
I2C Interface for QL Emulators Part 1
Originally Published in QL Today, Vol 15, Issue 4, May-June 2011

One of the features that the Minerva II ROM provided for the original QL hardware
was the I2C I/O (Input/Output) interface. TF Services also supported this interface
with it’s own interface products for both parallel and analogue applications.

As always with my projects this is to give you ideas and the basics. This is not a
complete project in it’s own right with a real practical applications. I leave that up to
you. However in another article I plan to show you what you can do with an old Sony
radio to give it remote control. The techniques used can be used for other applications.
More on this, another day. Also this is all at your own risk. But do have fun playing.

What I hope to show you in this short series is how to implement the use of the I2C
interface using a QL Emulator such as QPC2. All the examples given have been
tested on QPC2. But there is no reason why this should not work with other
emulators. The only basic requirement is you need USB port on your computer.

Some of you may still have the original TF Services I2C interfaces, if you have, then
dig them out you can reuse these.

Now there is a way of recreating this interface using a product from ByVac. Their
BV4221 product provides a USB to I2C interface. This device appears as COM port
just like a RS232 converter that I have used in my previous projects published in OL
Today.

So back to the beginning, what is the I2C interface. This was an interface developed
by Phillips. It is a two wire (plus ground) system. One wire is used a clock (SCL) and
the second (SDA) as a bi directional data line. The computer, in our case a QL with a
Minerva II ROM or a QL Emulator such as QPC2 with a ByVac BV4221 converter
connected is the master station. This controls device(s) connected to it, which are
called slaves. Each connected device has it’s own address. So up to 254 devices can
be connected to an I2C bus. Theses can be such things as bi directional parallel ports,
analogue to digital converters, digital to analogue converters, RTC (Real Time
Clock), RAM(Random Access Memory) and digitally controlled potentiometers as
examples. These are most likely, the most useful to us.

Here is an example of how these signals look, and gives a little insight to the protocol
of the I2C system. More on this later.

The slave devices in most cases have up to 8 addresses available via 3 address
connections in the chips themselves. Each type of device has it’s own range of
addresses. So using for example PCF8574 parallel I/O IC, you can use eight of these,
in the address range 64 to 78 (Decimal), one device for each even address, I will come
back to the odd numbers later. In fact you can have a further eight devices connected
by using the PCF8574A device, which have the address range 112 to 126, again the

even numbers. There are exceptions, for example the DS1307 RTC(Real Time
Colock) device has only a single address. But it is unlikely that you would need more
than one real time clock. However if you did there is nothing to stop you using two
BV4221 converters on an emulator. Something you could not do with the original
Minerva II QL solution.

Now as I have pointed out above the addresses I have quoted are even numbers. The
reason for this is the 7 most significant bits are in fact the device address in the true
term. The least significant bit is used to define reading or writing to a device. The rule
being, even numbers are write addresses and odd numbers are read addresses. So for
example if we take PCF8574 with all address pins held low, the write address would
be 160 and the read address would be 161. See the address table. This show all the
addresses for all the devices featured in this series of articles.

I2C Interface
Addresses

Address Ranges Read Write

256x8 bit RAM
(PCF8570)1010000 161 160
1010001 163 162
1010010 165 164
1010011 167 166
1010100 169 168
1010101 171 170
1010110 173 172
1010111 175 174

Parallel (PCF8574)
0100000 65 64
0100001 67 66
0100010 69 68
0100011 71 70
0100100 73 72
0100101 74 74
0100110 75 76
0100111 76 78

Parallel (PCF8574A)
0111000 113 112
0111001 115 114
0111010 117 116
0111011 119 118
0111100 121 120
0111101 123 122
0111110 125 124
0111111 127 126

A/D and D/A
(PCF8591) 1001000 145 144
1001001 147 146
1001010 149 148
1001011 151 150
1001100 153 152
1001101 155 154
1001110 157 156

1001111 159 158

RTC [Real Time
Clock](DS1307)1101000 209 208

Digital Potentiometer
(DS1803)0101000 81 80
0101001 83 82
0101010 85 84
0101011 87 86
0101100 89 88
0101101 91 90
0101110 93 92
0101111 95 94

So that I hope gives you a basic idea if what I2C interfacing is. So now how to
implement this in practice.

I built myself a test board built on Vero Board, containing a PCF8574(A) parallel chip
with LED’s and switches to input and output to the chip. A PCF8591 AD and DA
chip, a DS1307 RTC(Real Time Clock and finally a PCF8570 RAM chip. You do not
have to build all of this if you don’t wish to. For the purposes of the series of articles I
have spilt this in to each chip in it’s own right.

I am going to start with the PCF8574(A) parallel chip.

The circuit shown above has the I2C parallel IC (PCF8574) shown at the top. This is
the heart of this circuit the rest are the LED’s and a driver (ULN2803A) and switches
to provide output indication and inputs. This is so you can fully experiment with this
device. The reason for using the ULN2803A driver is two fold. First, the output from
the PCF8574 could drive LED’s directly, but the LED and it resistor has to be from
+5V supply to the port this means when the output from the PCF8574 is high, that is a
“1” the LED will not light. So can get a bit confusing. The ULN2803A acts as an
inverter, so that when the port are high, the LED’s light. The second point is the
output current from the PCF8574 is limited, so if you want to drive relays for example
you need a driver for these as well. The ULN2803A also contains the back EMF
diodes so the device does not blow when the relay is released. If you are using relays
please take pin 10 of the ULN2803A to +5V this connects all the output diodes
together and provides the required protection.

All the ports are “pulled high” with the 10K resistors, so that the switches, when ‘on’,
pull the inputs low. It is best to start with the all the switches are off. You have to
ensure the PCF8574 outputs are high first. I will come back to this when we talk
about the software.

The three address lines, A0, A1 and A2 are also “pulled” high as well. The jumpers
pulling these low when required. You will see from the address table above this will
make address for the PCF8574 ‘78’ and for the PCF8574A ‘126’. If you wish to use
more than one of each device type on a I2C bus then you need to fit jumpers as
required. By using both PCF8574’s and PCF8574A’s you can have up to 128 I/O
lines on a single I2C bus. That is 8 x PCF8574’s providing 8 lines each and 8 x
PCF8574A’s again providing 8 lines each. That should be more than enough for most
applications.

As to construction, stripboard is fine for this, just remember the cut the tracks as
required on the reverse of the board. The photograph of my test board above should
help you with the layout of this and the wire jumpers to build the circuit. Just follow
the circuit diagram.

Main Parts list

Part Supplier Part Number Price each Total
BV4221-V2 ByVac BV4221-V2 £24.98 £24.98
PCF8574 RS

Components
517-0687 £1.31 (Come

in packs of
five)

£6.55

PCF8574A RS
Components

517-0249 £1.63 (Come
in packs of
five)

£8.15

ULN2803A RS
Components

714-1167 £0.42 (Come
in packs of
five)

£2.10

8 x 470R
Resistor

Maplin M470R 25p £2.00

11 x 10K
Resistor

Maplin M10K 25P £2.50

8 x LED’s Maplin CJ58N 54P £4.32
Stripboard Maplin JP51F £5.29 £5,29

You may wish to use IC sockets, which is not a bad idea, also you will need wire for
the links etc. The BV4221-V2 is the most up to date version of the USB to I2C
converter it is not the same size as the version I used. The prices are correct at time of
writing, You may wish to find other suppliers that may be cheaper or do not have the
minimum order quantities.

One of the nice features of this project is that the power comes from the USB port of
your computer. However be careful not to load it too much. This simple test circuit is
fine. But care needs to be taken if more than 100mA of current is required, this can
cause problems and even damage to your computer. So if you think you will require
more power such as powering relays for example, then using a stand alone PSU is a
good idea. In this case, take the 5V wire from the BV4221 converter and connect your
5V PSU here.

For those not so happy with soldering there is a simpler way, depending on your
requirements. There is a range of pre built cards from ByVac, I have listed some of
the options below, but do please look at the ByVac’s web site for the most up to date
information since they are constantly updating and changing their products. I must
point out I have no connection with ByVac, I just use their products. There are others
in the market. So worth a search on the internet.

Test card with labels

Now the software

5 CLS
10 BAUD 115200
15 parallel=126:REMark PCF8574A address, all address links open
17 adda=158:REMark PCF8591 address, all address links open
20 OPEN#3;ser2ir:REMark i=ignor hardware handshake, r=raw data
30 PRINT#3;CHR$(13);:REMark Carriage Return to set the baud rate in the USB to
I2C converter, required on first pass to initialise USB to I2C converter.
40 print_reply
50 PRINT
60 PRINT#3;"V";CHR$(13);:REMark Command to USB to I2C coverter for
firmware version.
65 PRINT "Return USB Converter Version Number:-";
70 print_reply:REMark Prints version number reply from USB to I2C converter
80 PRINT#3;"D";CHR$(13);:REMark Sets USB to I2C coverter to receive decimal
numbers, default is hex numbers.
85 PRINT "Decimal Mode Selected"
90 print_reply
100 ledflash

110 ledcount
120 input_test
200 PRINT "End":CLOSE#3:STOP
210 :

1000 DEFine PROCedure print_reply
1010 REPeat loop
1020 a$=INKEY$(#3)
1030 b$=a$
1040 PRINT b$;
1050 IF a$=">" THEN EXIT loop
1060 END REPeat loop
1070 END DEFine print_reply
1080 :
1090 :
1100 DEFine PROCedure non_print_reply
1110 REPeat loop
1120 a$=INKEY$(#3)
1140 IF a$=">" THEN EXIT loop
1150 END REPeat loop
1160 END DEFine non_print_reply
1170 :
2000 DEFine PROCedure ledflash
2010 FOR a=1 TO 10
2020 PRINT#3;"s-";parallel;" 255 p";CHR$(13);:REMark s=start message to USB to
I2C converter, p=end of message to USB to I2C converter.
2030 PAUSE 25
2040 PRINT#3;"s-";parallel;" 0 p";CHR$(13);
2050 PAUSE 25
2060 NEXT a
2070 END DEFine ledflash
2080 :
3000 DEFine PROCedure ledcount
3010 FOR a=0 TO 255
3015 PRINT a
3020 PRINT#3;"s-";parallel;" ";a;"p";CHR$(13);
3025 print_reply
3030 PAUSE 25
3040 NEXT a
3050 END DEFine ledcount
3060 :
4000 DEFine PROCedure input_test
4010 REPeat input_loop
4020 PRINT#3;"s-";parallel;" 255 p";CHR$(13);:REMark need to ensure any lines
used as an input are set high.
4030 non_print_reply:REMark Stops printing the USB to I2C reply
4040 PRINT#3;"s-";parallel+1;" g p";CHR$(13);:REMark reads input data, note: the
need to add 1 to the address variable, this puts the I2C IS's into read data mode.
4050 print_reply:REMark prints both the address reply plus the data.
4060 IF INKEY$=" " THEN EXIT input_loop

4070 END REPeat input_loop
4080 END DEFine input_test
4090 :

The above routine test the parallel port, both the output and input features.
So if all is OK, run this program will return the firmware version of the USB to I2C
converter and then all the LED’s should start to flash. They will flash 10 times at 0.5s
interval’s. Then there is a binary count from 0 to 255, this tests all permutations of the
outputs. Then the final part of the program tests the input, just switch any or all of the
switches ‘on’ and the numbers change on screen.

This simple routine show how to use the protocol and who this works with the
PCF8574(A) chip.

Line 10 set the baud rate of the port to be used. This can be any where in the range
9600 to 115,200 baud in there standard increments.

Line 30 sends CR (carriage return) to the USB to I2C converter. The converter sees
this and it is this that set the baud rate automatically on the converter itself.

Line 60 sends the character “V” followed by a CR, all commands to the converter
require a CR at the end to tell the converter this string has ended.

Line 80 set the converter into ‘Decimal’ mode, default is ‘Hex’ mode. I change it to
decimal because it is easier to handle.

You will note that when the converter replies it returns the address of the first device
it sees. So for example “126>”. The reply routines are there to read these replies and
stop them filling up the COM input buffer. Also the data from read commands, will
be extracted from these replies as well.

You will see from the first diagram with the waveforms, that in the bit stream row the
line start with an “s” this is the start command. Which is then followed by the address
for the device we wish to control. If there is only one device then you need only send
the “s” command. However I feel it is good practice to send the address of the device
we wish to control, it saves rewriting thinks later if there are more devices added later.
So the start will look like “s-126(The Device Address)….

Now we can add the data we wish to send to the device. In this case make all the
output go ‘high’. “s-126 255 p”. So the “s” is the start as before followed by the
device address, then the number 255 which will set all the output ‘High then “s”
which is the “Stop Condition”. Don’t forget are CR at the end for it all to happen.

Now that sends commands to the device so who about reading data. This is were the
odd address number come in. Remember the address is the 7 MSB (Most Significant
Bits) but there are 8 bits. The LSB (Least Significant Bit) is the one that controls the
read/Write function of the I2C bus. So we just add “1” to the address to read data
from the chip. Hence the address is 126 to write to the device and 127 to read the
device. So the command now looks like this, “s-127 g p”. So what does the “g” mean
I hear you ask. It is the command to ‘Get’ data from the device. So I have just you
some basic ideas of the concepts involved so do read the BV4221 pdf for more details
on how to use the converter.

Next time we will look at the AD/DA, RTC and RAM chips and their use.

Some ByVac I2C products:-
BV4502 I2C 2 Relay
BV4627-B I2C 8 Relay
BV4236 I2C RTC and Temp
BV4237 I2C RTC, Temp and ADC
BV4506 I2C Keyboard Controller
BV700-B Small Black keypad for use with the above keyboard controller
BV4240 I2C Bus Extender
Range of display controllers, to many to list here, so please see ByVac’s web site.
www.byvac.com. The select ‘shop’, where you will find all the information on these
products.
(Please note, The software with this article was not design for these interfaces, so may
need adapting)

References

http://www.byvac.com/bv3/index.php?route=product/product&product_id=88
(Please note, I used the original V1 of the BV4221, ByVac now supply V2 which also
has a SPI interface. The commands are the same, so the programs listed in the article
should still work.)

http://www.byvac.com/bv3/index.php?route=product/category&path=44

PCF8570 Ram Data Sheet
http://www.nxp.com/documents/data_sheet/PCF8570.pdf

PCF8574(A) Data Sheet
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://focus.ti.com/lit/ds/symlink/pcf8574.pdf

PCF8591 Data Sheet
http://www.nxp.com/documents/data_sheet/PCF8591.pdf

DS1307 RTC (Real Time Clock)
http://datasheets.maxim-ic.com/en/ds/DS1307.pdf

DS1803 Digital Potentiometer Data Sheet
http://datasheets.maxim-ic.com/en/ds/DS1803.pdf

I2C Tutorials
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.i2c.byvac.com/ar_foundation.php

TF Services I2C manual
http://www.dilwyn.me.uk/docs/manuals/index.html

Advanced I2C information, but still worth a read to understand I2C protocols
http://www.nxp.com/documents/user_manual/UM10204.pdf

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.dilwyn.me.uk/docs/manuals/index.html
http://www.i2c.byvac.com/ar_foundation.php
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://datasheets.maxim-ic.com/en/ds/DS1803.pdf
http://datasheets.maxim-ic.com/en/ds/DS1307.pdf
http://www.nxp.com/documents/data_sheet/PCF8591.pdf
http://focus.ti.com/lit/ds/symlink/pcf8574.pdf
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://www.nxp.com/documents/data_sheet/PCF8570.pdf
http://www.byvac.com/bv3/index.php?route=product/category&path=44
http://www.byvac.com/bv3/index.php?route=product/product&product_id=88
http://www.byvac.com/

