
smsqzine
Issue #1 June 2015

smsqzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

SMSQzine is published as a
service to the Sinclair QL
community. Writers are invited
to submit articles for publication.
Readers are invited to submit
article ideas.

Created using Open
Source Tools:

 OpenOffice
 Scribus
 Gimp
 SMSQmulator

Copyright 2015
Timothy Swenson

Creative Commons License
 Attribution
 NonCommercial
 ShareAlike

You are free:

 To copy, distribute,
display, and perform
the work.

 To make derivitive
works.

 To redistribute the
work.

table of contents

Why SMSQzine : Editorial 1

Pascal Compiler Comparison........................... 1

Datamining with Archive 3

Printing with Emulators
with Linux 6

Alternate Configurations
With SMSQmulator 7

Why SMSQzine

I've been using the QL for almost 30 years. I bought
my first QL in April 1986. Over the years I have
contributed articles to a number of newsletters, from
local user group newsletters, like TimeLinez, to
national newsletters, like Update!, and then
international newsletters, like IQLR and QL Today.
I even have published and edited my own
newsletter, QL Hacker's Journal.

My interest in the QL has ebbed and flowed as other
hobbies have taken up my time. At the moment it
is more a flow than an ebb and I am at a time where
I'm tinkering with and programming on the QL. As
I work on projects, I like to write about what I am
doing. I saw the need for a new QL newsletter for
long form writing, esp. one that is freely available to
all.

When I started the QL Hackers' Journal in 1991, I
concentrated on the content and ignored the look
and style of the newsletter. Since most people were
going to get the newsletter via email, keeping it
simple was the best. Now with more download
bandwidth, the PDF standard, and good open source
desktop publishing tools, I plan to make this
newsletter more colorful and graphical.

SMSQzine is a free ezine (electronic magazine).
There is no costs to acquire it nor will there be any
payment for authors. This whole project will cost
only time, for both the reader and writer. There are
few QL vendors left, so if any are interested in
running an ad, it will be run at no cost.

I am interested in getting feedback from the QL
community, both in what I'm doing wrong and what
I'm doing right. Ideas for article is invited,
along with articles themselves. The topics
of articles can be anything that is QL
related. I'm hoping that the QL community
will find the ezine interesting, entertaining
and useful.

Pascal Compiler Review

Computer One Pascal & Prospero
ProPascal

I have one program that I've been porting to
different compilers on the QL. After porting it to
SmallC, Digital C, and QC, I decided to port it to
Pascal. There are two freeware Pascal compilers for
the QL, Computer One Pascal and Prospero
ProPascal.

Pascal was published in 1970 by Niklaus Wirth and
was the primary language for universities in the late
70's and early 80's. My compiler, data structures,
and numerical analysis classes all used Pascal. The
release of Turbo Pascal for CP/M and DOS in 1983,
made Pascal a very popular language for
development.

Both of these compilers are tied to the QL and need
an emulator like Qemulator and will not run on an
emulator like SMSQmulator. Computer One
Pascal seems to rely on the screen position in
memory and ProPascal needs to have an ROM file
attached to the emulator (the original used a ROM
cartridge).

Computer One Pascal

Computer One (C1) of Cambridge produced a
number of language utilities for the QL, including
as Assembler, Forth, and Pascal.

C1 Pascal is a pcode compiler, meaning that it does
not compile to assembly or machine code that is run
on the system, but to a secondary language that is
then interpreted by a pcode runtime system.

Page 1

Main menu screen of C1 Pascal

C1 Pascal used a menubased Integrated
Development Environment (IDE). The boot file

brings up the IDE, from which all actions needed to
write and compile a Pascal program is provided.
The IDE has a built in fullscreen editor. If there are
any errors in the compilation process, the
next time the program is brought into the
editor, the errors are shown. The errors are
not added to the source code, but only show
up via the editor and are not something that
can be edited out. When saved, the errors are
not included. This was a little disconcerting
at first, until I realized what was going on.

After editing the source code, the next option
is to compile to code. If all goes well, the
code is compiled into the pcode binary. The
binary can be run from the IDE menu for testing.
Once the code is complete, a selfrunning
executable can be created so that the program will
run on other systems. The other systems will need
the Pascal environment toolkit to be loaded to run
the executable.

Prospero ProPascal

Prospero was a London based software house that
produced programming tools and released
ProPascal and ProFortran77 for the QL.

ProPascal does not have an IDE like C1
Pascal, but is more of a traditional compiler
with the compiler and linker called from the
command line. There is no included editor,
so the user would use their own. With no
built in IDE, using MicroEmacs with
ProPascal would come close to an IDE,
since MicroEmacs can execute QDOS jobs
from within the editor and they could be

automated with the scripting language that
MicroEmacs supports.

Comparison

Both compilers come with manuals that have
enough information to get going. The manuals will
not teach one how to program in Pascal, but they
provide the details on the version of Pascal

supported by the compiler. C1 Pascal
manual is 104 pages and ProPascal is 203
pages.

Both compilers support Standard Pascal, but
it is a fairly limited language with a limited
list of library functions and procedures
(about 27 in total). C1 Pascal adds a whole
library of 54 QL related functions. These
cover QL specific routines to access
windows, do QL graphics, PEEK and POKE,
etc, plus a few useful routines like rnd,

readclock, and upper and lower functions. The

Page 2

C1 Pascal editor screen

C1 Pascal compiling code

C1 Pascal creating executable

commands are fairly complete and porting
SuperBasic programs to Pascal should be easy.

ProPascal covers the same Standard Pascal
functions and procedures, the same QL graphics
routines and then adds more, like execprog, where
one Pascal program can execute another program.
In general the ProPascal supported library is slightly
larger than C1 Pascal.

When using library routines, C1 Pascal
compiles the included routines with no
issues. For ProPascal, there is a graphics
library definition file that must be included
in a Pascal program for the compiler to
recognize the routines. There are also a
number of procedures that must manually
be listed in the program as EXTERNAL,
before the compiler will recognize the
procedure. Why there was not a single
include file with all of the library procedures, I'm
not sure. It would seem the right thing to do to
make it easier on the programmer.

The biggest difference between the two compilers is
how windows are handled. In C1 Pascal, a window
can be opened as a console device, meaning that it is

for both input and output. In ProPascal, any
window is a screen (scr_) device, meaning that it is
only for output. ProPascal opens a default window,

that is a console, to get user input. If the
programmer wants to get input later on
after a window is opened, they are out of
luck.

When compiling C1 Pascal stops at each
error and gives you the opportunity to stop
compilation or to continue. If no input is
received within about 15 seconds, the
compilation process continues.

When compiling with ProPascal, any errors
are reported on the screen, but there is no pause, so
they scroll by. There is an option to send a log of
the compilation process to a file, so that it can be
viewed later. ProPascal also has a 2 stage
compilation. When on microdrive, each part of the

process was on a separate drive, and the program
paused for the microdrives to be switched out.
When using a disk system, the pause still happens,
and all that is needed is to hit the Enter key.

Conclusion

For someone new to Pascal, I would
recommend C1 Pascal. The IDE menu system
makes it easy to use the compiler. The
addition of the error messages to the source
code takes a little getting used to, but it is
helpful. The included library is more limited
than ProPascal, but I found it enough to get
what I needed done.

ProPascal is a more versatile compile, with
command line execution that allows for
automation by scripting, but it is a more

Page 3

ProPascal compile screen

ProPascal linker screen

Default screen for ProPascal

difficult package to use. To review errors you have
to look at the log file. The key issue for me is the
outputonly windows. If writing nongraphical
program, such as filters, then this compiler might be
the better option.

I did find that it was fairly easy to take a Pascal
program written for one compiler and get it working
on the other
compiler. This
means that is
one compiler is
not suiting your
needs, it is fairly
easy to move to
the other and
keep working.

I did have one
function that I
needed that
neither compiler
had. I needed to
take string input
from the user
and convert it
into a decimal
number. The
function atoi (ascii to integer) is listed on this page.

Datamining with Archive

Of the four applications that came with the QL,
Archive was probably the most powerful and the
most under utilized. I started playing with databases
in 1983 with dBase II, at the time, the most popular
database for DOS and CP/M. dBase is a lot like
Archive, in that you have a sparse looking frontend
with a command line. In fact, dBase was even
sparser with just a dot prompt and no menu across
the top. The power of dBase was its programming
ability.

Data mining is trolling through large databases
looking for trends and grouping information. When
looking at Archive for data mining, there is the issue
of how many records the it can handle. Luckily,
Bill Cable did research on the limits of Archive with
sorting / order on none, one, or more fields.

Sort / Ordering Max Records

No ordering 64,000 records
One sort field 4,670 records
Two sort fields 2,974 records
Three sort fields 2,174 records
Four sort fields 1,710 records

If these limits
are exceeded,
Bill reports that
Archive will
lock up.

For tinkering
around, I
decided to use a
data set that I
already had, the
1930 Census of
Alvarado, part
of the town I
currently live in.
I already had the
census in a .csv
format, which is
what Archive
uses for an

Import format. The census has 1,889 records,

The first step was the make sure that the data was
ready for Import. In the first review the data looked
fine. As I imported the data, I ran into bad parts of
the data file. When importing to Archive, if there is
an issue, Archive will generate an error. It will stop
the import at the record that is failing. It will create
the database on disk.

My process for resoving the issue was this:
> import "nfa1_alv_csv" as

"win1_alv_dbf"

 get an error
> display

 see what record had an issue.
 Edit the record using a text editor to

fix the issue
 CTRLC back to the Windows 0.

delete win1_alv_dbf

 Start the process over again.

function atoi (strg : string; len: integer): integer;

var a, x, z, count : integer;

y : real;

begin

count := 0;

x := len;

while (x > 0) do begin

if (len = x) then z := 1

else begin

a := lenx;

y := exp(a*ln(10)); {* 10^x *}

z := trunc(y);

end; {* end else *}

count := count + ((ord(strg[x]) ord('0'))*z);

x := x 1;

end; {* end while *}

atoi := count;

end; {* end function *}

Page 4

The problems that I had was that some of the
numeric fields had the data stored in text. The date
1875 would show up as "1875". I edited out the
quotes and all was fine.

Once I had the data into Archive as a database, I
could then run the "select" command to run a query
on the database. At the top level the query might be
"How many people in the census are female?".
There is a field called sex$, where the value M is for
Male and F for female. The query was like this:

> look "alv"

> select sex$ = "F"

> print count()

The count() function lists the total number of
records that the select returns. In SQL terms, the
select command creates a View of the database.
Once it is run, all
actions on the
database is only
done of those
records that were
picked by the select
command. To return
to looking at the
whole database, the
reset command is
run.

Since Archive has a programming language, it is
possible to create a report in the form of a procedure
that automates the queries, this way they don't have
to be typed in each time.

With the data that the census has, I can find out a
fair number of things. I can find out how many
people were born in or had parents born in a certain
country. I can find out how many where born in
California. I can find out how many people were
working in a specific industry. It would take more
coding but it would be possible to do an average age
of the residents of Alvarado. I could group the
people by age to see how many there are in each age
bracket.

proc alvdata

print "Total number of People :

";

select lname$ <> ""

print count()

reset

print "Total number born in

California : ";

select birth$ = "California"

print count()

reset

print "Total Males : ";

select sex$ = "M"

print count()

reset

print "Total Females : ";

select sex$ = "F"

print count()

reset

print "Total

of Mexican

Heritage : ";

select

birth$="Mexico"

or

fbirth$="Mexico"

or

mbirth$="Mexico"

print count()

reset

print "Total of Portuguese

Heritage : ";

select birth$="Portugal" or

fbirth$="Portugal" or

mbirth$="Portugal"

print count()

reset

print "Total of Swedish

Herigate : ";

select birth$="Sweden" or

fbirth$="Sweden" or

mbirth$="Sweden"

print count()

reset

print "Total Laborers : ";

select trade$="Laborer"

print count()

reset

print "Total in that work on

the farm : ";

Page 5

select industry$="Farm"

print count()

reset

print "Total in the Dairy

industry : ";

select industry$="Dairy"

print count()

reset

endproc

Printing with Emulators with Linux

On my laptop, I have two emulators that I use;
SMSQmulator and Qemulator. I mostly use
SMSQmulator, but there are some programs that
require an emulator that better emulates the QL
hardware, so I use Qemulator for them.

Occasionally, I have to print from a QL program.
Since I'm not using a black box QL with a printer
attached, printing is not a trivial task. So I sat down
and figured out a way to do that.

Most of the time I'm printing from Xchange, which
does allow for printing to a
file. Other QL software
should have an option for
this. I'm not trying to print
anything fancy, like graphics,
but mostly text from Quill,
Abacus or Archive. The
default extension for a print
file in Xchange is "_lis".
With the output to a file, the
next step is how to get that
file to the underlying
operating system.

Both SMSQmulator and
Qemulator can link a device to a directory on the
laptop. For SMSQmulator, there is the NFA device.
In SMSQmulator, click on Config in the toolbar.
Then select "Set Dirs for NFA Drives" and enter a
directory name. This will be the device NFA1_.

In Qemulator, click on one of the empty microdrives
below the main screen and select "Attach
Directory". Then browse to the right directory and
select OK. If you clicked on the 3rd microdrive,

then the directory will be accessible as mdv3_,
win3_, or flp3_.

To get a print file to the local file system, just have
Xchange send the print file to it. For
SMSQmulator, when Xchange asks for the name of
the file, enter "nfa1_test_lis". Xchange will open
the NFA1_ device and sent the output to the file
test_prn. Checking the NFA directory shows a file
called "test_lis". For Qemulator, it would be
"win3_test_lis".

The next step is to get this to a printer. Since I'm
running Linux, this is very simple. From the shell,
run the command:

% lpr test_lis

the lpr command (which stands for line printer),
sends the file to the default printer as defined by
CUPS, the Linux printer configuration system. My
printer is a network printer in the garage, but CUPS
knows how to print to it. The printer speaks PCL,
which is backwards compatible with the older
Epson escape printer command set. Withing a
minute, the printer has printed out the test_lis file.

To do anything beyond the
basic, I would set up
Xchange to use commands
that my specific printer
knows (such as underlining,
bold face, etc).

To print to a PostScript
printer, Ghostscript can be
used to convert plain text to
PostScript and then send
have that to the printer. It
should be possible to run a
ghostscript command and

have the output sent to lpr to be sent to the printer.

One problem with this process is the extra step of
leaving the emulator and entering the command to
send the file to the printer. It is possible to create a
shell script that can to that automatically. The script
would have to be started before trying to print, or it
could be added to a start up script so that it is
executed at boot time.

Page 6

#!/bin/csh

while (1)

set files = `ls 1 *_lis`

if ($status == 0) then

foreach filee ($files)

lpr $filee

rm $filee

sleep 5

end

endif

sleep 30

end

The script will run forever until it is stopped. It is
constantly checking the current directory for a file
with an _lis extension. Once it finds one, it send it
to the print and then deletes the file. To keep it from
taking up too much cpu cycles, the script pauses for
30 seconds between each cycle of checking the
directory.

Alternate Configurations with
SMSQmulator

A number of early QL programs were designed to
boot from microdrive or floppy and sort of take over
the QL. They would install toolkits that might not
be compatible with other toolkits. Set up the screen
to what they need and make it difficult to run other
programs.

For programs like these, I have used Qemualtor and
used different configuration files (_QCF). When I
start Qemulator, I can open one of a number of
configuration files, which sets up the emulator with
the right QXL.win files and other settings.

With SMSQmulator, there is only one configuration
file, SMSQmulator.ini in the user home directory. If
I need to alter the configuration of SMSQmulator, I
have to go into the config menu and make the
changes. It does not make it easy to switch between
different configurations.

If I want to occasionally test SMSQmulator with a
large screen, I have to manually change it and then
manually change it back. I was thinking about how
to use something similar to the QCF file for
Qemulator.

I then realized that I can keep different copies of the
SMSQmulator,ini config file. I could name one
big.ini and one normal.ini. Depending on what
configuration I wanted to use, I could just copy one
of the .ini files over the SMSQmulator.ini file. So,
the SMSQmulator.ini file would not be permanent,
but the big.ini and normal.ini are the real
configuration files. A simple copy of one file to
SMSQmulator.ini and I have the change in
configuration. When done, copy the other one to
SMSQmulator.ini and I'm back to my other
configuration.

The configuration can have more then just the
display size. It can have a whole different set of
QXL.win files, which would have different boot
files.

The copy process is fairly simple to do. The next
step is to create a couple of shell scripts that would
copy a specific .ini file and then execute
SMSQmulator. I created a big.sh that copied a big
screen configuration .ini file, and normal.sh that
copied the normal size configuration .ini file.

To make it easier, I created a desktop shortcut that
executed either one of the scripts. Now, I just have
to click on an icon, and the configuration of
SMSQmulator will be copied and the emulator
executed.

big.sh:
#!/bin/sh

cp big.ini SMSQmulator.ini

java jar

/home/swensont/ql/smsqmulator/SMSQ

mulator.jar

normal.sh:
#!/bin/sh

cp orig.ini SMSQmulator.ini

java jar

/home/swensont/ql/smsqmulator/SMSQ

mulator.jar

Page 7

