
15 December 2016 SMSQ/E.1

SMSQ/E

Introduction 3

New and Modified Facilities. 3

SMSQ Performance 6
IO_PRIORITY 6

CACHE_ON CACHE_OFF 6

SLUG 6

SBASIC / SuperBASIC Language Differences 7
Hexadecimal and Binary Values 7

IF Clauses 7

SELect Clauses 7

WHEN ERRor 7

Loop Handling 7

FOR Loop Types 7

In-Line Loops 8

The "NEXT Bug" 8

Unnamed NEXT, EXIT and END Statements 8

REPeat Loops 8

Multiple Index Lists and String Slicing 9

Writing Compiler Compatible Programs 9

Error Reporting and Statement Numbering 11

Extended SuperBASIC Commands and Functions 12
LOAD, LRUN, MERGE and MRUN 12

SAVE and SAVE_O 12

QLOAD and QLRUN 12

QMERGE, QMRUN, QSAVE and QSAVE_O 12

LBYTES 13

SBYTES SBYTES_O 13

SEXEC SEXEC_O 13

EPROM_LOAD 13

QL Based Hardware 13

PEEK$ POKE$ 13

PEEK PEEK_W PEEK_L 14

POKE POKE_W POKE_L 14

Absolute PEEK, POKE 14

Peeking and Poking in the System Variables 14

Peeking and Poking in the SBASIC Variables 15

SCR_BASE SCR_LLEN 15

SCR_XLIM SCR_YLIM 15

BPUT BGET 15

ATAN 15

PROT_DATE 16

VER$ 16

Multiple Copies of SBASIC 17
SBASIC Daughter Jobs 17

JOB_NAME 18

Executing SBASIC Programs 18

Channel #0 19

SBASIC and Resident Extensions. 19

SBASIC Executable Thing 19

The SBASIC Interface Things 20

Error! Bookmark not defined.

15 December 2016 SMSQ/E.2

Input Line Editing 21

Language Facilities 21
Language Specification 21

Language Control Procedures 22

LANG_USE 22

LANGUAGE LANGUAGE$ 22

KBD_TABLE 22

TRA 23

SERIAL IO Devices 23
Serial and Parallel Port Names 24

Serial Port Control 25

Standard BAUD Command 25

Extended BAUD Command 25

SER_FLOW 25

SER_ROOM 26

SER_BUFF 26

SER_CLEAR 26

SER_ABORT 26

SER_CDEOF 26

SER_USE 26

Parallel Port Control 27

PAR_BUFF 27

PAR_CLEAR 27

PAR_ABORT 27

PAR_USE 27

PRT_USE 27

Virtual Devices 28
NUL Device 28

PIPE Device 28

HISTORY Device 29

DEV - A Virtual Filing System Device 30

DEV_USE 30

DEV_LIST 31

DEV_USE$ DEV_NEXT 31

Interaction between DATA_USE, PROG_USE and DEV. 31

Error! Bookmark not defined.

15 December 2016 SMSQ/E.3

Introduction

SMSQ/E is based on the SMS kernel which was designed to provide a QDOS

compatible interface. The kernel has been modified to improve compatibility with

most of the "dirty tricks" which QL programmers were either forced to use or used

to satisfy their perverted sense of fun.

The kernel itself (memory management, task management, scheduling, and IO)

has also been extended to provide facilities which were not available with QDOS. It

is now an over-inflated 10k bytes. Despite this inflation, the SMSQ operating

system kernel remains more efficient than the old QDOS kernel.

SuperBASIC has been replaced by SBASIC which is a threaded code

interpreter which executes at speeds more often associated with compiled

SuperBASIC than interpreted SuperBASIC. There is no longer any need to compile

SuperBASIC programs: you can just EXECute them.

The SMSQ/E CONsole driver incorporates slightly improved versions of the

Pointer Interface, Window Manager and HOTKEY System 2: these do not need to be

loaded in your BOOT files.

In addition, SMSQ/E is supplied with entirely new filing system device drivers

which allow "foreign" disk formats to be recognised and new formats to be added "at

run time".

New and Modified Facilities.

SMSQ/E includes all the QL SuperBASIC commands, the TK2 commands and

the commands which have provided to support the various add-on drivers. (This

manual does not concern itself with the standard SuperBASIC or TK2 commands.)

SMSQ/E supports 99.9% of SuperBASIC. SMSQ/E supports all the devices which

were supported by the drivers supplied with the Atari QL Emulator, the GOLD card

and the QXL.

There are, however, a number of significant new facilities or improvements,

some of which may be familiar to some users. Some facilities (marked HW) are

hardware dependent are described in the appropriate hardware specific manuals.

Facility Usage or Difference Page

$nnn %nnn Hexadecimal and binary values accepted 7

ATAN ATAN (x,y) yields four quadrant result 16

BAUD Independent baudrates 25

BGET BPUT Transfer multiple bytes to and from strings 15

CACHE_ON _OFF Turn internal caches on or off 6

DEV A defaulting filing system device 30

DEV_LIST Lists the current DEVs 31

DEV_NEXT Enquires the next DEV for a DEV 31

DEV_USE Sets the real device for a DEV 30

DEV_USE$ Enquires the real device for a DEV 31

DEVTYPE Find the type of device open as a channel 10

DISP_xxx Display control facilities HW

Error! Bookmark not defined.

15 December 2016 SMSQ/E.4

END FOR END REPeat Do not need names 8

EX EW EXEC EXEC_W Extended to execute SBASIC programs 18

EPROM_LOAD Loads and initialises a "QL EPROM cartridge" 13

EXIT Does not need a name 8

FLP_xxx FLP device control facilities HW

HISTORY A last in, first out rubbish bin 29

IF Multiple nested inline IFs. Nesting is checked 7

INSTR_CASE Set the case dependence of INSTR operations 15

IO_PRIORITY Set the priority of IO retry scheduling 6

JOB_NAME Sets the Job name for SBASIC jobs 18

KBD_TABLE Uses international codes to set keyboard tables 22

LANG_USE Sets the message language 22

LANGUAGE ($) Language enquiry 22

LOAD LRUN Accept QLOAD _SAV files and save filename 12

LBYTES Accepts channel number in place of name 13

LRESPR If used to load extensions within an SBASIC job

other than job 0, the extensions are private

to that job

19

MERGE MRUN Accept QLiberator _SAV files 12

NEXT Does not need a name 8

NUL A bottomless bin for output or endless input 28

PAR Centronics port driver with dynamic buffering 23

PAR_ABORT Aborts a parallel port's pending output 27

PAR_BUFF Sets the buffer size for a parallel port 26

PAR_CLEAR Clears a parallel port's pending output 27

PAR_USE Sets the name of the parallel ports 27

PEEK etc. Extended to access system and SBASIC vars 14

PEEKS etc. Supervisor mode access to IO hardware (Atari) HW

PEEK$ PEEKs multiple bytes 13

PIPE Named or unnamed pipes for inter task comms 28

POKE etc. Extended to access system and SBASIC vars 14

POKES etc. Supervisor mode access to IO hardware (Atari) HW

POKE$ POKEs multiple bytes 13

PROT_DATE Protect the real time clock 16

PROT_MEM Set the memory protection level (Atari) HW

PRT_USE Sets the port to be used for PRT 27

Error! Bookmark not defined.

15 December 2016 SMSQ/E.5

QLOAD QLRUN Qliberator compatible quick load for _SAV file 12

QMERGE QMRUN Qliberator compatible quick merge for _SAV file 12

QSAVE QSAVE_O Qliberator compatible save to _SAV file 12

QUIT Removes this SBASIC job 18

REPeat Does not need a name 8

SAVE SAVE_O Use previously defined filename, update version 12

SBASIC Starts an SBASIC daughter 17

SBYTES SBYTES_O Accepts channel number in place of filename 13

SCR_BASE SCR_LLEN Find the screen base and line length 15

SCR_XLIM SCR_YLIM Find window limits 15

SELect Both integer and floating point SELects 7

SER Additional options and dynamic buffering 23

SER_ABORT Aborts a serial port's pending output 26

SER_BUFF Sets the buffer size for a serial port 26

SER_CDEOF Sets the carrier detect timeout for a serial port 26

SER_CLEAR Clears a serial port's pending output 26

SER_FLOW Sets the flow control for a serial port 25

SER_ROOM Sets the spare room in a serial port queue 25

SER_USE Sets the name of the serial ports 26

SEXEC SEXEC_O Accepts channel number in place of name 13

SLUG Slows the machine down 6

SRX As SER but input port only 23

STX As SER but output port only 23

TRA Language selectable and language independent 23

VER$ Minerva compatible 16

WIN_xxx WIN device control facilities HW

WMON WTV Allow the SBASIC windows to be offset 18

Error! Bookmark not defined.

15 December 2016 SMSQ/E.6

SMSQ Performance

In general, SMSQ is more efficient than QDOS. There are, however, a number

of policy differences which are either accidental because, unlike other "QDOS

compatible" systems SMSQ is not based on QDOS but is completely re-designed, or

deliberate because certain QDOS policies have shown to be less than ideal.

In particular, the IO retry scheduling policy is completely different. This

results in a very much higher priority for retry operations which greatly improves

the responsiveness of a heavily loaded system at the cost of a modest reduction in

crude performance (typically 10%). If crude performance is important to you, you

can reduce the the IO priority to QDOS levels.

IO_PRIORITY

The IO_PRIORITY (priority) command sets the priority of the IO retry

operations. In effect, this sets a limit on the time spent by the scheduler retrying IO

operations.

A priority of one sets the IO retry scheduling policy to the same as QDOS, thus

giving a similar level of response but with a higher crude performance.

IO_PRIORITY 1 QDOS levels of response, higher crude performance

IO_PRIORITY 2 QDOS levels of performance, better response under load

IO_PRIORITY 10 Much better response under load, degraded performance

IO_PRIORITY 1000 Maximim response, the performance depends on the number

 of jobs waiting for input.

CACHE_ON CACHE_OFF

The performance of the more powerful machines depends on the use of the

internal cache memory. For the MC680x0 series processors, the implementation of

the caches is less than perfect. As well as introducing unnecessary overheads on

operating system calls (slightly improved in the MC68040) the MC680x0 cache

policy is incompatible with certain programming techniques. It may, therefore, be

necessary to disable the internal caches.

No provision is made for disabling the external caches (where these exist) as

none of these external caches seem to suffer from the design flaws of the MC680x0

series.

CACHE_OFF turn the caches off to run naughty software

CACHE_ON and turn back on again

SLUG

The designers of SMSQ have spent much time and effort trying to make the

system fairly efficient. Their efforts seem not to be appreciated. Some people will

always complain!

SLUG (slug factor) will slug your machine by a well defined factor.

SLUG 2 Half speed ahead

SLUG 5 Dead slow

SLUG 1 Full ahead both

Error! Bookmark not defined.

15 December 2016 SMSQ/E.7

SBASIC / SuperBASIC Language Differences

Some differences between SBASIC and SuperBASIC may be accidental. There

are, however a number of known, deliberate, differences. Most of these differences

are extensions to SuperBASIC. In some cases, however, limitations have been

introduced to reduce the chances of difficult-to-track-down program errors.

Hexadecimal and Binary Values

Hexadecimal and binary values may be included directly in SBASIC source.

Hexadecimal values are preceded by a $. Binary values by a %.

IF a% && %1001 Check bits 3 and 0 of a%

IF PEEK_L ($28000) = $534D5351 Check if SMSQ (very naughty)

IF Clauses

Multiple "in-line" IF clauses can be nested on one line.

SBASIC checks for incorrectly nested IF clauses.

SELect Clauses

SELect clauses may SELect an action on the value of an integer variable

(integer SELect) or on the value of a floating point variable or expression (floating

point SELect). Integer SELect is more efficient.

SBASIC checks for incorrectly nested or inconsistent SELect clauses.

WHEN ERRor

WHEN ERRor is suppressed within the command line to stop SBASIC rushing

off into your error processing if you mistype a command.

You can turn off WHEN ERRor by executing an empty WHEN ERRor clause.

100 WHEN ERRor

110 CONTINUE :REMark ignore errors

120 END WHEN

130 a = 1 / 0 :REMark no error

140 WHEN ERRor :REMark restore error processing

150 END WHEN

160 a = 1 / 0 :REMark BANG!!

Loop Handling

FOR Loop Types

SuperBASIC requires FOR loops to have a floating point control variable.

SBASIC allows both floating point and integer control variables. Integer FOR loops

are more efficient than floating point for loops: particularly if the control variable is

to be used to index an array.

FOR i% = 0 to maxd%: array(i%) = array(i%) * 2: is preferred to

FOR i = 0 to maxd: array(i) = array(i) * 2: which is less efficient

N.B. the type is determined before the program is executed.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.8

In-Line Loops

Whereas SuperBASIC only allows a single structure to be defined "in-line",

SBASIC allows many loops (and other structures) to be nested in-line without

requiring END statements:

100 FOR i = 1 TO n: FOR j = 1 TO m: a(i,j) = a(i,j) + b(i,j)

The "NEXT Bug"

The "NEXT bug" reported in many articles about SuperBASIC, which many

people have asked to be fixed, has not been fixed. IT IS NOT A BUG. NEXT is

defined to fall through to the next statement when the loop is exhausted. It does

not go to the statement after the END FOR (which may not be present). If that is

what you wish to do, follow the NEXT by an EXIT.

Unnamed NEXT, EXIT and END Statements

Loop structures are "opened" with a FOR or REPeat statement and closed with

an END FOR or END REPeat statement. SuperBASIC requires all loop closing

statements as well as the intermediate NEXT and EXIT statements to identify the

loop to which they apply. SBASIC, on the other hand, will accept unnamed NEXT,

EXIT, END FOR and END REPeat statements. These are applied to the most recent

(innermost) unclosed loop structure.

100 FOR i = 1 TO 10

110 FOR j = 1 TO 10

120 IF a(i,j) < 0: EXIT implicitly EXIT j

130 sum = sum + a(i,j)

140 END FOR implicitly END FOR j, closes FOR j

150 IF sum < 100: NEXT loop j is closed, so this is NEXT i

160 PRINT i,sum

170 sum=0

180 END FOR implicitly END FOR i, closes FOR i

REPeat Loops

Whereas SuperBASIC requires all REPeat clauses to have a name, SBASIC

allows unnamed REPeats. These unnamed REPeats may be combined with with

unnamed NEXT, EXIT and END REpeat statements.

100 REPeat

110 a$ = INKEY$(-1)

120 IF a$ = ESC$: EXIT goes to 200 (outer loop)

130 IF a$ <> 'S': NEXT goes to 110 (outer loop)

130 REPeat

140 a$ = INKEY$(-1)

150 IF a$ = ESC$: EXIT goes to 180 (inner loop)

160 x$ = x$ & a$

170 END REPeat goes to 140 (inner loop)

180 IF LEN (x$) > 20: EXIT goes to 200 (outer loop)

190 END REPeat goes to 110 (outer loop)

200 PRINT 'DONE'

Error! Bookmark not defined.

15 December 2016 SMSQ/E.9

Multiple Index Lists and String Slicing

For various reasons SBASIC does not support multiple index lists.

100 DIM a(10,10,10)

110 a(3,4)(5) = 345 OK for SuperBASIC, SBASIC will not handle this

120 a(3,4,5) = 345 Means the same, is easier to type and SBASIC likes it

To make up for this limitation, SBASIC allows you to slice strings at any point

in an expression.

200 a$ = 2468 (3) Sets a$ to '6' in SBASIC, prohibited in SuperBASIC

210 ax=1234

220 a$ = ('abcdef' & ax) (5 to 8) Sets a$ to 'ef12' in SBASIC

230 b$ = 'abcdefghi'

240 a$ = b$(2 TO 7)(3 TO 5)(2) Sets a$ to ''d' in either SBASIC or SuperBASIC

Also, in SBASIC, the default range for a string or element of a string array is

always (1 TO LEN(string)) and zero length slices are accepted at both ends of a

string (i.e. a$(1 to 0) or a$(LEN(string)+1 TO LEN(string)) are both null strings).

Writing Compiler Compatible Programs

SuperBASIC programs which are written in such a way as to be used both

compiled and interpreted by SuperBASIC often have a small code fragment at the

start to allow for the differences in compiled and interpreted environments.

The problem is not that SBASIC is "incompatible" with these code fragments

but that SBASIC is compatible with SuperBASIC in a way which the two "compiled"

SuperBASICs are not. The simplest way to avoid these problems is to give up using

compiled BASIC and remove the junk from your programs. If, on the other hand,

you wish to continue using compiled BASIC and also wish to use these programs in

SBASIC daughter jobs, you may require some code changes.

There are three principal differences between the SuperBASIC environment

and the Liberator and Turbo environments.

1. When executing in compiled form, the program will probably not be

requiring windows #0, #1 and #2 in the same form as when it is being

interpreted by SuperBASIC. In particular:

 channel #0 (the command channel) may not be required at in the

compiled version, but it is essential to keep it open in the SuperBASIC

version otherwise no commands can ever be given again.;

 a compiled program may be started with no windows open, a program

interpreted by SuperBASIC will (usually) start with windows #0, #1

and #2 open.

 This distinction is not so much a difference between compiled and not

compiled, but is a difference between interpreting a program within the

permanent SuperBASIC interpreter and executing a transient program.

2. An interpreted program may be interrupted and rerun (so that the starting

state may be different each time), while a compiled program will always

start "clean" (always having the same starting state).

3. An interpreted program will report error messages to window #0 while

compiled programs have their own error message facilities.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.10

From the point of view of the last two differences, SBASIC is always much

closer to SuperBASIC than to a compiled BASIC. For the first (and most important

difference) SBASIC can behave either like a compiled BASIC or SuperBASIC.

 If SBASIC is started off with an SBASIC command, then SBASIC behaves

like SuperBASIC: window #0 (at least) is open.

 If SBASIC is started off with an EX (etc.) command or from a HOTKEY or

QPAC2 EXEC menu, then SBASIC behaves more like a compiled program:

there are no windows open by default and window #0 is not required.

Unfortunately, the code that usually appears at the start of these compatible

programs does not distinguish between compiled and interpreted environments, but

between job 0 and other jobs.

100 IF JOB$(-1)<>'' :REMark is it a named job (NOT SuperBASIC)

110 CLOSE #0,#2 :REMark close spare windows in case

120 OPEN #1,con_512x256a0x0 :REMark our #1

130 ELSE

140 WINDOW 512,256,0,0 :REMark for SuperBASIC, just set #1

150 END IF

160 CLS

When used in an SBASIC daughter job, this will treat SBASIC as compiled

whereas it should possibly be treated as interpreted as SBASIC programs can be re-

run.

The problem cannot be resolved by using a function to distinguish between

compiled, SuperBASIC and SBASIC, as there is no such function in SuperBASIC

and it cannot be assumed that a suitable extension has been loaded.

SBASIC jobs are, however, always called SBASIC until the name is set by the

JOB_NAME command.

The best approach would be to have program start up code which is sensitive

to the environment and not having a different behaviour just because the job

number is 0 or the job has no name. This is however, not practical with the old QL

BASIC compilers.

The least bad solution may be to have a "four way switch" at the start of the

program.

100 my$ = 'myjob': j$ = JOB$(-1) :REMark set my assumed and real names

110 IF j$ = '' :REMark is it an unnamed job (SuperBASIC)?

120 do SuperBASIC or SBASIC job 0 fiddles

130 END IF

140 IF j$ = 'SBASIC' :REMark is it start of an SBASIC daughter?

150 do SBASIC daughter initialisation

160 job_name my$:REMark from now on it is a named job

170 j$ = '' :REMark no further action required

180 END IF

190 IF j$ = my$:REMark is it rerun an SBASIC daughter?

200 do SBASIC daughter re-initialisation

210 j$ = '' :REMark no further action required

220 END IF

230 IF j$ <> '' :REMark must be compiled!

240 do compiled BASIC initialisation

250 END IF

Within the initialisation code for SBASIC, the DEVTYPE function may be used

to determine whether a channel is open.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.11

This returns an integer value of which only the most significant (the sign bit)

and least significant two bits are set. To ensure future compatibility, nothing should

be assumed about the other bits.

The value returned will be negative if there is no channel open. Otherwise bit 0

indicates that it will support window operations (i.e. it is a screen device), bit 1

indicates that it will support file positioning operations (i.e. it is a file).

100 a% = DEVTYPE (#3) :REMark find the type of device open as #3

110 IF a% < 0: PRINT '#3 not open' :REMark negative is not open

120 SELECT ON a% && %11 :REMark ensure we only look at bits 0 and 1

130 = 0: PRINT '#3 is a purely serial device'

140 = 1: PRINT '#3 is a windowing device'

150 = 2: PRINT '#3 is a direct access (filing system) device'

160 = 3: PRINT '#3 is totally screwed up'

170 END SELECT

Error Reporting and Statement Numbering

SBASIC will, usually, report error in the form:

At line 250:3 end of file

The number after the colon is the statement number within the line.

N.B. SBASIC generates a small number of additional statements (jumps round

DEF PROCs, jumps to END SELect before each ON and END statements on inline

clauses) which are not visible in the SBASIC program. If you like piling up

structures and statements into a single line, you may find that the statement

number in the error report is larger than you would expect!

Error! Bookmark not defined.

15 December 2016 SMSQ/E.12

Extended SuperBASIC Commands and Functions

LOAD, LRUN, MERGE and MRUN

LOAD, LRUN, MERGE and MRUN have been extended to accept Liberation

Software's _SAV file format. In addition, if the filename supplied is not found,

SBASIC will try first with _BAS and then _SAV added to the end of the filename.

SAVE and SAVE_O

If no filename is given, the name of the file that was originally loaded will be

used (if necessary substituting _BAS for _SAV at the end). The file will be saved with

a version number one higher that the file version when it was LOADed. (Repeated

SAVEs do not, therefore, keep on incrementing the version number).

If a filename is given, the version number is sert to 1.

QLOAD and QLRUN

The extension of the SBASIC LOAD command makes the real QLOAD and

QLRUN commands (which require a copy or near copy of QDOS ROMs to function

at all) nearly redundant. QLOAD and QLRUN are implemented in SBASIC as

versions of LOAD and LRUN that ensure that there is a _SAV at the end of the

filename.

QMERGE, QMRUN, QSAVE and QSAVE_O

These are versions of MERGE, MRUN, SAVE and SAVE_O which work with

_SAV files.

If there are 4 SBASIC programs in the data default directory in called FRED,

JOE, ANNE and CLARA with either _BAS or _SAV at the end of the names.

FRED

JOE_BAS

ANNE_SAV

CLARA_BAS

CLARA_SAV

QLOAD fred Fails as there is no FRED_SAV

LOAD fred Loads FRED

SAVE Saves the program as FRED

QSAVE Saves the program as FRED_SAV (quickload format)

SAVE junk_bas Saves the program as JUNK_BAS

QSAVE Saves the program as JUNK_SAV (quickload format)

MERGE joe Merges the file JOE_BAS into the program

MERGE anne Quick merges the file ANNE_SAV into the program

SAVE Saves it as JUNK_BAS (MERGE does not change the name)

LOAD clara_bas Loads CLARA_BAS

QLOAD clara Quick loads CLARA_SAV

LOAD clara_sav Also quick loads CLARA_SAV

Error! Bookmark not defined.

15 December 2016 SMSQ/E.13

LBYTES
SBYTES SBYTES_O
SEXEC SEXEC_O

All accept a channel number in place of a name. This can improve efficiency.

nc = FOPIN ('file') Open file once only

base = ALCHP (FLEN(#nc)) . . . to allocate bit of heap

fdt = FUPDT (#nc) . . . get the update date

LBYTES #nc,base . . . and load it

CLOSE #nc

EPROM_LOAD

The EPROM_LOAD (filename) command is a special trick for loading the image

of a QL EPROM cartridge. Most EPROM cartridges are programmed so that the

cartridge may be at any address. Some require to be at exactly $C000, the QL ROM

port address. The first time the command is used after reset, the EPROM image will

be loaded at address $C000. Subsequent images may be loaded at any address.

Fussy EPROM images must, therefore, be loaded first. An EPROM image file must

not be longer than 16 kilobytes.

To make an EPROM image, put the EPROM cartridge (for example the

Prospero PRL cartridge) into your QL and turn on. SBYTES the image to a suitable

file with the magic numbers 49152 ($C000) for the base address and 16384 (16

kilobytes) for the length.

SBYTES flp1_prl, 49152, 16384 Save Prospero PRL image

On your SMSQ machine copy the file to your boot diskette or disk and add the

EPROM_LOAD statement to your "boot" file.

EPROM_LOAD flp1_prl Load Prospero PRL image

QL Based Hardware

SMSQ on QL based hardware recognises plug-in ROM cartridges and copies

them fast memory when the system is booted. EPROM_LOAD can still be used,

however, to load ROM images. If the ROM slot is vacant, then the first EPROM load

will load to the QL ROM Port address. Otherwise, all EPROM images will be loaded

to arbitrary addresses.

PEEK$ POKE$

PEEK$ (address, number of bytes) returns a string with the number of bytes

starting from address. The bytes need not, of course, be text.

POKE$ (address, string) pokes the bytes of the string starting from the

address.

PEEK$ and POKE$ can be used for copying memory.

a$ = peek$ (base1,1000) Peek 1000 bytes from address base1

poke$ base2,a$. . . and poke them back to base2

PEEK$ and POKE$ can accept all the extended addressing facilities of PEEK

and POKE. Indeed, POKE$ is identical to POKE which can now accept string

parameters.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.14

PEEK PEEK_W PEEK_L
POKE POKE_W POKE_L

The standard PEEK functions and POKE procedures have been extended to

provide compatibility with the Minerva versions. There are three main changes.

1. The address may be specified relative to the base of the system variables

or the (current) SBASIC variables.

2. The contents of the memory at the address may itself be used as a base

address with a second value providing an offset for this address.

3. More than one value may be POKEd at a time.

 For POKE_W and POKE_L, the address may be followed by a number

of values to poke in succession.

 For POKE the address may be followed by a number of values to poke

in succession and the list of values may include strings. If a string is

given, all the bytes in the string are POKEd in order. The length is not

POKEd.

Absolute PEEK, POKE

The standard forms of PEEK and POKE are supported even though the use of

PEEK and POKE is best regarded as a form of terrorism.

a=RESPR (2000)

LBYTES myfile,a Load myfile

PRINT PEEK (a), Prints the value of the byte of myfile

POKE_L a+28, DATE,0 Set the 28th to 35th bytes to the DATE (4 bytes) and 4 zeros

POKE a+8, 0,6,'My_Job' Set the standard string (word length followed by the chars)

Peeking and Poking in the System Variables

If the first parameter of the peek or poke is preceded by an exclamation mark,

then the address of the peek or poke is in the system variables or referenced via the

system variables. There are two variations: direct and indirect references.

 For direct references, the exclamation mark is followed by another

exclamation mark and a an offset within the system variables.

 For indirect references, the exclamation mark is followed by the offset of a

pointer within the system variables, another exclamation mark and an

offset from that pointer.

ramt = PEEK_L (!!$20) Find the top of RAM $20 bytes on from the base of sysvars

POKE_W !!$8e,3 Set the auto-repeat speed to 3

job1 = PEEK_L (!$68!4) Find the base address of Job 1 (4 on from base of Job table)

POKE !$B0!2, 'WIN' change the first three characters of DATA_USE to WIN

There is slightly more parameter checking than in the Minerva versions.

Nevertheless, errors and deliberate abuse are not likely to be detected and may have

different effects on SMSQ and Minerva.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.15

Peeking and Poking in the SBASIC Variables

If the first parameter of the peek or poke is preceded by an backslash, then the

address of the peek or poke is in the SBASIC variables or referenced via the SBASIC

variables. There are two variations: direct and indirect references.

 For direct references, the backslash is followed by another backslash and

an offset within the SBASIC variables.

 For indirect references, the backslash is followed by the offset of a pointer

within the SBASIC variables, another backslash and an offset from that

pointer.

dal = PEEK_W (\\$94) Find the current data line number

n6 = PEEK_W (\$18\2+6*8) Find the name pointer for the 6th name in the name table

nl6 = PEEK (\$20\n6) . . . and the length of the name

n6$ = PEEK$ (\$20\n6+1, nl6) . . . and the name itself.

INSTR

The INSTR operator of SuperBASIC assumes that character strings are being

compared and it ignores the case of the characters. It is often useful to use strings

to hold data other than characters, and even if the strings contain characters it

may be useful to perform a search which requires the case of the characters to

match.

SBASIC allows both case independent (SUPERBASIC compatible) and case

independent INSTR operations. To maintain compatibility, SBASIC does not

introduce a new operator which could cause chaos if the program were to be

compiled, but introduces a command to switch the operation of INSTR.

INSTR_CASE 0 From now on INSTR is SuperBASIC compatible

INSTR_CASE 1 From now on INSTR does direct byte by byte comparisons

The internal INSTR_CASE flag is cleared on NEW, LOAD, MERGE and RUN.

SCR_BASE SCR_LLEN

The SCR_BASE (channel) and SCR_LLEN (channel) functions are provided for

those who wish to start peeking and poking in the display. They return the base

address of the screen and the line length (in bytes). The channel numbers are

optional (default is #0), and, in current versions, the values returned are the same

for all screen channels.

SCR_XLIM SCR_YLIM

The SCR_XLIM (channel) and SCR_YLIM (channel) return the maximum pixel

(+1) for the channel. In current versions, this is the screen size. #0 is the default

channel.

ssz = SCR_LLEN * SCR_YLIM Screen size is number of lines * line length in bytes

SBYTES s1, SCR_BASE, ssz . . . so we can save the screen

WINDOW SCR_XLIM,SCR_YLIM,0,0 Set window (#1) to cover the whole of the screen

BPUT BGET

BPUT will accept string parameters to put multiple bytes. BGET will accept a

parameter that is a sub-string of a string array to get multiple bytes.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.16

BPUT #3,27,'R1' Put ESC R 1 to channel #3

DIM a$(10): BGET #3, a$(1 to 6) Get 6 bytes from #3 into a$

ATAN

The ATAN function has been extended to provide 4 quadrant result by taking

two parameters. If x is greater than 0, ATAN (x,y) give the same results as

ATAN (y/x). Otherwise it returns values in the other quadrants (>/2 and <-/2).

PROT_DATE

Where the system has a separate battery backed real time clock. The date is

read from the clock when the system is reset. Thereafter, the clock is kept up to

date by the SMSQ timer. (Thus the impressive speed gains made by some

accelerator software: slowing the clock down by disabling interrupts can do

wonders for your benchmark timings).

In general, the system real time clock is updated whenever you adjust or set

the date. As some QL software writers could not resist the tempation of setting the

date to their birthday (or other inconvenient date) this can play havok with your file

date stamps etc.

PROT_DATE (0 or 1) is used to protect (1) or unprotect (0) the real time clock.

If the real time clock is protected, setting the date affects only SMSQ's own clock,

the real time will be restored then next time the computer is reset.

PROT_DATE 1 protect the RTC (should never be required)

PROT_DATE 0 unprotect the RTC (normal)

VER$

The VER$ function has been extended to take an (optional, Minerva

compatible) parameter. If it is non zero, information is taken from the OS call for

system information. Otherwise, the normal SBASIC version (HBx) is returned.

PRINT ver$ prints HBA (or later SBASIC version ID)

PRINT ver$(0) also prints HBA (or later SBASIC version ID)

PRINT ver$(1) prints 2.22 (or later SMSQ version number)

With a negative parameter, VER$ does not return a version at all, but returns

a fairly arbitrary choice of information.

PRINT ver$(-1) prints the Job ID (0 for initial SBASIC)

PRINT ver$(-2) prints the address of the system variables (163840), WHY?

Error! Bookmark not defined.

15 December 2016 SMSQ/E.17

Multiple Copies of SBASIC

There never was much problem getting multiple copies of SuperBASIC to run

under QDOS. There is even less of a problem getting multiple copies of SBASIC to

run under SMS. The problem was always what to do with the windows.

SBASIC has four distinct forms.

1. Job 0 is the "guardian" of SBASIC extensions, permanent memory

allocation and channel 0.

2. SBASIC "daughter jobs" may be created with the SBASIC command. These

may be created with the same set of 3 windows as the initial Job 0

windows. Alternatively, they may be created with a single channel #0 or

even no windows open at all.

3. SBASIC source files (ending in _bas) may be executed by EX, EXEC, EW,

EXEC_W.

4. SBASIC may be invoked as a Thing which may either operate within the

context of an invoking Job, or, once set up, operate as an independent

daughter Job.

SBASIC Daughter Jobs

Having a number of SBASIC jobs which completely cover each other may not

be very useful. SBASIC daughter jobs may, therefore, either be created either with

the full set of standard windows (in which case they all overlap) or they may be

created with only one small window (#0).

The SBASIC command, which creates SBASIC daughter jobs, has an optional

parameter: the x and y positions of window #0 in a one or two digit number (or

string).

 If no parameter is given, the full set of standard windows will be opened.

 Otherwise, only window #0 will be opened: 6 rows high and 42 mode 4

characters wide within a 1 pixel wide border (total 62x256 pixels).

 If only one digit is given, this is the SBASIC "row" number: row 0 is at

the top, row 1 starts at screen line 64, row 4 is just below the

standard window #0.

 If two digits are given, this is the SBASIC "column, row" (x,y) position:

column 0 is at the left, column 1 starts at 256 pixel in from the left.

SBASIC create an SBASIC daughter with the 3 standard windows

SBASIC 1 create an SBASIC daughter with just channel #0 in row 1

SBASIC 24 create an SBASIC daughter to the right of and below the

 standard windows (a 800x600 display is required)

Because it is quite normal for an SBASIC job to have only #0 open, all the

standard commands which default to window #1 (PRINT, CLS etc.) or window #2

(ED, LIST etc.) will default to window #0 if channel #1 or channel #2 is not open.

This may not apply to extension commands.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.18

If you have a screen larger than 512x256 pixels, it is useful to be able to re-

position the SBASIC windows. The TK2 WMON and WTV commands have been

extended to take an extra pair of parameters: the pixel position of the top left hand

corner of the windows. If only one extra parameter is given, this is taken to be both

the x and y pixel positions.

WMON 4,50 reset windows to standard monitor layout displaced 50 pixels

 to the right and 50 pixels down.

If the mode is omitted, the mode is not changed, and, if possible, the contents

are preserved and the outline (if defined) is moved.

WMON ,80.40 reset windows to standard monitor layout displaced 80 pixels

 to the right and 40 pixels down, preserving the contents

A border has been added to window #0 to make it clearer where an SBASIC

Job is on the screen.

JOB_NAME

The procedure JOB_NAME (job name) can be used to give a name to an

SBASIC Job. It may appear anywhere within a program and may be used to reset

the name whenever required. This command has no effect on compiled BASIC

programs or Job 0.

JOB_NAME Killer sets the Job name to "Killer"

JOB_NAME "My little Job" sets the Job name to "My little Job"

Executing SBASIC Programs

SBASIC program files (ending in _BAS, _bas, _SAV or _sav) may be executed

using the EX (EXEC) and EW (EXEC_W) commands.

EX my_little_prog_bas executes the SBASIC program "my_little_prog_bas"

Just as for "executable" programs, if file or device names (or channels) are

given after the program name, the first file device or channel will be #0 within the

program, the second will be #1 etc.

A simple program for "uppercasing" could be

100 JOB_NAME UC

110 REPeat

120 IF EOF(#0): QUIT

130 BGET #0,a%

140 SELect ON a% = 97 to 122: BPUT #1, a% ^^ 32: = REMAINDER BPUT #1, a%

150 END REPeat

Saved as "uc_bas", this can be used for printing a file in upper case:

EX uc_bas, any_file, par

It can also be used as a filter to uppercase the output of any program sending

its output to the "standard output".

EX my_prog TO uc_bas, par

The command QUIT should be used to get rid of an SBASIC job whether it has

been created by the SBASIC command, EX or any other means.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.19

Channel #0

There are some oddities in the handling of channel #0 which have been

introduced to make the use of SBASIC a little easier.

 On normal completion of a program, if #0 is not open. SBASIC will die

naturally. If #0 is open, SBASIC will wait for a command.

 In case of error, if #0 is not open, a default window #0 will be opened for

the error message.

 Likewise, if an operation is requested on a default channel (#0, #1 or #2)

and neither the default channel nor #0 are open, a default window #0 will

be opened for the operation.

SBASIC and Resident Extensions.

Resident extensions linked into Job 0 (the initial SBASIC) are available to all

SBASIC jobs. If extension procedures and functions are linked into other SBASIC

Jobs (using LRESPR), they are local to those Jobs and will be removed when the

Jobs die or are removed.

Note that, because of this feature, LRESPR cannot be used from a Job, other

than Job 0, to load files which include system extensions (i.e. MENU_REXT, QTYP

etc.).

SBASIC Executable Thing

The SBASIC executable Thing is called "SBASIC". The provision of an SBASIC

executable Thing enables the diehard QDOS fanatic to go well beyond the facilities

provided by the SBASIC and EX commands. Depending on how it is invoked,

SBASIC can execute independantly of the invoking program, or it may take its

channels and program from the invoking program.

On being invoked, SBASIC expects to find some channel IDs and a string on

the stack (standard QDOS conventions). Because, however, SBASIC requires some

BASIC source code in order to be able to execute, the treatment these channel IDs

and the string on the stack are slightly unconventional.

 If SBASIC is invoked without any channel IDs on the stack, SBASIC will

behave either as a normal SBASIC interpreter, with the standard set of

windows, or as an interpreter with no windows initially opened.

 If the string on the stack is null, the standard set of windows is

opened and SBASIC waits for a command.

 (This is what happens when you give an SBASIC command without

parameters or when you start SBASIC from the QPAC2 EXEC menu

without a command string.)

 If the string on the stack is not null, no windows are opened and the

string is treated as a command line.

 (This is what happens when you start SBASIC from the QPAC2 EXEC

menu after specifying a command string.)

 If there are one or more channel IDs on the stack, SBASIC will normally

treat the first ID as the SBASIC program source file, the next ID as

channel #0, the next ID as channel #1 and so on. The string defines the

initial value of the cmd$ variable within the SBASIC program.

 (This is what happens when EX executes an SBASIC program.)

Error! Bookmark not defined.

15 December 2016 SMSQ/E.20

 There is a special "trick" for setting up an SBASIC program with just

window #0 open. The x,y coordinates of the top left hand corner of the

required window #0 are complemented and put on the stack in place of a

channel ID.

 If there is only one channel ID on the stack, and this is a "false" ID (i.e.

the ID is negative), a 6 line by 42 column channel #0 is opened with

the origin at NOT the MSW (x) and NOT the LSW (y) of the false ID. The

string is treated as a command line.

 (This is what happens when you give a SBASIC command specifying

the position of window #0.)

 If there are two channel IDs on the stack and the second is a "false"

ID, first is used as the SBASIC program source file and the second ID

is used to define window #0. The string defines the initial value of the

cmd$ variable.

 (This could be useful.)

The SBASIC Interface Things

Two interface Things are provided for the interface to the SBASIC extension

which are compatible with two of the established executable program interfaces.

The first is called "SBAS/QD" which provides a QD5 compatible F10 interface

(Jochen Merz). The second is a "FileInfo" Thing (Wolgang Lenerz) which recognises

and executes files starting with _sav or _bas.

If QD (version 5 or later) is configured to use the SBAS/QD thing, then you

can create (line numbered or unnumbered) SBASIC programs with QD and execute

them by pressing F10 (shift F5). QD may be temporarily configured to do this by

executing it with the appropriate command string.

EX QD;'\T SBAS/QD' Execute QD using SBAS/QD Thing

The FileInfo Thing is used by the QPAC2 Files Menu (amongst others) to

determine how to "Execute" a file. With the default FileInfo Thing incorporated into

SMSQ, files ending with _sav or _bas may be executed directly from the Files menu

and any other utility program which uses the FileInfo Thing.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.21

Input Line Editing

The range of standard input line editing keystrokes is now much wider. and

has been made consistent for INPUT, ED and the Window Manager. The move to

start of word and delete start of word have been made reasonably intelligent and are

particularly useful for editing filenames (QPAC2 Files) and SBASIC source (ED).

Key With Operation

 move left one character

 move right one character

TAB SHIFT move left eight characters

TAB move right eight characters

 SHIFT move left one word

 SHIFT move right one word

 ALT move to start of line

 ALT move to end of line

 CTRL delete left one character

 CTRL delete right one character

 CTRL SHIFT delete left one word

 CTRL SHIFT delete right one word

 CTRL ALT delete to start of line

 CTRL ALT delete to end of line

 CTRL delete whole line

Some keyboards have Delete and Backspace keys.

Bspce delete left one character

Delete delete right one character

Bspce SHIFT delete left one word

Delete SHIFT delete right one word

Bspce ALT delete to start of line

Delete ALT delete to end of line

Language Facilities

SMSQ/E incorporates several language variations and extra variations may be

add "at run time".

Language Specification

A language may be specified either by an international dialling code or an

international car registration code. These codes may be modified by the addition of

a digit where a country has more than one language.

Language Code Car Registration Language and Country

33 F French (in France)

44 GB English (in England)

49 D German (in Germany)

Error! Bookmark not defined.

15 December 2016 SMSQ/E.22

Language Control Procedures

There is a set of procedures and functions which allow the language of the

messages, the keyboard layout and the printer translate tables to be set. Where a

language is to be specified, the parameter may be an integer value (the telephone

dialing code), a string (the car registration letters) a variable or expression which

yields an integer or string result, or a variable name.

It is not necessary for the car registration letters to be in upper case.

LANG_USE

The language of the messages is set by the LANG_USE lang command. This

sets the OS language word, and then scans the language dependent module list

selecting modules and filling in the message table.

LANGUAGE 33 set language to French

LANGUAGE D set language to German

LANGUAGE 'g'&'b' set language to English

WARNING: if you assign a value to a variable, then you will not be able to use

that variable name to specify the car registration letters.

D=33: LANGUAGE D set language to French (dialing code 33)

 rather than German (car registration D)

LANGUAGE LANGUAGE$

The LANGUAGE and LANGUAGE$ functions are used to find the currently set

language, or to find the language that would be used if a particular language were

requested. They can also be used to convert the language (dialing code) into car

registration and vice versa.

PRINT LANGUAGE the current language

PRINT LANGUAGE$ the car registration of the current language

PRINT LANGUAGE (F) the language corresponding to F

PRINT LANGUAGE$ (45) the car registration corresponding to 45

PRINT LANGUAGE (977) the language that would be used for Nepal

KBD_TABLE

The keyboard tables are selected by the KBD_TABLE lang command.

KBD_TABLE GB keyboard table set to English

KBD_TABLE 33 keyboard table set to French

Private keyboard tables may also be loaded.

i = RESPR (512): LBYTES "kt",i: KBD_TABLE i keyboard table set to table in "kt"

For compatibility with older drivers, a "private" keyboard table loaded in this

way should not be prefaced by flag word.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.23

TRA

The SBASIC TRA command differs very slightly in use from the QL JS and MG

TRA. The differences are quite deliberate and have been made to avoid the

unfortunate interactions between functions of setting the OS message table and

setting the printer translate tables. If you only wish to set the printer translate

tables, the only difference is that TRA 0 and TRA 1 merely activate and disactivate

the translate. They do not smash the pointer to the translate tables if you have

previously set it with a TRA address command.

If you wish to change the system message tables, then the best way is to

introduce a new language: this is done by LRESPRing suitable message tables.

Language dependent printer translate tables are selected by the TRA 1,lang

command. If no language code or car registration code is given, the currently

defined language is used.

Language independent translate tables are set by the TRA n command where n

is a small odd number.

Private translate tables are set by the TRA addr command where addr is the

address of a table with the special language code $4AFB.

TRA 0 translate off, table unchanged

TRA 0, 44 translate off, table set to English

TRA 0, F translate off, table set to French

TRA 1 translate on, table unchanged

TRA 1, GB translate on, table set to English

TRA 1, 33 translate on, table set to French

TRA 3 translate on, table set to IBM graphics

TRA 5 translate on, table set to GEM VDI

A = RESPR (512): LBYTES "tratab",A: TRA A translate on, table set to table in "tratab"

To use the language independent tables, your printer should be set to USA (to

ensure that you have all the # $ @ [] { } \ | ^ ~ symbols which tend to go missing if

you use one of the special country codes (thank you ANSI)), and select IBM graphics

or GEM character codes as appropriate.

For the IBM tables, QDOS codes $C0 to $DF are passed through directly and

QDOS codes $E0 to $EF are translated to $B0 to $BF to give you all the graphic

characters in the range $B0 to $DF. QDOS codes $F0 to $FF are passed though

directly to give access to the odd characters at the top of the IBM set.

For the GEM tables, QDOS codes $C0 to $FF are passed through directly.

SERIAL IO Devices

The range and number of serial IO devices depends on the hardware on which

SMSQ/E is being used. The interface to these devices is kept consistent.

SMSQ/E has serial (SER) and parallel (PAR) port drivers which are just about

recognisable as great-great-grandchildren of the QL SER driver. Output sent to any

serial or parallel port can be buffered dynamically (that is the output buffer is

allocated automatically and expanded as required. In addition, several channels

may be open to one output port at any time: the data is buffered and will be sent to

the port in the order in which the channels are opened.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.24

Any serial or parallel port can be referred to using the pseudonym PRT

(printer) and for compatibilty with ancient software, PAR ports can be referred to as

SER and vice versa.

Serial and Parallel Port Names

The serial and parallel ports are accessed through devices called SER, SRX,

STX or PAR with a variety of optional characters following the name.

SER n p f t c e Serial Port receive and transmit

SRX n p f t c e Serial Port receive only

STX n p f t c e Serial Port transmit only

PAR n t c e Parallel Port (transmit only)

PRT Printer Port (either SER or PAR)

Parameter Characteristic Possible Values Meaning

n port number 1, 2, 3 or 4

p parity O 7 bit + odd parity

 E 7 bit + even parity

 M 7 bit + mark=1

 S 7 bit + space=0

 default is none

f flow control H Hardware CTS/DTR

 I Ignore flow control

 X XON/XOFF

 default is H

t translate D Direct output

 T Translate

 default is use TRA setting

c <CR> R Raw, no effect

 C <CR> is end of line

 A <CR><LF> is end of line

 <CR><FF> is end of page

 default is R

e end of file F <FF> at end of file

 Z CTRL Z at end of file

 default none

Usually the only options that will be required are the "F" for form feed, the "D"

and "T" options for character translation and the "C" or "A" option for daisywheel

printers. If you are only going to use the SER port for output, it is better to use the

STX name as this will enable the serial input port to be used by another program.

OPEN_IN #3, SRX2X OPEN a channel to the serial port 2 receiver with XON/XOFF

COPY myfile TO PARF COPY myfile to parallel port and put a form feed at the end

Error! Bookmark not defined.

15 December 2016 SMSQ/E.25

Serial Port Control

In general, the serial port control commands require a port to be specified. If

no port number is given, SER1 is assumed.

Standard BAUD Command

The effect of the standard BAUD command depends on the history of the

hardware.

For the QL based versions, the baud rate is applied to both SER1 and SER2

as, historically, the baud rates for the two ports were generated by the

same hardware.

For the QXL, the standard BAUD command mimics the QL BAUD command.

For the Atari ST series, the baud rate only applies to SER1, which, historically,

was the only port available.

BAUD 4800 Set SER1 and SER2 to 4800 baud Gold Card / QXL

 Set SER1 to 4800 baud Atari ST / TT

Extended BAUD Command

Both the SuperBASIC BAUD command and the OS baud trap have been

extended to support independent baud rates for each serial port. The baud rates are

now calculated, which allows the use of non standard rates where this is supported

by the serial controller chip. The rate must, however, be a multiple of 10. If the

baud rate is specified as zero, the highest baud rate available is used.

BAUD 1,19200 Set SER1 to 19200 baud

BAUD 2,0 Set SER2 to 153600 baud

SER_FLOW

SER_FLOW (port number, H, X or I) specifies the flow control for the port:

"Hardware", "XON/XOFF" or "Ignored". It usually takes effect immediately. If,

however, the current flow is "Hardware" and handshake line CTS is negated and

there is a byte waiting to be transmitted, the change will not take effect until either

the handshake is asserted, or there is an output operation to that port.

The default flow control is hardware unless the port does not have any

handshake connections, in which case XON/XOFF is the default.

The flow control for a port is reset if a channel is opened to that port with a

specific handshaking (H, X or I) option.

SER_FLOW X XON/XOFF on SER1

SER_FLOW 2,H Hardware (default) handshaking on SER2

SER_ROOM

SER_ROOM (port number, spare room) specifies the minimum level for the

spare room in the input buffer. When the input buffer is filled beyond this level, the

handshake (hardware or XOFF as specified by SER_HAND) is negated to stop the

flow of data into the port. Some spare room is required to handle overruns (not all

operating systems can respond as quickly as SMSQ). For hardware handshaking, a

few spare bytes are all that is required. For connection to a dinosaur using

XON/XOFF handshaking, up to 1000 bytes spare may be required.

Error! Bookmark not defined.

15 December 2016 SMSQ/E.26

SER_FLOW 2,X: SER_ROOM 2,1000 Connect SER2 to a UNIX system

SER_FLOW 1,H: SER_ROOM 1,4 Hardware handshaking on SER1

SER_ROOM will not usually be required as SER_BUFF (see below) also sets

SER_ROOM to one quarter of the buffer size. You will not succeed in setting

SER_ROOM to greater than SER_BUFF, however, as SER_ROOM will always ensure

that the buffer is at least twice the size of the spare room.

SER_BUFF

SER_BUFF (port number, output buffer ,input buffer) specifies the output buffer

size and, optionally, the input buffer size. The output buffer should be at least 5

bytes to avoid confusion with the port number. If the output buffer is specified as

zero length, a dynamic buffer is used.

SER_BUFF 200 200 byte output buffer on SER1

SER_BUFF 4,0,80 dynamic output buffer, 80 byte input buffer on SER4

SER_CLEAR

SER_ABORT

SER_CLEAR (port number) and SER_ABORT (port number) clear the output

buffers of any closed channels to the port. Channel still open are not affected.

SER_ABORT also sends the "ABORTED" message to the port.

SER_ABORT 3 abort output to SER3

SER_CDEOF

SER_CDEOF (port number, ticks to eof) specifies a timeout from CD being

negated to the channel returning an end of file. The timeout should be at least 5

ticks to avoid confusion with the port number. If the timeout is zero, CD is ignored.

This command is ignored on the QXL and QL.

SER_USE

SER_USE (name) specifies a name for the serial ports. The name can be SER

or PAR. SER_USE is provided for compatibility, its use is not recommended.

SER_USE PAR From now on, when you open PAR, you open a serial port

SER_USE SER Sets you back to normal

SER_USE . . . as does this

Parallel Port Control

There are no implementations with more than one parallel port. Software

writer should not assume that this will always be true. In general, the parallel port

control commands allow a port to be specified in the same way as the serial port

commands.

PAR_BUFF

PAR_BUFF (port number, output buffer) specifies the output buffer size. The

output buffer should be at least 5 bytes to avoid confusion with the port number. If

the output buffer is specified as zero length, a dynamic buffer is used.

PAR_BUFF 200 200 byte output buffer on PAR

PAR_BUFF 0 dynamic output buffer on PAR

Error! Bookmark not defined.

15 December 2016 SMSQ/E.27

PAR_CLEAR

PAR_ABORT

PAR_CLEAR (port number) and PAR_ABORT (port number) clear the output

buffers of any closed channels to the port. Channel still open are not affected.

PAR_ABORT also sends the "ABORTED" message to the port.

PAR_ABORT abort output to PAR

PAR_USE

PAR_USE (name) specifies a name for the parallel ports. The name can be SER

or PAR. PAR_USE is provided for compatibility, its use is not recommended.

PAR_USE SER From now on, when you open SER, you open a parallel port

PAR_USE PAR Sets you back to normal

PAR_USE . . . as does this

PRT_USE

The PRT_USE (port name) command differs from the implementation in the old

QJUMP RAMPRT operating system extension included in QRAM and the GOLD card

and QXL card software. As all output ports incorporate dynamic buffering so an

"add-on" printer buffer is not required.

The SMSQ/E version of PRT_USE is identical to that of the Atari ST drivers for

QDOS. It merely specifies which port will be opened if you open the device PRT.

PRT_USE PAR

COPY fred to PRT COPY fred to PAR

PRT_USE SER4XA

OPEN #5,PRT OPEN a channel to SER4 with XON/XOFF and <CR><LF>

Virtual Devices

Virtual devices are not associated with any physical hardware. NUL devices

are complete dummy (very useful for benchmarking: SMSQ/E has one of the

fastest, if not the fastest, fully functional NUL device in the world). PIPEs and

HISTORY devices are buffers for storing information or passing it from one task to

another. The PIPE is double ended: what goes in one end, comes out the other in

the same order (FIFO - first in first out). The HISTORY device is single ended, what

goes in one end, comes out the same end in the reverse order (LIFO - last in first

out).

Error! Bookmark not defined.

15 December 2016 SMSQ/E.28

NUL Device

The NUL device may be used in place of a real device. The NUL device is

usually used to throw away unwanted output. It may, however, be used to provide

dummy input or to force a job to wait forever. There are five variations.

NULP waits (forever or until the specified timeout) on any input or output

operation.

NUL, NULF, NULZ and NULL ignore all output operations (the output is

thrown away).

NUL, NULF, NULZ and NULL return a zero size window in response to window

information requests. Pointer Information calls (IOP.PINF, IOP.RPTR)

return an invalid parameter error.

NUL is an output only device, all input operations return an invalid parameter

error.

NULF emulates a null file. Any attempt to read data from NULF will return an

End of File Error as will any file positioning operation. Reading the file

header will return 14 bytes of zero (no length, no type).

NULZ emulates a file filled with zeros. The file position can be set to anywhere.

Reading the file header will return 14 bytes of zero (no length, no type).

NULL emulates a file filled with null lines. The file appears to be full of the

newline character (10). The file position may be set to anywhere. Reading

the file header will return 14 bytes of zero (no length, no type).

PIPE Device

There are two variations on the PIPE driver: named and unnamed pipes. Both

of these are used to pass data from one program to another. Unnamed pipes cannot

be opened with the SBASIC OPEN commands but are opened automatically by the

EX and EW commands when these are required to set up a "production line" of

Jobs. Whereas, if a pipe is identified by a name, any number of Jobs (including

SBASIC) can open channels to it as either inputs or outputs.

If, using named pipes, matters become confused, then that is a problem to be

solved by the Jobs themselves. This is not as bad as it sounds. Unlike other

devices, named pipes transfer multiple byte strings atomically unless the pipe

allocated is too short to hold the messages. This means that provided the messages

are shorter than the pipe, many jobs can put messages into a named pipe and

many jobs can take messages out of a named pipe without the messages

themselves becoming scrambled.

If a PIPE is shared in this way, there are two simple ways of ensuring that the

messages are atomic. The first, using fixed length messages, if not available to

SBASIC programs. The second, using "lines" terminated by the newline character,

works perfectly. N.B. the standard PRINT command will not necessarily send a line

as a single string for each item output.

PRINT #3,a$ \ b$ Bad, sends 4 strings: the newline characters are separate

PRINT #3,a$ & CHR$ (10); Good, sends 1 string, including the newline

INPUT #4,b$ Good, reads a single line from the pipe

Named pipes should be opened with OPEN_NEW (FOP_NEW) for output and

OPEN_IN (FOP_IN) for input. A named pipe is created when there is an open call for

Error! Bookmark not defined.

15 December 2016 SMSQ/E.29

a named pipe which does not exist. It goes away when there are no longer any

channels open to it and it is has been emptied.

As well as the name, it is possible to specify a length for a named pipe. If the

pipe already exists, the length requested is ignored.

OPEN_NEW #4, PIPE_xp1 Open named output pipe of default length (1024 bytes)

OPEN_NEW #5, PIPE_frd_2048 Open named output pipe of length 2048 bytes

OPEN_IN #6, PIPE_xfr Open named input pipe

HISTORY Device

A HISTORY device is much simpler than a PIPE as it only has one end. It is

used to store a number of messages which may then be retrieved in reverse order:

when it becomes full, the oldest messages are thrown away. The messages in the

history are separated by newline characters.

There are two types of HISTORY devices: private and public. Private HISTORY

devices are for use within an particular application and may only have one channel

open to them. Public HISTORY devices are named and so may be accessed by many

applications at the same time, or at different times. A public HISTORY device may

even be used as a "mailbox".

A HISTORY device is opened by name, just like any other device. The name

includes starts with "HISTORY" which is, for a public HISTORY device, followed by

public name and then, optionally, the HISTORY device size. If no size is given,

1 kilobyte of message space is assumed. If a public HISTORY device already exists,

then the size is ignored.

HISTORY A private HISTORY, 1024 bytes total space

HISTORY_512 A private HISTORY, 512 bytes total space

HISTORY_thoughts A public HISTORY for thoughts

HISTORY_BOX_80 An 80 byte mailbox called BOX

Single character names should not be used: these are reserved as keys for

special variations which may be made available in the future.

HISTORY_U_FILES A public HISTORY with all entries unique????

Messages may be put into a HISTORY device by either using PUT or PRINT. If

PUT is used, a newline is added automatically. If the HISTORY devices becomes full,

the oldest message(s) are thrown away.

Messages may be taken out using GET or INPUT. But which message?

For a private HISTORY it is fairly simple. The first GET or INPUT after a

message has been put into the HISTORY with get the most recent message. The

next GET or INPUT with get the previous message until there are either no

messages left (in which case GET or INPUT return null strings) or another message

is put in. Note that GETting or INPUTting messages does not take them out of the

HISTORY.

OPEN #4, HISTORY_512 Open a private HISTORY device to hold 512 bytes

PRINT #4, msg1$ Put message into a private HISTORY

PUT #4, msg2$... but this also puts a message in.

INPUT #4, a$ Input msg2$ into a$

GET #4,b$ Get msg1$ into b$

Error! Bookmark not defined.

15 December 2016 SMSQ/E.30

For a public HISTORY, the channels are fairly independent. A channel being

used to read messages would continue to fetch messages in reverse order even if

new messages are being added through other channels. In order to get the most

recent message, a channel being used for read operations only needs to be able to

reset its internal message pointer. This is possible using the file positioning facility.

Usually the position will be set to 0 (the most recent message) but it may be set to

any (smallish) number.

GET #4\0, a$, b$ Get the most recent and next most recent messages

GET #4\4, x$ Get the fifth most recent message.

HISTORY has some of the characteristics of a filing system device. You can get

a directory of public HISTORY devices, you can VIEW a public HISTORY and you

can delete a delete a public HISTORY.

DIR HISTORY Get a list of public HISTORY devices

VIEW HISTORY_thoughts Have a look at my thoughts

DELETE HISTORY_thoughts . . . and get rid of them

DEV - A Virtual Filing System Device

DEV is a defaulting device that provides up to 8 default search paths to be

used when opening files. As it was designed to be dumped on top of QDOS it is not

very clean, but, equally, it is reasonably efficient.

Each DEV (DEV1 to DEV8) device is a pseudonym for a real filing system

device or directory on a filing system device.

Files on a DEV device can be OPENed used and DELETEd in the same way as

tey can on the real device.

DEV_USE

Each DEV device is defined using the DEV_USE (number, name, next) which

specifies the number of the DEV device, the real device or directory and the next

device in the chain.

DEV_USE 1, ram1_ DEV1_ is equivalent to ram1_

OPEN #3, dev1_f1 opens ram1_f1

DEV_USE 2, flp1_ex_ DEV2_ is equivalent to flp1_ex_

OPEN #3, dev2_f1 opens flp1_ex_f1

DEV_USE 3, win1_work_new DEV3_ is equivalent to win1_work_new

OPEN #3, dev3_f1 opens win1_work_newf1

DELETE dev3__junk deletes win1_work_new_junk

Note that, unlike the defaulting commands PROG_USE and DATA_USE, the

underscore at the end of the real device or directory is significant.

There is a neat variation on the DEV_USE call which enables you to to set up

default chains. If you put a "next" number at the end of the DEV_USE command,

this will be taken as the DEV to try if the open fails. This next DEV can also chain

to another DEV. You can even close the chain: the DEV driver will stop chaining

when it has tried all the DEVs in the chain.

DEV_USE 1, ram1_, 3 DEV1_ is equivalent to ram1_, next is DEV3

DEV_USE 2, flp1_ex_, 1 DEV2_ is equivalent to flp1_ex_, next is DEV1

DEV_USE 3, win1_work_, 2 DEV3_ is equivalent to win1_work_ next is DEV2

Error! Bookmark not defined.

15 December 2016 SMSQ/E.31

LOAD dev1_anne will try ram1_anne (DEV1)

 then win1_work_anne (DEV3)

 and finally flp1_ex_anne (DEV2)

LOAD dev2_anne will try flp1_ex_anne (DEV2)

 then ram1_anne (DEV1)

 and finally win1_work_ann (DEV3)

Note that DELETE only operates on the DEV specified: it does not chain.

A DEV default may be cleared by giving no name.

DEV_USE 2 clear definition for DEV2

DEV_LIST

DEV_LIST (channel) lists the currently defined DEVs in the specified channel

(default #1)

DEV_LIST lists the current DEVs in #1

DEV_LIST#2 lists the current DEVs in #2

DEV_USE$ DEV_NEXT

The DEV_USE$ (number) function returns the usage for the specified DEV.

The DEV_NEXT (number) function returns the next DEV after the specified DEV.

PRINT DEV_USE$(3) prints the usage for DEV3

PRINT DEV_NEXT(1) prints the next DEV in the chain after DEV1

Interaction between DATA_USE, PROG_USE and DEV.

If you are going to use the DEV defaults, it makes sense to set the DATA_USE

and PROG_USE defaults to use DEV, and when moving from directory to directory

change the DEV definition rather than the DATA_USE.

DATA_USE dev1_ data default directory is DEV1_

DEV_USE 1, flp2_myprogs_ . . . which is myprogs on FLP2

PROG_USE dev2_ programs from DEV2_

DEV_USE 2, flp1_ex_, 1 . . . which is flp1_ex or my data default!

