
SMSQzine
Issue #5 February 2018

Graphics with POVRAY on the QL

smsqzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

SMSQzine is published as a
service to the Sinclair QL
community. Writers are invited
to submit articles for publication.
Readers are invited to submit
article ideas.

Created using Open
Source Tools:

 OpenOffice
 Scribus
 Gimp
 SMSQmulator

Copyright 2018
Timothy Swenson

Creative Commons License
 Attribution
 NonCommercial
 ShareAlike

You are free:

 To copy, distribute,
display, and perform
the work.

 To make derivitive
works.

 To redistribute the
work.

table of contents

Editorial 1

Bresenham's Circle in Fortran 1

POVRAY 2

Perl 4

Xdialog 7

ZX81 Development on the QL 8

Installing and Running Lynx 9

uQLx and Prospero Software 11

The QL Report 11

Editorial

When I start work on a new issue of SMSQmulator, I
use the past issue as a
template. Only then
do I realize how long
it has been since the
last issue. I would
offer some apology
but I never did
promise any set
schedule, so I produce
a new issue when I
have enough material
for the next issue.

This issue is
combination of some
programming work,
some older software
and modifying my
environment to suit
my needs. As most
know, I do enjoy
tinkering with
different languages,
even some of the older
languages, so the
articles show this
preference.

The front cover is an
example image created
with the POV program
running on
SMSQmulator. It took
a number of hours to
generate, but it shows
what is possible.

Bresenham's Circle in Fortran

After doing Bresenham's Circle algorithm in Pascal, I
wanted to try it out in
Fortran. Besides
working with Fortran, I
wanted to see what
doing graphics is like
using ProFortran.

Using the example
SQUARES_FOR, that
came with ProFortran,
I was able to see how
to open a new window
and set it up. The calls
were similar to
SuperBasic, in that an
open call is made to
open the window, and
then setting the ink and
paper, then doing doing
a CLS.

To port the program
from Pascal to Fortran,
I just had to get down
the Fortran specific
syntax for creating
subroutines and how a
DO...WHILE
statement is
implemented (using a
IF...THEN and GOTO
structure). The Fortran
book I have starts off
with pseudocode and
then translates that into
Fortran. It has a
section on
DO...WHILE and
showed examples in
Fortran.

I also had to remember that Fortran does not use
mathematical symbols in the IF...THEN statements,
but uses text. Where in Pascal or C there is:

Page 1

PROGRAM CIRCLE

CALL Wopen(7,274,200,119,28)
CALL CLS(7,0)
CALL Paper(7,0)
CALL ink(7,2)
CALL bcir(100,100,20)
END

SUBROUTINE plot(xcent, ycent, x, y)
INTEGER xcent, ycent, x, y

CALL block(7,1,1,xcent+x, ycent+y,2)
CALL block(7,1,1,xcent-x, ycent+y,2)
CALL block(7,1,1,xcent+x, ycent-y,2)
CALL block(7,1,1,xcent-x, ycent-y,2)
CALL block(7,1,1,xcent+y, ycent+x,2)
CALL block(7,1,1,xcent-y, ycent+x,2)
CALL block(7,1,1,xcent+y, ycent-x,2)
CALL block(7,1,1,xcent-y, ycent-x,2)

RETURN
END

SUBROUTINE bcir (xcent, ycent, rad)
INTEGER xcent, ycent, rad, p, x, y

x = 0
y = rad
p = 3 - 2 * rad

100 IF (x .LT. y) THEN
CALL plot(xcent, ycent, x, y)
IF (p .LT. 0) THEN

p = p + 4 * x + 6
ELSE

p = p + 4 * (x - y) + 10
y = y - 1

ENDIF
x = x + 1
GOTO 100

ENDIF

IF (x .EQ. y) THEN
CALL plot(xcent, ycent, x, y)

ENDIF
RETURN

END

IF (x > y)

Fortran uses text like this:

IF (x .GT. y)

I was able to get the program to run. Each Fortran
program compiled with ProFortran starts off with a
window that asks for an input file, and output file,
etc. There is no compiler option to turn this off.
There is an executable program that is run against the
compiled binary and this will turn it off.

There is also a console window that comes up. I
looked to see if it was configurable, but no luck. I'm
not sure what Fortran device it is so I can resize it
and use it for my own use.

Further discussion on Fortran

While looking for Fortran 77 code to port to the QL, I
ran into some issues with Fortran 77. I knew that a
number of Fortran 77 compilers and books were
really an update version of Fortran 77 and included
some statements that were port of Fortran 90. I also
learned that even in 1978, Fortran 77 was not just
Fortran 77. Fortran 77 was set as an ANSI standard
(X3.9) in 1978. This was a revision from the
Fortran set as a standard in 1966. There was also an
addition to Fortran in late 1978 known as MILSTD
(Military Standard) 1753, which added some new
functions to Fortran 77.

When looking at the book "Numerical Recipes in
Fortran" which was published in 1986, it used
Fortran 77 with the MILSTD 1753 added in.
Prospero ProFortran covers only Fortran 77 and does
not support the functions in the MILSTD. Since the
MILSTD was published in 1978, if I found some
source code from 1978 or 1979, I could not guarantee
that it would work with ProFortran, as I could have
these newer functions.

POVRay

POVRay is officially called Persistence of Vision
(POV) and is a ray tracing program that has been
ported to the QL by Thierry Godefroy. I've known of
it since it was first ported, but I was not really
interested in ray tracing. Here we are 18 years since

it was ported and I thought I
would give it a shot.

The version ported is 3.1g.
The current version is 3.7. I
was not sure if current
documentation would match
the older version, but I got
lucky in finding a PDF of the
3.1g User Guide.

The first thing I did was to
create a 10 Meg QLX.win file

and put my normal boot file and boot directories on
it. I made it WIN1_ and then reset SMSQmulator to
boot from this QLX.win file. I then unzipped POV
RAY (pov3grun_zip) directly to WIN1_. In the
distribution, the directory that POV is set to use in
WIN5_POV_, but I just let the POV subdirectories go
to WIN1_. The whole package is about 6 Megs once
extracted.

I read through the QDOSreadme.txt file to see what I
needed to do to get the software working. The
document mentioned setting an environment variable
for defining where the povray_ini file is located. I
did that and set it in the BOOT file. I then edited the
povray_ini file to change WIN5_POV to WIN1_.

Page 2

When I tried to use the example file that came with
POVray, I got the following error "Bad Display
Format". The example command line is:

EX win1_povray;"+iwin1_shapes_pov

+oram1_shapes_tga +d2"

To try out another _pov file, I used the example _pov

file from the POVRay 3.1g User Guide.
When I tried it, I also got the same error.
It looked like POV was trying to execute
some image viewing software. I did
some digging in the User Guide and
found the +d2 option was telling POV to
display the image to the screen. By
removing it I was skipping the issue.
The command line I used was:

EX

win1_povray;"+iwin1_test_pov

+oram1_test_tga"

The screen shows a bunch of information as POV
reads the file and then it starts to render. Once done,
the time of the render is shown. In my first test case,
the render took 7 minutes and 49 seconds. The
output file was stored in ram1_ and was over 900K in
size.

The format of the output file is TGA or
TARGA. The only viewer for the TGA
on the QL is PhotoQL. I loaded it and
was able to view the end resultant file.
Since I was using SMSQmulator, I was
able to view it in high resolution.

The second test was also taken from the
POV User Guide. This time the object
was a box with the outside color of
stone, T_Stone25 to be exact.
T_Stone25 is a predefined stone texture
that is included in stone.inc. The
command line was pretty much the same,
but the render time took a lot longer, a
whole lot longer. With a more complex
texture the render took almost 5 hours.

To keep the render time down, it is
possible to change the resolution or size
of the final image. Editing the
povray_ini file, I changed the resolution
from 600x480 to 80x60. In running the
first test file again, the rendering only

Page 3

took about 10 seconds. Granted the image is a whole
lot smaller, but using a lower resolution is good for

debugging the POV script.
The image on the front cover was done using the
test4_pov script and the render took 2 hours and 6
minutes to create. The file is 1.4 Megs. With larger
renderings, instead of rendering to RAM1_, with
SMSQmulator, I can render to NFA1_, which is a
path to a directory at the local file system, so it can
take a large image file with no issue.

If using an emulator like I was, running POV on the
underlying operating system is probably going to be
much faster than under an emulator, but it is still
interesting to see what can be done. With some
tinkering it should be possible to work on some
images that would be easy to render under SMSQ/E.

#include "colors.inc"

background { color Cyan }

camera {

location <0, 2, -3>

look_at <0, 1, 2>

}

box {

<-1, 0,-1>, // Near lower

left corner

< 1, 0.5, 3> // Far upper

right corner

texture {

T_Stone25 // Pre-defined

from stones.inc

scale 4 // Scale by the

same amount in all

} // directions

rotate y*20 // Equivalent to

"rotate <0,20,0>"

}

light_source { <2, 4, -3> color

White}

Perl

Back in 1990 I had a project to read data from a 9
track tape and convert it to use on a Unix system. I
could read each file from tape and store it on disk.
Each file was an 80 character flat database, but there
were no end of line markers. The file was just one
long string. To be able to process the data, I had to
break it up into 80 character lines. Shell scripts don't
have a way of reading single characters. I was not
well versed in C at the time. I just happened to read
about a newer scripting language called Perl. When
reading its manual, I found that it could read a single
character at a time. I quickly downloaded the
language, compiled and installed it on a system.
After a little experimenting, I was able to write a
script that would read in 80 characters, output 80
characters and then a EOL marker. Job done.

When the first book on Perl came out a year later, I
purchased it as soon as I saw it. I started using it on
another project. Soon Perl was THE System
Administrator language, being used for CGI/Web
work, genome work, and other projects where speed
of programming is needed.

The version that I first used was Perl 3, which came
out in 1989. The book covered Perl 4, which came
out in 1991 and was last updated in 1993. Version 5
of Perl came out in 1995 and this has been the main

Page 4

version since then. There is a big difference between
Perl 4 and 5, such that most Perl 5 code will not run
on Perl 4.

In 1998, Jonathan Hudson ported the last version of
Perl 4 to the QL. The executable is 291K, so it needs
an expanded system to run.

Perl is a scripting language that is a combination of
Unix shell scripts, C, awk, and a few other languages.
I viewed it as a more powerful Unix shell scripting
language, that had a number of operations that shell
scripts do not.

The first example of perl is the "hello world"
program that everyone starts with:

#!/usr/bin/perl

print "Hello, World\n";

One use of Perl is to process a file, line by line, in
just a few lines of code:

#!/usr/bin/perl

name of the file to run the

report on.

$file = "test_txt";

open (INFO,$file) || die ("Failed

to open file");

foreach $line (<INFO>) {

print $line;

}

One great feature of perl is using an array for a FOR
statement. The normal FOR statement uses a number
as in index:

FOR x = 1 to 30

Perl allows for using an array of strings. This
example goes through an array and prints out each
value in the array.

@array = ("one", "two",

"three");

foreach $var (@array) {

print $var

}

Perl is also known as a reporting language and has
the concept of formatted output, where the layout of a
report is designed with specified fields. This
example will read though a file and sort out how
many entries there are of each value.

#!/usr/bin/perl

$file = "list_txt";

@array = ();

open (INFO,$file) or die("Failed

to open file");

Go through input file and

create a list

of unique values

foreach $line (<INFO>) {

chop($line);

if (grep(/$line/,@array) {

;

}

else {

join($line,@array);

}

}

close (INFO);

Now to go througt the file and

count each value

$count = 0;

print header format

foreach $var (@array) {

OPEN(INFO,$file) or die

("Failed to open file");

foreach $line (<INFO>) {

chop($line);

if ($var eq $line) {

Page 5

$count = $count + 1;

}

print output format

}

close(INFO);

Perl has the concept of packages, which is sort of like
a library. A package is usually a list of routines that
can be used by a number of perl programs. Jonathan
wrote qdos.pl that has a number of routines similar to
QDOS traps. I've tested a few out but they are not
working 100%. With the routine &sd_setpa that sets
the screen paper, when this is set and the print
statement is used, the paper on the print will be black,
instead of what the paper has been set to. Here is an
example:

#!/usr/bin/perl

require 'qdos_pl';

Set paper color

&sd_setpa(STDOUT,-1,1);

Clear the screen

&sd_clear(STDOUT,-1);

Set a Green Border

&sd_bordr(STDOUT,-1,4,3);

Set Character size

&sd_setsz(STDOUT,-1,3,1);

Set ink color to red

&sd_setin(STDOUT,-1,2);

print "Hello\n";

&sd_setsz(STDOUT,-1,0,0);

&sd_setin(STDOUT,-1,7);

print "Hello\n";

Perl has some nice commands for searching using
regular expressions. It also allows for search and
replace in a string. When I code in SuperBasic, I use

a normal editor so my code is usually all in lower
case. This is the easiest way to type the code. I do
want the final code to look "nicer" with SuperBasic
keywords in upper case. I needed a program that
would search the source code and replace all
instances of keyboards with upper case versions. In
looking how to do this in SuperBasic, I realized that
it is not a trivial task. Using perl, it is almost a trivial
task.

The script (upper.pl) reads in the SuperBasic
keywords from a file and stores them in an array.
Note that I used the chop() function to remove the
EOL marker which is read in as part of the string.
The rest of the code reads a line from the source code
file, and then goes through each keyword to see if it
is stored in the line. If it is found, an upper case
version is put in. If the original code has uppercase,
it is still replaced. There is code in the script to skip
any comments, which start with either ** or ##. The
code is a very brute force method of getting this
done. When run under Linux, it takes hardly any
time. Running on SMSQmulator, it is much slower,
but still far better than doing it by hand.

The program is called like this:

EXEC perl;"upper_pl < source_ssb

> source_out"

This reads the file source_ssb as STDIN and send
STDOUT to the file source_out. The program does
expect the keywords_txt file to be in the same
directory. The program does not display anything
when it is running. To see it working (but not saving
the results), start it like this:

EXEC perl;"upper_pl < source_ssb"

STDOUT will then be sent to the screen. A test file is
included called "test_ssb".

To make it faster, the keywords_txt file can be edited
to remove any keywords that are not being used. It
can also be added to, to include any keywords from
toolkits that I did not have loaded. The file was

Page 6

created by sending the output to the EXTRAS
command to a file. I also had to add in the main
SuperBasic command set. When adding new
keywords, do not add any $ or % characters. If the
keyword is "FOO$" then just add "FOO".

If you want to learn more, there are two books
"Learning Perl" and "Programming Perl" by O'Reilly
Books. Make sure to get the ones with the pink spine
and not the blue spine. The pink book is Perl 4 and
the blue book is Perl 5.

Xdialog

With SMSQmulator, I can add and remove QLX.win
files on the fly, including the boot QLX.win file.
With uQLx or sQLux, I have to edit the .uqlxrc file
first, and then execute the emulator. I can't go back

and add or
remove
devices. As I
work on
different
projects, I
have to edit
the .uqlxrc file
each time. I
really want to
have an easy
way to do this.
I could do
what I did
with

SMSQmulator by having a different icon on my
deskop to load a different .uqlxrc file, but after a
while, my desktop would get a little crowded with all
of the icons.

I did some digging on the web to try and find a X
based (GUI) menu system that is easy to implement.
What I found was Xdialog, with the last version
maintained by Thierry Godefroy, another QLer.
Xdialog combines the bash shell with a GUI front
end. It allows for a number of different GUI boxes
and prompts, sort of like Qmenu.

I just wanted a simple GUI that would let me pick
from a number of boot options and then fire up either
uQLx or sQLux. Xdialog has simple radio buttons,
where I can list a number of items, and then select
one of them. Once selected, I click on OK and the
script runs and I get the emulator with the boot drive
that I need.

I went to the main page for Xdialog
(http://xdialog.free.fr/) and downloaded the source tar
file for version 2.3.1. I followed the directions for
compiling the
source and then
installing it in the
INSTALL text
file. There is a
directory for
documentation
that covers all of
the types of
menus that can be
created. There is
also a Samples
directory with
examples of the
menus and the
shell script that
generates the menu.

The type of menu that I focused in on is the Radio
button, where only one option of many is allowed to
be chosen. From a list of 5 items, if the first item is
selected, then the third option is selected, the first
option will be deselected. In the Samples directory
the example script is called "radiolist".

After digging into the documentation and reviewing
the radiolist script, I understood what is needed to
generate the menus. The first part of the script is
creating the menu and getting input from the user.
The second part of the script is taking actions based
on the user input.

The final script is called uqlx_xdialog.sh. Outside of
the menu, it copies a .uqlxrc file of the chosen boot
QXL.win file and copies it to the main .uqlxrc file so
that it is used when uQLx is started. I then created a

Page 7

desktop shortcut that called the uqlx_xdialog.sh
script. The next time I need to start uQLx, I just click
on the desktop shortcut, the menu will pop up, I
select the QXL.win file that I want and uQLX fires
up.

ZX81 Development on the QL

I've been doing development for the ZX81 on Linux
using a number of tools and a couple of ZX81
emulators. I know that Xtricator is the ZX81
emulator for the QL. It's been at least 15 years since
I was using my Gold Card QL, but at that time I was
not doing any ZX81 programming. A while back I

tried Xtricator and found that it will not run on
SMSQmulator, so I did not go any further.

With the recent release of the new version of UQLX,
which emulates QDOS and not SMSQ/E, I tried
Xtricator (version 1.75) again and it worked. On
UQLX, before starting Xtricator, PTR_GEN must be
loaded. I load the three parts of the Pointer
Environment (WMAN, PTR_GEN, HOT_REXT)
and Xtricator works fine.

When running Xtricator, there are a few things to
know. The keyboard is similar to the ZX81, but not
quite the same. The F1 key is the way to bring up the
Xtricator menu, which is very handy. Normally,
SHIFT 0 (zero) is the delete or rubout key. On the
QL it is CTRL <Left Arrow>. When loading a _P file
from the QDOS file system, the default working
directory has to be changed. The default is FLP1_
instead of WIN1_.

Memory for the ZX81 can not be initially set. Once
the emulator is started, there is a menu option to reset
the ZX81 and it gives a number of choices; 1K, 16K,
32K, 48K or RAMTOP Fixed.

I have tested Xtricator with a program that was
compiled with Z88DK (the C compiler that can
generate ZX81 code) and it ran with no issues. The
emulator in an emulator does not seem to slow the
ZX81 down.

I also tested Xtricator with the a hires graphics
program and it did not load it correctly. The pseudo
hires programs that run on a real ZX81 should run on
Xtricator.

Now that I had Xtrictator running, I thought about the
possibility of doing ZX81 development on the QL.
The first way of doing development is in BASIC.
I've been using a program called zxtext2p to convert
a BASIC program written with a text editor into a
binary (.P) file for the ZX81. The source code is
available and it was from that source code that I
compiled it to run under Linux. Using C68, I was
able to compile zxtext2p to run on the QL. It is a

fairly straight forward program to
use.

A BASIC program is written using a
text editor and can be done without
using any lines numbers. Here is an
example:

Reverse String

print "enter string"

Page 8

Page 9

input a$

print a$

print

let b$ = ""

let l = len(a$)

for x = l to 1 step -1

let b$ = b$ + a$(x)

next x

print b$

Anything after a # (number sign) is considered a
comment and is ignored by zxtext2p. Any extra
blank lines are also ignored by zxtext2p. This allows
the code to have a nice look to it, but still work on
ZX81 BASIC.

After typing the program into an editor like QED,
save it as reverse_bas. Then execute zxtext2p like
this:

exec zxtext2p;"-l -o reverse_p

reverse_bas"

A console will pop up and the phrase "Started." will
appear. If there are no errors, then "Success." will be
next. If there are errors, then they will be displayed.
Now the _P file can be loaded into Xtricator. Once
the default device had been set to WIN1_ (or what
other device you use), then the program can be
loaded into Xtricator like this:

LOAD "REVERSE"

zxtext2p allows for including graphics characters into
BASIC. The graphics characters are first typed in
ASCII and converted by the program. The allgray
characters are typed like this:

\## or \@@

zxtext2p does the same thing for creating inverse
characters, by first creating them in ASCII.

Remember to use characters that the ZX81 supports.
Bracket characters ([]) or braces ({
}) are not supported and should not
be used.

zxtext2p was written by Chris
Cowley and the short, but full,
documentation can be found at the
following link:

http://freestuff.grok.co.uk/zxtext2p/

Installing and Running Lynx

Lynx is a textonly web browser. The version ported
to the QL is 2.8.2, which dates from 1999. It is not a
great web browser, but it will demonstrate that it is
possible to connect to the Internet on a QL emulator.

To run Lynx, I created a 2 MB lynx.win file with
SMSQmulator. I then unziped the binary only
version of Lynx that Dilwn Jones has created
(lynxrun.zip):

DATA_USE WIN2_

EXEC win1_unzip;"nfa1_lynxrun.zip"

This put all of the files needed for Lynx on WIN2_.

Lynx requires two extensions to be loaded,
environment variables (env_bin) and signals
(sig30ext_rext). These come with the above

mentioned Lynx zip file. If these are not loaded in
the normal boot, then they should be added at the
end. Lynx also requires about 1 MB of memory on
the QL. A QL with 512K, will not be able to run
Lynx and there will be an "out of memory" error after
executing Lynx.

There are also a number of environment variables
that must be set for Lynx to run. Since I was
planning on running Lynx from WIN2_, I set up the
following LYNX_BOOT file that I can load from
WIN2_:

100 DATA_USE

win2_:PROG_USE win2_

110 SETENV "TERM=qdos"

120 SETENV

"TERMINFO=win2_terminf

o"

130 SETENV

"LYNX_CON=512x256a0x0_

6_0_7"

140 SETENV

"LYNX_CFG=win2_lynx_cf

g"

150 SETENV

"LYNXRC=win2_lynxrc"

160 SETENV

"LYNX_FONT=win2_pcql_font"

If Lynx is installed in another path, then the boot file
will need to be edited for that path.

To start Lynx:

EXEC lynx;"www.qlforum.co.uk"

This will start Lynx and open the QL Forums
website. There is a prompt about saving internet

cookies, so just say Y for yes.

Lynx is fairly old and does not
support some of the newer
Internet protocols that are needed
for a number of web pages. I've
tried using Lynx with Google and
Yahoo and both of those fail,
mostly because Lynx version for
QDOS does not support SSL
(HTTPS:). Most of the most
popular sites are now requiring
secure HTTP connections by
using HTTPS. Most QL related
sites will probably not require

HTTPS.

I've also encountered issues with Lynx where it
complains about uncompressing a temporary file. I
made sure that the working and data directory devices
had plenty of disk space, but the issue still happened.
When running on QPCII, this error did not happen.

Given how old the QL port of Lynx is, it may not be
all that useful. At least it sort of works and proves
that an QL emulator can get online.

Page 10

For a Lynx user guide, see the following link:
http://lynx.invisible

island.net/lynx_help/Lynx_users_guide.html

I've tested Lynx with SMSQmulator, QPCII, Q
Emulator and uQLx. It worked on QPCII,
SMSQmulator and QEmulator. It failed to run on
uQLx.

uQLx and Prospero Software

Since I'm trying to go all Open Source for my
computing, including QL emulation. I'm started using
uQLx instead of Qemulator, when I need to run
software that will not run under SMSQ/E. The
Prospero Fortran and Pascal compilers need to have a
PRL ROM image in the ROM cartridge slot. uQLx
supports this, but the default configuration has
Toolkit II ROM image in the slot. I do not want to
loose TK2, but I really need the ROM slot for
Prospero.

uQLx does not support having multiple ROM's
loaded (unlike Qemulator). Luckily, there is a
version of TK2 that can be load into memory and run.
From Dilwyn's website I found a tk2_bin file on the
Toolkit II page. I then added a part of the BOOT file
to RESPR space for tk2_bin, load it into memory, and
then CALL it.

The QL Report

Curry Computers of Glendale, Arizona, was a
Sinclair dealer that started with the Spectrum, but
switched over to the QL when it came out. When I

bought my QL in 1986, I found Curry Computers as
my local source for a number of QL items.

Every month, Curry Computers put out "The QL
Report" which was sort of a newsletter but mostly a
way of letting people know what new products were
coming out. Cost was $15 for 12 issues. There was a
few simple SuperBasic programs added into the
newsletter to give it a little meat, but most of the
writing was on new products.

Looking through my old archives (a number of ring
binders), I found a number of issues of "The QL
Report". I started my subscription with Volume 2,
issue #10 (October 1986). Most of the issues were
just full page printouts from Quill. In Volume 3 #7,
Curry Computer discovers desktop publishing with
Desktop Publisher, and the newsletters start looking a
little bit fancier.

The last issue I have is Volume 3 #10 (Oct. 1987). I
don't remember if I let my subscription lapse or if
Curry Computer stopped publishing the newsletter.

Looking through the issues, I have found reference to
a number of programs that were written by American
programmers and published by Curry Computers.
Some of them I've not heard of before. One was
"The Master Teacher" by Mel MacKaron. He also
authored some programming articles for "The QL
Report." Steve Cermik wrote Crockett Payroll, a
professional payroll system, reported to be adapted
from a mainframe version.

Page 11

