
QDOS TCP/IP and Socket functionality

By Martin Head 12/01/16
Based on information by Richard Zidlicky

Introduction (Richard Zidlicky)

This document implements TCP/IP as implemented in UQLX. The
implementation is due to Jonathan Hudson and is free, the hope is that
native QDOS implementations can be kept compatible with it.

Notes (Martin Head)

This document is for using the QDOS TCP/IP interface from assembler
programming.

A lot of the information is cobbled together from information on using
Sockets in the C language (which I don’t speak) from the Internet, and by
trial and error. As I don’t know anything about socket programming, I am
learning as I go along, So…

Don’t take anything written here as gospel.

The characteristics of the implementation:

TCP/IP interface as device drivers.
Most of TCP functionality useable from SBasic. Full functionality
with SBasic and some available toolkits.
Implementation of BSD compatible socket library for c68 available

The general design of the interface is chosen so that features more to be
used from Assembler/Basic follow QDOS interfacing conventions, those
used from C/Unix like applications follow conventions that make it easier to
interface for such programs.

Error Handling

The IP traps return a normal QDOS error code in D0.
A more useful error code for the last IP error may be obtained from
IP_ERRNO. See the end of this document for a list of IP errors.

1

Opening IP channels

The Following new devices are available for the Trap#2 Operating system
open calls.

SCK_ A generic socket that can be used for accepting connections, or for
netdb access.

Internet Domain
TCP_host:port Stream Socket
UDP_host:port Datagram Socket

Unix Domain
UXS_host:port Stream Socket
UXD_host:port Datagram Socket

Host and Port parameters are both optional.

Note, UDP and UXD sockets are usable from BASIC

Host and Port, can be both given either by numerical value or name.
E.g. "129.69.1.59:119" or "news.uni-stuttgart.de:nntp"

Note

With the exception of IP_OPEN and IP_ACCEPT. Most of the system
calls that expect or return strings, do not use the usual QDOS Word sized
length followed by a sequence of characters.

The length of the string is either specified in one of the calls parameters, or
the end of the string is terminated in a zero (NULL) byte.

Open call summary (standard QDOS Trap#2 calls)

IP_OPEN $01
IP_ACCEPT $01
IO_CLOSE $02 Standard QDOS Close

2

I do not know the exact rules which govern whether or not the IP_OPEN
command succeeds or fails for a given host and port. But here is a list from
my observations.

UDP

IP Address |Open D3=0 |Open_in D3=1 |Open_new D3=2
0.0.0.0 | I X I | X X X | I X I
127.0.0.1 | I X I | I X I | I X I
127.0.0.10 | I X I | I X I | I X I
172.16.0.6 | I X I | X X I | X X I
172.16.0.10 | I X I | X X I | X X X
192.168.0.5 | I X I | X X X | X X X
255.255.255.255 | I X I | X X I | X X X

TCP

IP Address |Open D3=0 |Open_in D3=1 |Open_new D3=2
0.0.0.0 | I I I | I I I | I X I
127.0.0.1 | I I I | I I I | I X I
127.0.0.10 | I I I | I I I | I X I
172.16.0.6 | I I I | I I I | X X I
172.16.0.10 | I I I | I I I | X X X
192.168.0.5 | I I I | I I I | X X X
255.255.255.255 | I I I | I I I | X X X

I = Succeed
X = Fail

Host IP address of the computer making the tests was 172.16.0.6,
Using port 5900.

First column (Black) QPC2, Not connected to a Network
Second column (Red) Qemulator, Not connected to a Network
Third column (Green) QPC2 connected to a Network with another

computer having an IP address of 172.16.0.10

Note the way UDP ports don’t seem to ever open in Qemulator, I don’t
know if this is a problem in Qemulator, or something I was doing wrong.
There are also discrepancies in TCP opens with D3=2

3

This is the program I used to obtain these results.

100 RESTORE
110 READ n
120 port$=":5900"
130 FOR x=1 TO n
140 READ ad$
150 ch=FOP_NEW("udp_" & ad$ & port$)
160 IF ch>0 THEN
170 PRINT ad$;" Opened OK"
180 CLOSE#ch
190 ELSE
200 PRINT ad$;" Not OK"
210 END IF
220 END FOR x
230 DATA 7,"0.0.0.0","127.0.0.1","127.0.0.10",

 "172.16.0.6"
240 DATA "172.16.0.10","192.168.0.5",

 "255.255.255.255"

Change line 150 for the required Open type, and Socket type.

4

IP_OPEN TRAP#2 D0=1

Opens a channel.

Input

D1.L Job ID
D3.L code see below
A0 Address of channel name

Output

D0.L result (0 if OK)
D1.L Job ID
A0 channel ID

Description:

Opens an IP channel for a TCP, UDP, UXS or a UXD connection

The type of the open is defined by the value supplied in D3 where

0 = Creates a socket of requested type/protocol. Host & port not
required

 (does a C socket() command)

1 = Host and Port must be specified.
 Opens a connection for TCP, or sets peer address for UDP sockets.
 Returns without error if connection can't be completed within
 1-2/50s, internally the connection buildup continues. Every I/O
 operation will be blocked until the connection succeeds or fails.
 (does a C socket() command, then a C connect() command)

2 = bind TCP or UDP socket to an address. Such sockets can be used for
 accepting incoming connections.
 (does a C socket() command, then if a Host and Port are supplied,
 does a C bind() command)

SuperBASIC equivalents to the D3 values are, 0=OPEN, 1=OPEN_IN, and
2=OPEN_NEW.

5

IP_ACCEPT TRAP#2 D0=1

Provides accept(2) functionality.

Input

D1.L Job ID
D3.L channel ID, see below
A0 Address of channel name

Output

D0.L -1 (Not Complete) when no waiting connection
D1.L Job ID
A0 channel ID

Description:

Accept a connection for socket specified by the channel ID supplied in D3.

The channel name pointed to by A0 should be for a socket of the form
‘SCK_’

The argument in D3 is a socket that has been previously created with
IP_OPEN, bound to an address with IP_BIND, and is listening with
IP_LISTEN for connections.

The IP_ACCEPT function extracts the first connection request on the
Queue, of pending connections, then creates a new socket with the same
properties of the supplied channel ID and allocates a new channel ID for the
new socket.

IP_ACCEPT returns the error ‘Not Complete’ if there are no pending
connection requests and can't complete immediately.

To accept a new connection request IP_ACCEPT should be in a loop so
that it is constantly being called while it returns the QDOS error ‘Not
Complete’ (-1).

When IP_ACCEPT, returns 0 in D0, then a remote connection has been
has been accepted, and A0 will be the channel ID of the new connection.

Use code along the following lines

6

; Accept a new connection. D7 is the channel ID of the previously
; opened channel

accept moveq #$1,d0 ;IP_ACCEPT
moveq #-1,d1 ;owned by this job
move.l d7,d3 ;channel ID
lea socket,a0 ;point at SCK_
trap #2
move.l a0,a5 ;A5 is now the possible new socket

 ;channel ID

cmp.l # -1,d0 ;error Not Complete
beq.s accept ;..yes, run round in a loop until open is

 ;successful, or another error

tst.l d0 ;any other error
beq.s ……. ;..no, continue

bra ……. ;…yes, deal with error

socket dc.w 4
dc.b "SCK_"

Note the old channel ID that is supplied to D3 should be saved before
IP_ACCEPT is called. As it may be required for further IP_ACCEPT
calls, and for closing the channel.

If you require the socket address structure that the C accept(2) function
would normally create. After the IP_ACCEPT command has completed
successfully, use the IP_GETPEERNAME function to create it.

The accepted socket may not be used to accept more connections. And the
original socket remains open.

This command should be part of the I/O operations, but as it is a Trap #2
instruction, it is included here

7

I/O Operations

Many operations typically not regarded as IO were provided by trap#3 calls
to gain flexibility.

Basic IO operations (D0=0 - 7) are defined for connected TCP sockets.
They may work for UDP sockets when peer address is set, however this use
is strongly discouraged. Trap#3,[$48,$49] also work but it is not clear
whether they are meaningful and thus may not be supported.

Generally, TCP/IP aware software should probably use the socket specific
IO functions - SEND, RECV, SENDTO, RECVFROM.

When a trap#3 returns with an error, An additional C confirming error code
may be queried by IP_ERRNO, IP_H_ERRNO and IP_H_STRERROR
operations. This code is valid unless -1.

Basic IO operations

These are compatible to QDOS. The only questionable issue here is whether
IO.FSTRG should always fill its buffer before returning as it does now, or
rather mimic the behaviour of recv/recvfrom. Since the number of received
characters will be in D1 anyway, this should not disturb any QDOS
applications.

Input/Output Utilisation

Serial I/O call summary (standard QDOS Trap#3 calls)

IO_PEND $00
IO_FBYTE $01
IO_FLINE $02
IO_FSTRG $03
IO_SBYTE $05
IO_SSTRG $07

8

IP Trap I/O call summary (Extended Trap #3 calls)

IP_LISTEN $50
IP_ACCEPT See the Open section
IP_SEND $51
IP_SENDTO $52
IP_RECV $53

IP_RECVFM $54
IP_GETOPT $55
IP_SETOPT $56
IP_SHUTDWN $57
IP_BIND $58
IP_CONNECT $59
IP_FCNTL $5a

IP_GETHOSTNAME $5b
IP_GETSOCKNAME $5c
IP_GETPEERNAME $5d

IP_GETHOSTBYNAME $5e
IP_GETHOSTBYADDR $5f
IP_SETHOSTENT $60
IP_ENDHOSTENT $61
IP_H_ERRNO $62

IP_GETSERVENT $63
IP_GETSERVBYNAME $64
IP_GETSERVBYPORT $65
IP_SETSERVENT $66
IP_ENDSERVENT $67

IP_GETNETENT $68
IP_GETNETBYNAME $69
IP_GETNETBYADDR $6a
IP_SETNETENT $6b
IP_ENDNETENT $6c

IP_GETPROTOENT $6d
IP_GETPROTOBYNAME $6e
IP_GETPROTOBYNUMBER $6f

9

IP_SETPROTOENT $70
IP_ENDPROTOENT $71

IP_INET_ATON $72
IP_INET_ADDR $73
IP_INET_NETWORK $74
IP_INET_NTOA $75
IP_INET_MAKEADDR $76
IP_INET_LNAOF $77
IP_INET_NETOF $78

IP_IOCTL $79
IP_GETDOMAIN $7a
IP_H_STRERROR $7b
IP_H_ERRNO $7c

10

The following constants and data types are a mix from AmiTCP/IP and
Linux definitions. Not all of them are meaningful or supported on every
implementation.

Some definitions may useful for socket(), bind() and connect() calls and
their trap#2/#3 equivalents, when trying to convert C code into the QDOS
machine code calls.

SOCK_STREAM 1 stream socket - TCP
SOCK_DGRAM 2 datagram socket - UDP
SOCK_RAW 3 raw-protocol interface – SCK ?
SOCK_RDM 4 reliably-delivered message
SOCK_SEQPACKET 5 sequenced packet stream

AF_UNSPEC 0 unspecified address family
AF_INET 2 internet: UDP, TCP, etc.
PF_UNSPEC AF_UNSPEC aliases
PF_INET AF_INET

Constants for getsockopt()/setsockopt()
SOL_SOCKET 1 options for socket level

SO_DEBUG 1
SO_REUSEADDR 2
SO_TYPE 3
SO_ERROR 4
SO_DONTROUTE 5
SO_BROADCAST 6
SO_SNDBUF 7
SO_RCVBUF 8
SO_KEEPALIVE 9
SO_OOBINLINE 10
SO_NO_CHECK 11
SO_PRIORITY 12
SO_LINGER 13 ignored, doesn't seem practicable in

QDOS
SO_BSDCOMPAT 14

11

Data Structures

Many of the Trap #3 commands require, or return data in a particular set
organisation, or order.

Parameter Block – For a sockaddr structure

Offset Size Description
--
$00 Long Pointer to a sockaddr structure
$04 Long Length of sockaddr structure (usually 16)

The parameter block may be initialised as follows

lea parmblk,a2 ;point at start of parameter block
lea sockaddr,a1 ;point at sockaddr
move.l a1,(a2) ;set pointer to sockaddr in

;parameter block
move.l #16,4(a2) ;length of socket address in

;parameter block

Sockaddr – Socket Address

Offset Size Description
--
$00 Word Family (usually 2)
$02 Word Port number
$04 Long IP address
$08 Long Zero
$0C Long Zero

In_addr

Offset Size Description
--
$00 Long IP address.

12

Hostent – Host Entry

Offset Size Name Description
--
$00 Long Name Pointer to Addrlist
$04 Long Aliases Pointer to a list of Long IP addresses terminated

with a Null Long word
$08 Long Addtype Connection type (usually 2 (AF_INET))
$0C Long Length Number of nodes in IP address (usually 4

(IPV4))
$10 Long Addrlist Pointer to a list of pointers terminated with a

Null Long word.
Each of these pointers point to a list of Long
word IP addresses, terminated with a Null Long
word

For example a hostent structures Addrlist could be -
Addrlist---- pointer 1----- IP address

IP address
IP address
Null

pointer 2-- IP address
IP address
Null

pointer 3-- IP address
IP address
IP address
Null

Null

Note – Some of the pointer and addresses returned may not be on Word
boundaries (odd addresses). Be careful when reading them

13

Servent – Server entry

Offset Size Name Description
--
$00 Long Name Pointer to a Null terminated string
$04 Long Aliases Pointer to a list of Long word pointers

terminated with a Null Long word. Each pointer,
points to a list of Long word IP addresses
terminated with a Null Long word.

$08 Long Port Associated port number.
$0C Long Proto Pointer to a Null terminated string

Netent – Network entry

Offset Size Name Description
--
$00 Long Name Pointer to a Null terminated string
$04 Long Aliases Pointer to a list of Long word pointers

terminated with a Null Long word. Each pointer,
points to a list of Long word IP addresses
terminated with a Null Long word.

Protoent – Protocol entry

Offset Size Name Description
--
$00 Long Name Pointer to a Null terminated string
$04 Long Aliases Pointer to a list of Long IP addresses terminated

with a Null Long word
$08 Long Ports Protocol number.

14

IP_LISTEN TRAP#3 D0=$50

Provides listen(2) functionality.

Input

D1.L size of backlog queue – (usually 5)
D3.W timeout
A0 channel ID

Output

D0 = result (0 if OK)

Description:

For a socket that has been bound during open or explicitly with IP_BIND,
this will set the number of connect requests that are queued for
IP_ACCEPT. Additional requests will not be handled and clients receive a
protocol specific error or retry will be initiated.

The IP_LISTEN call applies only to sockets of type TCP_ (stream sockets)

If you don't want to connect to a remote host. You want to wait for
incoming connections and handle them in some way. The process is two
step: first you IP_LISTEN, then you IP_ACCEPT

You need to call IP_BIND before you can call IP_LISTEN so that the
server is running on a specific port.

15

IP_BIND TRAP#3 D0=$58

Provides bind(2) functionality

Input

D1.L length of sockaddr structure
D3.W timeout

A0 channel ID
A2 pointer to a sockaddr structure

Output

D0 = result

Description:

Associates a local address with a socket.

The IP_BIND function is required on an unconnected socket before
subsequent calls to the IP_LISTEN function. It is normally used to bind to
either connection-oriented (stream, TCP) or connectionless (datagram UDP)
sockets. The IP_BIND function may also be used to bind to a raw socket
(the socket was created by opening the channel with “SCK_” only?).

The bind function may also be used on an unconnected socket before
subsequent calls to the IP_CONNECT function before send operations.

Note – IP_BIND may fail if you use the real IP Address of the local host,
when the computer is not connected to a Network.

16

IP_CONNECT TRAP#3 D0=$59

Provides connect(2) functionality

Input

D1.L length of sockaddr structure
D3.W timeout

A0 channel ID
A2 pointer to a sockaddr structure

Output

D0 = result

Description:

The channel ID isa socket. If it is of type UDP (Datagram), this call
specifies the peer with which the socket is to be associated; this address is
that to which datagrams are to be sent, and the only address from which
datagrams are to be received.

If the socket is of type TCP(Stream), this call attempts to make a connection
to another socket. The other socket is specified by sockaddr, which is an
address in the communications space of the socket. Each communications
space interprets the sockaddr, parameter in its own way.

Generally, stream sockets may successfully connect only once; datagram
sockets may use connect multiple times to change their association.
Datagram sockets may dissolve the association by connecting to an invalid
address, such as a null address.

Regardless of the timeout specified, the socket will remain blocked (any IO
will timeout or be delayed) until the connection build up succeeded or
failed.

Note – On UDP connections, IP_CONNECT may fail if you use the
anything other than IP Address 127.0.0.x, when the computer is not
connected to a Network. And when on a Network only the local network IP
Addresses, and 255.255.255.255

17

IP_FCNTL TRAP#3 D0=$5A

Provides fcntl(2) (manipulate file descriptor) functionality for IPDEV
sockets only.

Input

D1.L cmd
D2.L arg
D3.W timeout

A0 channel ID

Output

D0 = result

An awful hack for now don't use it unless you have to.

Description:

Performs operations on the open IP channel. The operation is determined by
cmd.

This function is typically used to do file locking and other file-oriented
stuff, but it also has a couple socket-related functions that you might see or
use from time to time.

cmd should be set to F_SETFL (4), and arg can be one of the following
commands.

O_NONBLOCK (4) Set the socket to be non-blocking
O_ASYNC (64) Set the socket to do asynchronous I/O. When

data is ready to be recv()'d on the socket, the
signal SIGIO will be raised. This is rare to see,
and beyond the scope of the guide. And I think
it's only available on certain systems.

18

IP_GETOPT TRAP#3 D0=$55

Provides (some) getsockopt functionality
get options on sockets

Input

D1.L optlen
D2.L level
D3.W timeout

A0 channel ID
A1 pointer to optval address
A2 optname

Output

D0 = result
D1.L optlen

Description:

Manipulate options for the socket referred to by the IP channel ID. Options
may exist at multiple protocol levels; they are always present at the
uppermost socket level.

When manipulating socket options, the level at which the option resides and
the name of the option must be specified. To manipulate options at the
sockets level,Level is specified as 1 (SOL_SOCKET). To manipulate
options at any other level the protocol number of the appropriate protocol
controlling the option is supplied. For example, to indicate that an option is
to be interpreted by the TCP protocol, level should be set to the protocol
number of TCP; see IP_GETPROTOENT.

The arguments optval and optlen are used to identify a buffer in which the
value for the requested option(s) are to be returned.

optlen is a value-result argument, initially containing the size of the buffer
pointed to by optval, and modified on return to indicate the actual size of
the value returned. If no option value is to be supplied or returned, optval
may be NULL.

19

Optname and any specified options are passed uninterpreted to the
appropriate protocol module for interpretation. Definitions for socket level
options, are described below. Options at other protocol levels vary in format
and name.

 Most socket-level options utilize an int argument for optval.

The following options are recognized at the socket level. Except as noted,
each may be examined with IP_GETOPT and set with IP_SETOPT.

1 SO_DEBUG enables recording of debugging information
2 SO_REUSEADDR enables local address reuse
3 SO_TYPE get the type of the socket (get only)
4 SO_ERROR get and clear error on the socket (get only)
5 SO_DONTROUTE enables routing bypass for outgoing messages
6 SO_BROADCAST enables permission to transmit broadcast

messages
7 SO_SNDBUF set buffer size for output
8 SO_RCVBUF set buffer size for input
9 SO_KEEPALIVE enables keep connections alive
10 SO_OOBINLINE enables reception of out-of-band data in band
11 SO_NO_CHECK
12 SO_PRIORITY
13 SO_LINGER linger on close if data present, ignored in QDOS
14 SO_BSDCOMP

20

IP_SETOPT TRAP#3 D0=$56

Provides (some) setsockopt functionality
set options on sockets

Input

D1.L optlen
D2.L level
D3.W timeout

A0 channel ID
A1 pointer to optval address
A2 optname

Output

D0 = result

Description:

Manipulate options for the socket referred to by the IP channel ID. Options
may exist at multiple protocol levels; they are always present at the
uppermost socket level.

When manipulating socket options, the level at which the option resides and
the name of the option must be specified. To manipulate options at the
sockets API level, level is specified as 1 (SOL_SOCKET). To manipulate
options at any other level the protocol number of the appropriate protocol
controlling the option is supplied. For example, to indicate that an option is
to be interpreted by the TCP protocol, level should be set to the protocol
number of TCP; see IP_GETPROTOENT.

The arguments optval and optlen are used to access option values for setopt.

Optname and any specified options are passed uninterpreted to the
appropriate protocol module for interpretation. Definitions for socket level
options, are described in IP_GETOPT above. Options at other protocol
levels vary in format and name; consult the appropriate entries in section 4
of the manual.

 Most socket-level options utilize an int argument for optval. For
IP_SETOPT, the argument should be nonzero to enable a boolean option,
or zero if the option is to be disabled.

21

IP_SHUTDWN TRAP#3 D0=$57

Provides shutdown(2) functionality

Input

D1.L how
D3.W timeout

A0 channel ID

Output

D0 = result

Description:

Causes all or part of a full-duplex connection on the socket associated with
channel ID to be shut down.

The value how, determines which receptions, or transmissions will be
disallowed.

D1= 0, Disable receive
D1= 1, Disable send
D1= 2, Disable send and receive

22

Socket specific IO

IP_SEND and IP_RECV differ from IO.SSTRG and IO.FSTRG in that
they message oriented and allow chunks longer than 32k.

IP_RECV and IP_RECVFM return immediately when data is available, or
after the first message arrives.

IP_SEND and IP_RECV can be (unlike IP_SENDTO and IP_RECVFM
for UDP) applied only to sockets that have been connected previously.

Note – That at the time of writing, I have not been able to get IP_SENDTO
and IP_RECVFM to work

23

IP_SEND TRAP#3 D0=$51

Provides send(2) functionality

Input

D1.L flag
D2.L len
D3.W timeout
A0 channel ID
A1 pointer to buffer

Output

D0 = result
D1.L bytes written

A1 buffer address + bytes written

Description:

Used to transmit a message to another socket.

The IP_SEND call may be used only when the socket is in a connected
state (so that the intended recipient is known).

Also, IP_SEND is equivalent to IP_SENDTO with the A2 parameter block
NULL and 0

The message is found in buffer and has length len.

If the message is too long to pass automically through the underlying
protocol, the error EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit in a send. Locally detected
errors are indicated by a return value of -1.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB Sends out-of-band data on sockets that support this
notion (e.g., of type TCP (SOCK_STREAM)); the underlying protocol must
also support out-of-band data.

24

$4 MSG_DONTROUTE Don't use a gateway to send out the packet,
send to hosts only on directly connected networks. This is only usually used
by diagnostic or routing programs. This is defined only for protocol families
that route; packet sockets don't.

25

IP_SENDTO TRAP#3 D0=$52

Provides sendto(2) functionality

Input

D1.L flag
D2.L len
D3.W timeout

A0 channel ID
A1 pointer to buffer
A2 pointer to a parameter block (2 long words)

params[0].L = pointer to sockaddr structure, (to)
params[1].L = length of sockaddr structure, (tolen)

Output

D0 = result
+ve => number of bytes sent
-ve => error code

Description:

Used to transmit a message to an unconnected Datagram (UDP) socket.

If IP_SENDTO is used on a connection-mode (TCP (SOCK_STREAM)
socket, the arguments in the parameter block are ignored (and the error
EISCONN may be returned when they are not NULL and 0), and the error
ENOTCONN is returned when the socket was not actually connected.
Otherwise, the address of the target is given by parameter block values.

The message to send is found in buffer and has length of len.

If the message is too long to pass automically through the underlying
protocol, the error EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit in a send. Locally detected
errors are indicated by a return value of -1.

26

When the message does not fit into the send buffer of the socket, send
normally blocks, unless the socket has been placed in nonblocking I/O
mode. In nonblocking mode it would fail with the error EAGAIN or
EWOULDBLOCK in this case.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB Sends out-of-band data on sockets that support this
notion (e.g., of type TCP (SOCK_STREAM)); the underlying protocol must
also support out-of-band data.

$4 MSG_DONTROUTE Don't use a gateway to send out the packet,
send to hosts only on directly connected networks. This is only usually used
by diagnostic or routing programs. This is defined only for protocol families
that route; packet sockets don't.

27

IP_RECV TRAP#3 D0=$53

Provides recv(2) functionality

Input

D1.L flag
D2.L buffer size
D3.W timeout

A0 channel ID
A1 pointer to buffer

Output

D0 = result code
D1.L bytes read

Description:

Used to receive messages from a socket. Used to receive data on both
connectionless (UDP) and connection-oriented (TCP) sockets.

Returns the length of the message on successful completion. If a message is
too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from.

If no messages are available at the socket before D3 times out, IP_RECV
waits for a message to arrive, unless the socket is nonblocking (see
IP_FCNTL), in which case the value -1 is returned and the external
variable from IP_ERRNO is set to EAGAIN or EWOULDBLOCK. The
receive calls normally return any data available, up to the requested amount,
rather than waiting for receipt of the full amount requested.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB Rquest receipt of out-of-band data that would not be
received in the normal data stream. Some protocols place expedited data at
the head of the normal data queue, and thus this flag cannot be used with
such protocols.

$2 MSG_PEEK Cause the receive operation to return data from the
beginning of the receive queue without removing that data from the queue.
Thus, a subsequent receive call will return the same data.

28

$40 MSG_WAITALL Request that the operation block until the full
request is satisfied. However, the call may still return less data than
requested if a signal is caught, an error or disconnect occurs, or the next
data to be received is of a different type than that returned.

29

IP_RECVFM TRAP#3 D0=$54

Provides recvfrom(2) functionality

D1.L flag
D2.L buffer size
D3.W timeout

A0 channel ID
A1 pointer to buffer
A2 pointer to a parameter block (2 long words)

params[0].L = pointer to sockaddr structure, (from)
params[1].L = length of sockaddr structure, (fromlen)

Output

D0 = result
+ve => number of bytes sent
-ve => error code

D1.L size of returned sockaddr structure

Description:

Used to receive messages from a socket. Used to receive data on both
connectionless and connection-oriented sockets.

Returns the length of the message on successful completion. If a message is
too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from.

If no messages are available at the socket before D3 times out,
IP_RECVFM waits for a message to arrive, unless the socket is
nonblocking (see IP_FCNTL), in which case the value -1 is returned and
the external variable from IP_ERRNO is set to EAGAIN or
EWOULDBLOCK. The receive calls normally return any data available, up
to the requested amount, rather than waiting for receipt of the full amount
requested.

The flags argument is the bitwise OR of zero or more of the following flags.

$1 MSG_OOB Rquest receipt of out-of-band data that would not be
received in the normal data stream. Some protocols place expedited data at
the head of the normal data queue, and thus this flag cannot be used with
such protocols.

30

$2 MSG_PEEK Cause the receive operation to return data from the
beginning of the receive queue without removing that data from the queue.
Thus, a subsequent receive call will return the same data.

$40 MSG_WAITALL Request that the operation block until the full
request is satisfied. However, the call may still return less data than
requested if a signal is caught, an error or disconnect occurs, or the next
data to be received is of a different type than that returned.

31

Netdb functions

IP_GETHOSTNAME TRAP#3 D0=$5B

Provides gethostname(2) functionality

Input

D2.L name buffer length
D3.W timeout

A0 channel ID
A1 pointer to name buffer

Output

D0 = result

Description:

Returns in the name buffer, the name of the host computer as a string
terminated with a NULL (0) byte

It returns the name of the computer that your program is running on. The
name can then be used by IP_GETHOSTBYNAME, below, to determine
the IP address of your local machine.

The arguments are simple: name buffer is a pointer to an area of memory
that will contain the hostname upon the function's return, and name buffer
length, is the length in bytes of the available buffer.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

32

IP_GETSOCKNAME TRAP#3 D0=$5C

Provides getsockname(2) functionality

Input

D2.L len
D3.W timeout

A0 channel ID
A1 pointer to an empty sockaddr structure

Output

D0 = result
D1.L length of created, or required sockaddr structure

Description:

Returns a sockaddr structure containing the current IP address and port to
which the socket channel ID is bound to. The len argument should be
initialised to indicate the amount of space available for the sockaddr
structure. On return D1 contains the actual size of the socket address
returned.

The returned address is truncated if the buffer provided is too small; in this
case, D1 will return a value greater than was supplied to the call.

33

IP_GETPEERNAME TRAP#3 D0=$5D

Provides getpeername(2) functionality

Input

D2.L len
D3.W timeout

A0 channel ID
A1 pointer to an empty sockaddr structure

Output

D0 = result
D1.L addrlen

Description:

Returns a sockaddr structure containing the current IP address and port to
which the socket channel ID is connected to (the peer). The len argument
should be initialised to indicate the amount of space available for the
sockaddr structure. On return D1 contains the actual size of the socket
address returned.

The returned address is truncated if the buffer provided is too small; in this
case, D1 will return a value greater than was supplied to the call in D1.

Once you have either IP_ACCEPTed a remote connection, or
IP_CONNECTed to a server, you now have what is known as a peer. The
peer is simply the computer you're connected to, identified by an IP address
and a port. So...

IP_GETPEERNAME simply returns a sockaddr structure filled with
information about the machine you're connected to.

34

IP_GETHOSTBYNAME TRAP#3 D0=$5E

Provides gethostbyname(2) functionality

Input

D3.W timeout

A0 channel ID
 A1 pointer to a name buffer containing the host name

 (terminated with a NULL)
 A2 pointer to a hostent structure buffer of 1024 bytes

The buffer pointed to by A2 must be large enough to hold the largest
hostent structure that may be returned (minimum of 500 bytes).

D0 = result

Description:

Returns a hostent structure for the given host name. The host name is either
a hostname (e.g. “Tower-System”, or “www.google.com”), or an IPv4
address in standard dot notation.

If name is an IPv4 address, no lookup is performed and
IP_GETHOSTBYNAME simply copies name into the hostent’s Name
field and its struct in_addr equivalent into the hostent’s Addlist[0] field.

IP_GETHOSTBYNAME and IP_GETHOSTBYADDR map back and
forth between host names and IP addresses. For instance, if you have
"www.example.com", you can use IP_GETHOSTBYNAME to get its IP
address and store it in a struct in_addr.

IP_GETHOSTBYNAME takes a string like "www.yahoo.com", and
returns a struct hostent which contains tons of information, including the IP
address. (Other information is the official host name, a list of aliases, the
address type, the length of the addresses, and the list of addresses—it's a
general-purpose structure that's pretty easy to use once you see how.)

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

35

IP_GETHOSTBYADDR TRAP#3 D0=$5F

Provides gethostbyaddr(2) functionality

Input

 D1.L addrlen
 D2.L type (usually 2)

D3.W timeout

A0 channel ID
 A1 pointer to addr buffer
 A2 pointer to a hostent structure buffer

The buffer pointed to by A2 must be large enough to hold the largest
hostent structure that may be returned (minimum of 500 bytes).

D0 = result

Description:

Returns a hostent structure for the given host address addr of length addrlen
and address type type. Valid address type is AF_INET (2).

If you have a struct in_addr or a struct in6_addr, you can use
IP_GETHOSTBYADDR to get the hostname back.

IP_GETHOSHBYADDR takes a struct in_addr or struct in6_addr and
brings you up a corresponding host name (if there is one), so it's sort of the
reverse of IP_GETHOSTBYNAME.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

36

IP_SETHOSTENT TRAP#3 D0=$60
IP_SETSERVENT TRAP#3 D0=$66
IP_SETNETENT TRAP#3 D0=$6B
IP_SETPROTOENT TRAP#3 D0=$70
Provides set*ent(2) functionality

Input

D1.L stayopen
D3.W timeout
A0 channel ID

Output

D0 = result

Description:

The IP_SETHOSTENT function specifies, if stayopen is true (1), that a
connected TCP socket should be used for the name server queries and that
the connection should remain open during successive queries. Otherwise,
name server queries will use UDP datagrams

The IP_SETSERVENT function opens a connection to the database, and
sets the next entry to the first entry. If stayopen is nonzero, then the
connection to the database will not be closed between calls to one of the
IP_GETSERV* functions.

The IP_SETNETENT function opens a connection to the database, and
sets the next entry to the first entry. If stayopen is nonzero, then the
connection to the database will not be closed between calls to one of the
IP_GETNET* functions.

The IP_SETPROTOENT function opens a connection to the database, and
sets the next entry to the first entry. If stayopen is nonzero, then the
connection to the database will not be closed between calls to one of the
IP_GETPROTO* functions.

37

IP_ENDHOSTENT TRAP#3 D0=$61
IP_ENDSERVENT TRAP#3 D0=$67
IP_ENDNETENT TRAP#3 D0=$6C
IP_ENDPROTOENT TRAP#3 D0=$71

Provides end*ent(2) functionality

Input

D3.W timeout
A0 channel ID

Output

D0 = result

Description:

The IP_ENDHOSTENT function ends the use of a TCP connection for
name server queries.

The IP_ENDSERVENT function closes the connection to the database.

The IP_ENDNETENT function closes the connection to the database.

The IP_ENDPROTOENT function closes the connection to the database.

38

IP_GETNETENT TRAP#3 D0=$68

Provides getnetent(2) functionality

Input

D3.W timeout
A0 channel ID
A2 pointer to a buffer // cast as necessary

Output

D0 = result

Description:

The IP_GETNETENT function reads the next entry from the networks
database and returns a netent structure containing the broken-out fields from
the entry. A connection is opened to the database if necessary.

39

IP_GETNETBYNAME TRAP#3 D0=$69

Provides getnetbyname(2) functionality

Input

D3.W timeout
 A0 channel ID
 A1 pointer to a buffer holding a network name

A2 pointer to a netent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a netent structure (or EOF) for the entry from the database that
matches the network name pointed to by A1.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

40

IP_GETNETBYADDR TRAP#3 D0=$6A

Provides getnetbyname(2) functionality

Input

 D1.L net
 D2.L type
 D3.W timeout

A0 channel ID
 A2 pointer to a netent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a netent structure (or EOF) for the entry from the database that
matches the network number net. Type should be 2 (AF_INET).

The net argument must be in host byte order.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

41

IP_GETPROTOENT TRAP#3 D0=$6D

Provides getprotoent(2) functionality

Input

D3.W timeout
A0 channel ID
A2 pointer to a buffer // cast as necessary

Output

D0 = result

Description:

The IP_GETPROTOENT function reads the next entry from the protocols
database and returns a protoent structure containing the broken-out fields
from the entry. A connection is opened to the database if necessary.

42

IP_GETPROTOBYNAME TRAP#3 D0=$6E

Provides getprotobyname(2) functionality

Input

D3.W timeout
 A0 channel ID
 A1 pointer to a buffer containing a name
 A2 pointer to a protoent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a protoent structure for the entry from the database that matches the
protocol name name. A connection is opened to the database if necessary.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

43

IP_GETPROTOBYNUMBER TRAP#3 D0=$6F

Provides getprotobynumber(2) functionality

Input

D1.L number
 D3.W timeout
 A0 channel ID
 A2 pointer to a protoent structure buffer of 1024 bytes

Output

D0 = result

Description:

Returns a protoent structure for the entry from the database that matches the
protocol number number. A connection is opened to the database if
necessary.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

44

IP_GETSERVENT TRAP#3 D0=$63

Provides getservent(2) functionality

Input

D1.L number
D3.W timeout
A0 channel ID
A2 pointer to a buffer // cast as necessary

Output

D0 = result

Description:

The IP_GETSERVENT function reads the next entry from the services
database and returns a servent structure containing the broken-out fields
from the entry. A connection is opened to the database if necessary.

45

IP_GETSERVBYNAME TRAP#3 D0=$64

Provides getservbyname(2) functionality

Input

D1.L number
D3.W timeout
A0 channel ID
A1 pointer to a buffer containing a proto
A2 pointer to a buffer of 1024 bytes

Output

D0 = result

Description:

The IP_GETSERVBYNAME function returns a servent structure for the
entry from the database that matches the service name using protocol proto.
If proto is NULL, any protocol will be matched. A connection is opened to
the database if necessary.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

46

IP_GETSERVBYPORT TRAP#3 D0=$65

Provides getservbyport(2) functionality

Input

D1.L port
D3.W timeout

 A0 channel ID
 A2 pointer to a buffer of 1024 bytes
 A3 pointer to a buffer containing a proto

Output

D0 = result

Description:

The IP_GETSERVBYPORT function returns a servent structure for the
entry from the database that matches the port port (given in network byte
order) using protocol proto. If proto is NULL, any protocol will be matched.
A connection is opened to the database if necessary.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

47

IP_INET_ATON TRAP#3 D0=$72

Provides inet_aton(2) functionality

Input

 D3.W timeout
A0 channel ID

 A1 pointer to a buffer, name containing an IP address
 A2 pointer to a in_addr structure, inaddr

Output

D0
D1.L -1 if successful, 0 if not

Description:

Converts the Internet host address pointer at by A1 from the IPv4 numbers-
and-dots notation into binary form (in network byte order) and stores it in
the structure that inaddr points to. IP_INET_ATON returns nonzero if the
address is valid, zero if not. The address supplied in A1 can have one of the
following forms:

a.b.c.d Each of the four numeric parts specifies a byte of the
 address; the bytes are assigned in left-to-right order to
 produce the binary address.

a.b.c Parts a and b specify the first two bytes of the binary address.
 Part c is interpreted as a 16-bit value that defines the
 rightmost two bytes of the binary address. This notation is
 suitable for specifying (outmoded) Class B network
 addresses.

a.b Part a specifies the first byte of the binary address. Part b is
 interpreted as a 24-bit value that defines the rightmost three
 bytes of the binary address. This notation is suitable for
 specifying (outmoded) Class A network addresses.

a The value a is interpreted as a 32-bit value that is stored
 directly into the binary address without any byte
 rearrangement.

48

In all of the above forms, components of the dotted address can be
specified in decimal, octal (with a leading 0), or hexadecimal, with a
leading 0X). Addresses in any of these forms are collectively termed IPV4
numbers-and-dots notation. The form that uses exactly four decimal
numbers is referred to as IPv4 dotted-decimal notation (or sometimes: IPv4
dotted-quad notation).

All of these functions convert from a struct in_addr (part of your struct
sockaddr_in, most likely) to a string in dots-and-numbers format (e.g.
"192.168.5.10") and vice-versa. If you have an IP address passed on the
command line or something, this is the easiest way to get a struct in_addr to
connect() to, or whatever. If you need more power, try some of the DNS
functions like gethostbyname() or attempt a coup d'État in your local
country.

The function IP_INET_ATON converts from a NULL terminated dots-
and-numbers string into a long word in memory pointed to by A2.

IP_INET_ATON returns 1 if the supplied string was successfully
interpreted, or 0 if the string is invalid (errno is not set on error).

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

49

IP_INET_ADDR TRAP#3 D0=$73

Provides inet_addr(2) functionality

Input

 D3.W timeout
A0 channel ID

 A1 pointer to a buffer, name containing an IP address

Output

D0
D1.L IP Address, or -1 if invalid

Description:

Converts the NULL terminated Internet host address pointed to by A1 from
IPv4 numbers-and-dots notation into binary data in network byte order in
D1.

 If the input is invalid, -1 is returned. Use of this function is problematic
because -1 is a valid address (255.255.255.255). Avoid its use in favour of
IP_INET_ATON.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

50

IP_INET_NETWORK TRAP#3 D0=$74

Provides inet_network(2) functionality

Input

 D3.W timeout
A0 channel ID

 A1 pointer to a buffer, name containing an IP address

Output

D0 = result
D1.L IP Address, or -1 if invalid

Description:

Converts a NULL terminated string of IPv4 numbers-and-dots notation
pointed at by A1, into a number in host byte order suitable for use as an
Internet network address. On success, the converted address is returned in
D1. If the input is invalid, -1 is returned.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

51

IP_INET_NTOA TRAP#3 D0=$75

Provides (2) functionality

Input

D3.W timeout
A0 channel ID

 A1 pointer to a buffer
 A2 pointer to a result buffer

Output

D0 = result

Description:

Converts the Internet net address pointed to by A1, given in network byte
order, to a string in IPv4 dotted-decimal notation. The NULL terminated
string is returned in the buffer pointed to by A2.

The "n" in "ntoa" stands for network, and the "a" stands for ASCII for
historical reasons (so it's "Network To ASCII"—the "toa" suffix has an
analogous friend in the C library called atoi() which converts an ASCII
string to an integer.)

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

52

IP_INET_MAKEADDR TRAP#3 D0=$76

Provides (2) functionality

Input

 D1.L network number
 D2.L host address
 D3.W timeout

A0 channel ID
 A2 pointer to a result buffer

Output

D0 = result

Description:

The IP_INET_MAKEADDR function is the converse of
IP_INET_NETOF and IP_INET_LNAOF. It returns an Internet host
address in network byte order, created by combining the network number
with the local address host, both in host byte order.

The host address is the computer number, and the network is the number of
the network that the computer is on. e.g. a computer with an IP Address of
192.168.0.12 would be computer 12 on the 192.168.0 network.

The exact split, between the network, and the host is determined by the sub-
net mask

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

53

IP_INET_LNAOF TRAP#3 D0=$77

Provides inet_lnaof (2) functionality

Input

 D3.W timeout
A0 channel ID

 A1 pointer to a buffer containing a long word IP Address

Output

D0 = result
D1.L host address

Description:

Returns the host address part of the Internet address pointed to by A1. The
returned value in D1is in host byte order.

These are legacy functions that assume they are dealing with classful
network addresses. Classful networking divides IPv4 network addresses
into host and network components at byte boundaries, as follows:

Class A This address type is indicated by the value 0 in the most
 significant bit of the (network byte ordered) address. The
 network address is contained in the most significant byte,
 and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in
 the most significant two bits of the address. The network
 address is contained in the two most significant bytes, and
 the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in
 the most significant three bits of the address. The network
 address is contained in the three most significant bytes,
 and the host address occupies the remaining byte.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

54

IP_INET_NETOF TRAP#3 D0=$78

Provides inet_netof(2) functionality

Input

 D3.W timeout
A0 channel ID

 A1 pointer to a buffer containing a long word IP Address

Output

D0 = result
D1.L network number

Description:

Returns the network number part of the Internet address pointed to by A1.
The returned value in D1is in host byte order.

These are legacy functions that assume they are dealing with classful
network addresses. Classful networking divides IPv4 network addresses
into host and network components at byte boundaries, as follows:

Class A This address type is indicated by the value 0 in the most
 significant bit of the (network byte ordered) address. The
 network address is contained in the most significant byte,
 and the host address occupies the remaining three bytes.

Class B This address type is indicated by the binary value 10 in
 the most significant two bits of the address. The network
 address is contained in the two most significant bytes, and
 the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in
 the most significant three bits of the address. The network
 address is contained in the three most significant bytes,
 and the host address occupies the remaining byte.

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

55

IP_IOCTL TRAP#3 D0=$79

Provides ioctl(2) functionality

Input

D1.L request, action
 D3.W timeout (-1)

A0 Channel ID
A1 pointer to string of character arguments

Output

D0 = result

Description:

The IP_IOCTL function manipulates the underlying device parameters of
special files. In particular, many operating characteristics of character
special files (e.g. terminals) may be controlled with IP_IOCTL requests.

The channel ID supplied in A0 must be an open file descriptor.

Used for device specific input/output operations. request, is a device
specific command. e.g. tell a CD ROM drive to open it’s tray.

The codes are system specific.

***** Needs further looking into ******

56

IP_GETDOMAIN TRAP#3 D0=$7A

Provides getdomainname(2) functionality

Input

 D2.L len
 D3.W timeout

A0 channel ID
 A1 pointer to a buffer, name

Output

D0 = result

Description:

Used to access or to change the NIS domain name of the host system.

Returns the null-terminated domain name in the buffer, name, which has a
length of len bytes. If the null-terminated domain name requires more than
len bytes, IP_GETDOMAIN returns the first len bytes

Note – The open channel does not need to be connected or bound to
anything, just an open “SCK_” will do.

57

IP_H_ERRNO TRAP#3 D0=$62

Provides h_errno (2) functionality

Input

D3.W timeout
A0 channel ID

Output

D0 = result
D1.L h_errno

Description:

The IP_GETHOSTBYNAME and IP_GETHOSTBYADDR functions
indicate an error condition by returning a null pointer and setting the
external integer h_errno to indicate the error return status.

When IP_GETHOSTBYNAME or IP_GETHOSTBYADDR returns an
error status, IP_H_ERRNO, which is very similar to IP_ERRNO, can be
checked to determine whether the error is the result of a temporary failure
or an invalid or unknown host.

Use the IP_H_STRERROR routine to print the error message describing
the failure. If the argument string to herror is not NULL, it is printed,
followed by a colon (:) and a space. The error message is printed with a
trailing new-line character.

58

IP_H_STRERROR TRAP#3 D0=$7B

Provides special functionality to return the text for h_errno

Input

D1.L error no
D2.L length of buffer

 D3.W timeout
A0 channel ID
A1 pointer to buffer for text

Output

D0 = result
A1 pointer to buffer with text

Description:

The IP_H_STRERROR function returns a pointer to a string that describes
the error code passed in the argument error no. (For example, if error no is
EINVAL, the returned description will be "Invalid argument".) This string
must not be modified by the application, but may be modified by a
subsequent call to IP_H_STRERROR.

In a nutshell, this function takes an error no values, like ECONNRESET,
and prints them nicely, like "Connection reset by peer."

The function IP_H_STRERROR returns a pointer to the error message
string for a given value (you usually pass in the variable error no.)

Note - At least that’s what it’s supposed to do, In testing I have only ever
seen “Unknown error” returned.

59

IP_ERRNO TRAP#3 D0=$7C

Provides (2) functionality

Input

D3.W timeout
A0 channel ID

Output

D0 = result
D1.L h_errno

Description:

This function will return in D1 the last IP error number (not the QDOS error
number), from the last IP command.

IP_H_STRERROR may be used to get a human-readable version of the
error.

60

IP Error codes

This is a list of C Error Codes in Linux, I don’t know how many of them
may appear from the QDOS IP calls

Err no Error name Description
--
1 EPERM Operation not permitted
2 ENOENT No such file or directory
3 ESRCH No such process
4 EINTR Interrupted system call
5 EIO I/O error
6 ENXIO No such device or address
7 E2BIG Argument list too long
8 ENOEXEC Exec format error
9 EBADF Bad file number
10 ECHILD No child processes
11 EAGAIN Try again
12 ENOMEM Out of memory
13 EACCES Permission denied
14 EFAULT Bad address
15 ENOTBLK Block device required
16 EBUSY Device or resource busy
17 EEXIST File exists
18 EXDEV Cross-device link
19 ENODEV No such device
20 ENOTDIR Not a directory
21 EISDIR Is a directory
22 EINVAL Invalid argument
23 ENFILE File table overflow
24 EMFILE Too many open files
25 ENOTTY Not a typewriter
26 ETXTBSY Text file busy
27 EFBIG File too large
28 ENOSPC No space left on device
29 ESPIPE Illegal seek
30 EROFS Read-only file system
31 EMLINK Too many links
32 EPIPE Broken pipe
33 EDOM Math argument out of domain of func
34 ERANGE Math result not representable
35 EDEADLK Resource deadlock would occur
36 ENAMETOOLONG File name too long
37 ENOLCK No record locks available

61

Err no Error name Description
38 ENOSYS Function not implemented
39 ENOTEMPTY Directory not empty
40 ELOOP Too many symbolic links encountered

EWOULDBLOCK EAGAIN Operation would block
42 ENOMSG No message of desired type
43 EIDRM Identifier removed
44 ECHRNG Channel number out of range
45 EL2NSYNC Level 2 not synchronized
46 EL3HLT Level 3 halted
47 EL3RST Level 3 reset
48 ELNRNG Link number out of range
49 EUNATCH Protocol driver not attached
50 ENOCSI No CSI structure available
51 EL2HLT Level 2 halted
52 EBADE Invalid exchange
53 EBADR Invalid request descriptor
54 EXFULL Exchange full
55 ENOANO No anode
56 EBADRQC Invalid request code
57 EBADSLT Invalid slot

EDEADLOCK EDEADLK
59 EBFONT Bad font file format
60 ENOSTR Device not a stream
61 ENODATA No data available
62 ETIME Timer expired
63 ENOSR Out of streams resources
64 ENONET Machine is not on the network
65 ENOPKG Package not installed
66 EREMOTE Object is remote
67 ENOLINK Link has been severed
68 EADV Advertise error
69 ESRMNT Srmount error
70 ECOMM Communication error on send
71 EPROTO Protocol error
72 EMULTIHOP Multihop attempted
73 EDOTDOT RFS specific error
74 EBADMSG Not a data message
75 EOVERFLOW Value too large for defined data type
76 ENOTUNIQ Name not unique on network
77 EBADFD File descriptor in bad state
78 EREMCHG Remote address changed
79 ELIBACC Can not access a needed shared library
80 ELIBBAD Accessing a corrupted shared library
81 ELIBSCN .lib section in a.out corrupted

62

Err no Error name Description
82 ELIBMAX Attempting to link in too many shared libraries
83 ELIBEXEC Cannot exec a shared library directly
84 EILSEQ Illegal byte sequence
85 ERESTART Interrupted system call should be restarted
86 ESTRPIPE Streams pipe error
87 EUSERS Too many users
88 ENOTSOCK Socket operation on non-socket
89 EDESTADDRREQ Destination address required
90 EMSGSIZE Message too long
91 EPROTOTYPE Protocol wrong type for socket
92 ENOPROTOOPT Protocol not available
93 EPROTONOSUPPORT Protocol not supported
94 ESOCKTNOSUPPORT Socket type not supported
95 EOPNOTSUPP Operation not supported on transport endpoint
96 EPFNOSUPPORT Protocol family not supported
97 EAFNOSUPPORT Address family not supported by

 protocol
98 EADDRINUSE Address already in use
99 EADDRNOTAVAIL Cannot assign requested address
100 ENETDOWN Network is down
101 ENETUNREACH Network is unreachable
102 ENETRESET Network dropped connection because of reset
103 ECONNABORTED Software caused connection abort
104 ECONNRESET Connection reset by peer
105 ENOBUFS No buffer space available
106 EISCONN Transport endpoint is already connected
107 ENOTCONN Transport endpoint is not connected
108 ESHUTDOWN Cannot send after transport endpoint shutdown
109 ETOOMANYREFS Too many references: cannot splice
110 ETIMEDOUT Connection timed out
111 ECONNREFUSED Connection refused
112 EHOSTDOWN Host is down
113 EHOSTUNREACH No route to host
114 EALREADY Operation already in progress
115 EINPROGRESS Operation now in progress
116 ESTALE Stale NFS file handle
117 EUCLEAN Structure needs cleaning
118 ENOTNAM Not a XENIX named type file
119 ENAVAIL No XENIX semaphores available
120 EISNAM Is a named type file
121 EREMOTEIO Remote I/O error
122 EDQUOT Quota exceeded
123 ENOMEDIUM No medium found
124 EMEDIUMTYPE Wrong medium type

63

Err no Error name Description
125 ECANCELED Operation Canceled
126 ENOKEY Required key not available
127 EKEYEXPIRED Key has expired
128 EKEYREVOKED Key has been revoked
129 EKEYREJECTED Key was rejected by service

For robust mutexes
130 EOWNERDEAD Owner died
131 ENOTRECOVERABLE State not recoverable

64

	QDOS TCP/IP and Socket functionality
	Error Handling
	Opening IP channels
	Internet Domain
	TCP_host:port Stream Socket
	UDP_host:port Datagram Socket
	Unix Domain

	UXS_host:port Stream Socket
	UXD_host:port Datagram Socket
	Note
	Open call summary (standard QDOS Trap#2 calls)
	UDP
	TCP

	IP_OPEN TRAP#2 D0=1
	IP_ACCEPT TRAP#2 D0=1
	I/O Operations
	Basic IO operations
	Input/Output Utilisation
	Serial I/O call summary (standard QDOS Trap#3 calls)
	IP Trap I/O call summary (Extended Trap #3 calls)
	Data Structures

	IP_BIND TRAP#3 D0=$58
	IP_CONNECT TRAP#3 D0=$59
	IP_FCNTL TRAP#3 D0=$5A
	IP_GETOPT TRAP#3 D0=$55

	IP_SETOPT TRAP#3 D0=$56
	IP_SHUTDWN TRAP#3 D0=$57
	Socket specific IO

	IP_SEND TRAP#3 D0=$51
	IP_SENDTO TRAP#3 D0=$52
	IP_RECV TRAP#3 D0=$53
	IP_RECVFM TRAP#3 D0=$54
	Netdb functions

	IP_GETPEERNAME TRAP#3 D0=$5D
	IP_GETHOSTBYNAME TRAP#3 D0=$5E
	IP_GETHOSTBYADDR TRAP#3 D0=$5F
	IP_GETNETENT TRAP#3 D0=$68

	IP_GETNETBYNAME TRAP#3 D0=$69
	IP_GETNETBYADDR TRAP#3 D0=$6A
	IP_INET_ATON TRAP#3 D0=$72
	IP_INET_ADDR TRAP#3 D0=$73
	IP_INET_NETWORK TRAP#3 D0=$74
	IP_INET_NTOA TRAP#3 D0=$75
	IP_INET_MAKEADDR TRAP#3 D0=$76
	IP_INET_LNAOF TRAP#3 D0=$77
	IP_INET_NETOF TRAP#3 D0=$78
	IP_IOCTL TRAP#3 D0=$79
	IP_GETDOMAIN TRAP#3 D0=$7A
	IP_H_ERRNO TRAP#3 D0=$62
	IP_ERRNO TRAP#3 D0=$7C
	IP Error codes

