
Using TCP/IP Sockets From BASIC

TCP = Transmission Control Protocol
IP = Internet Protocol
UDP = User Datagram Protocol

The difference between TCP and IP is that TCP is responsible for the data delivery of a packet and IP is
responsible for the logical addressing. In other words, IP obtains the address and TCP guarantees
delivery of data to that address.

We will not be discussing UDP here – the User Datagram Protocol (UDP) is a transport layer protocol
defined for use with the IP network layer protocol. The service provided by UDP is an unguaranteed
service that provides no guarantee for delivery and no protection from duplication e.g. if this arises due
to software errors within an intermediate system.

The term “TCP/IP Stack” is heard a lot – it simply means a complete set of networking protocols.

The TCP/IP interface

The implementation as a device (which may be opened with the Trap #2 calls), means you can access it
pretty much like other device drivers, with OPEN, CLOSE, etc.

CLOSE, INPUT#, PRINT# and other similar Trap #3 toolkit I/O commands may be used to send and
fetch bytes or lines of data, using the SCK, TCP and UDP device name channels as appropriate.

The "OPEN key" is very significant - the type of OPEN (i.e. OPEN_IN, OPEN_NEW etc.) decides what
can be done with the socket.

OPEN - Creates a socket of requested type or protocol (without connecting it anywhere)

OPEN_IN - TCP and UDP host and port must be specified. Open a connection TCP, or sets per address
for UDP sockets

OPEN_NEW - bind TCP or UDP socket to an address. Such sockets can be used for accepting

incoming connections.

For operations such as fetching HTML pages, you will normally use OPEN_IN, which is a bit counter-
intuitive as you will be reading from and writing to the TCP channel.

OPEN #3,SCK_ - opens a channel to a generic socket which can be used for accepting connections or

netdb access.

OPEN #3,"TCP_host:port" - opens a TCP protocol socket, both the host and port parameter

optional. host may be the page name, for example, or a numeric address such as 123.64.101.23
(completely random example) while the port number is as appropriate for the host in question.

Example: OPEN_IN #3,"TCP_www.dilwyn.me.uk:80"

OPEN_IN #3,"123.64.101.23:80"

Opens channel #3 to the page indicated using port 80 (port 80 is normally used for HTML pages - http
protocol, while port 25 would be used for SMTP email sending and port 110 is used for retrieving emails
from servers, for example)

OPEN #3,"UDP_host:port" - (parameters as for TCP above)

Once the socket is opened, the actual programming depends on the nature of the service connected to,
and several of the Trap #3 I/O calls may be used to send and fetch individual characters or whole lines,
e.g. PRINT #, INPUT #, BGET.

You may also be able to use Martin Head's IPbasic package, available from my website at
www.dilwyn.me.uk/docs/uqlx_tcp/index.html

Be aware that you may encounter the usual differences between QL and other systems such as end of
line characters. It is best to regard end of line characters as CHR$(13) followed by CHR$(10) - CR LF.

Programming to download web pages, email etc do require some knowledge of network protocols - you
would be well advised to study documents available on the web which explain how to use HTTP
protocols, for example. HTTP stands for Hypertext Transfer Protocol. The examples given here use
HTTP 1.0

Here's how to open a TCP channel to fetch a page called index.html from a website called
www.myexample.com

First, the TCP channel is opened using OPEN_IN or FOP_IN from Toolkit 2:

OPEN_IN #3,"TCP_www.myexample.com:80"

(don't put a "http:" in front of the "www" in the OPEN_IN statement, it won't work, http is specified in the
following GET command)

Then use a GET command to tell the server what you want to fetch:

PRINT #3,"GET http://www.myexample.com/index.html HTTP/1.0"&CHR$(13)

Since many modern servers are private/virtual ones, we need a HOST command to ensure the page
can be found correctly (e.g. where two separate websites reside on the same server).

PRINT #3,"HOST:http://www.myexample.com" & CHR$(13)

Finally, we tell the server that we have ended sending it commands by use of a single blank line:

PRINT #3,CHR$(13)

The server will now start to send you information. This is the response header, again terminated by a
blank line. It may include several lines.

The first line of a response is the status line. This consists of the protocol version, a numeric status code
and matching phrase of text message, each separated by a space:

HTTP/1.0 200 OK

The first digit of the status code defines the class of response. They are not "error codes" as such, but
they may indicate something went wrong with whatever was asked of the server.

1xx: Informational, reserved for future use

2xx: Success, the action was successfully received, understood and accepted.

200 - OK
201 - Created
202 - Accepted
203 - No content

3xx: Redirection - further action must be taken in order to complete the request.

301 - Moved permanently
302 - Moved temporarily
304 - Not modified

4xx: Client Error - the request contains bad syntax or cannot be fulfilled.

401: Unauthorised
403: Forbidden

http://www.dilwyn.me.uk/docs/uqlx_tcp/index.html

404: Not Found

5xx: Server error - the server failed to fulfil an apparently valid request.

500: Internal Server Error
501: Not Implemented
502: Bad Gateway
503: Service Unavailable

Other 3 digit extension codes may be encountered. The client program should treat similarly any status
codes received with the same first digit, e.g. a code starting with "4" usually indicates something wrong
with the request made of the server.

Entity header fields describe some attribute of the data to be received.

One we are particularly interested in is the one which states what the "Content Length" will be, in other
words, how many bytes of data we can expect to download.

Since it isn't always possible to rely on EOF to detect the end of data from a TCP channel, we need to
know the explicit length of the data to receive.

Statements like this are at the start of a received line, followed by colons, so you can read them using
lines like 320 to read them. Examples of entity headers which may be received when using HTTP/1.0

Allow:
Authorisation:
Content-Encoding:
Content-Length:
Content-Type:
Date:
Expires:
From:
If-Modified-Since:
Last-Modified:
Location:
Pragma:
Referer:
Server:
User-Agent:
WWW-Authenticate:

See HTTP documentation such as RFC1945 for details of these.

Here is a short example program to download a single page from my website – it ends up as a file called
history_html on RAM1_. The program removes carriage returns from the file - remove "IF k$ <>
CHR$(13) from line 440 if this is not required. The loop from line 260 to 350 may be used to extract and
handle these, in this example it only reads the Content-Length.

100 REMark example program to download a page called history.html

110 REMark from my website at www.dilwyn.me.uk

120 :

130 CLS : CLS #0

140 PRINT #0,'Talking to server...'

150 OPEN_IN #3,"tcp_www.dilwyn.me.uk:80"

160 PRINT #3,"GET http://www.dilwyn.me.uk/history.html HTTP/1.0"&CHR$(13)

170 PRINT #3,"HOST:http://www.dilwyn.me.uk"&CHR$(13)

180 PRINT #3,CHR$(13) : REMark blank line to end section

190 :

200 REMark open a temporary file on ramdisk to hold the page fetched

210 OPEN_NEW #4,ram1_history_html

220 :

230 REMark read back header section

240 REMark don't send header dialogue to temporary file

250 contentLength = 0 : REMark length of body to fetch

260 REPeat loop

270 IF EOF(#3) : EXIT loop

280 INPUT #3,t$

290 IF t$ = CHR$(13) THEN EXIT loop : REMark blank line ends header

300 IF t$(LEN(t$)) = CHR$(13) THEN t$ = t$(1 TO LEN(t$)-1)

310 PRINT t$: REMark show on screen

320 IF ("Content-Length:" INSTR t$) = 1 THEN

330 contentLength = t$(16 TO LEN(t$))

340 END IF

350 END REPeat loop

360 PRINT : REMark blank line between header and body

370 :

380 REMark read the body part (the actual HTML page)

390 REMark copy into temporary file with PRINT #4 statements

400 PRINT #0,'Receiving page...(';contentLength;' bytes)'

410 FOR a = 1 TO contentLength

420 k$ = INKEY$(#3)

430 REMark strip any carriage return codes for QL.

440 IF k$ <> CHR$(13) : PRINT k$; : PRINT #4,k$;

450 END FOR a

460 :

470 CLOSE #4

480 CLOSE #3

Here is an example small program written in BASIC to read email headers. The program was written by
Jon Dent, author of the "soql" package, slightly modified to use OPEN_IN instead of OPEN for the
emulators:

100 OPEN_IN #8,"tcp_mail.isp.net:110": REM your account, smtp port 110

110 inst$ = "" : stage = 0

120 crlf$ = CHR$(13) & CHR$(10)

130 REPeat

140 a$ = INKEY$(#8,100)

150 IF a$ <> "" THEN inst$ = inst$ & a$

160 PRINT a$;

170 SELect ON stage

180 =0:

190 IF "OK" INSTR inst$ THEN

200 inst$= ""

210 PRINT #8, "USER user.name.here";crlf$;

220 stage= 1

230 END IF

240 =1:

250 IF "OK" INSTR inst$ THEN

260 inst$= ""

270 PRINT #8, "PASS password.here";crlf$;

280 stage= 2

290 END IF

300 =2:

310 IF "OK" INSTR inst$ THEN

320 inst$= ""

330 PRINT #8, "LIST";crlf$;

340 stage= 3

350 END IF

360 =3:

370 IF "OK" INSTR inst$ THEN

380 PRINT #0,"view which mail number ? 0 to QUIT":

390 INPUT #0,number$

400 IF number$<>0

410 PRINT #8,"TOP ";number$;" 5";crlf$;

420 ELSE

430 PRINT #8,"QUIT";crlf$;

440 END IF

450 CLS:CLS #0

460 stage= 2

470 END IF

480 END SELect

490 END REPeat

