
15 December 2016 SMSQ/E Q40.1 

SMSQ/E for Q40 

Introduction 2 

Machine Type 2 
MACHINE 2 

PROCESSOR 2 

Memory Protection 2 
PROT_MEM 2 

POKES POKES_W POKES_L 2 

PEEKS PEEKS_W PEEKS_L 2 

Q40 Display Modes 2 
DISP_TYPE 2 

DISP_INVERSE 3 

DISP_SIZE 3 

DISP_RATE 3 

DISP_BLANK 3 

Serial (RS232) Ports on the Q40 4 
Mouse driver 5 

Parallel Printer Ports 5 
PAR_PULSE 5 

PAR_WAIT 6 

Q40 Hard Disks 6 
IDE drives 6 

WIN Drive Numbers and Name 6 

WIN_DRIVE 7 

WIN_DRIVE$ 7 

WIN_USE 7 

Formatting WIN Drives 7 

WIN Control Commands 8 

WIN_WP 8 

WIN_START 8 

WIN_STOP 8 

Q40 Floppy Disks 8 
Floppy Disk Driver Name 8 

FLP_USE 8 

Formatting Diskettes 9 

FLP_DENSITY 9 

FLP_TRACK 9 

FLP Control Commands 9 

FLP_SEC 9 

FLP_START 9 

FLP_STEP 10 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.2 

Introduction 

From the point of view of the hardware dependent features, SMSQ/E as 

implemented on the Q40 is very similar to other SMSQ implementations. The only 

significant differences are minor improvements. 

The hard disk and floppy disk drivers can handle multiple disk formats, two 

floppy disk drives and four hard disk drives. Two IO cards can be used to provide 

up to 4 serial ports and 3 parallel printer ports. 

Machine Type 

The two standard functions to determine the machine type are, of course, 

supported. 

MACHINE 

The MACHINE function returns the machine type. This function returns 17 for 

the standard Q40. 

PROCESSOR 

The PROCESSOR function returns the 680x0 family member - 40 for the Q40. 

Memory Protection 

All production Q40s include a memory management unit but this is not yet 

fully used by SMSQ/E. The PROT_MEM procedure has, therefore, no effect in 

current versions and the supervisor mode access peeks and pokes do not have any 

different effect from there user mode cousins. 

PROT_MEM 

The PROT_MEM (level) procedure sets the level of the memory protection. This 

is ignored in current versions. 

POKES POKES_W POKES_L 

POKES (address, value) POKES_W (address, value) and POKES_L (address, 
value) are the "supervisor mode" equivalents of POKE, POKE_W and POKE_L. By 

operating in supervisor mode they enable data to be written to the QL IO hardware. 

Do not be surprised if your computer self-destructs when you use them. 

PEEKS PEEKS_W PEEKS_L 

PEEKS (address) PEEKS_W (address) and PEEKS_L (address) are the 

"supervisor mode" equivalents of PEEK, PEEK_W and PEEK_L. By operating in 

supervisor mode they enable data to be written to the QL IO hardware. Do not be 

surprised if your computer self-destructs when you use them. 

Q40 Display 

DISP_TYPE 

The DISP_TYPE function is used to find the type of display. For the Q40, there 

are two values that may be returned. 

0 Original ST QL emulator (this value is returned on QL based hardware). 

1 16 bit colour mode. 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.3 

ncol = 4      Assume 4 colour display 

if DISP_TYPE = 1: ncol = 65536 If it is 16 bit the are 65536 colours 

DISP_INVERSE 

The DISP_INVERSE (0 or 1) command is used to invert a monochome display. 

It has no effect on the Q40. 

DISP_SIZE 

DISP_SIZE (xpixels, ylines) is used to set the display size. When a size greater 

than 512x256 is specified, 16 bit colour mode is selected (not implemented in this 

version). 

DISP_SIZE 1024,512  change to 1024x512 16 bit colour mode. 

DISP_RATE 

DISP_RATE (frame rate, line rate) is used to specify the frame and line scan 

rates. It has no effect on the Q40 

DISP_BLANK 

DISP_BLANK (x blank, y blank) sets the size of the blank area to the sides of 

and above and below the image. It has no effect on the Q40 

Mouse driver 

The mouse driver checks serial ports 4, 3, 2 and 1, in that order, looking for a 

Microsoft compatible two or three button mouse. If a mouse is used, it should be 

plugged into the highest port number available. 

Because current serial mice for the PC have a much higher resolution (the 

pointer moves faster) than older mice, the original pointer interface scheme 

(accelerating slow mice) is no longer adequate. The new MOUSE_SPEED command 

is used to define the “acceleration”. The value specified for the MOUSE_SPEED is 

the same as the value that can be specified in the QPAC2 SYSDEF menu. 

MOUSE_SPEED 

MOUSE_SPEED (#channel, speed, wake) defines both a scaling for the mouse 

movement and an acceleration factor used for large movements. 
 

Speed Scaling Acceleration 

0 1/8 low 

1 1/8 normal 

2 1/4 low 

3 1/4 normal 

4 1/2 low 

5 1/2 normal 

6 1 low 

7 1 normal 

8 1 high 

9 1 extreme 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.4 

The optional wake defines how far the mouse will need to move before the 

pointer will appear (waking up the pointer) in a text input window. 

The channel is optional, if the default channel is available, and is a console, no 

channel need be specified. 

MOUSE_SPEED 2      standard Microsoft mouse with low acceleration 

MOUSE_SPEED #0,5,8     cheap mouse with acceleration, 

         pointer reluctant to wake up 

Speeds 7 to 9 are the same as for previous versions. Speeds 0 to 6 are all 

slower than in previous versions. If a “low acceleration” speed is chosen, the pointer 

movement may be slightly viscous (this is an advantage in some applications). The 

default mouse speed is 7 (old mouse with normal acceleration). This default is 

overwritten by a configurable speed when QPAC2 is loaded. 

The default wake speed is 3 which is fairly sensitive. This default is overwritten 

by a configurable speed when QPAC2 is loaded. 

MOUSE_STUFF 

MOUSE_STUFF (#channel, string) defines a 0, 1 or 2 character string to be 

stuffed into the keyboard queue when the centre (or left and right) buttons are 

pressed. This is usually used to send a Hotkey. If a Hotkey is required, the first 

character should be CHR$(255). 

ERT HOT_THING (“.”, “Button_Pick”)  ALT . picks the button bar 

MOUSE_STUFF CHR$(255) & ”.”   The middle mouse button picks the button 

bar 

The default stuff string is CHR$(255) & “.”. This default is overwritten by a 

configurable Hotkey when QPAC2 is loaded. 

The channel is optional, if the default channel is available, and is a console, no 

channel need be specified. 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.5 

Serial (RS232) Ports on the Q40 

The serial ports correspond to the standard IBM COM ports. Note that, unlike 

the PC BIOS SMSQ does not attempt to renumber the ports if it finds that one or 

more are missing 

SER1  COM1  address $3F8 

SER2  COM2  address $2F8 

SER3  COM1/3 address $3E8 

SER4  COM2/4 address $2E8 

The baud rates correspond to the normal PC baud rates: standard rates up to 

38400 baud and then 57600, 115200, 230400, 460800 and 921600 baud. Only 

16550A/16450 compatible serial ports are supported (i.e. any IO card made in the 

past few years). The availability of rates above 115200 depends on whether the IO 

card supports these rates and whether the mechanism to produce these rates is 

recognised by the drivers. 

BAUD 2,38400   . . . sets SER2 to 38400 baud 

BAUD 57600    . . . sets SER1 to 57600 baud 

All the SMSQ/E standard serial port control commands are avail. 

Parallel Printer Ports 

The parallel printer ports correspond to the standard IBM LPT ports. 

PAR1  LPT1/2 address $378 

PAR2  LPT2/3 address $278 

PAR3  LPT1/2/3 address $3BC 

The standard parallel port driver assumes that the parallel port is IEEE 1284 

compatible (ECP) and it will normally operate in SPP FIFO mode. The port can also 

operate in original PC mode. There are three reasons for operating in original PC 

mode. 

1. Some IO cards are not compatible, in ECP mode, with the Q40 interrupt 

system. If possible, this problem should be resolved by removing the 

IRQ7/IRQ5 jumper so that the card does not produce parallel port 

interrupts at all. It may, however, be necessary to set the jumpers on the 

card to SPP (original PC) mode. 

2. Some printers may require a longer strobe pulse than is provided in FIFO 

mode. 

3. It is PAR3 which is the LPT port at address $3BC. This is not an ECP port 

address. 

PAR_PULSE 

PAR_PULSE (port, pulse length) sets the notional strobe pulse length in ISA bus 

cycles. If the port is not specified, PAR1 is assumed. If the pulse length is zero, then 

the parallel printer port will operate in FIFO mode. If it is greater than 0, then the 

parallel printer port will operate in original PC mode. 

PAR_PULSE 2,2   drive an old Epson printer on PAR2 

PAR_PULSE 0   . . . set PAR 1 to FIFO mode 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.6 

FIFO mode should be used if possible. The default value for PAR_PULSE is 0 if 

the IO card is configured for ECP mode or 1 if the IO card is configured for SPP 

mode. 

PAR_WAIT 

PAR_WAIT (port, wait cycles) sets the length of time that the parallel port drive 

will wait for the printer to be ready before it gives up and lets the Q40 do something 

else. This has no effect in FIFO mode, but in original PC mode it allows the buffer in 

the printer to be stuffed in bursts. The default value is 0. The larger the value, the 

higher the probability that a more than one byte of data can be sent on each 

interrupt, but the higher the load on the machine. 

If the IO card does not provide IRQ7 and the machine is busy, PAR_PULSE 

with have a much greater effect than if IRQ7 is used and/or the machine is idle. 

PAR_WAIT 2,20   give the printer on PAR2 a high priority. 

PAR_WAIT 0    . . . set PAR 1 use the minimum of processor time. 

For an Epson Stylus COLOR Pro printer, PAR_PAUSE 10 and PAR_PAUSE 50 

improved the transfer speed by 30% on an idle machine: the rate was primarily 

determined by the printer. On a busy machine with no interrupts, PAR_PAUSE 10 

improved the transfer speed by a factor of 3 and PAR_PAUSE 50 improved the 

transfer speed by a factor of 5. The speed of other tasks in the machine was 

reduced. 

Q40 Hard Disks 

IDE drives 

The current IDE driver does not support removable drives. 

WIN Drive Numbers and Name 

ATA (IDE) drives are identified by the bus to which they are attached (primary 

or secondary), whether they are drive 0 or 1 on that bus (for historical reasons these 

are often called the master and slave drive although ATA compliant drives are 

neither master nor slaves: they are truly independent) and a partition on the drive. 

Windows numbers its drives from C: as it finds them. This causes chaos if a 

removable media drive (or a normal drive in a rack) is used. (One of my PCs is 

obsessed by a phantom drive F: it thinks it is a 100kbyte CDROM). 

SMSQ/E adopts a rather more cumbersome approach which is, however, 

much more precise. The initialisation code will attempt to find a file called "BOOT" 

on any partition on drive 0. WIN1 will be set to this partition. Thereafter, you must 

define your own WIN drives for any other drive and partition you wish to access. 

This means that if, for example, you have a drive in a rack, the other drive 

numbers stay the same regardless of whether the drive is in or out when you boot 

the system. 

SMSQ/E does not require the whole of a drive to be used for itself: the drive 

can be partitioned between different operating systems. Depending on the format of 

used by the other operating systems, SMSQ/E may be able to read or write these 

“foreign” partitions. Partitions are number from 0. 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.7 

WIN_DRIVE 

WIN_DRIVE (drive, target, unit, partition) is used to select a particular drive, 

unit and partition combination to be accessed using a particular WIN drive. 

The “target” and “unit” notion comes from the SCSI bus terminology, the target 

is a physical device and the unit is a subdivision of that device. For IDE bus drives, 

there is only one unit per drive so the unit number is always zero and may be 

omitted. If the partition is omitted as well, then partition 0 (or the whole drive) is 

assumed. 

 Target Bus Drive 

 0 Primary 0 (Master) 

 1 Primary 1 (Slave) 

 2 Secondary 0 (Master) 

 3 Secondary 1 (Slave) 

Issuing a WIN_DRIVE command for a particular drive will cause the drive map 

to be re-read the next time the disk is accessed. It can, therefore, be used to force 

the drivers to recognise a disk change. 

WIN_DRIVE 2,0,1  WIN2 is drive 0 on the primary bus, partition 1 

WIN_DRIVE 3,3  WIN3 is drive 1 on the secondary bus (whole drive or partition 0) 

WIN_DRIVE$ 

WIN_DRIVE$ is a function which returns a string giving the target, unit and 

partition used by a particular WIN drive. 

WIN_DRIVE 2,0,1  WIN2 is drive 0 on the primary bus, partition 1 

WIN_DRIVE 3,3  WIN3 is drive 1 on the secondary bus (whole drive or partition 0) 

PRINT WIN_DRIVE$(2)  Prints 0,0,1 

PRINT WIN_DRIVE$(3)  Prints 3,0,0 

WIN_USE 

WIN_USE may be used to set the name of the WIN device. The name should be 

3 characters long and in upper or lower case. 

WIN_USE MDV   The WIN device is renamed MDV 

WIN_USE win   The WIN device is restored to WIN 

WIN_USE    The WIN device is restored to WIN 

Formatting WIN Drives 

If a drive is unformatted (or not recognisably formatted) you can format the 

whole drive as an SMSQ drive. 

WIN_FORMAT 1   Allow WIN drives to be formatted 

WIN_DRIVE 3,2   Set WIN3 to secondary drive 0, whole drive 

FORMAT win3_Fred  FORMAT WIN3 

WIN_FORMAT 0   Prevent WIN drives from being formatted 

On the other hand, if you wish to share a drive between different operating 

systems, you can partition the drive by executing the MKPART utility before 

formatting. 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.8 

WIN_FORMAT 1   Allow WIN drives to be formatted 

WIN_DRIVE 3,2,1   Set WIN3 to secondary drive 0, partition 1 

EW MKPART    Partition drive, setting partition 1 to “QWA” 

FORMAT win3_Fred  FORMAT WIN3 

WIN_FORMAT 0   Prevent WIN drives from being formatted 

WIN Control Commands 

There are a number of “odd” WIN device control commands. 

WIN_WP 

WIN_WP (drive, 0 or 1) is used to software write protect a WIN drive. 

WIN_WP 1,1    Set the "write protect" flag for the drive accessed by WIN1 

WIN_WP 1,0    Clear the "write protect" flag for the drive accessed by WIN1 

WIN_START 

WIN_STOP 

The WIN_START (drive) and WIN_STOP (drive, time) commands may be used to 

start and stop a drive. If a time is given on the WIN_STOP command, the drive 

should not stop immediately: the time is the period without any disk accesses that 

that must elapse before the drive automatically enters standby mode. A zero time 

cancels the automatic standby timer. 

WIN_STOP 2    Stop the drive accessed by WIN2 now 

WIN_STOP 2,3   Stop the drive accessed by WIN2 when there has been no 

      access for 3 minutes 

WIN_STOP 2,0   Do not stop the drive accessed by WIN2 

WIN_START 2   Start the drive accessed by WIN2 

Note that all the operations that might be used to restart a drive (there is no 

“official” ATA command) are “vendor specific”: on your particular drive, the drive 

may not start again until you try and read from (or write to) the drive, or it may 

never start again. You should also note that, on some drives, WIN_STOP drive, time 

will not only set the timer but stop the drive immediately as well. 

As with any ATA command, these commands will work if they work, otherwise 

they will not work. 

Q40 Floppy Disks 

The Q40 will normally have one or two HD disk drives The SMSQ/E FLP driver 

can read or write QL5A, QL5B and MSDOS format diskettes. It can format QL5A 

(DD) and QL5B (HD) format diskettes. 

Floppy Disk Driver Name 

The default name of the floppy disk driver is FLP. The internal drive is FLP1. 

The external drive (if any) is FLP2. 

FLP_USE 

FLP_USE may be used to set the name of the FLP device. The name should be 

3 characters long and in upper or lower case. 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.9 

FLP_USE mdv   The FLP device is renamed MDV 

FLP_USE FLP   The FLP device is restored to FLP 

FLP_USE    The FLP device is restored to FLP 

Formatting Diskettes 

The SMSQ/E FLP driver will usually format a diskette to the highest density it 

can. The density may, however, be set using the FLP_DENSITY command or by 

adding a special code to the end of the medium name in the format command. 

FLP_DENSITY 

The SMSQ/E format routines will usually attempt to format a disk to the 

highest density possible for a medium. The FLP_DENSITY (code) is used to specify a 

particular recording density during format. 

The density codes are "S" for single sided (double density), "D" for double 

density and "H" for high density. 

FLP_DENSITY S   Set the default format to single sided 

FLP_DENSITY H   Set the default format to high density 

FLP_DENSITY   Reset to automatic density selection 

The same code letters may be added (after a *) to the end of the medium name 

to force a particular density format. (For compatibility with older drivers, if the code 

letter is omitted after the *, single sided format is assumed. 

FORMAT 'FLP1_Disk23' Format at highest density or as specified by FLP_DENSITY 

FORMAT 'FLP1_Disk24*' Format single sided 

FORMAT 'FLP1_Disk25*S' Format single sided 

FORMAT 'FLP1_Disk25*D' Format double sided, double density 

FLP_TRACK 

The FLP_TRACK (number of tracks) is used to limit the number of tracks 

formatted. 

FLP_TRACK 23   Only format 23 tracks 

FLP Control Commands 

FLP_SEC 

FLP_SEC (level) was used to set the security level. The security of the data 

stored on the diskettes can be seriously compromised if you change diskettes while 

there are files open. The security level affects the amount of time the FLP driver 

spends maintaining the data on the diskette up to date with the internal copies of 

the data in memory. In principle, a lower level is more efficient, but more risky. 

With the increasing use of hard disks, the security level of the FLP has been fixed at 

level 2: the most secure. FLP_SEC is ignored. 

FLP_START 

The FLP_START (ticks) command specifies the number of ticks (1/50th of a 

second) that the FLP driver waits after starting the drive before writing to it. This 

allows the diskette to get up to speed before the write operation. The default value is 

24, which is a wait of about 0.5 s. There should not be any reason to use this 

command. 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.10 

FLP_STEP 

The FLP_STEP (drive, step) command specifies the step rate for a particular 

drive. If the drive number is omitted, the step rate applies to both drives. The step 

rate will be adjusted downwards by the driver if there are repeated seek errors. The 

FLP_STEP command should not, therefore, be necessary. 

FLP_STEP 2,15   Set FLP2 to 15 ms step rate 

FLP_STEP 3    Set both drives to 3 ms step rate. 

Sampled Sound System 

The SMSQ/E sampled sound system for the Q40 assumes that a sampling 

rate of 20 kHz will always be used. 

The system is based on a 2 byte wide queue. Sound generators should stuff 

pairs of bytes (left, right) in the queue. The queue is 200 kilobytes long which allows 

up to 5 seconds free running. A normal “boing” can be set up in a single operation. 

The SMSQ/E sampled sound system provides four basic functions to add a 

single sample, to add an arbitrary number of samples, to stop the sound and to 

estimate the length of sound samples remaining in the queue. 

The SMSQ/E sampled sound system should be accessed in supervisor mode 

(in principal, this will be a sound device driver) via the interrupt level 4 auto vector. 

 move.l $70,a3   interrupt level 4 auto vector 

 move.l -(a3),a2   address of sample sound system functions 

 cmp.l #’SSSS’,-(a3)  SMSQ/E Sampled Sound System 

 bne.s oops 

… jsr  $04(a2)   add a sample 

… jsr  $08(a2)   set up to add multiple samples 

… jsr  $0c(a2)   notify that multiple samples have been added 

… jsr  $10(a2)   kill the sound 

SSS_ADD1 ($04) 

The sss_add1 call is used to add one sample to the sound queue. To limit the 

overheads, it does not save any registers. 

D1 call byte  left hand sound level 

D2 call byte  right hand sound level 

A1 smashed 

A3 call   pointer to ‘SSSS’ flag (see code above) 

The sound level is a byte value between 0 and 255. The sound “zero” level is 

128. This should be the last value written to the left and right hand sound queues. 

This call does not have a standard error return. It returns status Z if the 

sample has not been added because the queue is full. 

SSS_SETM ($08) 

The sss_setm call sets up to add multiple samples to the sound queue. 

A1 return  the pointer to the next free byte pair in the queue 

A2 return  the pointer past the last free byte pair in the queue 

A3 call   pointer to ‘SSSS’ flag (see code above) 



SMSQ/E for Q40 

15 December 2016 SMSQ/E Q40.11 

The calling routine can fill the area from a1 to a2 with pairs of bytes. It does 

not, however, need to fill the whole of the area. When it has put samples into the 

queue, it should call SSS_ADDM to notify the sampled sound system. 

SSS_ADDM ($0C) 

The sss_addm call notifies that samples have been added to the sound queue. 

A1 call   the updated pointer to the next free byte pair in the queue 

A3 call   pointer to ‘SSSS’ flag (see code above) 
 

 move.l $70,a3     interrupt level 4 auto vector 

 move.l -(a3),a2     address of sample sound system functions 

 cmp.l #’SSSS’,-(a3)    SMSQ/E Sampled Sound System 

 bne.s oops 

 jsr  sss_setm(a2)    set up 

 bra.s end_loop     note, a1 might be equal to a2 

loop 

 calculate next sample in d1.b, d2.b 

 move.b d1,(a1)+     add left sample 

 move.b d2,(a1)+     add right sample 

end_loop 

 cmp.l a2,a1     more samples to do? 

 blt.s  loop 

 jsr  sss_addm(a2)    notify sampled sound system 

SSS_KILL ($10) 

The sss_kill call stops the sound system and throws the queue away. 

A3 call   pointer to ‘SSSS’ flag (see code above) 

SSS_SAMPLE ($14) 

The sss_sample call estimates the number of samples remaining in the queue. 

This figure should be divided by 400 to give the length of the sound in ticks or 

divided by 20000 to give the length of sound in seconds. 

D0 return long number of samples remaining in queue 

A3 call   pointer to ‘SSSS’ flag (see code above) 


