PYRAMIDE

GRAPHIC TOOLKIT

by Mick Andon

®Pyramide 86

GRAPHIC TOOLKIT

by Mick Andon

©Pyramide '86

INTRODUCTION

This toolkit provides a range of tunctions and procedures aimed at exploiting 1he
sereen and graphic capabilites of the QL. The extensions (occupying around 11 K of
code} are accompanied by several applications and exampla routinas Most of these
are described in detail In this manual. An aiphabetical index for the exiensions can be
{ound a1 1he back.

Placa GRAPHIC TOOLKIT in mdv2_
Place a BLANK cartnidge n mdvi_
Type: LRAUN mdvz backup

To Install the exlensicns ...
aithar : Reset the QL., insen GRAPHIC TOOLKIT in mdvi_and press F1 or F2

of : Reserve memory for the extensions, - addr=AESPR {11000) : CALL adar
or : Type - LRUN mdv1_bool

Syntax of command descriptions elc,

In this manual, the syntax or dascriplions conforms to these rules .

UPPER CASE words - . - should ba typad as written {in uppar or lowar case}
Lowar case words . . . are dascriptive

[--] indicates an optional parameter

Apart from 1he bool and backup programs, the filsnames on the 100kkit cartridge have
the following descnplive suffixas :

T_bint indicaiss a binary fla
"_bas" & a BASIC program
“_scr 1S a 32 K scraen filg

" sat” is a character sel (lont)
g is an 'EXEC'able lie

page 1

POINTER x,y (Procedure)

XPOINT {Function)
YPOINT {Function)
POINTKEY {Functian)

Flaces a panier at pasition x.y which can be maved around the screen wsing the four
cursor keys, joystick or mouse. The paintar will remain on screen untii either SPACE,
ENTER or ESCapa (or the correspanding mousa or joystick bulton) is pressed .

On relurn trom the procadure POINTER, three vanables are set -

XPOINT ratuens the fast x co-ordinate of the pointer.

YPOINT relurns the last y co-ordinate of the pointer.

POINTKEY raturns a value of 0 if the key pressed was 'ESC'
131 thes key pressed was 'SPACE'
2 if the key prassed was 'ENTER'

Note: Examine the routine “paintar_demo_bas" for an example of usage.

POINTBUF (Functian)

The poinler is definad on a matrix of 7 lines of 8 pixeis (logether with a mask of tha
sama dimansions). It may be redefined by POKEing naw valuss inle the pointar bufter
(the ralevant address is returned by the function POINTBUF). The pointer is intanded
principally for use in mode 4 - since in mode 8 the matrix becomes sffectively 7x4
pixels - howeves it is possibla 10 define poinlers for use in mode 8 (aliention musi be
paid to avoid setting flash bils).

The gata for the defaull arrow is as foliows:

Arrow {binary) hex Mask (binary) hax
11111110 00000000 FEGO Q0000007 11111111 01FF
10000010 00000000 8200 00000001 11111111 01FF
10001110 00000000 8E00 00000001 11111110 01FF
10100110 00000000 ABDO 000600001 11111111 0IFF
10%10011 00000000 B300 00000000 11911111 ODFF
11111001 00000000 F300 00000000 111111711 OOFF
00001111 00000000 OFG0 11110000 1111111 FOFF

Nola: Each ling is definad by the high byta of a word (all the bits in the low byia are
rasat in the case of the shapa and set in the case of the mask).

Exampla {mode 8 pointer):
100 RESTORE t20
110 FOR x=0Dto 13 ; READ num§ : POKE_W POINTBUF + (2*x). DEC({num$)

120 DATA "AADD", "8000", “8000", "B200", "8000", "BB0O", "0200" : REMark arrow
130 DATA “0OFF", “00FF", "00FF", "00FF™, "00FF", “00FF", *FCFF™ : REMark mask

page 2

POINTSPD value (Procedure)

POINTSPD sets the pointer speed. Ten spasds are availavle, 1rom 1 (slowsest spead)
10 16. On installation POINTSPD is set at . The pointsr spesd will remain unchanged
until @ new value is sat by POINTSPD.

FRAME w, h, X, ¥, scr_x, scr_y, virtual_screen_addr (Prooedura)

FRAME sels up a "window* (w pixeis by h lines) al co-ordinates x.y and displays
"hehind” that window, a section of a virual 512x256 screen whose origin is locaied a
vinual_screen_addr. The virtual scréen may consist of a 512x256 image 1hat has been
stofed in memoary, of it may lake #S ongin al any memory address - even wihin the
currant screan dispiay (131072 10 163840).

The third and fourlh co-ordinates indicats 1heé point (maasured relative to the virlual
sciean’s ongin) that will coincide with the display window's origin.

Al norizontal co-ordinates are rounded down to coincide with long ward addrasses.
This is in order to increase speed of execution in shifting large sectians ol scraen
memory. The viftual SCreen stan address may ba anywhare i RAM, howavar, it is
important that the window dafined by w,h .y falls within the normal 512x256 screen
display or the QL will probably crash.

Example: 100 SETWIN 4 :LIST#0 @ LIST#1 1 LIST
110 AECT#2, 12B+SMODES2, B2, 45, 22,0
120 w=128: h=BO : x=4B : y=24 . sCrx=48 : sCry=24 : addr=131072
130 REPeat iocp
140 IF KEYHOW({1)&82 : scrx=scrx-16
150 iF KEYAOW({1)&816 - sCrx=5Crx+16
160 IF KEYACW(1)4&4 : scry=scry-8
170 IF KEYROW(1)&8128 : scry=scry+8
180 FRAMFE w_h, x, y, scni, sory, addr
180 END REFPeal boop

Note: The FRAME routine is used by the program “iransfer_x* to pan/scroll the
s8cond screan within a window.

PAINT x, y, colour, [source_colour] {Pracedure)

PAINT will paint an area of uniform colour (whera x.y is a poinl inside 1hat area), using
another colour {0 to 255). The two co-ofdinales, x and y, should ba given as abscoiute
(based on a screan of 512x256) for bath mode 4 and mode 8. Il tha paint colour
spacified is the same as the original colour found at x.y then the paint will not 1ake
placa.

A fourth paramelar may be specfied (source_colour) - in which case the paint will only
exacute if tha colour tound at x,y has the SAMa value as that parameler.

page 3

PAINT contd.

To fill more complex shapes, more than one PAINT wiil be required. However, no
mamary is used by the routine for storing co-ordinales eic.. and execulion Is
reasonably rapil. The procadure POINTER is an ideal means of posikoning x and y
when using modea 4.

Example: 100 INPUT#0*Colour 7 *: colour : NOKEY : POINTER 250, 120
118 PAINT XPOINT, YPOINT, colour
120 POINTER XPOINT, YPOINT - IF POINTKEY=2 : GOTO 100

130 GOTO 110
ALCHP ({(nbytes) {Funciion)
RECHP address {Procedure)

ALCHP is used to allocate memory space {in the Common Heap) for use by machine
cade programs, storage ol screans elc. Iis use is similar to ihal of the funclion RESPA
(which rasarves space In the Rasident Procedure area), the main ditference being that
the memory may b later released to the Comman Haap when no longer required.

Example: addr = ALCHP (32768} .. - will rasarve 32768 bytes

Since 32768 byles is the scraen memory Size, you cauld for instance load a screan
directly from microdrive inlo memory using LBYTES mdv1_namé_scr.eddr and then
place tha image on the screen using FRAME or PLACE.

RECHP is used io release memory allocated by the above. I is imponant to save the
base acdress (acdr - returned by the functicn ALCHP) il you wish 1o use the procedura.
Typa RECHP (foliowed by the addrass) to release the memory lo the Common Heap.

important note: The Common Heap may bacome fragmented by multiple
ailocations . . .eg. PRINT FREE
G = ALCHP (40000) : PRINT FREE
a = ALCHP (§12) : PRINT FREE
RECHP g
PRINT FREE

The RECHP appears not to have worked - this is because the small space (which 1§
reservad by "a) is separabing two sides of the Heap araa. If ybu now type - RECHP a,
although you are only raleasing 512 bytes, typing FREE wil! reveal that the heap has
been restored 10 one area. Using a directory device {eg: mdv2_) fos the first time, will
sel up a "definilion biock® in tha Cornmon Heap in the same way as the exarmple
above.

It is advisable to previously access all the directory devices likely 10 be used during
large allocations of the Commaon Heap.

page 4

FREE {Funclion)

Thus function will relurn the approximate number of bytes lvee for use by Superbasic
(the largest single free space), and is essenlial a5 4 means of keeping check on
memory usage.

Exampie: 100 DEFine PROGedurs pr
110 vevsl
120 AT 0.0 :PRINT FREE; " Bytasleft = :pr
130 END DEFing
140 CLEAR :vai :pr

After a whila tha “Out of memoary* massage will appear. lt is often dilficuil 10 locate a
causa of memory wastage in largs programs. Llising FAEE (within 2 main loop) as
tollows could help te 06 50 . . . IF KEYROW(3) = 16 : AT#0,0.0 . PRINT#0, FREE

BVAR {Function)

Unlike the QDOS System Variables (located above the scraan at $28000), the pasitian
in mamory of the Basic Variables is not fixed. The BVAR function returns ihe basg
address of this area, thus giving accass 1o the vanablas which ara at fixed ofisets from
that address.

abDoss {Function)

This is the QDOS squivaient of the basic function VER$ and will raturn the QDOS
varsion numbaer for you QL (is: 1.03).

STAMP mdv, n, n2 {Procedure)
CHECK mdv, nt, n2 {Procedure)

These are used for amti-copy protection. To wwvisibly mark a previously formatted but
blank cartridge typa STAMP - foilowed by 3 paramatars - smcrodrive number {1 or 2],
then two numbers (each between 2 and 200). You must then save a pregram on ihe
caitridge bafora removing it from the dnve.

Toast for the two numbers, fypa - CHECK - followed by tho micradive number and
the two ‘pass’ numbers. Atter reading the canndge, if the numbers aré correcl, nothing
will happen - otharwisa the error “Bad or changed medium™ wilk cccur.

This routine is very eltective if incorporated within a Supercharge compiled program 1
chack for & ‘master or ‘original cartridge in one of the drives.

Example: 100 CHECK 2, 48,58 : REMark the program wid siog if 48 & 49 are not
found 1o ba STAMPED on the cariridge in mav2_

page 5

LOCK (Procedura}
UNLOCK {Procedus)
LOCKED (Function}

LOCK will ths-enable ‘Break’ causad by CTRAL/SPACE as well as ‘pause’ normally
caused by CTRUFS. It is important NOF 10 LOCK TWICE otherwisa the computer will
crash {use 1he function LOCKED o check).

LUNLOCK has the raverse aflact, ie: it will re-anable CTRL/SPACE & CTRUFS.
The tunction LOCKED returns a value of 1 it iocked or O if not lockad.

Example: 100 IF NOT LOCKED THEN LOCK : ELSE PRINT "Alrgady locked 17

DEVSTAT ('device™) (Function|

This function tests and will rglura the status of any directory davice connectad 10 the
QL. It 15 a usedut means of avoiding program crashes during directory or access hom
non-exisian! carridges or disks atc. (1he device name musi ba enclosed by nvened
commas). The status humber returned in the avent of an errar is the QDOS error code
{a smail negativa value) - otherwise a zero is returned.

Exampla: 100 IF DEVSTAT ("mdv2_") < 0 - BEEP 3000,50 - Print "Placa a carnidge
in mdv2_ & press a key” : PAUSE : CLS : GOTO 100
MO PRINT™. o OK"

REPORT [#n], error_number {Procedure)

REPORT will print the equivalent QDOS error message to the given channel {the
detault is #0). Error codes are betwsen -1 and -21.

Example: REPORT#2 DEVSTAT("fip1_")
. wilt print "Not 1ound” in window #2 if a disk driva is not connectsd or there is no disk
in the driva.

RESET (Procedura)

This is a software aquivalent of pressing the reset button on the side of the QL.

WAIT value iProcedure)

Suspends a programn for a penod depending on the value given. Unlike tha PAUSE
command, WAIT is unaflacted by use af the keyboard. bn addition, the langth of wan is
unaftectad by camgilauan using Suparcharge - (& value of 200 gives around 1
second, 1000 around § seconds, 2000 around 10 seconds elc.).

page b

SCADDR {(x,y) (Furction}

Returns the addrass in the screen memory indicated by co-ordinatas x and y. The
co-ordinales must be given as absolute {512x256 pixeis). This procadure is uselul for
locating start and end addresses whes saving just a section of screen.

Exampig: 100 REMark to save screen fram 0,22 10 512,200
110 stan = SCADDR (0,22)
120 finish = SCADDA {512,200)
130 length = fimish - start
140 SBYTES mdvi_scresn_section, star, lengih

POKE_S x,y,value (Procadura)
PEEK S (x,¥) {Function)

POKE_S pokes a word langth value 16 the screen at the given co-ordinates while
PEEK_S reads the screan at x,y. An example of application is to stock values using 1he
screan as mamory (sither 10 save on RAM elsewhere or in order to read values from
“data boxes" on sCreen for menu seleclion using a pomnter).

DISP n {Procedure)

Switches the OL screen display according to the valus given (between 0 and 4). The
corrasponding efiecls are as follows:

switches ofl the display

sats the 4 colour display

seis the 8 colour display

- sets the 2nd screen 4 colour display
s@1s the 2nd screen & calour display

PN =O
'

Changing balwean the displays does not aflect the screen RAM - only the way in which
s preted s i 180US.

Exampie: 100 DISPO
110 LBYTES mdv1_screen_scr, 131072
120 ISP 4

SMODE (Function)

SMODE relurns a value of efher 4 or 8, depending on the Ql's currenl mode. it is
useful for setting vanables that require dilferent values for mode 4 of mode B, or
checking that ihe correct mode 15 se! wathaut re-calling the MODE command.

ie: IF SMODE < > 4 THEN MODE 4

page 7

SETWIN n {Procedure)

This command sslacts one of six scréan layouls for tha three windows opened al
switch-on. The fiss! two are identical 1o those that appear on pressing respectively F1 or
F2 afler a resel (the scresn mode 15 not changed by SETWIN). Tha third (ayout is
similar to the second. but expanded to meet the edges of the screen. The fourh is the
same as that produced by pressing F1, but #1 is narrower and #2 wider [which is more
practical for displaying program kistings). Display n°5 stacks the threa windows from
top 1o bottom and n°6 sets a full Screen (512x266a0x0) for #1

To seloct one of 1he above window layculs, type SETWIN followed by a number
betwsen 1 and 6. The INK/PAPER/STRIP colours and BORDERS are also set, and ai
windows cleared by Lhis procedure.

FONT [#n], addrl, addr2 (Pracedure)

The procedure FONT sets the 2 characler fonts for any screen or consola channel. If no
channel is spacifiad, 1he detaull is #1. The two parametars that foliow are the basa
addrasses for font 1 {characters 3t to 127} and lant 2 {characters 127 to 191). Either
one or both can be set - giving a 0 as ene of thase two parameters {in place of an
address) will set that font to the QL AOM set. A characier font normally requires 875
bytes (reserved using RESPR or ALCHP)

Tha format for a character foni is as follows:

15t byta the lowest valid character valus
2nd byte the number of valid charactars -1

.. - followad by 9 bytes of definition tor each of the characters (see "deliner_bas").

FONTIBASE [(#n)] ' (Function)
FONT2BASE [{#n)] (Funchon)

Thesa functions return the base addrasses for respactively the first and second lonts
sat tor that given channel. if no new fonts have been instalied then the ROM fom
acdresses are returned. (The ROM character set addresses vary depending on the QL
version).

CURSZ [#n),h, v (Procedurs)

CURSZ sets the character spacing wn horizontal and verheal increments for a given
window (defaull #1). In mede 4 for inslance, the default increments tor CSIZEQD are 6
and 10. {By using CURSZ 6,9 in mode 4, it is possible 10 increass the maximum
numbar of chatacter lines displayable by 10%).

Note: The commands NEW, MODE and CSIZE will cancal incramants that have
baan sel by CURSZ.

page 8

XPIXS (#n) (Function)

YPIXS (#n) (Functian)
XCHRS (#n) (Funcon)
YCHRS (#n) (Functian)

Typing - PRINT XPIXS(#n). YPIXS(#n} - where n i5 & screed or console channai, wil
pnni ihe wingow siza in pixets (horizontally and venically) of #a. Thus inlormation can
be usad 10 se1 sizes/limits eic. for objacts placed within a window area

XCHAS and YCHAS are similar except that thay return the window size in terms of
characiers, which will of course vary according 10 1he characiar size sel by CSIZE.

XPIXP (#n) {Funation)
YPIXP (#n) (Functicn)
XCHRP (#n) (Function)
YCHRP (#n} {Function)

These functions retlurn 1he current cursor position within the spacifiad channel. XPIXP
and YPLXP will raturn the » y co-ordinates in pixals, and XCHRP and YCHRP will ralurn
x and y in characier co-ordinales.

CHANID (#n) {Functian)

Returns tha QDOS channel identification tor the givan Basic channel ID. When
convarted ta a hex striag - eg: PRINT HEXS (8, CHANID(#2)} - the QDOS channel
ID consists of - 1 the low word {RHS) a raference 1c the localion in tha channel tabie,
and in the high word, a Mag™ that increments each tima that channat is apened.

Example: (Afier swilch-on) #2 would have a QDOS 4D of $00020002

CURSEN #n {Procedure)
CURDIS #n {Procedure)

Tha procedura CURSEN (followed by a screen charinel) will enable the cursor in that
window CURDIS has the reversa eflect - the cursor is “unpnileg” and dis-enabled for
the givan channel.

The function INKEY$ lakes data from the keyboard withoul enabling the cursor. using
CURSEN it i possible 1o enable 1018 cursor in a window 5o that when INKEY$ is cailed,
the keyboard queua will be switched to that window and the cursor wiil flash.

Example: 100 CURSEN#2
110 PRINT#2, "You havae 10 seconds to press a key > > >"
120 key$ = INKEY${#?2 500)
130 CURDIS#H2 : CL5#2,3

page 9

MOVXY (Procedura)

b (Function)
YP - (Functian)
SPA {Function)

The procadura MOVXY has 1he effect of reading the four cursor keys {and SPACE).
and incremanting/decramenting x and y values (which are relurned as XP and YP
respectivaly}. MOVXY is subjact 10 previously set limits (LIMXY) and increments
{(XYSTEP). It is capable of replacing lenglhy cursor moving loops with just a few
instructions.

Example: 100 SETWING
110 REPeat loop : MOVXY : BLOCK 2, 1, XP, YP, 2 : END REPeat locp

SETXY X,y {Procedure)

SETXY foliowed by two co-ordinates sets respectively XP and YP far use with the
procedura MOVXY. E

LIMXY left, up, right, down (Procedurs)

It is usually necessary to set a limit to the possible values of XP and YP. LIMXY is used
for this purpose. Tha parameters are (in order) - lowest possible values for XP and
YP, followed by the highasi possibie values tor XP and YP. {Whan the oxlensions are
first tnstalled, LIMXY is sei at 0, 0, 504, 250). I is imponant to make sure that the
co-ordinates set in SETXY fall within the himits set by LIMXY.

XYSTEP xstep, yatep (Procedure)

XYSTEP sets the increments in x and y for the procedure MOVXY Whan cne of the
cursor keys is pressed, XP or YP will increasa/decrease by the amount set in XYSTEP.
{Cn installation of the axiansions, both steps are sel at 1).

Exampie: 100 IF SMODE <> 8 ; THEN MODE 8
110 SETWING:CLS
120 LIMXY 0,0, 240, 100 : XYSTER 8, 4 : SETXY 0, ©
130 REPsat kop
140 MOVXY
150 IF SPA : colowr=0 : ELSE : colour=RND{7) : END iF
160 BLOCK 186, 8. 252-XP, 128-YP, cafour
170 BLOCK 186, 8, 252+XP, 128+YP, colour
180 BLOCK 16, 8, 252+XP, 128-YP, coiour
180 BIOCK 16, 8, 252-XP, 128+YP, colour
2ot END REPeat loop

paga 10

CROSS [#n), x, y, colour {Prooedure)

CROSS prinis a8 cross-wiré Cursof in a channet (default #1) at window position x.y
using INK colour. It is subject to the valua of OVER set for that window - (so il using
QOVER -1, pnnting the cursor a second lime al the same position will have the effect of
unprinting it).

RECT [#n], width, height, x, y, colour {Procedure)

Prints a rectangle in a window (detault #1) in the specified colour, where x and y are
he pixel co-ordinates ol the rectangla’s top left corner. {(RECT may be 'XOR'ed by
setting OVER [#n}, -1).

GRID [#n], [size] (Procedura)

GAID will print a grid over the whole or pan of the screan which will remain displayed
until SPACE is prassed. It is intendad for use in measunng proportions for planning
screan layouts (opaning windows, placing cursers, setting limits olc.} and is printed in
XOR mode in order to prasarve the screen image whan it is unprinted.

GRID may be used without any paramaters - in which case it will cover tha whole
screen area with gridlines evary 32 pixels/lines. if however one parameter is given, that
parameler is interpreted as the grid size {minimum 8). Wnen two parameters (window
and gridsize) are speaified, tha grid will displayed only within that window (the second
parameter is needad when spacifying a window for the grid).

HEX$ (no_of_hex_digits, value) {Function)
DEC ("hex$") {Functian)

HEXS roturns the hexadecimal equivalent of a positive denary integer. The numbear of
hex igits required must be siaied (between 1 and B).
Example;: PRINT HEXS (8, 179) .+« gives 00C000BI

DEC retums the denary {decimal} equivalent of a hexadecimal string. The hex mus! be
anclosed by inverted commas;
Exampie: PRINT DEC ("200067) .. .gves 131072

DUMP {Procedure)
This is an extremely slow screan dump lor usa with Epson compatibles. DUMP will
oparate in mode 4 or 8 and will dump the whols screan to a printer connected to serl
{sarial pon).

Note: The procass may be interrupted during the course of operation by holding
down the ESCape kay.

page 11

CNUM (colourA, colourB, stipple) {Function)

CNUM foliowed by two calour values (0 to 7) and a stipple pattern (0 to 3} will return
the equivalent colour/stipple combination as a singla value {between O and 255).

GETBRUSH x,y (Procedure)
PUTBRUSH x,y {Procedura)

These two procaduras are for "reading from™ and "writing to” the screen according to a
definable brush. The preset brush shape is circular with centre at co-ordinatas w.y.
Biushes may be redefined by directly POKEing new values {see laler).

GETBRUSH reads the scraen pixel by pixel along a set course covering the area
beneath the brush. The pixel colours are read inta a buller to be used by PUTBRUSH
PUTBRUSH places the pixels (read by GETBRUSH) onto the screen al spacified
co-ordinates x and y. This process is used by the program “transtar_x" 1o copy free
hand from ane pesition to another on the screen.

Example: 100 LIMXY 8, 8, 504, 228 : SETXY 240, 120 : XYSTEP 4. 4
110 WINDOW 512, 256,0,0 : OVER -1
120 REPeat loop
130 MOVXY
140 IF SPA : GETBRUSH XP, YP : PUTBRUSH XP+100, YP+20
150 FORc=1T0O2:CROSS XP,YP,7:ENDFORCc
160 END REPeat loop

BRUSHBUF (Function)

BRUSHBUF gives the stan address of the butler used to define the palh betwean each
constituent point of the brush. The format of tha butfer is as follows :

Word - number of steps to take within the brush
then... Byte - paramaler for first x (horizonal) slep

Byte - paramater for first y {verical) step .. .and so on for gach stap . ..
A negativa movament in x or y (ie’ laft of Lp) Must be o-p-5
indicated by setling in addition tha 8th bit of that byte “/7_8 -—B\r
(this is dene by adding 128 to the number (0 mave). 7 ! 1N
In the default brush the path stans at the cantra and m i- ¢ a-0%
spirals outward, the first point read being thé pixel | a-3=1 ¢ 1
jus! above the ceatre, and 1he last being that of the k=j-1 2 Q-d’u
centre. The buffer starts with a word valua 37, then z h-g-1 ¥
bytes 0, 123 iright O, up 1) forstep 1. Then 1,1 \y—x-w/

{right 1, down 1), and so on. The last step will be
2, 130 {right 2 pixels, up 2} to go from the oulsice (2) to read the centre pixel.

(The max. number of steps dafinabla is 70, and the max. distanca for each step is 127}

page 12

BCOLBUF (Function)

BCOLBUF returns the address of tha bulfer used for storing the colours read by
GETBRUSH.

Each pixel colour is stored as a word in sequence following the path taken by the
brush {see BRUSHBUF).

SVAH n, value {Procedure)
VAR (n} (Function)

SVAR and VAR provide a means of stocking a 32 bit value in mamaory which will not be
grased by the commands CLEAR or NEW, or by loading another Basic program. Thay
may ba used for transier of variables belween programs of into compiled programs,
storing ALCHP addresses or any other variabie function. 16 vanables are available.

To set the value of oneg of these variables, type SVAR - foltowed by 1he idantitying
number {Irom 1 to 16} and then the vaiue you wish to store.

Example: Typs - SVARS, 131072 ... than type NEW
Typs - PRINT VAR{5} ... which will give a value 131072
FLEN (#n) (Function)

Providing a channel is openad 10 a directory device file, FLEN will raturn the leagth in
byles of that file. it is a usefui chack baicra loading code into memaory so that the exact
amount of space ¢an ba ressrexd.

The procedura is as follows:

Open the channel - eg: OPEN#J, mdv1_program

Call the tuncticn - langth = FLEN (#3)

Close the channal - GLUGEND

WAITMD {Pracedure}

Tha command WAITMD will suspend a program while any of the microdrives are
turning. This can be usad 1o aveid siluations whera scragn messages appear bafore
intended because the microdrive motars are still running.

Example: 100 SAVE mdv2_program
110 PRINT "Wait I3, {he mator to Stop . . .7
120 WAITMD - PRINT "Now fhe motor has definitaly stopped™
“You can remove the caitridge from mdv2_*

page 13

NOKEY (Procedura)

NOKEY wilt suspand any aclion while any of the keys are pressed. It can ba usad 10
prevent mulliple exits from nested loops etc. when poling the keyboard using the
function KEYROW.

Example: 100 REFeal loop
110 AT#D,0. 0 : PRINT “Press "SPACE' -
120 IF KEYROW(1) (AT O, 0 :PRINT > ------ OK------- “ NOKEY
130 END REPseat loop

STORE w, h, x, y, address (Procedura)
PLACE w, h, x, ¥, address, [n] (Procecura)
STORSIZ {Function)

These routines are interded for storing part or ail of the screen into memory, and
placing from memory te a position on the scraen, The co-ardinates tor the rectanglg
{width, height, x. y} dafining tha imape area, assume a 512x256 pixel display. STORE
can be used before opening a window on screen, to slore any wmages 1hat lie benaath
that window. When the window is ng longer requirad, PLACE may be used 1o restore
the image 10 the screen (sea “pointer_demo_bas® which uses this principie).

Another use lor STORE/PLACE is 1o save a section only of screan to disk or microdrive
{eg: a block 152x100 raquires only 3800 bytes - aftar having used STORE or PLACE,
STORSIZ will return the size in byles of tha screan block).

Exampla: 100 addr = RESPR (5000)
110 STORE 152, 100, 40, 25, addr
120 SBYTES mdv2_screan_section, adds, STORSIZ

The section may later be Ipaded from microdrive into memary and posioned on
screan as desired using PLACE. It is howsver necessary to keep note of the
proportions of tha saved section, as severe distonion will oocur if ihase are changed.

Harizomal co-ardinate parameters are rounded down (o the nearest word interval lar
spaed in moving scieen memory. i is imperative that tha paramelers defining PLACE
fall within the screen display area otherwise the QL will crash.

An optional bith parameter [nf may be used with PLACE. It must compnse a valus of 0,
1 or -1 df s parameter is zero, he Saction is moved 1o the screan narmally
regardiess of the undarlying image. If the parameter is 1 the two images will be 'OR'ed
Itilis -1, the two images will be "*XOR'ad . . . which has a similar afact to printing with
“OVER -17,

(Using a value af -1 can produce intaresting results in mixing two or more imagses).

pages 14

STORE, PLACE contd.

Another useful application is in panning or scrolling with “wrap-around” of opposite
edges.

Exampla: 100 addr = ALCHP(80} : SETWIN 6 - CLS
110 OPEN#3scr_184x100a62x50 : BOADER#3,1.2 1 INK#3.2 LIST#I
120 OPEN#4,scr_164x100a254x50 : BORDER#4,1,2 | INK#4 4 : LIST#4
130 REPseat loop
140 STORE 160,1,64,51 addr : STORE 160,1,256,148,addr+40
156 SCROLL#3, -1 . SCROLL#4 1
160 PLACE 160,1,64,148,addr+40 : PLACE 160,1,256,51 .addr
170 END REPeat loop

COMP [address] {Procucure)
DCOMP address (Procedure)
COMBPSIZ (Function)

COMP is a screan compress routing designed lo economise on the narmal 32K
raquired for storage. The savings on mamory can be considerable. depending on the
complaxity of the image. Howevar, very complex screens could reguire mare than 32K.
By using COMP without any paramaters, the image will ba processed but not stored

The function COMPSIZ raturns the numbar of bytas required to stora 1he comprassed
screan. W this is saustactory, COMP - followed by the address of a reserved area in
mamory, wili s10re the compressad screen 10 that address.
The image can then be saved to microdnye il requirad by using (say) -

SBYTES mdvl_imags_cmp,address COMPSIZ

The procedure DCOMP together with a valid addrass will have the reverse effact, - 1he
image is decomprassed rom memory to the screen. COMPSIZ will return the size of
comprassed image atter either COMP or DCOMP.

Exampie: 100 REMark addr « ALCHP{20000)

110 COMP
120 IF COMPSIZ < 20000 : COMP addr : ELSE : PRINT "Screen loo
complex ... “COMPSIZ bytes requred”
PCOL (x,y) (Function)

PCOL relurns the colour of 1he pixel located at ca-ordinalas x,y. The co-ordinates must
ba ralative to the whola screan area {ie: 512x256 puxals). In mode 8 the x parameter
will be rounded down to an even vaiue

{Nola - in mode 4, tha calour relurnad will be 0, 2, 4 or 6)

For drawing roulines, this function is extramaly useful for pen colaur changes etc. as
colour can ba indicalad directly on screen by sample rathes than by paleile or menu
salaction.

page 15

MAG [#n), source_x, source y, dest_x, dest_y (Procedure)

Magnities a section of screen by a lactor of 4 1 x and in y (the area is magnitied 16
nrees). The area 1hal is to be magnited measuras 28x20 pixels - and is magnifisd 1o
112280 pixels. The magrufication is displayad within a window [#n] - if no window is
specitied the delault is #1. The parametars sourca_x, source_y are the co-ordinatas of
the top left corner of the area to be mageitied {relative to the whole 512x256 screan).
The next two paramelars locata the tap left comer of the destination block {relative 1o
the display window's ongin - ia: 0,0 is the 1op ltt of the window #n). No error will take
placa if the destinalion co-ordinates are wholly or partially outside the window's limits.

Exampie: 100 REMark To magnify from tha top nght hand corner of the scraan
110 REMak and display the magnification in window #0
120 MAG#0, 484,0,00

Note: Sea the routine “zoom_bas" for an application example.

ROTATE address, nbyles {Procedura)

ROTATE will swap and rotate tha bytes of the tha first and last words of saquence of
bytes (starting at the given address ang ending at that address + nbytes), . . . then the
second and the second 1o last words of the segquence, then the third and third from 1ast
and so on.

Tha principal use is in rotating a string of words of scraen memary.

For instance: ROTATE 131072,327668 . . . will rasull i the enlire scresn being
affectively turned through 180°. ROTATE 133248,128 will rotare just one ling starting
at address 133246 - which is the sama as mirroring that kne honzontally.

Example. 100 FOR y=0TO 255
110 ROTATE 131072 + (128 *y), 128
120 ENDFORy

The effect of this will be to mirrar tha whala scraen lefl to righi. Using combinations of
indwidual line, and whole/pan screen rotations, images can ba turned or mirrorad very
simply. It1s important that nbytes (1he length of sequenca o ralate) is divisable by 4,
that is 1o say - an @ven number of s¢reen words and that 1he star address is an aven
number.

SFLASH n (Procedure)

The parameter n is enher 0 or 1 and has the sHect of satling or reselling (zerc-ing) ak
the flash bils in 1he screen memary. in mode § - SFLASHO will cause any flashing to
cease. The main use of SFLASH is for reworking in mode 8, screen images created in
mode 4, ta supprass Hashing characterishic of the incompatible colour interpratalion.

pags 16

SHRINK address (Procedure)

SHHAINK will store a reduced image of the entire screen at the specilied address. The
reduced "screen” wili require 1/4 of tha nermal 32 K {ie: 8192 bytas) ior starage
(resarved by ALCHF or RESPR). This image can then be postionad on screen using
the procadure PLACE. The new screen image will measure 256x128 pixels.

The procedure is not really suilable for use in mode 8 as hashing will probably occur.
(Howaver - this may be removed using SFLASH).

Exampie: 100 REMark *°**first load an image onto tha screan et
110 addr = ALCHP(8182)
120 FOR c=1708%
130 SHRINK addr : DISP 0
140 FOR x=0,256
150 FOR y=0,128 : PLACE 256,128, x, y, addr
160 ENDFOR x
170 DISP SMODEs4 : PAUSE 100
180 ENDFOR c

page 17

THE PROGRAMS

Transfer_x

This program is used for transter and reatmem of images batween two Screens. Ona
unique feature is the ability 10 copy freehand from one image 1o the other, using a
vanety of brushes.

To run the program - type EXEC_W mdvi_transfer x (Nota: as for all the
programs on this carindge, the toatkit axiensions must ba inslalled previously)

Transter_x will not affect the current sereen iMaga - so it may be used from wiltin a
Basic program (memory permitting). Transter_x raserves for itsei around 42000 byles
to hoid the second scraen and for windowing atc.

Nota: This will be released aflar exit from the program, providing no ngw directory
davicas are accessad during the program (due 10 common neap
fragmentation - see ALCHP on page 4). This problem can be avoided by
previously accessing ali the devicas likely 10 be used tor SAVE-ing or
LOAD-ing scraans.

Transfer_x has two modas. Whan the program stans, you are in INLAY mode. The
“halp” window {which can ba called during this mode only by pressing F1) is displayed.
INLAY mode concermns functions such as loading and saving, positioning, panmng,
scrolling etc. of the two screens - ie: the main dispiay, and the sacond screen
{displaysd behind a window inlayed 10 the main display).

Pross a key to remave the help window.

Loading an image

Press F2 to doad an imaga from disk or cartridge {either 10 the inlay or main scraen).
Ater indicating tha device from which 1o load, a directory of files is shown. Enter the file
nama exactly as it appears in the airectory (or just press ENTER if you do nat wish to
load a file}. You will then be asked whether \o load to screen or iniay.

Nata: It you load a *mode 4* screen while using the program in moda 8 . . . savers
Hashing will occur, This may be ramoved by pressing iha key 4",

Saving an image

AMer processing, the main screen may b& saved 1o disk or microdrive. Press F3 and
inpul the name of the devica to sava 1o, A dirgctory of files already saved is displayed
and you are asked for a name for the image to sava_ If thers is not anough reem 1o
Sava the screen (64 sectors) or you have changed you mind - just press ENTER.
Otharwise, type a nama for the screen and press ENTER.

Nois: SAVE-ing wili averwrite any Ppreviously saved file of the same name.

page 18

Transler_x contd.

Once both images hava been loaded, the inlay window can be manipulated as follows:

Tl 1o panscroll the inlay sctaan

e TL+SHIFT....... to adjust the size/shape of the window

Tl e ALT lo mave the iatay window around the maut Scresn

F& . will print the image in the window 10 tha screéen beneath

Note: Tha inlay window may be ramoved from the screen by raducing its height 10
0 using SHIFT and T, after which «—» T4 may be usad 1o pan/scroll the main
screan display.

COPY mode
This mode is concarnad with Ireahand copying, drawing, lranster and stratching of
screen images/extures. Press £4 to enter COPY mode.

You are presanted with two superimposed Cross-wire Cursors which may be movad
around the display in parallal (using the CURSOR keys). One of these reprasents ha
*reading" brush, and the othar the "writing” brush. To set the relative positions of the
cursars, the fundtion keys F1 1o F5 are used as follows:

F1 - writing brush nght

F2 - wniing brush left

F3 - wriling brush down

F4 - wriling brush up

F5 - the wiiling brush assumaes the same location as the reading brush

While tha cursars are separated, pressing SPACE will transfer from one cursor to the
other, similar to a pantograph.

However - when the cursars are superimposed, tha ALT key will causa ihe brush to
read tha textura/soiours into the bulter. Consequently, prassing the SPACE bar will
wide those colours back to tha screen. it is then possibla to draw with the stored
taxture.

Using 1his technigue {and a skiliul manipulation of ALT and SPACE), 1exiures can be
siretched from (say) the side ol a laca to distort s shapatconiours. Each time ALT is
pressed - a new 5ed of colours is read by the brush into the bufiar.

Step

For all cursor mavamsnt, the step rate may be alterad by pressing SHIFT. Between 1
and 8 pixels per stap are possible. While holding down SHIFT, ihe cuirant slep s
indicated at tha tap left of tha screen.

page 189

Transfer_x contd.

Brushes

A selection ot brushes is available - o change brush press CTRL. While the CTRL kay
is pressed the brush shapesicon is displayed at the top of tha screen. Eight brushes
and two airbrushas are provided - which, when used in conjunchon with varying step
Sizas, givas an enormous range ol possibla lexiures for drawing, transfer gic.

Note: when using the airbrushes, a step of 2 or 3 is racommanded.

Yo EXIT from COPY moda - prass ESCape
To QUIT the progsam {irom INLAY mode), and relurn 10 Basic - press CTHL « ESCape

Zoom_bas

Zoom_bas i$ a routing wrilten in Basic fa illustrate the procedure MAG, used to
axaming a 28x20 pixgi block magnhed to 16 times. The routine (which can be
incorporated within a larger program) is used as follows:

A block appears an screen. which will move in response to the cursor keys. This
should be positionsd over the area to be examinad.

Press SPACE - the block will be magnified in a window 1o one or olher side of the
sCcraen.

Inside this window a flashing “pixal” indicates the curreni cursor position. i is possible
to draw within the window using the CURSOR keys and SPACE (the default ink colour
is black but may be changed by pressing "C™). Any drawing will De schoed normal size
on the screan. Mowing ke cursor to an edge of the window will cause the area that is
magnitied 1in 1he window to be scrolied or panned in that direction. (Fressing FS
indicates the screan location of the block).

To axit irgm the routing press ESCape.

Definer bas

This is a very simple characler deliner wiuch (unusuaily) allows you to work wilh the
complete 9x8 character matrix (aithough only mods 4's CSIZE 1.0 and 1,1 are
capable of using the full malix).

Each screen channat has two character fonts. Normally the tirst conlains characters 1

(the graphic square) to 127 () while the second condains characters 127 10 191 (O

1). Font 1 raquires 875 bytes and font 2 requires 587 (see FONT aa page 8) When

the program is loaded you are askad to salect fent 1 or 2 {which is then transiered fram

HOM into an area pointed 1o by VAR(3)). On ipading a font from microdrive far
di g, this selection is made a lly.

page 20

Definer_bas contd.

Tha main display consists of four windows. in the op windaw Ihe new set of characlers
is dispiayed baneath their ROM set equivalents. These may be scrollad lett or nght
using F1 or F2. Tha current character is also displayed in the next window down in a
salection of sizes togsthar with its character coda. To the leit is an entarged display of
the characters pixats. On releasing F1 or F2, after a shart pausa - the currenl
character wili be raad into the large display. (To prevent this - press TAB immediataly
after releasing F1 or F2}.

You can draw within his display 10 modify the character, using the CURSOR keys and
SPACE bar (F5 clears ihe matrix). You can write tha modifications 10 the character
detinnion by pressing ALT,

The fourth window contains “help® infarmation, and is used for prompis whan Iloading
(F3) or saving (F4) character sets.

Nota: Saving will averwrite a praviously saved file of the same name.

Once a font has been edited or created and saved to disk or microdrive, it can be
wnstallad usiag the command FONT. The procass is as foliows:

Raserva anough space - ie: addr = RESPR(B75)
Load the font LBYTES mdvi_symbol_sat, addr
Insiali the fonl tor (say) #2 FONT#2, addr, 0
Nate: If either foM address parameter 15 zero, that font will default to the ROM
character sal,

page 21

EXTENSIONS (F or P indicate sither function or procedura)

page

FALCHP 4 F POINTKEY
£ BCOLBUF 13 P POINTSPD
F BHUSHBUF 12 P POKE 5
F BVAR 5 P PUTBRUSH
¥ CHANID 9 F QbOoss
P CHEGK 5 P RECHP
F CNUM 12z P RECH
P COMP 15 P REPOHT
F COMPSIZ 15 P RESET
P CROSS 11 P ROTATE
P CUHDIS 9 F SCADDR
P CURSEN 9 P SETWIN
P CURSZ 8 P SETXY
P DCOMP 15 P SFLASH
F DEC 11 P SHRINK
F DEVSTAT B F SMODE
P DISP 7 F SPA
P oump 1 F o STAMP
F FLEN 13 P STORE
P FONT] F STORSIZ
F FONTIBASE [] P BVAR
F FONT2BASE] P UNLOCK
P FAAME 3 F vaR
F FREE 5 P wWAT
P GLTBRUSH 12 P OWATMD
P GHID 3] F XCHRP
F HEX$ 1 F XCHRS
P LMXY 10 F XxpP
P tOCK 6 F XPIXP
F LOCKED [F XPIXS
P MAG 16 F XPONT
P MOVXY 10 P XYSTEP
P ONOKEY — ---- 14 F YGHRP
P PaINT 3 f YCHRS
F PCOL - 15 FYP
F PEEK S 7 F YPIXP
P PLACE 14 F YPIXS
F POINTBUF - 2 F YPOWT
P POINTER ------ 2
Programs

Transter_x, .. page 18

Zoom bas page 20

Dafiner_bas . page 20
Also on the GRAPHIC TOOLKIT microdriva .. .

Panter_demo_bas Puzzie bas

RPRAINT_bas Relia!_sel

Symbuol_sel Screan_scr

page 22

