
def'initions, 7
Device, 61
DEXP, 57
digit, 1
digit-string, 4
DIM, 57
DIMENSION, 14
Dimensions, 14
dimension-statement, 14
DINT, 56
DIRECT, 49
Direct access, 65

.DLOG, 57
DLOG10, 58
DMAX1, 57
DMIN1, 57
DMOD, 57, 59
DNINT, 56
DO, 39-40
do-control, 39
do-statement, 39
DOUBLE PRECISION, 12-13
double-precision-constant, 4
double-precision-type, 12
Double spacing, 63
DPROD, 57
DSIGN, 57
DSIN, 58
DSINH, 58
DSQRT, 57
DTAN, 58
DTANH, 58
dummy-argument, 8
dummy-argument-list, 8

II - 93

Pro Fortran-77 User Manual

e, 22
E-descriptor, 22-23
ELIPSE, 81
ELSE, 35
ELSE IF, 35
else-if-statement, 35
else-statement, 35
END, 7, 40, 44-45
ENDFILE, 47
endfile-statement, 47
END IF, 35
end-if-statement, 35
End of file, 45
End of record, 42
end-statement, 7, 40
ENTRY, 10
entry-statement, 10
EQUIVALENCE, 16
equivalence-group, 16
equivalence-statement, 16
equi v-i tem, 16
ERR, 44-45, 47-49
EXECPG, 6 9-71
executable-part, 7
executable-statement, 30
EXIST, 49
EXITPG, 71-72
EXP, 57
exponent, 4
expression, 51
EXTERNAL, 17
External file, 61
External function, 59
external-statement, 17

False, 5
F-descriptor, 22, 24
FILE, 48-49
File, 60-67
FILL, 80
Fixed-length records, 65
FLASH, 78
FLOAT, 56
FMT, 42
FORM, 48-49
FORMAT, 21
Format control, 42
format-identifier, 42
format-item, 21
format-list, 21
format-specification, 21

II - 94

Pro Fortran-77 User Manual

format-specifier, 42
format-statement, 21
FORMATTED, 4 9
Formatted records, 63-64
FUNCTION, 9
function-name, 9
function-reference, 55
function-statement, 9
function-subprogram, 9

G-descriptor, 22, 24-25
GETCOM, 68
GOTO, 32-33
goto-statement, 32
Graphics routines, 80-81

H-descriptor, 27
hexadecimal-integer, 4
hexdigit, 4

IABS, 56
IADDR, 68
ICHAR, 56
!-descriptor, 25-26
IDIM, 57
IDINT, 56
IDNINT, 56
IEEE floating-point format, 84
IF, 33-34
IFIX, 56
IHANDL, 72
imaginary-part, 5
IMPLICIT, 13, 59
implicit-declaration, 13
implicit-item, 13
implicit-statement, 13
implied-do-item, 20
INCLUDE, 6
increment-value, 39
INDEX, 57
initialised-item, 20
Initial line, 2
initial-setting, 20
initial-value, 39
INK, 76
input-output-statement, 41
INQUIRE, 49-50
inquire-control, 49
inquire-statement, 49
INT, 56
INTEGER, 12-13

II - 95

Pro Fortran-77 User Manual

integer-constant, 4
integer-constant-expression, 12
integer-expression, 37
integer-type, 12
integer-variable, 31
integer-variable-element, 44
Interactive input-output, 22
Internal file, 62
Interrupts, 69
INTRINSIC, 17
Intrinsic function, 56-59
intrinsic-statement, 17
io-element, 44
io-implied-do, 44
io-item, 44
io-list, 44
IOSTAT, 44-45, 47-49
IPEEK, 69
ISIGN, 57

k, 29
Keyword parameter, 44

Label, see statement-label
label-assignment, 31
label-list, 32
L-descriptor, 26
LEN, 57
len, 12
letter, 1
LGE, 58
LGT, 58
LINE, 80
Line, 1-2
Link editing, 7
List-directed input-output, 43
LLE, 58
LLT, 58
LOG, 57
LOG10, 58
LOGICAL, 12-13
logical-assignment, 31
logical-constant, 5
logical-disjunct, 53
logical-expression, 53
logical-factor, 53
logical-if-statement, 33
logical-primary, 53
logical-term, 53
logical-type, 12
logical-variable-element, 49
lower-bound, 14

II - 96

Pro Fortran-77 User Manual

m, 25
main-program, 7
Mantissa, 84
MAX, 57
MAXO, 57
MAX1, 57
MIN, 57
MINO, 57
MIN1, 57
MOD, 57, 59
MODE, 73

n, 27
NAME, 49
name, 3
NAMED, 49
NEXTREC, 49
NINT, 56
non-character-type-statement, 12
nonrepeatable-descriptor, 21
NUMBER, 49

OPEN, 48
open-control, 48
OPENED, 49
open-statement, 48
Operands, 51
OVER, 78

PAN, 77
PAPER, 76
PARAMETER, 1 8
parameter-statement, 18 ·
param-item, 18
Parentheses, 21
Pascal, 33
PAUSE, 38
pause-statement, 38
P-descriptor, 29
POINT, 80
POKE, 69
pos-control, 47
Pre-connected files, 60-61
PRINT, 46
print-statement, 46
procedure-name, 8, 17
PROGRAM, 7
program-body, 7
program-statement, 7
program-unit, 7

II - 97

Pro Fortran-77 User Manual

QDOS, 60-61, 69, 73

RANDOM, 68
Random access, see Direct access
READ, 44-45
read-statement, 44
read-write-control, 44
REAL, 12-13, 56
real-constant, 4
real-part, 5
real-type, 12
REC, 44
RECL, 48-49
RECOL, 75
Record, 42-43, 63-64
Registers, 68, 89
relational-expression, 53
rel-op, 53
repeatable-descriptor, 21
repeat-count, 21
RETURN, 37
return-statement, 37
REWIND, 47
rewind-statement, 47
Run-time, 72

SAVE, 16
save-item, 16
save-statement, 16
SCALE, 80
SCROLL, 77
S-descriptor, 28
SEQUENTIAL, 49
sign. 4
SIGN, 57
SIN, 58
Single spacing, 63
SINH, 58
slash-descriptor, 28
SNGL, 56
special-character, 1
special-symbol, 3
specifications, 7
specification-statement, 12
SQRT, 57
Stack, 83, 89
Statement, 2
Statement function, 19
statement-function-definition, 19
statement-label, 6

II - 98

Pro Fortran-77 User Manual

STATUS, 48-49
stf-argument-list, 19
STOP, 38
stop-statement, 38
Storage allocation, 82-84
Storage unit, 13
string-character, 5
string-element, 5
STRIP, 76
Subprogram, 7-11
SUBROUTINE, 8
subroutine-name, 8
subroutine-statement, 8
subroutine-subprogram, 8
subscript, 52
subscript-bounds, 14
Subscript value, 14
substring, 31, 54
substring-expression, 31, 54
SuperBASIC, 74-81

tab, 1
TAN, 58
TANH, 58
!-descriptor, 27
Terminal statement, 39-40
terminal-value, 39
THEN, 34-35
TIME, 73
TO, 31
token, 3
TRAP, 73
True, 5
typed-item, 12
type-specifier, 9
type-statement, 12

unconditional-goto, 32
UNDER, 78
UNFORMATTED, 49
Unformatted records, 63-64
UNIT, 41
Unit, 65
unit-identifier, 41
unit-specifier, 41
unsigned-double, 4
unsigned-integer, 4
unsigned-real, 4
upper-bound, 14

II - 99

Pro Fortran-77 User Manual

Variable, 3, 12
variable-element, 16, 30, 52
Variable-length records, 63-64
variable-list, 20
variable-name, 8

w, 22
WINDOW, 74
Window routines, 74-79
WOPEN, 74
word-symbol, 3
Work file, 61
WRITE, 46
write-statement, 46
WSTATC, 75
WSTATP, 75

X-descriptor, 27

II - 100

PART III - PRO FORTRAN-77 OPERATION

1

1. 1
1. 2
1. 3

2.1
2.2
2.3

3

4

4.1
4.2
4.3
4.4

5

5.1
5.2

6

6. 1
6.2
6.3
6.4

Installation details

Hardware requirements
Delivery and installation
Simple compile, link and execute

Operation of the compiler

Forms of invocation
Compile-time options
Compiler messages

Using the linker with Fortran

Operation of object programs

PRL
Execution of Fortran object programs
Run-time errors
Miscellaneous error messages

The configuration programs

Configuring the compiler
Configuring object programs

Operation of the librarian

Forms of invocation
. Report options
Module selection
Librarian messages

1

1
1
3

5

5
7

10

12

14

14
15
18
19

21

21
22

24

24
26
28
28

Pro Fortran-77 User Manual III - 1

1 INSTALLATION DETAILS

1.1 Hardware requirements

The hardware required to run the Fortran-77 compiler is a Sinclair QL
computer running QDOS with at least 80K bytes of user RAM, and with
the PRL ROM cartridge fitted in the QL's ROM slot.

N.B. The PRL ROM cartridge must only be fitted or removed with the
QL's power supply disconnected.

The minimum requirement for user programs is a Sinclair QL . computer
running QDOS. Memory and peripheral requirements depend on the
program.

1.2 Delivery and installation

The Fortran-77 software is delivered mainly on microdrive cartridges,
containing the following files:-

6%¥
S"'"¥' <t•t.f --c·

.. ~~-::t ~ ~? ~-
~ "~- li' -~

"--rl 6' ' 2 y ·
Cc.J I ? 'C .

F77
PROFOR1
PROFOR2
PROFOR_ERR

3'1-~\- i
9il

~(_,

''¥ 'L
D~:-2-T~i"·.... BOOT

LINK
F77LIB_REL
PLINIT_REL
PLEND_REL
F77_LINK

~ ~ <'-> it\ PRL

I ?. .:.;5' ''L.. PROLIB

SETDDEV)
NOQNS)
SETSTACK)

TRAPREG_FOR

Fortran compiler control program
Fortran compiler pass 1
Fortran compiler pass 2
Fortran compile-time error messages

Linker
Fortran run-time library
Fortran library initialization module
Fortran library end module
Standard Fortran linker command file

SuperBASIC program to install PRL
Prospero Resident Library- see section 4.1

Librarian program

Fortran configuration programs

"TRAP" include file- see Part II, 8.2.12

Also supplied on microdrive are a few example source program l_FOR)
files. If there are any special comments relating to the software,
for instance descriptions of extra files, they are placed in a file
called READ_ME. If this file is present, consult it before using the
software.

The remaining Fortran-77 software is supplied in a ROM cartridge.
This contains the Prospero Resident Library (PRL), and it must be
installed in the QL's ROM slot before using the Fortran compiler and
also before running a Fortran program. Disconnect the QL's power
supply before installing or removing the PRL cartridge.

Pro Fortran-77 User Manual III - 2

Before use, it is essential to create working copies of the compiler
and other files, and to use these rather than the supplied files,
which should be kept safely as master copies.

The files required for compilation of Fortran source programs are F77,
PROFOR1, PROFOR2 and, optionally, PROFOR_ERR (if the latter is not
present, error messages will identify the error type by number without
the text). The disposition of these files will depend on the user
machine configuration:

For users with a basic QL, it is recommended that two 11compiling"
cartridges be created, the first containing F77, PROFOR1 and
PROFO~ERR, and the second containing PROFOR2 and PROFOR_ERR.
Then the software is immediately usable when loaded from
microdrive 1.

For users with a disc system, a "compiling" disc may be set up
containing all the above four files. In addition, a configuration
file F77_CONFIG must be set up and program F77 configured to use
this file (see section 5).

It is recommended that source files be kept on their own separate
cartridges or discs. Note that source file names must end in _FOR.
By default, there must also be sufficient space on a source file
medium for the _REL files produced by the compiler, and also for the
compiler's work file, which typically occupies about as much space as
the source file. This default arrangement can, however, be changed by
re-configuring (see section 5).

For microdrive users, it is recommended that a "linking" cartridge be
created with the Linker and the files F77LIB_REL, PLINIT_REL,
PLEND_REL, F77_LINK and PROLIB on it. For disc users, these files
can probably all fit on the "compiling" disc.

In the descriptions which follow, it is assumed that the 11compiling"
media are in MDV1 and the user's source media in MDV2.

Pro Fortran-77 User Manual III - 3

1.3 Simple compile, link and execute

To prove that the software is installed and functioning correctly,
make working media (see above) containing the compiler and linker
files and copy the sample program source PRIM~FOR to a source file
medium.

Compile

With the first compiler cartridge in MDV1 and the source cartridge in
MDV2, type

EXEC MDV1_F77

and the following output is generated in the compiler's window {the
user must type the underlined information):

Pro Fortran-77 Version mmq 1.1
Copyright (C) 1985 Prospero Software

Source filename - HDV2 PRIME<ENTER>

Default options:

G- console output to LOG file? (Y/N/.) .<ENTER>

Unit PRIME

Load compiler pass 2 in MDV1 and press ENTER

Name: PRIME
Lines: 33
Code: 500
Data: 8

Note that the prompt for the second compiler pass only occurs for
microdrive configurations. At this point, the source file PRIM~FOR

on MDV2 has been compiled into a "relocatable binary" file PRIME_REL
also on MDV2.

In the report output at the end of pass 2, the "name" is the module
name of the relocatable module produced by the compilation. This name
will be displayed when the linked program is executed. The "code" and
"data" figures are in bytes, and represent the total generated code (+
constants), and data (excluding COMMON data items), respectively.

Pro Fortran-77 User Manual III - 4

1.3.2 Link

To "link edit" the file PRIM&_REL and produce an executable program,
place the linker cartridge in MDV1 and type

EXEC MDV1_LINK

and enter the Linker command
~.:,.~ ·~:- .

MDV2_.PRIME 'i(-WITH MDV1_F71V""-"'"' > ' ·· , ~~

The filename MDV1_F77 is converted by the Linker into the name
MDV1_F77_LINK. It uses this "template" file to link PRIM&_REL with
selected library subroutines from the file F77LIB_REL. (Further
details are in section 3.)

The result of linking is the file PRIM&_BIN on MDV2.

The command DIR MDV2_. shows three PRIME files: the source _FOR, the
executable program _BIN, and also the relocatable version _REL which
is generated by the compiler and read by the Linker.

1.3.3 Execute

Simply enter

EXEC MDV2_.PRIM&_BIN

Program PRIME reads from and writes to unit •, which is by default
assigned to the console window. It repeatedly asks for a number and
prints its smallest factor (or else 'Prime'). For example (with input
underlined):

Input a positive number less than a thousand million 999999989

Smallest factor of 999999989 is :
4327

Input a positive number less than a thousand million 999999937

Smallest factor of 999999937 is :
Prime

and so on.

To terminate PRIME, you can enter a non-numeric value when it asks for
a number. This will cause a run-time error to be reported (see
section 4.3), and you should reply N to the prompt.

The extra facilities of the compiler are explained in the next two
sections. In particular, it is shown how to compile and link programs
consisting of more than one source file.

Pro Fortran-77 User Manual III - 5

2 OPERATION OF THE COMPILER

Each invocation of the QL Fortran-77 compiler processes one source
file. Each source file may contain any number of Fortran program
units (separated by blank lines, if desired), and the compiler
converts this into a binary output file in Sinclair relocatable
format. Each source file becomes a binary output file consisting of a
single relocatable module.

Compilation is a 2-pass process under the overall control of program
F77. Pass 1 {the program PROFOR1) reads the source file and generates
a temporary work file, with a name of the form TEM$_<job id>_IL, which
contains a semi-compiled "intermediate-language" representation of the
source program. When processing of Pass 1 is complete, F77 gives
control to Pass 2 (the program PROFOR2). This program reads the work
file, and generates the relocatable _REL file. When compilation is
complete, Pass 2 deletes the work file and gives control back to F77,
which then terminates.

The previous section has described the simple form of operation of the
compiler. In this section, the various options and messages are
explained.

2.1 Forms of invocation

The Fortran compiler may always be invoked and run interactively, and,
if the QL Toolkit is installed, in batch mode as well, although the
latter method may not be possible in an unexpanded QL owing to memory
limitations. The following text assumes that the compiler is
installed on microdrive, but it will equally apply to disc-based
systems as well.

2.1.1 Interactive mode

With the first compiler cartridge in MDV1, enter:

EXEC MDV 1_F77

or use EXEC_W if desired. After opening its window and signing on,
the Fortran compiler asks for the name of the _FOR source file to be
compiled. It outputs:

Source filename -

and the user should enter, e.g. 11MDV2_CALC", it being assumed
there is a file called CALC_FOR on MDV2. If this file cannot
opened, the prompt is repeated.

that
be

Pro Fortran-77 User Manual III - 6

The compiler then displays the currently configured default
compilation options as a reminder (by default, no options will be
configured, but the user may configure options as described in section
5):

Default options: <defaults>

The compiler then displays a series of prompts, one for each option,
each of which may be r~plied to with "Y" (or "Y") to select an option,
or "N" (or "n") to not select an option, or "·"to terminate prompting
and use the defaults from then on:

G -console output to LOG file ? (Y/N/.)
I- range checks on subscripts ? (Y/N/.)
A - range checks on assignments ? (Y/N/.)
N- track source names & line numbers at run time? (Y/N/.)
H- map? (Y/N/.)
L- source listing? (Y/N/.)
U- report undeclared variables ? (Y/N/.)
T- INTEGER means INTEGER*2? (Y/N/.)
C- compact object code? (Y/N/.)

By default, the compiler simply reads a _FOR source file and produces
a _REL file, which is always on the same device as the source. If the
log file option is selected, a _LOG file is produced. If the map
option is selected, a _MAP file is produced. If the listing option is
selected, a _PRN file is produced. The contents of these optional
files, which are also produced on the same device as the source, are
described in later sections.

2.1.2 Batch mode

With the QL Toolkit installed, a single command suffices to perform
one compilation run. Assuming the use of floppy discs, enter:

EX FDK1_F77;'<source>l<options>'

(or use EW if desired), where

<source> might be, e.g. "FDKa_CALC", there being a source file
CALC_FOR on FDK2, and

<options> gives the desired compilation option letters, e.g. "GIA",
separated from <source> by "/".

Examples:

EX FDK1_F77;'FDKa_TABLE/NUM' causes the source file TABL~FOR

on FDK2 to be compiled with options N, U and M (see below).

EW FDK1_F77;'FDKa_CALC' causes the source
FDK2 to be compiled with the currently
options.

file CALC_FOR on
configured default

Pro Fortran-77 User Manual III - 7

2.2 Compile-time options

The various compile-time options are described in the following
sub-sections. The default setting for each option is "off", or N,
when the software is shipped, but this can be altered by introducing a
configuration file (see section 5}.

2.2.1 · G- console output to LOG file

When this option is specified, the messages output by the compiler to
the console during compilation are written also to a file. The name
of the file is the same as that of the source, with "_LOG" added.
This can be a useful facility, both for inspection or compile-time
errors and for recording the compilation status of each source program
(code size, etc.}.

2.2.2 I - range checks on subscripts

Range checks determine whether or not subscript expressions are within
the correct limits. The checks are carried out just before a
subscript value is to be used, and have the effect of generating more
code.

Range checks can be valuable in the early stages of program
If code size or speed is at a premium, they may be switched
the program has been tested.

testing.
off once

2.2.3 A - range checks on assignments

Assignment checks determine whether or not the values
INTEGER*1 and INTEGER*2 variables are within the range
such quantities. The ·checks are carried out just before a
be assigned, and have the effect of generating more code.

2.2.4 N - track source names & line numbers at run time

assigned to
allowed for
value is to

This option instructs the compiler to insert extra code into the
object program to maintain during execution a record of the source
file name and line number corresponding to the code currently being
obeyed. This information will be displayed in the event of any
run-time error, and if the error is within a subprogram then the
calling stack which is printed out (see section 4.3) will contain
these file names and line numbers (for all calls which occurred in
program units compiled with this option).

Pro Fortran-77 User Manual III - 8

2.2.5 M - map

With this option, a file is generated containing information about all
the names used in the source program units. The file has the name of
the source with "_MAP" added, on the same device as the source file.
After the compilation it may be listed or displayed as desired. Use
of this facility can be an aid in the early stages of program testing,
for instance, in verifying that all names have been correctly typed
{in both senses of ·the word).

For each program unit, the information is ordered alphabetically by
name, and consists of:

Kind Whether the name refers to a variable, an array, a
state~ent function, an intrinsic function, or an
external function or subroutine

Type 'Int' {for INTEGER), and so on, or blank for external
subroutines and for data items which are never
referenced in executable statements

Area 'Data•, for items which are not in COMMON, or the name
of the common block, or 'Dummy•, for dummy arguments
to subprograms or statement functions

Offset The relative address within the Data area or COMMON
block, in hexadecimal {and decimal)

The total sizes of the Data area and COMMON blocks (if any) are also
given.

2.2.6 L - source listing

A listing of the source can be generated as a by-product of
compilation. Each line is preceded by its line number within the file
and by the relative hexadecimal address of the start of that line
within the object code. The listing is output to a file with the name
of the source but ending in "_PRN" on the same device as the source.
After the compilation it may be printed or displayed as desired.

2.2.7 U - report undeclared variables

This option aids good programming practice by causing the compiler to
report all references to variables that have not appeared in the
specifications part of a program unit (see Part II, section 2.1). Use
of this option can also help in detecting mis-spelt variable names.

Pro Fortran-77 User Manual III - 9

2.2.8 T- INTEGER means INTEGER*2

This option instructs the compiler to treat all occurrences or INTEGER
as if INTEGER*2 applied, namely:

INTEGER statement

undeclared integers

IMPLICIT integers

INTEGER FUNCTION statement

All integers declared with an explicit length (e.g. INTEGER*4) are
unarrected by this option.

2.2.9 C - compact object code

If the compact code option is invoked, the compiler substitutes
shorter (but somewhat slower) alternatives for certain object code
sequences. The amount of difference this will make depends on the
nature of the program (and is anyway rather small). Use of the option
would only be recommended for particularly large programs.

Pro Fortran-77 User Manual III - 10

2.3 Comoiler messages

When the compilation process proper begins, messages are output to the
console to report progress and any irregularities.

Normal messages

In the main, these are self-explanatory. At the end of Pass 2, the
sizes of the code and data areas generated, and the total number of
source lines, are printed. These are all decimal values. The data
sizes do not include any COMMON variables.

Error messages

If the specified source file does not exist, the request for a file
name is repeated.

If there is insufficient memory for compiler workspace or stack, one
or other of the compiler passes will fail to run, and the compiler
will terminate the compilation. Some possible corrective actions are
given below.

Errors in the source program may be detected during either of the
passes, though the majority generally appear in pass 1. The format in
each case is: source line number and error code, with an explanatory
sentence if the file PROFO~ERR is present, followed by the text of
the source line in error (pass 1 only). In Appendix B is a list of
the error codes, with somewhat fuller descriptions where appropriate.

The first digit of the error number indicates the "severity level" of
the error and the subsequent action taken by the compiler, according
to the following scheme:

First digit

0

1

2

3

4

Compiler action

Warning. Compilation continues.
The program should execute normally.

Compilation continues. The program
will execute normally except
(perhaps} if control reaches the
point at which such an error is
located.

Compilation continues, but object
code generation ceases.

Skip to end of current
then continue compilation
no code generation.

Terminate compilation

statement,
but with

Pro Fortran-77 User Manual III - 11

Errors of level 2 and above (i.e. those that cause code generation to
be terminated) are classified as "fatal".

The other possible problems which may arise during compilation are
connected with running out of space, either in memory or on a device
(e.g. insufficient room for the _REL file). Such events give rise to
error messages in the normal run-time error format (see section 4.3).

If the compiler indicates
is most likely due to an
source being compiled,
parentheses. The normal
source expression.

that its stack space has
unusually complicated

e.g. the use of many
remedy for this would be

become full, this
expression in the
levels of nested
to simplify the

If run-time error H is encountered during compilation, the normal
remedy would be to repeat the compilation with a larger RAM area for
the compiler to run in. (Resetting the machine prior to compiling may
help, in this respect.) If no more memory is available, however, the
only solution is to reduce the size of the compilation input.

Pro Fortran-77 User Manual III - 12

3 USING THE LINKER WITH FORTRAN

The Linker combines the output from one or more executi ons of the
Fortran-77 compiler with modules from the supplied run-time library to
construct an executable program file.

Linking is a 2-pass process, converting a collection of _REL files
into an executable _BIN file. By default, a report is produced in a
file with the same name as the _BIN file but with the extension _MAP.
This report can be suppressed by including "-NOLIST" in the linker
command line (see below).

In section 1, it has already been shown how, in the simple case of the
compilation source being an entire program, the supplied Linker
command file F77~INK can be used directly to link the executable
program.

The contents of the_::Rn't(y.~INK is as follows:
. .-- /

INPUT' MDV1_PLINIT '
,.~NPUT • J.--·-·-··-··-

/ .L --- ·
,/ LIBRARY MDV 1_F77LIB /

/ INPUT MDV1_PLEND

(
' DATA 4K //

COMMON DUMMY _./
_

~~····

~- !
· ; t y· t-- r ' ·' ···

'1
I

.,. ---~--
Each -~-O~d directs the linker to include the specified
relocatable file, the extension _REL being automatically supplied.
The special form "INPUT •" causes the first filename in the linker
command line to be included, again after appending _REL. A LIBRARY
command, on the other hand, instructs the linker to include from the
named file only those modules required, in the sense of having been
referenced from module(s) already included. (So in this case, the
library file MDV1_F77LIB_REL will be selectively scanned.)

If an executable program is to be constructed from more than one
relocatable file - the output from two separate compilations, perhaps,
or a Fortran compilation and some Assembler-coded modules - there are
two ways to proceed. Either the separate relocatable files can be
combined into one, by using the PROLIB utility (see section 6), or a
new _LINK template file can be created, by editing extra INPUT command
lines into a copy of F77_LINK.

When editing this file, it is essential to note that:

a) The file PLINIT_REL must be the first INPUT file.
b) Additional INPUT lines should be positioned before the

LIBRARY line(s).
c) Additional user libraries must come before the F77LIB

LIBRARY line.
d) PLEND_REL must be INPUT after all other _REL files and

LIBRARY files.
e) The COMMON DUMMY option must be used.
f) If SECTION commands are introduced, the first such must

be: SECTION .ENTRY.
g) The Linker's OFFSET command must not be used.

<.
r-

Pro Fortran-77 User Manual III - 13

You may also wish to alter the size of the data space allocated by the
DATA command. This value must be large enough to cover the following
requirements:-

a) Two FCA (File Control Area) control blocks for standard
i/o, the size of each being about 110 bytes.

b) Stack requirements, being 16 bytes for each procedure
called, 4 bytes for each actual argument, and an extra
4 bytes for function calls. The calculation of stack
space needs to allow for the worst case, i.e. the
deepest nesting of subroutine calls, and should include
an allowance for use by the run-time library, as well
as some margin of safety.

As an example, suppose it is required to combine an Assembler-coded
module ASS_REL with a Fortran-coded module FORl_REL, and that a
run-time stack requirement of 6K is required. Then one method of
linking such a program is to create a linker template file called
FORT_LINK, say:

INPUT MDV1_PLINIT
INPUT *
INPUT ASS
LIBRARY MDV1_F77LIB
INPUT MDV 1_PLEND
DATA 6K
COMMON DUMMY

The link operation can be performed by:

EXEC MDV1_LINK

and then entering, as the linker command line:

MDV1_FORT -WITH FORT

(Thew-WITH" can be optionally omitted, in fact.) The linker uses the
first name in this command (MDV1_FORT) to fill out the "*" place
holder in the second INPUT line of FORT_LINK, and also as the "root"
name for constructing the names of the executable file (by appending
_BIN) and the storage-allocation report file (by appending _MAP). An
executable file called MDV1_FORT_BIN is therefore produced, and can be
executed by (for example):

EXEC MDV 1_FORT_BIN

Pro Fortran-77 User Manual III - 14

4 OPERATION OF OBJECT PROGRAMS

4.1

The Prospera Resident Library (PRL) is a collection of machine-code
routines required by all Fortran-77 programs, and also by the
compiler. Before running a Fortran program, or the compiler, PRL must
be installed. PRL is supplied in the ROM cartridge issued with the
compiler, and also as a separate program on a microdrive cartridge.
The ROM cartridge must be used for the compiler, but compiled Fortran
programs can be run using either the ROM cartridge or the "software"
PRL loaded from a file. The ROM PRL is installed by plugging it in to
the ROM socket at the rear of the QL before applying power. The
"software" PRL is installed by means of the SuperBASIC command:

LRUN MDV1_BOOT

(This command is, of course, invoked automatically at startup by the
QL computer if there is a cartridge present in MDV1 holding the file
MDV1_BOOT.

Once PRL is installed, it does not need to be re-installed except when
the QL is reset or powered down with no ROM present. The SuperBASIC
command

PRL

can be used to check the presence and co~rectness of an installed PRL.

The BOOT + PRL files can be copied along with linked Fortran object
programs for use on machines other than the one used for compilation.
PRL substantially reduces the size of object programs, and the time
required for linking and loading programs, because the routines in PRL
would otherwise be linked into every compiled program.

Pro Fortran-77 User Manual III - 15

4.2 Execution of Fortran object programs

The normal way of executing a Fortran program that has been linked is
by means of the SuperBASIC EXEC command (see below).

When executed, Fortran programs locate PRL and open a CON_ window for
the display of run-time error messages and so on. This window also
acts as the default standard input and output file (UNIT=*), unless
otherwise specified.

4.2.1 Invocation by EXEC or EXEC_W

In order to execute a compiled and linked Fortran program, the
SuperBASIC command EXEC or EXEC_W is used (or else the Toolkit command
EX or EW). For example:

EXEC MDV1_PROG_BIN

After opening a window and signing on, the Fortran program prompts the
user as follows:

Standard input file? <>
Standard output file? <>
Option string? <>

with <> showing where the cursor is positioned awaiting user response.
In simple cases, the ENTER key can be pressed for each question •

. The first response connects a data file for standard input via "UNIT
*"· If a file name is entered, it is opened for exclusive input. If
the open fails, the prompt is repeated. If only ENTER is pressed, any
use of "UNIT *" in a READ statement in the program will be directed to
the standard window that is being used for this initial dialogue.

The second response connects a data file for standard output via
"UNIT *"· If a file name is entered, the file is opened for new
overwrite. If only ENTER is pressed, any use of unit • in a WRITE
statement, or use of a PRINT statement, in the program will be
directed to the standard window.

The last response specifies a line of up to 80 characters to be made
available as an option string to the running program. If the line is
too long, the prompt is repeated. If only ENTER is pressed, the
option string is of zero length. (The option string is obtained
within the user program by calling the GETCOM subroutine - see part
II, section 8.2.1).

The above dialogue can be suppressed in a program by means of the
NOQNS program issued with the compiler - see section 5.3 below.

Pro Fortran-77 User Manual

4.2.2 Invocation by EX or EW Toolkit commands

In this case, there is a choice between running interactively
4.2.1 above, and running autonomously. For example (assuming
default file devices):

EX program_name

or EX program~name;option_string

or EX progr~name,infile_spec,outfile_spec;option_string

III - 16

as in
suitable

where zero or two data files may be specified (but not just one), and
"option_string" is a SuperBASIC format string of characters to be
passed to the initiat~d program.

In the first format, the program runs just as if EXEC had been used,
that is, interactively, as described in the previous section. But in
the second and third examples, the program starts with no further user
interaction.

In the second example, standard input and output will be assigned by
the program to its own window, whereas in the latter, the specified
data files will be made available to the user program for standard
input and output. It is an error to give only one datafile an
extra dummy input or output file must be specified. (If more than
two datafiles are specified, only the first and last files are made
available to the user program as standard input and output: the others
will not be accessible.)

In the second and third examples, the option_string is optional and,
if omitted, a zero length string is passed to the initiated program.

Under EX control, there is no limit on the size of option_string as
there is when interactive the program control is used.

4.2.3 Handling of pre-connected files

The previous two sections have shown how
two files to be pre-connected to a
connection defaulting to the standard
references to unit * will be routed to
files.

the user may specify one or
Fortran program, with the

window. Then user program
the specified or defaulted

Pro Fortran-77 User Manual III - 17

4.2.4 Invocation using EXECPG

Programs can also be executed from within Fortran programs using the
EXECPG function (see Part II, section 8.2.6). In this case, errors
are reported to the initiating program by means of return codes.
These return codes are listed alongside the corresponding messages
for normal program initiation in section 4.4 below.

If a program uses the EXECPG facility to run a child program, its own
pre-connected files are automatically made available to the child
program (through any number of parent-child levels).

4.2.5 PAUSE and STOP statements

If a PAUSE statement is executed, the message

PAUSE nnnnn
Continue ?

appears on the console. The program can be continued by pressing the
key Y (or y), and aborted by pressing N (or n). (All other keys are
ignored.) A similar message appears for a STOP statement, but without
the option to continue.

Pro Fortran-77 User Manual III - 18

4.3 Run-time errors

The only aspect of program operation not determined from the program
itself arises if an error is detected by the run-time software.

Errors can occur during the initialisation process before the program
has fully started, and which are therefore not reported via the normal
run-time error reporting method. A complete list of error messages
produced during this initialisation process appears in section 4.4
below.

Once program execution proper has commenced, errors may be detected in
a number of situations: file handling, arithmetic operations, and so
on. In some cases they may be found by the checking code incorporated
by one of the compile-time options (see section 2.2). In all cases a
report is made on the console, giving error type identified by a
letter - and the hexadecimal (base 16) machine address relative to
the start of the code:

Error x at address aaaaaa

A list of the run-time error codes is given in Appendix C. The
address aaaaaa is directly comparable with the addresses provided in
the _MAP file generated by the Linker. For input/output errors, and
some other cases, additional information appears with the standard
message. A list of i/o error status values also appears in Appendix
c.

The standard error_message is followed by trace information showing
how the point in error was reached. This takes the form of a list of
addresses at which subroutine and function calls occurred. All
addresses are relative to the start of the code. The first address
given corresponds to the point where the main program called the next
lower level of subroutine, and so on up to the actual subroutine or
function in error.

For each source file which was compiled with the /N ("track source
line numbers") option, the addresses in the error report are made more
intelligible (without recourse to the linker's _MAP file) by the
addition of the source file name, the subroutine name and the line
number.

Finally, many classes of error allow continuation, and this choice is
offered as a console option with (Y/N) response, exactly as in the
handling of the PAUSE statement, described in section 4.2.5.

Pro Fortran-77 User Manual III - 19

4.4 Miscellaneous error messages

Most of these messages appear in the initiated program's standard
window, with departures from this rule noted under particular
messages. Where a program was initiated using EXECPG, the error is
passed back as a return code to the initiating program.

Too long: <prompt>

The reply to the previous <prompt> was too long, e.g. a
filename exceeded 36 characters. The correct reply should now
be given.

Embedded blanks not allowed

This can appear in the standard window during the running of a
user program. The reply to the previous prompt contained an
embedded space character. In particular this can occur when a
program opens a workfile and no default device has been
configured. The user is prompted for a device name, which may
not contain spaces. A corrected reply should be given to
enable the program to continue.

Execution error: <error text>

where <error text> is one or the following:

"bad command": (EXECPG return code -2)
An invalid SuperBASIC command string.

"pgm not opened": (EXECPG return code -3)
Only possible when using EXECPG. The specified user program
file could not be opened (can be due to the filename exceeding
36 characters).

"not executable": (EXECPG return code -4)
The specified program file was opened successfully but the
file header showed that it was not an executable program file.

"load failure": (EXECPG return code -5)
The specified program file could not be loaded into memory,
due to a failure of the QDOS "load-file" operation.

"wrong version": (EXECPG return code -6)
There is an inconsistency between the version of PRL loaded
and the version of the run-time software used when linking the
user program. Most likely to be caused by upgrading to a new
Fortran release without re-linking the user program with the
new run-time software.

Pro Fortran-77 User Manual III - 20

"out of memory": (EXECPG return code -7)
Insufficient memory is available for loading and/or running
the user program.

"init. failure": (EXECPG return code -8)
The program has successfully been loaded, but then an error
occurred in one of the following pre-execution steps:

(a) processing the relocatable items in section .ATAB,
(b) processing the data-initialization items in section .INIT

If the program consists purely of Fortran code, this error
implies a problem with the Fortran software, and it should be
reported. If user-provided assembler-language routines were
included in the link of the user program, they should be
checked to ensure that

(a) They do not use section .INIT.
(b) They only use section .ATAB, if at all, as described in

Part II section 8.4, namely for achieving the relocation
of common block addresses and of JMP instructions having
4-byte absolute operands. In particular, this error can be
caused quite easily by not preceding the assembler
instructions by a suitable SECTION directive, so that
they become part of .ATAB instead.

It can quickly be verified whether or not assembler routines
are the cause of this error, by linking the user program
without them, then loading it. The program will then fail
during execution, rather than during initialisation.

"no/corrupt PRL" (EXECPG return code -9)
PRL (the Prospero Resident Library) is not loaded, or
alternatively has been corrupted and is no longer usable.

"window failure" (EXECPG return code -10)
An attempt to open read or write to the standard window has
failed.

"only one chan" (EXECPG return code -11)
If either of standard input and standard output is specified
using EX or EW commands, then they must both be specified.

"linking order" (EXECPG return code -12)
Unlikely to occur, but indicates an erroneous attempt to link
with _REL files generated by other compilers or assemblers.

"no job created" (EXECPG return code -13) ,___.
QDOS failed to create a job for the program to execute under.

Pro Fortran-77 User Manual III .;.. 21

t, • . r ')····-.
' • ~ •• • >

.;•

5 THE CONFIGURATION PROGRAMS

\l J . . __ I c ' ~ f''~' ,:J . ~\ . L. 'f~ ' l, f .. ·· ~v '· ~--i ~ . .· ~.: J J J •
~ ~ '

Configuring the compiler

(-~- ... ' \

5.1

The Fortran compiler consists of two main passes (PROFOR1 and PROFOR2)
which execute under control of a small "parent" program F77. There is
also an error message file PROFOR_ERR. During compilation, an
intermediate file is produced. Together, these files are too large to
fit onto a single microdrive cartridge. The default arrangements are
that PROFOR1, PROFOR2 and PROFOR_ERR are on MDV1, and the work file is
on MDV2. The compiler prompts for the PROFOR1 cartridge in drive 1 to
be replaced with the PROFOR2 cartridge during the compilation. For
users with other devices, the arrangements can be altered, as
follows •

............ \

{lse SETDDEV (see 5.2.1) so that the F77 compiler program has a default
d'ev-ic.e .speeit'ied for it. The compiler will then look on this device
for a configuration file with the name F77_CONFIG. This is a five
line text file, which may be prepared with a text editor, as follows:

line 1 :
line 2:
line 3:
line 4:
line 5:

Example:

default compile time options (e.g. /GL)
device
device
device
device

/GI
FDK1_
FDK1_
FDK1_
FDK1_

holding PROFOR1
for PROFOR2
for PROFOJLERR
for intermediate

(e.g. FDK1_)

file

\t · l ~'.J
({ "'t-.\. \

t 'tP.!. \

{ (-'""'· \"•' \ ., .•..

A second· aspect of the compiler's operation which can be adjusted by
the user is the size of its stack work space (which is only made use
of to a significant extent when processing very complicated nested
expressions). The compiler subprograms PROFOR1 and PROFOR2 are issued
with a stack size suitable for an unexpanded machine. For some source
programs, this may be insufficient, and a compile time error will
indicate that it has been exceeded. In this ··· -event the compiler's
capacity can be increased by running the SETSTACK program (see 5.2.3
below) on PROFOR1. The user with more _than the basic 128K RAM may·
well choose anyway to modify his working copy of PROFOR1 to have a
stack size of 8K, or even larger.

Pro Fortran-77 User Manual III - 22

5.2 Configuring object programs

The configuration programs enable object programs to
suit the user's own requirements. Three utilities are
issue cartridge. They are all machine code programs
PRL to be installed.

be tailored to
provided on the
which require

The aspects which may be configured are:

a) the default device on which anonymous files
are to reside;

b) whether the initial dialogue (described in part
4 above) takes place or not;

c) the stack size allocated for the running program.

Each utility reads an existing program file (which may or may not
itself be configured), applies the changes specified and writes a new
version of the program file. The question and answer session to
specify the options required is largely self-explanatory.

5.2.1 Default device - SETDDEV

Each Fortran object program contains a field in which may be
specified a "default device". This device is used by compiled
programs for the placement of anonymous files (those for which no name
was specified in the OPEN statement).

The initial value _for this option is "no device". In this state, when
a compiled program creates a work file, the user is prompted for the
name of a device to use.

The default device may be alter~d using the program SETDDEV.
invoked by:

EXEC xxx~SETDDEV

It is

(where xxxx is the name of the device holding the SETDDEV program),
and the user is then prompted for the name of the program file to be
modified, and the name of the device to be installed as the default
for that program. A 4-character device name should be specified, or 4
blanks for "no device".

Pro Fortran-77 User Manual III - 23

5.2.2 Initial dialogue - NOQNS

A dialogue normally takes place with the user when a Fortran object
program is executed (as described in section 4 above). In many cases,
this dialogue is not required and execution of the program can proceed
immediately with default values for the initial responses. The
initial dialogue (and associated messages) can be suppressed with the
NOQNS program.

NOQNS is initiated by the SuperBASIC command:

EXEC xxx~NOQNS

(where xxxx is the name of the device holding the NOQNS program).
The user is prompted for the name of the program file to be modified,
and the appropriate change is made.

Stack size - SETSTACK

The instructions to the linker contained in F77_Jink or any individual
link job derived from it include a specification of the "DATA" size.
In Prospero object programs the space so defined is used mainly for
the stack, which in Fortran seldom becomes very large, and the 4K
bytes in F77_LINK is normally ample.

The stack size for a program is modified using the SETSTACK program.
SETSTACK is run by the SuperBASIC command:

EXEC xxx~SETSTACK

(where xxxx is the name of the device holding the SETSTACK program).
SETSTACK then gives instructions for modifying the stack size.

III - 24 Pro Fortran-77 User Manual t_ \, \ ~ (
~~ 1 1\J.t \ a \.J ~-- f \....\ ~ -\- c..r ct,_~ \ ~ ·~ \' \\ .,..... -..... t'"'

1. . f-,~ ~\...fL. f ~'-\.-(, ~ ~ ~'? . -":::> ~
~~~~) ~~> ~ ~ -IV._'- (J..~--

6 OPERATION OF THE LIBRARIAN '? .. ~ \ '~ \<... "-l~'-:;) 
A~ .... - <:~u-Q<..L./ / 

The purpose of the PROLIB librarian utility program is to administer 
files which are in Sinclair relocatable object format such as 
those produced by Prospero's Pro Fortran-77 or Pro Pascal compilers, 
or by GST's macro Assembler. Individual modules may be extracted, 
and/or files may be merged together into libraries. A number of 
report options are also available. 

A file created by PROLIB will be in Sinclair relocatable format, and 
so suitable for processing by linkers capable of handling this format, 
such as GST's LINK. 

6.1 Forms of invocation 

There are three ways of operating the librarian: the "one-line", the 
"conversational" and the "indirect" mode. All the options are 
available in each mode. 

6. 1.1 The one-line command 

With the QL Toolkit installed, a one-line execution of PROLIB is 
possible, as in: 

EX FDK1_PROLIB;'MDV1_PRIME/MX' 

(or use EW if desired). 

The option string (supplied in quotes after the';' character) must be 
constructed as follows. First must come the name of the "library" 
file. This may optionally be followed by the character "I" together 
with one or more letters from the set M, X, U, N, D. 

Each letter stands for a particular option regulating the report(s) 
that are produced by the librarian (see 6.2). The letters may be run 
together, as in this example, or may be separated by spaces or further 
I characters; they may be in upper or lower case. 

A one-line command of the above form indicate~ a "read-only" opera~ 
on the library file: the file must already exist~and- the purpose of 
·the PROLIB execution is solely to list certain information about t is 
relocatable file. 



Pro Fortran-77 User Manual III - 25 

Alternatively, the library filename (and any option letters) may be 
followed by an "=" sign and one or more input filenames, separated by 
commas, as in: 

EX FDK1_PROLIB; 'MDV2_NEWLIB/M = MDV1_MOD1, MDV1_MOD2' 

A one-line command of this form indicates a "create" mode of 
operation: if the library file already exists it will be overwritten, 
and the purpose of the PROLIB execution is to combine the input 
filenames into a new library with the given name. Any of the input 
filenames may be immediately followed by a "module selector" (see 
6. 3). 

No filename extension may be given (whether for 
component input file names): the extension 
automatically by the librarian. 

6.1.2 Conversational mode 

the library 
_REL is 

By entering the command (assuming a floppy-disk system): 

or the 
supplied 

EXEC FDK 1_PROLIB -.Q.7- , )C U'z__ ~ f~ 1 

the conversational mode of operation is enter~ 

The first request is for the library filename. There is then a series 
of questions relating to the report options (cf. 6.2). Reply Y (or y) 
to select the option, otherwise N (or n). The final question is 
whether or not to create a new library with the given filename. If 
the answer is affirmative, the librarian repeatedly issues an 
invitation to input a line containing filename(s). The filenames are 
entered just as for the one-line mode of operation, that is, they must 
be separated by commas and each may be followed by a "module 

, selector". To terminate this process, respond to the prompt 

Input filename(s) -

with just <ENTER> on its own. 

Again, no filename extension must be given: 
appends _REL to all filenames. 

PROLIB automatically 

ft./~- (JL-"f'S"~S"": fl_f1..- ft/;_NfLt 

-£• ~ s; '~"""' ) 



Pro Fortran-77 User Manual III - 26 

Indirect mode 

The QL Toolkit must be installed for this mode to be used. 

The indirect mode of operating the librarian combines the features of 
the first two modes: a one-line command is given containing the name 
of a "command file" {preceded by the character @), this command file 
containing the answers to the questions which would be asked in the 
"conversational" mode. 

For example, typing 

EX FDK1_PROLIB;'@ FDKa_MLIB' 

where the text file MLIB contains the lines 

MDVa_MLIB 
N 6>-) 
N ( ><) 
N (u) 
Y cr ... ~ c... ~ 
MDV1_M1LIB, MDV1_M2LIB, 

I l 

r '/ 
MDV1_M3LIB 

:) 
causes PROLIB to combine the modules from the 3 files M1LIB_REL, 
M2LIB_REL and M3LIB_REL into the composite library file MLIB_REL. 
Note that if the command file name has no extension, none is supplied 
by PROLIB. 

6.2 Report options 

Whether or not in the "create" mode of execution, the librarian can be 
requested to produce a report de·scribing the library file. (If in the 
create mode, the report will reflect the contents of the library file 
on completion of processing.) 

The various report options are described in the following 
sub-sections. Each sub-heading contains (in brackets) the associated 
letter which must be written after the library filename in the 
one-line form of execution in order to invoke the option. 

6. 2.1 Module listing (M) 

A report is produced which gives, for each module in the library file 
(in order of occurrence within the file), the name of the module, the 
Sections it contains, and all Public symbols defined and External 
symbols referenced within it. The "Sections" are pieces of the code 
or data which go to make up an executable program; their sizes (in 
decimal ) are printed. 



Pro Fortran-77 User Manual III - 27 

6.2.2 Cross-reference listing (X) 

The report consists of two parts. The first part gives, for each 
Public/External name in the library file (in alphabetical order), the 
name of the module in which it is defined (i.e. is a Public name) plus 
the names of all modules in which it is referenced (i.e. is an 
External name) . 

The second part is a listing of all Sections (in alphabetical order) 
together with the names of the modules which reference them. 

6.2.3 Unsatisfied references listing (U) 

This report is concerned with the requirement imposed by many linkers 
that, for a library which is to be "selectively" searched (cf. the /S 
option described in section 6.3), the component modules must be 
ordered in such a way that, if module A contains an external reference 
to an entry point in module B, then module B must follow module A in 
the library file. The report lists all External names (in 
alphabetical order) which do not obey this rule, either because they 
are defined in an earlier module or because they are not defined at 
all. 

6.2.4 Suppress .names (N) C-"-1 ('~ ~ '~ 
~ I")(.. <:::::. ,- '-.) 

(This option is only meaningful if at least one of M, U or X has been 
selected.) 

In order to avoid conflict with user-defined names, most Public and 
Section names in the Fortran library begin with '· '· Since these are 
rather numerous, it can on occasion be desirable to suppress them. By 
specifying this option, no name beginning with'·' will appear in the 
report(s). The default is that all names, including those beginning 
with '.',are listed. 

6.2.5 Listings to disc (D) 

(This option is only meaningful if at least one of M, U or X has been 
selected.) 

The default destination for reports is the console. If this option is 
chosen, the reports are written instead to a disc or microdrive file. 
The file is given the same name as the library file, but with the 
extension _PRN. 



Pro Fortran-77 User Manual 

6.3 Module selection 

In the "create" mode of operation (only), 
only some of the modules in an input file 
is to select all modules from each file.) 
of "selector" are provided. 

III - 28 

the user may specify that 
are selected. (The default 
For this purpose, two kinds 

The first kind is the "selective scan" of an input file, and is 
specified by following the filename with the two characters "IS". 
Only those modules that have been referenced by previously selected 
modules will be incorporated into the output library file (and so into 
any reports) • 

Example: FDK1_FNAMEIS 

The second kind is by "module enumeration", and is specified by 
following the filename with the character "[", then a collection of 
module names, and finally the character "]". This "collection" of 
module names is to be written as a list of names, separated by commas; 
optionally, in place of a module name, the list can contain, at any 
point, two names separated by "-" (i.e. name1 name2), signifying 
"all modules from name1 to name2 inclusive". 

Example: FDK1_FNAME1 [MOD1, HOD4 - HODS, .MOD16] 

A particular filename can be followed by at most one of these two 
kinds of selector. 

An example of an input line containing all the above features is: 

HDV1_FN1, HDV1_FN2 [H6], HDV1_FN3 [HOD3-MOD9], MDV~IBNIS 

6.4 Librarian messages 

6.4.1 Normal messages 

If in the "create" mode, when it starts to process each input file the 
librarian writes the full filename to the console. 

6.4.2 Error messages 

6.4.2.1 Non-fatal errors 

If an input file is empty, this is reported and the next file is 
processed. 

If an input file cannot be found (perhaps because its name has been 
misspelt), the librarian reports this and invites more filename(s). 

If a character other than 'S' is supplied after 'I' following an input 
filename (i.e. where a "selective scan" directive is anticipated), the 
librarian reports this error and ignores the incorrect character. 



Pro Fortran-77 User Manual III - 29 

6.4.2.2 Fatal errors 

If any other error situation occurs, execution is aborted immediately, 
after outputting a message to the console. 

The first group of such messa.ges are caused by driving the librarian 
incorrectly. There are 4 such. 

Command line improperly terminated 

In the one-line command mode, the library filename 
have been read, followed by a character other than 

and 
"-" - . 

switches 

Command file not found 

In the indirect mode, the filename after the @ character is 
illeeal or the file does not exist. 

No library filename supplied 

In the indirect mode, the first line in the command file should 
contain a valid QDOS filename. 

Illeeal module-selection syntax 

The rules given in 6.3 have been broken. 
have a module name on e].ther side of it, 
matching "]" on the same line. 

In particular, "-" must 
and "[" must have a 

The other group of errors. should never occur. The most probable cause 
is that an input file is not in Sinclair relocatable format at all. 
The error messages are: 

Cannot find subsection 
End of input file encountered 
Illegal directive encountered 
Illegal id encountered 
Inconsistent section id 
Input file relocatable format incorrect 
Name in input file exceeds 32 characters 
SECTION/COMMON inconsistency 



Pro Fortran-77 User Manual A - 1 

A LANGUAGE SUMMARY 

A.1 NOTATION 

The notation used throughout this manual for the Fortran-77 syntax is 
summarised in the following table: 

Notation Meaning 

-~~---~----~---~---------~------------------~-------~----~ 
= 
I 
I 

[x] 
{x} 
<x IY 1 ••• I z> 
lower-case-name 

is defined to be 
alternatively 
zero or one instances of x 
zero or more instances of x 
grouping: any one of x, y, ••• , z 
a non-terminal symbol 

(For increased readability, the non-terminal symbols 
hyphenated.) Any string of characters not covered by the 
is a terminal symbol: it stands for itself; for example: 

are often 
above list 

ASSIGN 
. TRUE. 
( 

•• 
In this appendix, the nature of the source file which is input to the 
compiler (the 'compilation-input') is viewed from two complementary 
aspects: the lexical (or bottom-up) and syntactic (or top-down). 
These views merge at about the level of the 'token'. The division of 
the remainder of this appendix into two subsections is designed to 
mirror these two viewpoints. 

The definitions in each of the following subsections are grouped and 
ordered according to their 'level'. At the first level comes, in each 
case, the definition of the 'compilation-input': the only . concept 
given two (complementary) definitions. The definition of any other 
concept is to be found on the next level to that in which the concept 
first appears. The definition level is printed at the left margin. 

Taken together, subsections A.2 and A.3 contain one, and only one, 
definition for every non-terminal symbol. The only exception 
apart from 'compilation-input' is 'string-character', which stands 
for any 8-bit-code character. (The characters in the 7-bit-code ASCII 
set are printed in Appendix D.) 

Except within a character-constant, there is no distinction in meaning 
between the upper- and lower-case versions of any letter. 



Pro Fortran-77 User Manual 

A.2 LEXICAL ASPECTS 

1 compilation-input = {token} 

2 token = special-symbol name 

3 special-symbol = = I , I ( I ) 
+ I - I • I I 
.LT. I .LE. I 
• NOT. I . AND. 
word-symbol 

constant statement-label 

I • I 
I • I 

I •• I 
• EQ. I 
I . OR. 

.NE. I .GE. I .GT • 
I . EQV. I . NEQV. I 

name = letter { letter I digit } 

constant = arithmetic-constant 
character-constant 

statement-label = digit-string 

logical-constant 

A - 2 

4 word-symbol = ACCESS l ASSIGN I BACKSPACE I BLANK I BLOCKDATA 
CALL I CHARACTER I CLOSE I COMMON l COMPLEX I 
CONTINUE I DATA I DIMENSION I DIRECT I DO I 
DOUBLEPRECISION I ELSE I END I ENDFILE I ENTRY 
EQUIVALENCE I ERR l EXIST I EXTERNAL I FILE l 
FMT I FORM I FORMAT I FORMATTED I FUNCTION l 
GOTO I IF I IMPLICIT I INCLUDE I INQUIRE I 
INTEGER I INTRINSIC I IOSTAT I LOGICAL I NAME 
NAMED I NEXTREC I NUMBER I OPEN I OPENED I 
PARAMETER I PAUSE l PRINT I PROGRAM I READ l 
REAL I REC l RECL l RETURN I REWIND I SAVE l 
SEQUENTIAL l STATUS I STOP I SUBROUTINE I TO 
UNFORMATTED I UNIT I WRITE 

letter = A B C 
N 0 P 

D 
Q 

E F G H 
R S T U 

I J 
v w 

digit = o I 1 I 2 I 3 l 4 I 5 I 6 I 7 I 8 I 9 

K L 
X y 

M 
z 

arithmetic-constant = integer-constant I real-constant I 
double-precision-constant I complex-constant 

logical-constant = .TRUE. I .FALSE. 

character-constant = ' string-element {string-element} ' 

digit-string = digit {digit} 



Pro Fortran-77 User Manual 

5 integer-constant = [sign] unsigned-integer 

real-constant = [sign] unsigned-real 

double-precision-constant = [sign] unsigned-double 

complex-constant = [sign] ( real-part , imaginary-part ) 

string-element = string-character I apostrophe-image 

6 sign = + I -

A - 3 

unsigned-integer = decimal-integer I hexadecimal-integer 

unsigned-real = < basic-real [E exponent] I digit-string E exponent 

unsigned-double = <basic-real I digit-string> D exponent 

real-part = real-constant I integer-constant 

imaginary-part = real-constant I integer-constant 

apostrophe-image= '' 

7 decimal-integer = digit-string 

hexadecimal-integer = $ hexdigit {hexdigit} 

basic-real = < digit-string • [digit-string] 

exponent = [sign] digit-string 

8 hexdigit = digit A B C D E F 

• digit-string > 



Pro Fortran-77 User Manual 

A.3 SYNTACTIC ASPECTS 

1 compilation-input = program-unit {program-unit} 

2 program-unit = main-program I subroutine-subprogram I 
function-subprogram I block-data-subprogram 

3 main-program = [program-statement] program-body 

subroutine-subprogram = subroutine-statement program-body 

function-subprogram = function-statement program-body 

A - 4 

block-data-subprogram = block-data-statement block-data-body 

4 program-statement = PROGRAM name 

subroutine-statement = SUBROUTINE subroutine-name 
[( [dummy-argument-list] )] 

function-statement = [type-specifier] FUNCTION function-name 
( [dummy-argument-list] ) 

block-data-statement = BLOCK DATA [ name ] 

program-body ; specifications 
definitions 
executable-part 
end-statement 

block-data-body = block-data-specifications 
block-data-definitions 
end-statement 

5 subroutine-name = name 

function-name = name 

dummy-argument-list = dummy-argument { , dummy-argument } 

type-specifier = < arithmetic-type I logical-type 
CHARACTER [ * len ] > 

specifications = { specification-statement I 
format-statement I entry-statement } 

definitions = { statement-functi on-definition l data-statement 
format-statement I entry-statement } 



Pro Fortran-77 User Manual 

executable-part = { executable-statement I data-statement 
format-statement I entry-statement } 

block-data-specifications = { specification-statement } 

block-data-definitions = { data-statement } 

end-statement = END 

A - 5 

6 dummy-argument = variable-name array-name I procedure-name I * 
arithmetic-type = integer-type I real-type I 

double-precision-type I complex-type 

logical-type= LOGICAL [ * <11214>] 

len = decimal-integer I ( integer-constant-expression ) I ( * ) 
specification-statement = type-statement I implicit-statement I 

dimension-statement I common-statement 
equivalence-statement I save-statement 1 

external-statement I intrinsic-statement 
parameter-statement 

format-statement = FORMAT format-specification 

entry-statement = ENTRY name [ ( [dummy-argument-list] ) ] 

statement-function-definition = function-name ( [stf-argument-list] ) 
= expression 

data-statement = DATA data-initialisation 
{ [ , ] data-initialisation } 

executable-statement = assignment-statement I control-statement 
input-output-statement 

7 variable-name = name 

array-name = name 

procedure-name = subroutine-name function-name 

integer-type= INTEGER [ * <11214>] 

real-type = REAL [ *4 ] 

double-precision-type = < DOUBLEPRECISION REAL*8 > 

complex-type = COMPLEX [ *8 ] 



Pro Fortran-77 User Manual A - 6 

integer-constant-expression = constant-expression 

type-statement = < non-character-type-statement I 
CHARACTER [ * len [,] 1 character-item-list > 

implicit-statement = IMPLICIT implicit-declaration 
{, implicit-declaration} 

dimension-statement = DIMENSION array-declarator 
{, array-declarator} 

common-statement = COMMON [common-block] commqn-item-list 
{ [,] common-block common-item-list } 

equivalence-statement = EQUIVALENCE equivalence-group 
{, equivalence-group} 

save-statement = SAVE [ save-item { , save-item } ] 

external-statement = EXTERNAL procedure-name {, procedure-name } 

intrinsic-statement = INTRINSIC function-name { , function-name } 

parameter-statement = PARAMETER ( param-item { , param-item } ) 

format-specification = ( [format-list] ) 

stf-argument-list = variable-name { , variable-name } 

expression = arithmetic-expression I logical-expression 
character-expression 

data-initialisation = variable-list I constant-list I 

assignment-statement = arithmetic-assignment I logical-assignment 
character-assignment I label-assignment 

control-statement = goto-statement I arithmetic-if-statement I 
logical-if-statement I block-if-statement I 
else-if-statement I else-statement I 
end-if-statement I end-statement I 
call-statement l return-statement I 
pause-statement l stop-statement I 
continue-statement l do-statement 

input-output-statement = read-statement I write-statement I 
print-statement l backspace-statement l 
endfile-statement I rewind-statement I 
open-statement I close-statement 
inquire-statement 



Pro Fortran-77 User Manual A - 7 

8 constant-expression = expression 

non-character-type-statement = < arithmetic-type I logical-type > 
typed-item { , typed-item } 

character-item-list = character-item { , character-item } 

implicit-declaration = type-specifier 
( implicit-item {, implicit-item} ) 

array-declarator = 
array-name ( subscript-bounds {, subscript-bounds} ) 

common-block = I [block-name] I 

common-item-list = common-item {, common-item } 

equivalence-group = ( equiv-item , equiv-item {, equiv-item} ) 

save-item = /block-name/ I variable-name l array-name 

param-item = constant-name = constant-expression 

format-list = format-item { , format-item } 

arithmetic-expression = [sign] arithmetic-term 
{ <+1-> arithmetic-term } 

logical-expression = logical-disjunct 
{ <.EQV. I.NEQV.> logical-disjunct } 

character-expression ~ character-primary { // character-primary } 

variable-list = initialised-item {, initialised-item } 

constant-list = initial-setting {, initial-setting} 

arithmetic-assignment = variable-element = arithmetic-expression 

logical-assignment = variable-element = logical-expression 

character-assignment = character-field = character-expression 

label-assignment = ASSIGN statement-label TO integer-variable 

goto-statement = 
unconditional-goto assigned-goto computed-goto 



Pro Fortran-77 User Manual A - 8 

arithmetic-if-statement = 
IF ( arithmetic-expression ) statement-label , 

statement-label , statement-label 

logical-if-statement = 
IF ( logical-expression ) executable-statement 

block-if-statement = IF ( logical-expression) THEN 

else-if-statement = ELSE IF ( logical-expression ) THEN 

else-statement = ELSE 

end-if-statement = END IF 

call-statement = CALL subroutine-name [ ( [actual-argument-list] ) ] 

return-statement = RETURN [ integer-expression ] 

pause-statement = PAUSE [ digit-string l character-constant ] 

stop-statement = STOP [ digit-string character-constant ] 

continue-statement = CONTINUE 

do-statement = DO statement-label [ , ] do-control 

read-statement = < READ ( read-write-control ) [io-list] 
READ format-identifier [, io-list] > 

write-statement = WRITE ( read-write-control ) [io-list] 

print-statement = PRINT format-identifier [, io-list] 

backspace-statement = < BACKSPACE unit-identifier f 
BACKSPACE ( pos-control ) > 

endfile-statement = < ENDFILE unit-identifier l 
ENDFILE ( pas-control ) > 

rewind-statement = < REWIND unit-identifier I 
REWIND ( pos-control ) > 

open-statement = OPEN ( open-control ) 

close-statement = CLOSE ( close-control ) 

inquire-statement = INQUIRE ( inquire-control ) 



Pro Fortran-77 User Manual 

9 typed-item = variable-name 
constant-name 

array-name I array-declarator 
function-name 

character-item = typed-item [ * len ] 

implicit-item = letter [- letter] 

subscript-bounds = [ lower-bound : ] upper-bound 

block-name = name 

common-item = variable-name array-name I array-declarator 

equiv-item = variable-element I substring I array-name 

constant-name = name 

format-item = [repeat-count] repeatable-descriptor 
nonrepeatable-descriptor I 
[repeat-count] ( format-list ) 

A -

arithmetic-term = arithmetic-factor { < *I > arithmetic-factor 

logical-disjunct = logical-term { .OR. logical-term } 

character-primary = variable-element I substring I 
function-reference I character-constant 
constant-name I ( character-expression ) 

initialised-item = variable-element I substring 
array-name I data-implied-do 

initial-setting = [ <unsigned-integer I constant-name> * ] 
< constant I constant-name > 

variable- element = variable-name I array-element 

character-field = variable-element I substring 

integer-variable = variable-name 

unconditional-goto = GOTO statement-label 

assigned-goto = GOTO integer-variable [ [ , ] label-list ] 

computed-goto = GOTO label-list [ , ] integer-expression 

actual-argument-list = actual-argument {, actual-argument } 

integer-expression = expression 

do-control = control-variable = initial-value , 
terminal-value [ , increment-value ] 



Pro Fortran-77 User Manual 

io-list = io-item {, io-item} 

read-write-control = unit-specifier 
[, format-specifier] 
[, REC = integer-expression] 
[, IOSTAT =integer-variable-element] 
[, END = statement-label] 
[, ERR = statement-label] 

format-identifier = statement-label I integer-variable I 
array-name l character-expression I • 

unit-identifier = integer-expression I * I 
array-name I character-field 

pas-control = unit-specifier 
[, IOSTAT = integer-variable-element] 
[, ERR = statement-label] 

open-control = unit-specifier 
[, IOSTAT = integer-variable-element] 
(, RECL = integer-expression] 
[, FILE = character-expression] 
[, STATUS = character-expression] 
[, ACCESS = character-expression] 
[, FORM = character-expression] 
[, BLANK = character-expression] 
[, ERR = statement-label] 

close-control = unit-specifier 
[, IOSTAT = integer-variable-element] 
[, STATUS = character-expression] 
[, ERR = statement-label] 

A - 1C 

inquire-control = < unit-specifier I FILE = character-expression 
[, IOSTAT = integer-variable-element] 
[, RECL = integer-variable-element] 
[, NEXTREC = integer-variable-element] 
[, NUMBER = integer-variable-element] 
[, EXIST= logical-variable-element] 
[, OPENED = logical-variable-element] 
[, NAMED = logical-variable-element] 
[, NAME = character-variable-element] 
[, ACCESS = character-variable-element] 
[, SEQUENTIAL = character-variable-element] 
[, DIRECT = character-variable-element] 
[, FORM = character-variable-element] 
[, FORMATTED = character-variable-element] 
[, UNFORMATTED = character-variable-element] 
[, BLANK = character-variable-element] 
[, ERR = statement-label] 



Pro Fortran-77 User Manual 

10 lower-bound = integer-expression 

upper-bound = integer-expression I • 

substring = variable-element ( [substring-expression] 
[substring-expression] ) 

repeat-count = decimal-integer 

repeatable-descriptor = D-descriptor 
F-descriptor 
!-descriptor 
A-descriptor 

E-descriptor 
G-descriptor 
L-descriptor 

A - 11 

nonrepeatable-descriptor = apostrophe-descriptor I H-descriptor I 
T-descriptor I X-descriptor I 
slash-descriptor I colon-descriptor 
S-descriptor I P-descriptor I 
B-descriptor 

arithmetic-factor = arithmetic-primary [ •• arithmetic-factor ] 

logical-term = logical-factor { .AND. logical-factor } 

function-reference = function-name ( [actual-argument-list] ) 

data-implied-do = ( implied-do-item {, implied-do-item } 
, do-control ) 

array-element = array-name ( subscript {, subscript} ) 

label-list = ( statement-label {, statement-label} ) 

actual-argument = expression I variable-element I array-name I 
procedure-name I alternate-return-specifier 

control-variable = variable-name 

initial-value = arithmetic-expression 

terminal-value = arithmetic-expression 

increment-value = arithmetic-expression 

io-item = io-element I io-implied-do 

unit-specifier = [ UNIT = ] unit-identifier 

format-specifier = [ FMT = ] format-identifier 

integer-variable-element = variable-element 

logical-variable-element = variable-element 

character-variable-element = variable-element 



Pro Fortran-77 User Manual A - 12 

11 substring-expression = integer-expression 

D-descriptor = D w d 

E-descriptor = Ew d [ E e ] 

F-descriptor -- F w • d 

G-descriptor = G w • d [ E e ] 

!-descriptor = I w [ m ] 

L-descriptor = L w 

A-descriptor = A [ w ] 

apostrophe-descriptor = character-constant 

H-descriptor -- n H {string-character} 

T-descriptor = < T I 
I TL I 

I TR > c 

X-descriptor = n X 

slash-descriptor = I 

colon-descriptor = . . 
S-descriptor = s SP ss . 

P-descriptor = k p 

B-descriptor = BN I 
I BZ 

arithmetic-primary = variable-element I function-reference 
arithmetic-constant I constant-name 
( arithmetic-expression ) 

logical-factor = [ .NOT. ] logical-primary 

implied-do-item = array-element I data-implied-do 

subscript = integer-expression 

alternate-return-specifier = * statement-label 

io-element = variable-element I array-name I substring expression 

io-implied-do = ( io-list , do-control ) 



Pro Fortran-77 User Manual A - 13 

12 c = decimal-integer 

d = decimal-integer 

e = decimal-integer 

k = [sign] decimal-integer 

m = decimal-integer 

n = decimal-integer 

w = decimal-integer 

logical-primary = variable-element I function-reference I 
logical-constant I constant-name I 
relational-expression I ( logical-expression ) 

13 relational-expression = arithmetic-relational-expression 
character-relational-expression 

14 arithmetic-relational-expression = arithmetic-expression 
rel-op arithmetic-expression 

character-relational-expression = character-expression 
rel-op character-expression 

15 rel-op : ~LT. • LE. • EQ. .NE • .GE. .GT. 



Pro Fortran-77 User Manual B - 1 

B COMPILE-TIME ERRORS 

For each error number, the text 
(provided the file PROFO~ERR 
explanation where necessary. 

which is printed at compile time 
is present) is given, plus extra 

Number Meaning 

----------~------~~~~-----------~------~---------~-----------~--------

002 No path: statement can never be executed 
Is preceded by an unconditional jump 

003 Illegal STOP/PAUSE string 

005 Procedure call: varying number of arguments 

006 Type already specified 

007 DO loop has zero iteration count 

008 COMMON: character and non-character items mixed 

009 EQUIVALENCE: character and non-character items mixed 

010 DATA: non-character item with character constant 

011 Array declared with more than 7 dimensions 

012 IMPLICIT: same letter specified again 

013 Continuation line: first 5 columns not blank 

098 Undeclared variable 
See Part III, section 2.2.7 

100 Non-Fortran source character encountered 

101 Statement type recognized but mis-spelt 

102 Invalid character in label field 

103 Logical constant mis-spelt 
.TRUE. or .FALSE. expected 

104 ASSIGN statement: 'TO' mis-spelt 

105 Unlabelled FORMAT statement 

106 Missing digit(s) in format descriptor 
e.g. E.7 



Pro Fortran-77 User Manual 

107 Improper zero in format descriptor 
e.g. E0.7 

108 Unsigned number required 

109 Illegal descriptor after scale factor 
e.g. 2PI5 

110 Repeat specification not allowed 

111 FORMAT: parenthesis nesting depth exceeds 7 

112 Attempted EQUIVALENCE of items in COMMON 

114 Item recurs in EQUIVALENCE group 
e.g. EQUIVALENCE (I, J, I, ••• ) 

115 Continuation line illegally positioned 

119 Illegal "*" type 
e.g. REAL*3 

122 IMPLICIT: range of letters not sensible 

125 Range error 

130 More than one main program encountered 

201 Item declared in COMMON more than once 

202 Common-block/procedure name clash 

203 DATA: item is in COMMON· 
Initialisation must be done in BLOCK DATA subprogram 

204 DATA: item is not in named COMMON 
Initialisation of blank common is not allowed 

205 Illegal program or ENTRY name 

206 Nested DOs with same control variable 

207 Illegal type of DO loop control variable 
Must be integer-type or real or double precision 

208 Illegal type of DO expression 

211 DO increment must be non-zero 

212 Bracketed i/o list has no implied DO 

213 Statement not permitted as DO terminator 
Terminal statement may not be arithmetic IF, etc. 



Pro Fortran-77 User Manual 

214 DO-loop unterminated at END statement 

215 DATA/EQUIVALENCE: subscript count wrong 

217 EQUIVALENCE group only has one element 
(must have at least two) 

218 Integer constant outside INTEGER*1 range 

219 Integer constant outside INTEGER*2 range 

220 Integer constant outside INTEGER*4 range 

221 Floating-point constant out of range 

222 Illegal type with // operator 
e.g. character // integer 

223 Illegal type mixture with COMPLEX 
e.g. integer • complex 

224 COMPLEX expression in arithmetic IF 

225 COMPLEX operand in relational expression 

226 Statement label referenced but undefined 

227 Statement label already defined 

228 Statement label was not on FORMAT statement 

229 Statement label was not on executable statement 

230 Statement label was on specification statement 

231 Statement label and statement type are inconsistent 

232 Type of variable must be INTEGER*4 

233 Type of variable must be LOGICAL*4 

234 Variable or array-element expected 

235 Illegal use of logical type 
e.g. arithmetic expression assigned to logical variable 

236 Illegal use of arithmetic type 

237 Adjustable dimension is not integer type 

238 Statement function: duplicate dummy argument name 

239 Statement function call: wrong number of arguments 



Pro Fortran-77 User Manual 

240 Control-list item illegal in this context 
e.g. END = in an OPEN statement 

241 OPEN, READ etc: control-list item specified twice 

242 OPEN etc: invalid character constant 

243 Character expression expected 

244 External procedure reference invalid 

245 Illegal argument type for intrinsic function 

246 Illegal occurrence of unsubscripted array name 

249 Character constant has zero length 

B • 

250 Character constant expression longer than 1327 characters 

251 Character expression longer than 32767 characters 

253 Block IF: missing ENDIF 

255 Arithmetic expression expected 

256 Constant expression expected 

257 Error in specification of intrinsic function 

258 Integer-type expression expected here 

259 Illegal constant substring expression 

260 Substring not permitted here 

261 Illegal use of CHARACTER*(*) 

262 ENTRY: dummy argument has already been referenced 

263 ENTRY has wrong type 

264 RETURN not allowed in main program 

265 CALL: name previously used as function 

266 Function name previously used as subroutine 

267 Alternate return specifier only allowed for subroutines 

268 Attempt to access assumed-size dimension 

269 ENTRY name has already been referenced 



Pro Fortran-77 User Manual 

270 Illegally positioned ENTRY statement 

272 Too many COMMON blocks in program unit 
More than 128 

273 Alignment error 
Items bigger than 1 byte in size must be word-aligned 

300 Character expected but not found 
The expected character is printed on the next line 

301 Invalid operator beginning with ' ' 
e.g. .NP. 

302 Operator not preceded by an operand 
e.g. I = * K 

303 DATA: implied DO variable expected 

304 DATA: invalid repeat count 

305 DATA: error in constants list 

306 DATA: too few constants in list 

307 DATA: too many constants in list 

308 Logical IF: illegal dependent statement 
e.g. another logical IF 

309 Block IF: ENDIF/ELSE has no matching IF 

310 Block IF: nesting depth exceeds 10 

311 DO statement: label already defined 

312 DO-type statement does not start with DO 
e.g. D 10 I= 1, 20 

313 Illegal expression type with relational operator 

314 Arithmetic expression expected 

316 Logical expression expected 

318 Exponent expected, beginning with D orE 

319 Bad exponent in floating-point constant 
e.g. 1.2ED6 

320 Error in COMPLEX constant 

B - 5 



Pro Fortran-77 User Manual 

321 Character constant longer than 255 characters 

322 Character constant not terminated 
(at end of statement) 

323 Array declarator: invalid array name 

324 Adjustable/assumed-size declarator: array is not dummy 

325 Array element: · too few subscripts 

326 Array element: too many subscripts 

327 Array element not allowed here 

328 Function call not allowed here 

329 Function call: missing '(' 

331 Improper dummy argument name 

332 Variable name missing 

333 Variable/array/procedure name missing 

334 Non-dummy variable/array name required 
May not be a dummy argument 

335 Improper name for statement function 

336 Unidentifiable statement type 
e.g. CUMMON ••• 

337 Statement type not allowed in BLOCK DATA 
e.g. FORMAT, EXTERNAL, RETURN, etc. 

338 Statement incorrectly terminated 

339 Statement type out of sequence 

340 Type-statement begins incorrectly 

341 Expression incorrectly terminated 

342 Statement label expected 

343 Statement label has more than 5 digits 

344 CALL: invalid subroutine name 

345 Illegal actual argument 

346 Illegal character in format specifier 



Pro Fortran-77 User Manual 

347 Missing '(' in format specifier 

348 Missing ')' in format specifier 

349 In nH (Hollerith) descriptor, n not in range 1 thru 255 

351 Unit specifier missing or incorrect 

352 Format specifier missing or incorrect 

353 OPEN, READ etc: control-list keyword expected 

354 READ etc: incorrect DO-implied list 

355 READ: illegal item in i/o list 

358 IMPLICIT: INTEGER etc. expected 

359 IMPLICIT: letter expected but not found 

361 INCLUDE: filename invalid or not found 

362 INCLUDE not allowed in an INCLUDEd file 

369 Duplicate SUBROUTINE/FUNCTION/ENTRY name 

370 Code for program unit exceeds 32K bytes 

380 INTEGER*4 range exceeded 
in compile-time computation of subscripts, etc. 

402 End-of-file encount~red on source input 
May be due to missing END statement 

403 Compiler stack size insufficient 
May be due to a particularly complex source expression, 
when using a compiler configured for minimum memory use 

404 Compiler workfile contents invalid 
Should not normally occur, and may indicate a compiler 
malfunction 

405 Compiler workspace insufficient 
Insufficient memory available to the compiler. 
Memory may have been 'lost' to the system by programs run 
before the compiler. Re-booting the machine may recover 
such memory. Otherwise, smaller source programs or more 
memory are the only solutions. 



Pro Fortran-77 User Manual c - 1 

C RUN-TIME ERROR CODES 

The format of the messages produced for run-time errors is given in 
Part III under "Operation of object programs". This appendix lists 
the error codes, with significance and possible causes. 

Code Meaning 

A Angle argument error. 

From SIN, DSIN, COS or DCOS when the argument is so large that 
range reduction would lead to serious loss of accuracy. 

REAL argument: abs(value) > 32768.0 
DOUBLE PRECISION argument: abs(value) > 4.29509 

B Bounds exceeded. 

A subscript bound has been exceeded (with /I compile-time 
option selected). 

D Disc or Device error. 

Disc or directory space insufficient for output. Attempt to 
read from an output device, or write to an input device. 
Attempt to read a fixed-length file with wrong "RECL=" 
parameter. 

E Stack error on exit. 

The stack pointer is not correct on exit from a subprogram. 
Possibly because an incorrect Assembler-coded routine has been 
called. 

F File programming error. 

Error in file usage. Hess-age displays status value and unit 
number - see separate list of status codes below. 

J Divide error (integers). 

In I/J or MOD(I,J), J is zero. Continuation possible, but 
results not predictable. 

K Overflow on type conversion. 

Conversion of a real or double-precision value to integer 
gives a value outside integer range. 

L Log argument error. 

Argument to ALOG, ALOG10, DLOG or DLOG10 is zero or negative. 



Pro Fortran-77 User Manual c - 3 

I/0 status values 

Following are the values which will be given in the reply when an 
error occurs and "IOSTAT=" is specified, or in the error message with 
error F. 

If an error message is produced {i.e. no ERR= or IOSTAT=) the status 
value is shown with the statement type {e.g. "READ") plus either the 
unit number, or "*" for standard i/o, or "Internal" for an internal 
file. Also, if a message is produced, status values less than 10 are 
treated as recoverable (though the result of a READ operation may not 
be predictable), while values of 10 or more cause termination of the 
program. 

Value Meaning 

01 Missing or illegal numeric, illegal zero, field width > 255, 
nesting of () exceeds 7, w < d in w.d type descriptor, repeat 
count exceeds 32767, tab out of range, m > w in Iw.m 
descriptor. 

02 Separator missing in a format. 

03 Format does not begin with "(", or unbalanced parentheses, or 
format is all blanks, or format is terminated improperly. 

04 Illegal character in a format. 

06 Illegal character in a numeric input field, or sign but no 
digits to follow. 

07 Record overflows line buffer (or array if internal file) 

08 Incorrect format of real or double precision input. 

09 In list-directed input, either a character literal or a 
complex value is not separated from the next item. 

10 Formatted and unformatted operations on same unit. 

11 Input and output operations on same unit. 

12 End-of-file encountered, no END= or IOSTAT= specified. 

13 End-of-file previously encountered on this unit. 

14 Unformatted transfer attempted to/from device. 

15 Incorrectly formed character expression in OPEN statement. 



Pro Fortran-77 User Manual c - 4 

16 Attempting direct-access READ or WRITE, but OPEN has not 
specified RECL; or attempting sequential-access READ or 
WRITE, or an ENDFILE operation, but OPEN has specified RECL. 

17 Wrong direction of transfer for device. 

18 Negative unit number given. 

19 Input file cannot be opened. 

20 In list-directed input, a repeat count is zero. 

21 In list-directed input involving a non-null item with a repeat 
count, not all the corresponding list items have the correct 
data type for, the item. 

22 In list-directed input, a complex datum is not in the correct 
format. 

23 In list-directed input, a character datum is not in the 
correct format (doesn't start with quote, or zero-length). 

24 In list-directed input, a character datum exceeds 
characters. 

255 

25 In formatted READ, format contains 'xxx• literal or nH 
descriptor. 

26 In formatted READ, record is too short for list. 

27 In formatted or list-directed READ with integer list item, the 
input value exceeds the maximum value associated with the 
given variable. 

28 In formatted or list-directed READ with logical list item, 
datum is invalid. 

29 In formatted or list-directed input, a real or double
precision value exceeds the maximum possible (could be part of 
a complex value). 

30 In formatted I/0, no descriptor for list item. 

31 In formatted I/0 with integer list item, descriptor is not I. 

32 In formatted I/0 with real or complex list item, descriptor is 
not one of D, E, F or G. 

33 In formatted I/0 with double precision list item, descriptor 
is not D, E, F or G. 

34 In formatted I/0 with logical list item, descriptor is not L. 



Pro Fortran-77 User Manual c - 5 

35 In formatted I/0 with character list item, descriptor is not 
A. 

36 In formatted WRITE to an internal file, more records were 
created than the file contained. 

40 In unformatted READ, record is too short for input list. 

41 In unformatted WRITE, a (fixed-length) record is too short for 
output list. 

44 In an OPEN statement, the RECL value is too large. 

45 In an OPEN statement, contradictory options have been given. 

47 In a READ or WRITE statement, REC= specifies an invalid record 
number. 

50 Unit does not exist. 

51 Unit is not connected. 

52 The program has too many open files. 

53 The size of an existing file opened for direct access is not 
an exact multiple of the specified RECL value. 

54 An attempt has been made to READ a file opened with STATUS= 
'NEW' or STATUS='SCRATCH'. 

55 An attempt has been made to CLOSE a file with STATUS='KEEP' 
when the OPEN specified STATUS='SCRATCH'. The workfile will, 
however, be kept. · 

56 An OPEN statement with STATUS:'NEW' names a file that already 
exists. 

57 An attempt has been made to execute a BACKSPACE or REWIND 
statement on a file not connected for sequential access. 

58 BACKSPACE on a file that does not exist. 

90 In CLOSE, the chain of FCA's is corrupt (internal library 
error). 

1000+n QDOS error -n has occurred. 
message is also given. 

The corresponding QDOS error 



Pro Fortran-77 User Manual D - 1 

D ASCII CHARACTER SET 

Hex Character I Hex Character I Hex Character I Hex Character 

---------------~----~~~---~------~-~-------~-~---~-~~-------~----

00 NUL 20 space 40 @ 60 ' 

01 SOH 21 I 41 A 61 a 
02 STX 22 n 42 B 62 b 
03 ETX 23 # 43 c 63 c 
04 EOT 24 $ 44 D 64 d 
05 ENQ 25 % 45 E 65 e 
06 ACK 26 & 46 F 66 f 
07 BEL 27 ' 47 G 67 g 
08 BS 28 ( 48 H 68 h 
09 HT 29 ) 49 I 69 1 
OA LF 2A • 4A J 6A j 
OB VT 2B + 4B K 6B k 
oc FF 2C ' 4C L 6C 1 
OD CR 2D - 4D M 6D m 
OE so 2E • 4E N 6E n 
OF SI 2F I 4F 0 6F 0 

10 DLE 30 0 50 p 70 p 
11 DC1 31 1 51 Q 71 q 
12 DC2 32 2 52 R 72 r 
13 DC3 33 3 53 s 73 s 
14 DC4 34 4 54 T 74 t 
15 NAK 35 5 55 u 75 u 
16 SYN 36 6 56 v 76 v 
17 ETB 37 7 57 w 77 w 
18 CAN 38 ·8 58 X 78 X 
19 EM 39 9 59 y 79 y 
1A SUB 3A • 5A z 7A z • 
1B ESC 3B • 5B [ 7B { . 

' 1C FS 3C < 5C \ 7C I 

' 1D GS 3D - 5D ] 7D } -
1E RS 3E > 5E 

,.. 
7E 

1F us 3F ? 5F 7F DEL 



Pro Fortran-77 User Manual E - 1 

E MIXED LANGUAGE PROGRAMMING 

Program construction 

Mixed language programs may be constructed by amalgamating Pro 
Fortran-77 and Pro Pascal components. Pascal segments can be included 
in a Fortran program, or Fortran subprograms can be included in a 
Pascal program. 

Input/output may be performed in both languages independently. Only 
one special rule applies here: in the case of a Fortran main program 
with Pascal procedures, the standard files "input" and "output" will 
not have been implicitly assigned to the console, and hence they must 
be assigned explicitly and a reset or rewrite given before they are 
used. 

When a mixed language program terminates, either normally, or through 
a run-time error, all open Pascal and Fortran files are closed. 

After compilation by the appropriate compiler, the components are 
link-edited together (refer to Part III). In the linker command, the 
_REL files are listed in sequence (with the main program module 
typically coming first), followed by the names of the two libraries to 
be selectively scanned, with the library for the main program language 
coming first. 

Correspondence of data tvpes 

The table below shows the correspondence between Fortran and Pascal 
data types. 

Fortran 

INTEGER 

INTEGER*1 

REAL 

DOUBLE PRECISION 

COMPLEX 

LOGICAL*1 

CHARACTER • n 

Pascal 

integer 

-32768 •• 32767 

-128 •• 127 

real 

longreal 

RECORD 
realpart,imagpart: real; 

miD 

boolean 

PACKED ARRAY [1 •• n] OF char 



Pro Fortran-77 User Manual E- 2 

Single variables of equivalent type may be associated (for example by 
the COMMON facility) and referenced from either language. 

Arrays may also be referenced from either language, but if an array 
has more than one dimension it is important to notice that Fortran 
stores in "column major" order (as given by the "subscript value" 
function) and Pascal in "row major" order. The sequence of 
subscripts/indices must therefore be reversed when changing from one 
language to the other. 

COMMON 

The COMMON facility can be used within mixed 
the understanding that when a Pascal variable 
the variable name becomes a common block name. 
this may be seen in the example below. 

Fortran Pascal 

language programs with 
is declared in COMMON 

The significance of 

COMMON /CB/ A,B,C COMMON cb: RECORD 
a,b,c: real; 

END 

A = 5.5 cb.a := 5.5; 

common block containing 
declaration of cb as a 

the common block name 
However, if the block 

is to give the block and 

Here the two declarations each describe a 
three real variables. The suggested form of 
record provides the equivalent separation of 
from the names of the variables within it. 
contains just one component another method 
the contents the same name in Fortran: 

Fortran Pascal 

COMMON /X/ X(120) COMMON x: ARRAY [1 •• 120] OF real; 



Pro Fortran-77 User Manual E - 3 

Parameters 

The name of a Pascal procedure at the outer level can be quoted in a 
Fortran CALL statement, or a Fortran subroutine can be given an 
EXTERNAL declaration within Pascal and then referenced. Pascal and 
Fortran functions are similarly equivalent. 

The Pascal parameters and the Fortran arguments must match in 
order, and type (see above). All Pascal parameters must 
parameters. 

number, 
be VAR 

Note that in the case of a CHARACTER argument, Fortran does not pass 
the address of the start of the data (as would be done in Pascal for a 
PACKED ARRAY [ ] OF char), but the address of a 6-byte Character 
Variable Descriptor (CVD). This is structured like a Pascal record 
consisting of a 4-byte address field followed by a 2-byte length 
field. 

A Fortran subroutine or function which has a subroutine or function as 
a dummy argument can be called from Pascal, but because Pascal passes 
two addresses in such cases (the entry address and the static link), 
the Fortran must include an extra dummy argument to match the latter. 
For example 

Pascal FUNCTION area (PROCEDURE calc): real; EXTERNAL; 

Fortran REAL FUNCTION AREA (DUMMY,CALC) 

The Pascal procedure passed as an actual corresponding to calc must be 
-declared at the outer level. 



Pro Fortran-77 User Manual E - 4 

Interchange of files 

A Pro Fortran-77 file of variable-length formatted records has the 
same layout as a Pro Pascal file of type text. (Both, in fact, are 
normal QDOS text files.) 

-
A Pro Fortran-77 file of fixed-length records has the same layout as a 
non-text file in Pro Pascal. To exchange binary files, it is 
necessary to know the file element size implied by the Pascal file 
declaration, since this must be quoted explicitly in the RECL= 
parameter of the Fortran OPEN statement. Refer to the user manual for 
sizes of the various data types. Correspondence between data layouts 
within the file elements is similar to that for COMMON variables (see 
above), bearing in mind that a Fortran unformatted READ or WRITE 
simply copies the data items in the iolist between memory and file. 
Thus for example a file written by a Pascal program as 

FILE OF RECORD 
item: integer; 
vmax,vmin: real; 

END; 

would be read in Fortran by 

OPEN (5, RECL=12, ••• ) 
• • • 
READ (5) ITEM,VMAX,VMIN 

There is no equivalent in Pro Pascal to a Pro Fortran-77 file of 
variable-length unformatted records. 





Pro Fortran-77 Version mmq 1.1.7- extra remarks. 

Multi-tasking on the QL 

Users new to the QL should be aware that, when more than one 
task is active in the QL, as for example when the Fortran-77 
compiler or a Fortran-77 object program are activated from the 
SuperBASIC command line, then more than one window is in general 
open on the screen, and more than one can be awaiting user input 
from the keyboard. When this is the case, the user should use 
<CTRL-C>, if necessary, to switch among active tasks until the 
cursor flashes (awaiting input) in the required window. 

Use of the configuration programs 

The User Manual (Part III, section 5) describes three 
configuration programs: SETDDEV, NOQNS and SETSTACK. It is 
important to use them only as directed in the Manual; in 
particular, they must not be used on the Linker (LINK). 

Altering the default program window 

All the supplied Prospera executable programs, except the GST 
Linker, and all the user executable programs created using the 
supplied softwawre use a default program window. The user may, 
if desired, patch such an executable program so as to 
reconfigure the program window. The window definition is stored 
at a fixed offset in all the programs, as follows: 

Hex. offset Bytes Contents Default Values 
2( 1 Border colour Green (04 hex) 
2D 1 Border width 1 ( 01 Hex) 
2E 1 Paper colour Black (00 hex) 
2F 1 Ink colour Green (04 hex) 
30 2 Window width 486 (01E6 hex) 
32 2 Window height 150 (0096 hex) 
34 2 X-origin 12 (000C hex) 
36 2 Y-origin 16 (0010 hex) 

N.B. The LINK program must not be patched, as it does not 
conform to the above conventions. 

Additional sample programs 

This issue includes some source (_FOR) files containing sample 
Fortran programs not listed in the manual. 

1. MAZES_FOR 



This program will print out a different maze every time it is 
run (and guarantees only one path through). It illustrates use 
of several Fortran features: logical and character variables and 
arrays, statement functions, DATA statements with character 
constants, Block IFs, computed GOTOs, and the random number 
generator (RANDOM). It is not a very "typical" example of 
Fortran coding style, but indicates that Fortran can be used to 
solve logical as well as number-crunching problems. 

2. SQUARES_FOR 

This is a simple illustration of the use of the graphics library 
routines, and displays squares of randomly varying sizes and 
colours on the screen. 

3. TRAPDEMO_FOR 

This is a program to show how QDOS traps can be called from 
within a Pro Fortran-77 program. It issues the MT.MODE manager 
trap to dtermine the display mode. 

Integrity of issued files 

The Pro Fortran-77 software is normally supplied on write
protected microdrive cartridges. Do not write-permit the master 
copy or execute the compiler from it. Copy the files from the 
supplied cartridges onto your own cartridges. You may then 
verify that the working copy is correct (see below), and go on 
the compile, link, and run your own programs as described in 
Part III of the User Manual. 

Checking validity of files. 

The program FCHECK is supplied to guard against copying errors 
in the issued software. To run the program, ensure that the PRL 
ROM is in place, then type: 

EXEC xxxx_FCHECK 

where xxxx is the device containing the program FCHECK. The 
program asks for a device name, such as MDVl or FLP2. By just 
pressing the <ENTER> key, the default device MDVl will be 
selected. The program then sumchecks all the files on that 
device whose names it recognises. These sumchecks are compared 
against information recorded within itself (the correct 
sumchecks) and either "OK" or an error message is given, for 
each file. 


