
1

SMSQ/E

QDOS Compatible Operating System for the
Atari ST/STE/TT

Gold Card Family
Aurora

QXL
Q40/Q60

QPC
Q68

Manual Revision 1.06

Important - please read this first!

SMSQ/E

How to use this manual

This manual consists of a few different sections, depending on which
version(s) of SMSQ/E you own.

SMSQ/E

2

The first section applies to all versions of SMSQ/E: for the GoldCard and
SuperGoldCard, Aurora card, the ATARI versions, QXL and QXL 2 and also
for QPC. It describes all the new features compared to ordinary QDOS or
QDOS with Toolkit II and other extensions. You can skip this section and look
at it later, if you prefer to get SMSQ/E first. All features explained in here will
work in the various versions for the various systems.

Both the sources and compiled binaries of SMSQ/E for the various platforms
may be downloaded from the SMSQ/E Registrar’s website at
http://www.wlenerz.com/smsqe/

Now that SMSQ/E has been in existence for a while we have been able to
compile a 'Troubleshooter Guide' at the end of this section. This should
explain some of the more common problems encountered by users. It should
also tell you why things may not look how you expect them to and give hints
on how to make changes to the display. Please read through this section
before contacting your supplier about any problems you may experience.
There is a separate QPC 'Troubleshooting Guide' at the end of the QPC
section of the manual.

SMSQ/E for the GoldCard and SuperGoldCard

Go to this section if you are using SMSQ/E on a GoldCard or SuperGoldCard.
It explains how to add it to your normal BOOT file and all of the special
features that are specific to this hardware. If you want to get it going instantly
from a floppy disk copy, put the disk into FLP1_ and type

EXEC flp1_SMSQ_GOLD

Or if Toolkit 2 is active:

LRESPR flp1_SMSQ_GOLD

Note that if you use the version available from the SMSQ/E Registrar’s
website, the filename is now GoldCard.bin.

SMSQ/E for the Aurora

The version of SMSQ/E for the Aurora card supports a 256 colour (8-bit)
graphics mode where the Aurora card is used with a Super Gold Card. The

3

standard Gold Card version of SMSQ/E may also be used, although this would
not support the 256 colour modes.

The loading procedure is the same as for the Gold Card version, except that
the filename is AURORA.BIN if you use the binaries downloaded from the
SMSQ/E Registrar’s website.

SMSQ/E for the ATARI

To start SMSQ/E on the ATARI, insert the floppy disk and reset your system.
You can also copy the file SMSQ.PRG into an AUTO-folder on your harddisk
(your ATARI harddisk driver manual will explain how to do this).

The original SMSQ/E ATARI floppy disk has a special root sector which will
make sure that, when the floppy disk is inserted, it boots with the highest
priority. This section describes all of the extra features that are available on
the ATARI-version.

SMSQ/E for QXL and QXL 2

Go to this section to see how to start SMSQ/E on the QXL. The method of
doing this is the same as that used by the original SMSQ which was shipped
with the board and the extra features which are now available are all
described in this section.

SMSQ/E for QPC1

VERY IMPORTANT: QPC needs to be installed on your PC, or it requires you
to prepare a special DOS BOOT disk which boots up your PC with modified
versions of the files CONFIG.SYS and AUTOEXEC.BAT.

It is very important to read this section first and carefully follow the instructions
how to install QPC on DOS or WINDOWS 95.

If you run into problems, make sure you do exactly what is written there and
please check the special QPC troubleshooter at the end of the QPC section
too. Please note that as QPC1 is no longer developed, only a subset of the
commands described in this manual may be available.

4

SMSQ/E for QPC2

Double-click the QPC2-SETUP program - just follow the on-screen installation
step by step - it is very easy!

You can switch between other Windows applications and QPC2 by holding the
ALT key, then press TAB.

SMSQ/E for Q40

SMSQ/E is supplied as a file called Q40.rom for the Q40.

SMSQ/E for Q68

SMSQ/E for Q68 can be run in several forms. If a file called Q68_ROM.SYS is
present on the SDHC card, it will be loaded to the Q68 ROM emulation area
(this is called Booting From ROM Image in the Q68 manual). If a file called
Q68_RAM.SYS is present on the SDHC card, it will be loaded into RAM at an
address specified in the Q68 manual.

The third option is for a file called Q68_SMSQ.WIN to be present on the
SDHC card. the Q68 will at first check whether it contains a valid SMSQ/E
filesystem image. If successful, the Q68 will then look up the first file inside the
root directory of this SMSQ/E filesystem image then load the contents of this
“inner” file into RAM and booting continues as a RAM image.

For more information on the various ways you can run SMSQ/E on the Q68,
please refer to the Q68 manuals.

SMSQ/E for QemuLator

SMSQ/E for the emulator called QemuLator is not part of the standard
SMSQ/E distributions and is only available from the website of Daniele
Terdina (author of QemuLator), so no details included here.

SMSQ/E for SMSQmulator

5

SMSQmulator is an emulator of a machine that runs SMSQ/E. In that sense, it
is not part of the standard SMSQ/E distributions and is documented solely via
the manual for that emulator.

6

SMSQ/E Display

One of the many advantages of using SMSQ/E on the ATARI, AURORA, QXL,
Q40, Q60, Q68 and QPC is the control that it gives over the display. Many
users who are new to this system have been puzzled by the way that
SMSQ/E, when used at display sizes higher than the standard QL size of 512
x 256, appears in the top left hand corner of the screen. They assume that this
is the extent of the screen which is now available to them. The reason for this
is that SMSQ/E is displaying a standard three window QL display and the
sizes given to these windows are the same as those on a standard QL.

If you have set a display size of 800 x 600 these windows will leave 288 pixels
free in the horizontal plane and 344 pixels free in the vertical plane. This area
of the screen is not unavailable - it is available to any of the modern Pointer
driven programs and other programs such as Text 87, Master Spy (v 3.03)
and any other program that allows you to resize its windows.

If you want to open up the standard three window display to fill the available
screen area you should change your normal boot file to use different
parameters in the WINDOW commands. Full descriptions of these commands
can be found in the QL User Guide, Jan Jones' excellent SuperBasic book or
the Hyper Help system supplied by Jochen Merz.

As a rough guide you can multiply the parameters in line with the screen size
used in the following way :

 Standard QL Display New Display New Display
 512 x 256 640 x 480 1024 x 512

window #0 512,42,0,214 640,79,0,401
 1024,84,0,428
window #1 256,140,256,60 320,263,320,113
 512,280,512,120
window #2 256,140,0,60 320,263,0,113
 512,280,0,120

Once you have calculated your windows you can add the following lines to
your boot file (assuming a 640x480 display):

100 WINDOW#0,640,79,0,40
110 WINDOW#1,320,263,320,113
120 WINDOW#2,320,263,0,113

7

You can adjust the sizes as you wish but I have left a space at the top to
accommodate the button frame. This ensures that the button frame is always
active and not covered by the System screen. If you use the border
commands you may find you have to reduce the window sizes by a few pixels
in order to avoid an 'out of range' error.

The above procedure will give you larger Basic windows but programs such as
Quill, Archive, Abacus, Easel, Xchange, Perfection etc were written with the
old screen size of 512 x 256 coded into them and cannot be expanded.

Most current programs also have their font sizes coded into them as well so
there is very little that can be done to increase the size of the letters displayed
on the screen. The only current exceptions to this are ProWesS and Text 87
which do allow you to configure font sizes for display purposes.

The best advice is to try several different display sizes until you find the one
that fits both your eyesight and your monitor. Don't forget that you can alter
the display size without having to reset the computer by using the DISP_SIZE
command.

8

Contents

SMSQ/E ... 1

How to use this manual ... 1
SMSQ/E ... 1
SMSQ/E for the GoldCard and SuperGoldCard ... 2
SMSQ/E for the Aurora .. 2
SMSQ/E for the ATARI .. 3
SMSQ/E for QXL and QXL 2 ... 3
SMSQ/E for QPC1 ... 3
SMSQ/E for QPC2 ... 4
SMSQ/E for Q40 .. 4
SMSQ/E for Q68 .. 4
SMSQ/E for QemuLator ... 4
SMSQ/E for SMSQmulator .. 4

SMSQ/E Display ... 6

Contents ... 8

Introduction .. 24

New and Modified Facilities .. 24

SMSQ Performance ... 28
IO_PRIORITY .. 28
CACHE_ON CACHE_OFF .. 28
SLUG ... 29

Execution Wait Delay ... 29

SBASIC / SuperBASIC Language Differences ... 30
Hexadecimal and Binary Values .. 30
IF Clauses .. 30
SELect Clauses ... 30
WHEN ERRor .. 30
Loop Handling .. 31
FOR Loop Types.. 31
In-Line Loops ... 31
The "NEXT Bug" .. 31
Unnamed NEXT, EXIT and END Statements .. 31
REPeat Loops .. 32

9

Multiple Index Lists and String Slicing .. 32

Writing Compiler Compatible Programs .. 33
DEVTYPE .. 36

Error Reporting and Statement Numbering ... 36

Extended SuperBASIC Commands and Functions................................... 36
File Keywords .. 36

LOAD LRUN MERGE MRUN .. 37
SAVE SAVE_O ... 37
QLOAD QLRUN .. 37
QMERGE QMRUN QSAVE QSAVE_O .. 37
RESET ... 38
LBYTES SBYTES SBYTES_O SEXEC SEXEC_O 38
EPROM_LOAD .. 38

Peeking and Poking ... 39
PEEK$ POKE$... 39
PEEK PEEK_W PEEK_L PEEK_F .. 39
POKE POKE_W POKE_L POKE_F ... 39

Absolute PEEK, POKE .. 40
Peeking and Poking in the System Variables .. 40
Peeking and Poking in the SBASIC Variables ... 41
Screen Functions ... 41

SCR_BASE SCR_LLEN .. 41
SCR_XLIM SCR_YLIM .. 42

File I/O ... 42
BPUT BGET ... 42
WGET, WPUT, LGET, LPUT ... 42
HGET, HPUT ... 42
UPUT ... 43

Maths ... 43
ATAN ... 43

Date Keywords... 43
PROT_DATE ... 43
YEAR% MONTH% DAY% WEEKDAY% ... 44

VER$ Function ... 44
VER$... 44

INSTR and INSTR_CASE .. 45
INSTR_CASE .. 45

System Fonts ... 45
CHAR_DEF .. 45
CHAR_USE ... 46

10

Program Editing ... 46
ED .. 46

Command Line History .. 47
Stuffer Buffer .. 47

HOT_GETSTUFF$.. 47
Outlining ... 47

OUTLN ... 47
Job ID Function .. 48

JOBID .. 48
Suspend JOB Command ... 48

SUSJB ... 48
EX command extensions ... 48

FEX EXF ... 49
FET .. 49
FEW ... 49
FEP .. 49
EX_M FEX_M ... 50

Medium Information - DMEDIUM_xxx .. 50
DMEDIUM_NAME$... 50
DMEDIUM_DRIVE$... 50
DMEDIUM_RDONLY ... 51
DMEDIUM_REMOVE .. 51
DMEDIUM_DENSITY .. 51
DMEDIUM_FORMAT ... 51
DMEDIUM_TYPE .. 51
DMEDIUM_TOTAL DMEDIUM_FREE .. 51
EOFW .. 51

Print Formatting ... 51
PRINT_USING ... 51

Multiple Copies of SBASIC ... 53
SBASIC Daughter Jobs ... 53

SBASIC Command .. 54
WTV WMON ... 54
JOB_NAME.. 55

Executing SBASIC Programs... 55
Channel #0... 56

SBASIC and Resident Extensions ... 56
SBASIC Executable Thing ... 56
The SBASIC Interface Things .. 57
Terminate An SBASIC Program... 58

QUIT .. 58

11

Input Line Editing... 58

Language Facilities.. 59
Language Specification .. 59
Language Control Procedures ... 59

LANG_USE .. 60
LANGUAGE LANGUAGE$.. 60
KBD_TABLE .. 60
TRA .. 61

The Home Thing ... 62
HOME_xxx Extensions .. 62

HOME_DIR$.. 62
HOME_FILE$... 63
HOME_CURR$.. 63
HOME_DEF ... 63
HOME_VER$... 64
HOME_CSET ... 64
HOME_SET ... 64

The Recent Thing ... 65
Concepts .. 65
The lists ... 66
Job IDs ... 66
Buffers ... 67
The Thing Interface In Assembler .. 67
SBASIC Keywords ... 67

RCNT_INFO .. 68
RCNT_JOBS .. 69
RCNT_ADDF ... 70
RCNT_GFFA$... 70
RCNT_GFFJ$.. 70
RCNT_GALL .. 70
RCNT_GALJ .. 71
RCNT_GARR ... 72
RCNT_GARJ ... 73
RCNT_HASH$... 74
RCNT_SAVE ... 74
RCNT_LOAD ... 75
RCNT_REMV ... 76
RCNT_SYNC ... 76

Configuration.. 76
Performance penalty .. 76

12

Machine Type Functions .. 77
MACHINE .. 77
PROCESSOR .. 77

Display Extensions .. 78
DISP_xxx Keywords .. 78

DISP_BLANK ... 78
DISP_COLOUR ... 79
DISP_INVERSE ... 80
DISP_RATE ... 80
DISP_SIZE... 80
DISP_TYPE ... 81

Graphic Device Interface Version 2 .. 82
Limitations .. 82
Extended Colour SBASIC Procedures. .. 82
Wallpaper ... 83

BGCOLOUR_QL .. 83
BGCOLOUR_24 .. 83
BGIMAGE .. 83

Palette Maps .. 84
PALETTE_QL .. 84
PALETTE_8 ... 84

SBASIC Colour Definition Selection ... 86
COLOUR_QL ... 86
COLOUR_PAL ... 86
COLOUR_24 .. 86
COLOUR_NATIVE ... 86

Alpha Blending .. 87
ALPHA_BLEND ... 87

The System Palette and Window Manager 2 ... 87
Colours List .. 87
Colour Commands ... 89

WM_INK... 89
WM_PAPER .. 90
WM_STRIP .. 90
WM_BORDER ... 90
WM_BLOCK .. 90

System and Job Palette Handling .. 90
SP_RESET .. 91
SP_GETCOUNT .. 91

13

SP_GET ... 91
SP_SET ... 92
SP_JOBPAL .. 92
SP_JOBOWNPAL .. 92

Window Move .. 92
WM_MOVEMODE ... 93

Background drawing .. 94
PE_BGON PE_BGOFF... 94

Cursor Extensions ... 94
How to load a cursor sprite .. 94

CURSPRLOAD .. 94
How to use a sprite as cursor... 95

CURSPRON CURSPROFF .. 95
Load A Sprite And Set As System Sprite Number 95

SYSSPRLOAD ... 95

Common keyboard driver ... 96
CTRL-C Action ... 96

SERIAL IO Devices .. 97
Serial and Parallel Port Names .. 97
Serial Port Control .. 98
Standard BAUD Command .. 98

BAUD ... 98
Extended BAUD Command ... 99

SER_FLOW ... 99
SER_ROOM .. 99
SER_BUFF .. 100
SER_CLEAR SER_ABORT ... 100
SER_CDEOF ... 100
SER_USE .. 101

Parallel Port Control ... 101
PAR_BUFF .. 101
PAR_CLEAR PAR_ABORT ... 101
PAR_USE .. 101
PRT_USE .. 102

Virtual Devices ... 102
NUL Device .. 102
PIPE Device ... 103
HISTORY Device ... 104
DEV - A Virtual Filing System Device .. 106

14

DEV_USE .. 106
DEV_LIST .. 107
DEV_USE$ DEV_NEXT .. 107
Interaction between DATA_USE, PROG_USE and DEV 107
DEV_USEN.. 108

Directory Devices... 108
DOS disks .. 109

SMSQ/E Event Handling .. 110
Principles ... 110
SBASIC Implementation .. 110

WAIT_EVENT .. 110
SEND_EVENT, FSEND_EVENT ... 111

Utility Programs ... 111
DRVCHK and DRVLINK Hard Disk Utilities .. 111
SERNET V3 ... 112

xNET_STATION .. 114
xNET_STATION% ... 114
xNET_TEST% .. 114
xNET_START .. 114
xNET_STOP .. 114
xNET_BAD% ... 114
xNET_RETRIES% ... 114

SERNET via Modem .. 115
xNET_CONNECT% ... 116

SERNET File Protection .. 116
SERNET Batchfile Execution ... 116

SMSQ/E Troubleshooting .. 117
Hints on various extensions and files ... 121

SMSQ/E FOR ATARI ST AND TT .. 124

Introduction .. 124

Machine Type ... 124
MACHINE .. 124
PROCESSOR .. 124

Memory Protection .. 124

15

PROT_MEM ... 125
POKES POKES_W POKES_L POKES_F POKES$ 126
PEEKS PEEKS_W PEEKS_L PEEKS_F PEEKS$ 126

Atari ST and TT Displays ... 126
Display Type .. 126

DISP_TYPE ... 126
Monochrome Display ... 127

DISP_INVERSE ... 127
Colour Displays .. 127

DISP_SIZE... 127
DISP_RATE ... 128
DISP_BLANK ... 128

DISP_SIZE Experimenter .. 128

Serial (RS232) Ports on the Atari ST and TT Series 130
SER1 ... 130
SER2 ... 130
SER3 ... 130
SER4 ... 131

Atari ST Printer Port .. 131
PAR_PULSE .. 131

Atari ST and TT Hard Disks ... 131
ACSI and SCSI Drives ... 131
WIN Drive Numbers and Name.. 132

WIN_DRIVE ... 132
WIN_DRIVE$... 133
WIN_USE... 133

Handling ACSI Adapter Timing Faults ... 133
WIN_SLUG .. 133

Format WIN.. 134
WIN_FORMAT ... 134

WIN Control Commands .. 134
WIN_WP .. 135
WIN_START WIN_STOP... 135
WIN_REMV .. 135

Atari ST and TT Floppy Disks ... 135
Floppy Disk Driver Name ... 136

FLP_USE ... 136
Format FLP .. 136

16

FLP_DENSITY ... 136
FLP_TRACK .. 137

FLP Control Commands .. 137
FLP_SEC ... 137
FLP_START ... 137
FLP_STEP ... 137

Configuration ... 137

SMSQ/E FOR GOLD AND SUPER GOLD CARDS 139

Introduction .. 139

Loading SMSQ/E .. 139

Machine Type ... 139
MACHINE .. 139
PROCESSOR .. 140

GOLD Card Display.. 140
DISP_TYPE ... 140

Serial (RS232) Ports on the GOLD & Super GOLD Card 140
BAUD ... 140
STX .. 141
XON XOFF .. 141

SER_PAUSE ... 141

Super GOLD Card Printer Port ... 142

GOLD Card Floppy Disks .. 142
Floppy Disk Driver Name ... 142

FLP_USE ... 142
Format FLP .. 142

FLP_DENSITY ... 142
FLP_TRACK .. 143

FLP Control Commands .. 143
FLP_SEC ... 143
FLP_START ... 143
FLP_STEP ... 144

GOLD Card Microdrives .. 144

17

SER Mouse ... 144
Loading the driver .. 145
Function ... 145
Printer .. 145
Cable Connector .. 145
Focussing .. 147
Hermes .. 147
Configuration.. 148
Mouse Buttons ... 148
BASIC Commands ... 149

BAUDRATE% .. 149
BLS .. 149
SERMAWS .. 149
SERMCUR SERMPTR .. 150
SERMOFF ... 150
SERMON ... 150
SERMRESET ... 150
SERMSPEED .. 150
SERMWAIT .. 151

Configuration ... 151

SMSQ/E FOR THE AURORA .. 152

Introduction .. 152

Loading SMSQ/E .. 152

Machine Type ... 152
MACHINE .. 152
PROCESSOR .. 153

GOLD Card Display.. 153
DISP_TYPE ... 153
DISP_COLOUR ... 153
DISP_SIZE... 154

SMSQ/E FOR THE QXL... 155

Introduction .. 155

18

Loading SMSQ/E .. 155

Machine Type ... 155
MACHINE .. 156
PROCESSOR .. 156

QXL Display .. 156
DISP_TYPE ... 156
DISP_SIZE... 156

Serial (COM) Ports on the PC ... 156
BAUD ... 157

PC Printer Port ... 157

PC Floppy Disks .. 157
Floppy Disk Driver Name ... 157

FLP_USE ... 157
Format FLP .. 158
FLP Control Commands .. 158

FLP_SEC FLP_START FLP_STEP ... 158

PC Hard Disks .. 158
Hard Disk Driver Name .. 158

WIN_USE... 158
Format WIN.. 158

WIN_FORMAT ... 159

Configuration ... 159

SMSQ/E FOR Q40 ... 160

Introduction .. 160

Machine Type ... 160
MACHINE .. 160
PROCESSOR .. 160

Memory Protection .. 160
PROT_MEM ... 160
POKES POKES_W POKES_L POKES_F POKES$ 160
PEEKS PEEKS_W PEEKS_L PEEKS_F PEEKS$ 161

19

Q40 Display .. 161
DISP_MODE .. 161
DISP_TYPE ... 162
DISP_INVERSE ... 162
DISP_SIZE... 162
DISP_RATE ... 162
DISP_BLANK ... 162

Mouse driver .. 163
MOUSE_SPEED .. 163
MOUSE_STUFF .. 164

Serial (RS232) Ports on the Q40 ... 164

Parallel Printer Ports ... 165
PAR_PULSE .. 165
PAR_WAIT... 166

Q40 Hard Disks .. 166
IDE drives .. 166
WIN Drive Numbers and Name.. 166

WIN_DRIVE ... 167
WIN_DRIVE$... 168
WIN_USE... 168

Format WIN.. 168
WIN Control Commands .. 169

WIN_WP .. 169
WIN_START WIN_STOP.. 169

Q40 Floppy Disks ... 169
Floppy Disk Driver Name ... 170

FLP_USE ... 170
Format FLP .. 170

FLP_DENSITY ... 170
FLP_TRACK .. 171

FLP Control Commands .. 171
FLP_SEC ... 171
FLP_START ... 171
FLP_STEP ... 171

Sampled Sound System .. 171

20

SMSQ/E FOR QPC2 .. 175

Mouse ... 175
MOUSE_SPEED .. 175
MOUSE_STUFF .. 175

Machine Type ... 175
MACHINE .. 175
PROCESSOR .. 176

QPC-Specific Commands .. 176
QPC_CMDLINE$... 176
QPC_EXEC ... 176
QPC_EXIT ... 176
QPC_HOSTOS .. 176
QPC_MAXIMIZE QPC_MINIMIZE QPC_RESTORE 177
QPC_MSPEED .. 177
QPC_NETNAME$.. 177
QPC_QLSCREMU ... 177
QPC_SYNCSCRAP ... 178
QPC_VER$.. 178
QPC_WINDOWSIZE ... 178
QPC_WINDOWTITLE .. 179

Serial (COM) Ports ... 179
BAUD ... 179
SER_GETPORT$.. 180
SER_SETPORT ... 180

Printer Support (PAR) .. 180
PAR_DEFAULTPRINTER$.. 180
PAR_GETPRINTER$.. 180
PAR_SETPRINTER ... 180
PAR_GETFILTER .. 181
PAR_SETFILTER .. 181
PAR_PRINTERCOUNT ... 181
PAR_PRINTERNAME$.. 181

PC Floppy Disks .. 181
Native Floppy Support ... 181
Floppy Image Support .. 182
Floppy Disk Driver Name ... 182

21

FLP Control Commands .. 182
FLP_USE ... 182
FLP_DRIVE ... 182
FLP_DRIVE$... 182
FLP_DENSITY ... 183
FLP_SEC, FLP_START and FLP_STEP ... 183

WIN Disks ... 183
Hard Disk Driver Name .. 183

WIN_USE... 184
Format WIN.. 184
Drive/Filename Assignment ... 184

WIN_DRIVE WINDRIVE$.. 184
Removable Drives .. 185

WIN_REMV .. 185

The DOS Device ... 185
Drive/Directory Assignment ... 185
Restrictions And Some Background Information On The DOS Device 186
DOS Control Commands ... 187

DOS_USE .. 187
DOS_DRIVE .. 187
DOS_DRIVE$.. 188

The QPC CD-Audio Module ... 188
New Basic Commands ... 188

CD_INIT ... 188
CD_PLAY... 188
CD_STOP .. 189
CD_RESUME .. 189
CD_EJECT, CD_CLOSE ... 189
CD_ISPLAYING, CD_ISCLOSED, CD_ISINSERTED, CD_ISPAUSED
 ... 189
CD_TRACK .. 189
CD_TRACKTIME ... 189
CD_ALLTIME ... 190
CD_HSG2RED, CD_RED2HSG .. 190
CD_TRACKSTART .. 190
CD_TRACKLENGTH ... 190
CD_FIRSTTRACK, CD_LASTTRACK ... 190
CD_LENGTH ... 190
CD_HOUR, CD_MINUTE, CD_SECOND .. 190

22

SMSQ/E FOR Q68 ... 191

Introduction .. 191

SDHC cards .. 191
Using container, OS and other files on the card 191
Naming scheme ... 192

Initialising a card.. 192
CARD_INIT .. 192

Swapping cards ... 193

Win drives on SDHC cards .. 193
Safety precaution ... 194
Basic commands for WIN drives .. 194

WIN_DRIVE ... 194
WIN_DRIVE$... 195
WIN_SAFE... 196
WIN_CHECK ... 196
WIN_FORMAT ... 196
WIN_USE and WIN_WP .. 196
WIN_START, WIN_STOP, WIN_REMV, WIN_SLUG 197

Formatting a drive.. 197

The FAT device .. 198
Principle ... 198
Limitations .. 198
Configuration.. 199
Basic keywords .. 199

FAT_USE ... 199
FAT_DRIVE ... 200
FAT_DRIVE$... 200
FAT_WP .. 201

The QUB device ... 201

OS and Container filenames ... 201

Setting the screen modes ... 203
DISP_MODE .. 203
DISP_xxx ... 204

23

Configuring SMSQ/E for the Q68 .. 204
SMSQ/E for the Q68 .. 204
A - Q68 .. 205
B - Configuring the WIN drives... 206
C - Configuring the FAT device .. 207
D - Configuring the QUB device and drives ... 207

Additional keywords and facilities ... 208
Sound .. 208

SOUNDFILE .. 208
SOUNDFILE2 .. 209
SOUNDFILE3 .. 209
KILLSOUND ... 209

Access to fast memory ... 210
FREE_FMEM ... 210
ALFM ... 210

Slug .. 211
Limited direct access to the card or the FAT32 file system 211

CARD_INIT .. 211
CARD_DIR$... 211
CARD_RENF ... 212
CARD_CREATE .. 212

Avoiding fragmentation .. 214

SMSQ/E MANUAL REVISION HISTORY 216

24

Introduction

SMSQ/E is based on the SMS kernel which was designed to provide a QDOS
compatible interface. The kernel has been modified to improve compatibility
with most of the "dirty tricks" which QL programmers were either forced to use
or used to satisfy their perverted sense of fun.

The kernel itself (memory management, task management, scheduling, and
IO) has also been extended to provide facilities which were not available with
QDOS. It is now an over-inflated 10k bytes. Despite this inflation, the SMSQ
operating system kernel remains more efficient than the old QDOS kernel.

SuperBASIC has been replaced by SBASIC which is a threaded code
interpreter which executes at speeds more often associated with compiled
SuperBASIC than interpreted SuperBASIC. There is no longer any need to
compile SuperBASIC programs: you can just EXECute them.

The SMSQ/E CONsole driver incorporates slightly improved versions of the
Pointer Interface, Window Manager and HOTKEY System 2: these do not
need to be loaded in your BOOT files.

In addition, SMSQ/E is supplied with entirely new filing system device drivers
which allow "foreign" disk formats to be recognised and new formats to be
added "at run time".

SMSQ/E allows the user-selected "warmstart". This is achieved by pressing
ALT SHIFT CTRL TAB at the same time. The system reboots without loading
itself in again. This might be useful, for example, to clean the memory when
your heap becomes too fragmented, or to get rid of unwanted extensions after
you modified your BOOT file.

It is not advisable to use this warmstart feature when your system has
crashed, as SMSQ/E itself might have been damaged by the system crash
and you do not notice it immediately, but your data might become corrupted
later due to system errors.

New and Modified Facilities

SMSQ/E includes all the QL SuperBASIC commands, the TK2 commands and
the commands which have provided to support the various add-on drivers.
(This manual does not concern itself with the standard SuperBASIC or TK2
commands.) SMSQ/E supports 99.9% of SuperBASIC. SMSQ/E supports all

25

the devices which were supported by the drivers supplied with the Atari QL
Emulator, the GOLD card and the QXL.

There are, however, a number of significant new facilities or improvements,
some of which may be familiar to some users. Some facilities (marked HW)
are hardware dependent are described in the appropriate hardware specific
manuals.

Facility Usage or Difference

$nnn %nnn Hexadecimal and binary values accepted
ATAN ATAN (x,y) yields four quadrant result
BAUD Independent baudrates
BGCOLOUR_xx Set background colour
BGET BPUT Transfer multiple bytes to and from strings
BGIMAGE Background image, wallpaper
CACHE_ON _OFF Turn internal caches on or off
CD_xx CD-Audio extensions in QPC2
CHAR_DEF To activate new system fonts
COLOUR_xx Colour definition selection
CURSPRLOAD Load a file to use as cursor sprite
CURSPROFF CURSPRON Switch cursor sprite off/on
DAY% Returns current day number or that of supplied

DATE value
DEV A defaulting filing system device
DEV_LIST Lists the current DEVs
DEV_NEXT Enquires the next DEV for a DEV
DEV_USE Sets the real device for a DEV
DEV_USEN Allows renaming of DEV device
DEV_USE$ Enquires the real device for a DEV
DEVTYPE Find the type of device open as a channel
DISP_xxx Display control facilities
DMEDIUM_xxx Driver- and medium-information
DOS_xx DOS device extensions for QPC2
ED Line can be put into the HOTKEY buffer
END FOR END REPeat Do not need names
EOF_W Wait for end of file
EPROM_LOAD Loads and initialises a "QL EPROM cartridge"
EX EW EXEC EXEC_W Extended to execute SBASIC programs
EX_M Create job owned by calling job, which continues

executing
EXF Alternate form of FEX function
EXIT Does not need a name

26

FEX EXF FET FEW FEP Functions corresponding to EX, EW, ET and
EXEP

FLP_xxx FLP device control facilities
FOR Both integer and floating point FOR
FSEND_EVENT Function version of SEND_EVENT command
HISTORY A last in, first out rubbish bin
HOME_xxx Home Thing extensions
HOT_GETSTUFF$ Get current or previous content of stuffer buffer
HPUT HGET Reads and writes part of a file header
IF Multiple nested inline IFs. Nesting is checked
INSTR_CASE Switches between case-dependent and case-

independent INSTR
IO_PRIORITY Set the priority of IO retry scheduling
JOBID Return 32-bit Job ID number
JOB_NAME Sets the Job name for SBASIC jobs
KBD_TABLE Uses international codes to set keyboard tables
LANG_USE Sets the message language
LANGUAGE ($) Language enquiry
LBYTES Accepts channel number in place of name
LOAD LRUN Accept QLOAD _SAV files and save filename
LPUT LGET Puts and gets long words
LRESPR If used to load extensions within an SBASIC job

other than job 0, the extensions are private to
that job

MACHINE Return machine type number
MERGE MRUN Accept QLiberator _SAV files
MONTH% Returns current month number or that of supplied

DATE value
MOUSE_SPEED Define scaling and acceleration factor
MOUSE_STUFF Defines character string for mouse centre button
NEXT Does not need a name
NUL A bottomless bin for output or endless input
OUTLN Does not require window parameters
PALETTE_xx Palette colour mapping
PAR Centronics port driver with dynamic buffering
PAR_xx Parallel port control extensions
PE_BGON PE_BGOFF Turn on/off background drawing
PEEK etc. Extended to access system and SBASIC vars
PEEKS etc. Supervisor mode access to IO hardware

(Atari/Q40)
PEEK$ PEEKs multiple bytes
PIPE Named or unnamed pipes for inter task comms
POKE etc. Extended to access system and SBASIC vars

27

POKES etc. Supervisor mode access to IO hardware (Atari)
POKE$ POKEs multiple bytes
PRINT_USING Extended version
PROCESSOR Returns processor type value
PROT_DATE Protect the real time clock
PROT_MEM Set the memory protection level (Atari)
PRT Pseudonym for PAR
PRT_USE Sets the port to be used for PRT
QLOAD QLRUN Qliberator compatible quick load for _SAV file
QMERGE QMRUN Qliberator compatible quick merge for _SAV file
QPC_xx QPC-specific extensions
QSAVE QSAVE_O Qliberator compatible save to _SAV file
QUIT Removes this SBASIC job, optional quit value
REPeat Does not need a name
RESET RESETs the computer
SAVE SAVE_O Use previously defined filename, update version
SBASIC Starts an SBASIC daughter
SBYTES SBYTES_O Accepts channel number in place of filename
SCR_BASE SCR_LLEN Find the screen base and line length
SCR_XLIM SCR_YLIM Find window limits
SELect Both integer and floating point SELects
SEND_EVENT Notify events to another job
SER Additional options and dynamic buffering
SER_xx Serial port extensions
SEXEC SEXEC_O Accepts channel number in place of name
SLUG Slows the machine down
SNET_xx Sernet extensions
SP_xx System Palette extensions
SRX As SER but input port only
STX As SER but output port only
SYSSPRLOAD Load sprite and set as a system sprite
TRA language selectable and language independent
UPUT send untranslated characters to channel
VER$ extended to be Minerva-compatible
WAIT_EVENT Wait forone or more events
WEEKDAY% returns current day of the week or that of

supplied DATE value
WHEN ERRor suppressed within command line
WIN_xxx WIN device control facilities
WM_xxx Window Manager system palette colour

commands
WM_MOVEMODE Set window move mode
WM_MOVEALPHA Set window move transparency

28

WMON WTV Allow the SBASIC windows to be offset
WPUT WGET Puts and gets words
YEAR% Returns current year number or that of supplied

DATE value

SMSQ Performance

In general, SMSQ is more efficient than QDOS. There are, however, a number
of policy differences which are either accidental because, unlike other "QDOS
compatible" systems SMSQ is not based on QDOS but is completely re-
designed, or deliberate because certain QDOS policies have shown to be less
than ideal.

In particular, the IO retry scheduling policy is completely different. This results
in a very much higher priority for retry operations which greatly improves the
responsiveness of a heavily loaded system at the cost of a modest reduction
in crude performance (typically 10%). If crude performance is important to you,
you can reduce the the IO priority to QDOS levels.

IO_PRIORITY

The IO_PRIORITY (priority) command sets the priority of the IO retry
operations. In effect, this sets a limit on the time spent by the scheduler
retrying IO operations.

A priority of one sets the IO retry scheduling policy to the same as QDOS,
thus giving a similar level of response but with a higher crude performance.

IO_PRIORITY 1 QDOS levels of response, higher crude

performance
IO_PRIORITY 2 QDOS levels of performance, better response

under load
IO_PRIORITY 10 Much better response under load, degraded

performance
IO_PRIORITY 1000 Maximim response, the performance depends on

the number of jobs waiting for input.

CACHE_ON CACHE_OFF

The performance of the more powerful machines depends on the use of the
internal cache memory. For the MC680x0 series processors, the

29

implementation of the caches is less than perfect. As well as introducing
unnecessary overheads on operating system calls (slightly improved in the
MC68040) the MC680x0 cache policy is incompatible with certain
programming techniques. It may, therefore, be necessary to disable the
internal caches.

No provision is made for disabling the external caches (where these exist) as
none of these external caches seem to suffer from the design flaws of the
MC680x0 series.

CACHE_OFF turn the caches off to run naughty software
CACHE_ON and turn back on again

SLUG

The designers of SMSQ have spent much time and effort trying to make the
system fairly efficient. Their efforts seem not to be appreciated. Some people
will always complain!

SLUG (slug factor) will slug your machine by a well defined factor.

SLUG 2 Half speed ahead
SLUG 5 Dead slow
SLUG 1 Full ahead both

Execution Wait Delay

Traditionally, commands like EX waited for half a second before returning to
give the executed job a chance to open up a window. This, for example,
ensures that buttons in the button frame show up in the order you start them in
the boot file. Today's machines, however are much faster and don't really
need such a long pause anymore.

To counter this problem there is now a new system variable sys_xdly (byte at
$17e) that determines the delay for a specific machine. This is preset to 5/50th

of a second for QPC originally, which results in a much faster boot time.
However for the full effect QPAC2 had to be updated too, which was done with
release v1.45.

30

On machines that don't set sys_xdly, half a second will again be used by
default. To change sys_xdly yourself, for example to lower it even further to 3,
you can poke a new value using this command:

POKE !;$17F,3 lower execution delay to 3/50 second

SBASIC / SuperBASIC Language Differences

Some differences between SBASIC and SuperBASIC may be accidental.
There are, however a number of known, deliberate, differences. Most of these
differences are extensions to SuperBASIC. In some cases, however,
limitations have been introduced to reduce the chances of difficult-to-track-
down program errors.

Hexadecimal and Binary Values

Hexadecimal and binary values may be included directly in SBASIC source.
Hexadecimal values are preceded by a $. Binary values by a %.

IF a% && %1001 Check bits 3 and 0 of a%
IF PEEK_L ($28000) = $534D5351 Check if SMSQ (very naughty)

IF Clauses

Multiple "in-line" IF clauses can be nested on one line.
SBASIC checks for incorrectly nested IF clauses.

SELect Clauses

SELect clauses may SELect an action on the value of an integer variable
(integer SELect) or on the value of a floating point variable or expression
(floating point SELect). Integer SELect is more efficient.

SBASIC checks for incorrectly nested or inconsistent SELect clauses.

WHEN ERRor

WHEN ERRor is suppressed within the command line to stop SBASIC rushing
off into your error processing if you mistype a command.

You can turn off WHEN ERRor by executing an empty WHEN ERRor clause.

31

100 WHEN ERRor
110 CONTINUE :REMark ignore errors
120 END WHEN
130 a = 1 / 0 :REMark no error
140 WHEN ERRor :REMark restore error processing
150 END WHEN
160 a = 1 / 0 :REMark BANG!!

Loop Handling

FOR Loop Types

SuperBASIC requires FOR loops to have a floating point control variable.
SBASIC allows both floating point and integer control variables. Integer FOR
loops are more efficient than floating point for loops: particularly if the control
variable is to be used to index an array.

FOR i% = 0 to maxd%: array(i%) = array(i%) * 2: is preferred to
FOR i = 0 to maxd: array(i) = array(i) * 2: which is less
efficient

N.B. the type is determined before the program is executed.

In-Line Loops

Whereas SuperBASIC only allows a single structure to be defined "in-line",
SBASIC allows many loops (and other structures) to be nested in-line without
requiring END statements:

100 FOR i = 1 TO n: FOR j = 1 TO m: a(i,j) = a(i,j) + b(i,j)

The "NEXT Bug"

The "NEXT bug" reported in many articles about SuperBASIC, which many
people have asked to be fixed, has not been fixed. IT IS NOT A BUG. NEXT is
defined to fall through to the next statement when the loop is exhausted. It
does not go to the statement after the END FOR (which may not be present).
If that is what you wish to do, follow the NEXT by an EXIT.

Unnamed NEXT, EXIT and END Statements

32

Loop structures are "opened" with a FOR or REPeat statement and closed
with an END FOR or END REPeat statement. SuperBASIC requires all loop
closing statements as well as the intermediate NEXT and EXIT statements to
identify the loop to which they apply. SBASIC, on the other hand, will accept
unnamed NEXT, EXIT, END FOR and END REPeat statements. These are
applied to the most recent (innermost) unclosed loop structure.

100 FOR i = 1 TO 10
110 FOR j = 1 TO 10
120 IF a(i,j) < 0: EXIT implicitly EXIT j
130 sum = sum + a(i,j)
140 END FOR implicitly END FOR j, closes FOR j
150 IF sum < 100: NEXT loop j is closed, so this is NEXT i
160 PRINT i,sum
170 sum=0
180 END FOR implicitly END FOR i, closes FOR i

REPeat Loops

Whereas SuperBASIC requires all REPeat clauses to have a name, SBASIC
allows unnamed REPeats. These unnamed REPeats may be combined with
unnamed NEXT, EXIT and END REpeat statements.

100 REPeat
110 a$ = INKEY$(-1)
120 IF a$ = ESC$: EXIT goes to 200 (outer loop)
130 IF a$ <> 'S': NEXT goes to 110 (outer loop)
130 REPeat
140 a$ = INKEY$(-1)
150 IF a$ = ESC$: EXIT goes to 180 (inner loop)
160 x$ = x$ & a$
170 END REPeat goes to 140 (inner loop)
180 IF LEN (x$) > 20: EXIT goes to 200 (outer loop)
190 END REPeat goes to 110 (outer loop)
200 PRINT 'DONE'

Multiple Index Lists and String Slicing

For various reasons SBASIC does not support multiple index lists.

100 DIM a(10,10,10)
110 a(3,4)(5) = 345 OK for SuperBASIC, SBASIC will not handle this

33

120 a(3,4,5) = 345 Means the same, is easier to type and SBASIC
likes it

To make up for this limitation, SBASIC allows you to slice strings at any point
in an expression.

200 a$ = 2468 (3) Sets a$ to '6' in SBASIC, prohibited

in SuperBASIC
210 ax=1234
220 a$ = ('abcdef' & ax) (5 to 8) Sets a$ to 'ef12' in SBASIC
230 b$ = 'abcdefghi'
240 a$ = b$(2 TO 7)(3 TO 5)(2) Sets a$ to ’e' in either SBASIC or

SuperBASIC

Also, in SBASIC, the default range for a string or element of a string array is
always (1 TO LEN(string)) and zero length slices are accepted at both ends of
a string (i.e. a$(1 to 0) or a$(LEN(string)+1 TO LEN(string)) are both null
strings).

Writing Compiler Compatible Programs

SuperBASIC programs which are written in such a way as to be used both
compiled and interpreted by SuperBASIC often have a small code fragment at
the start to allow for the differences in compiled and interpreted environments.

The problem is not that SBASIC is "incompatible" with these code fragments
but that SBASIC is compatible with SuperBASIC in a way which the two
"compiled" SuperBASICs are not. The simplest way to avoid these problems is
to give up using compiled BASIC and remove the junk from your programs. If,
on the other hand, you wish to continue using compiled BASIC and also wish
to use these programs in SBASIC daughter jobs, you may require some code
changes.

There are three principal differences between the SuperBASIC environment
and the Liberator and Turbo environments.

1. When executing in compiled form, the program will probably not be
requiring windows #0, #1 and #2 in the same form as when it is being
interpreted by SuperBASIC. In particular:

 channel #0 (the command channel) may not be required at in
the compiled version, but it is essential to keep it open in the
SuperBASIC version otherwise no commands can ever be
given again.;

34

 a compiled program may be started with no windows open, a
program interpreted by SuperBASIC will (usually) start with
windows #0, #1 and #2 open.

This distinction is not so much a difference between compiled and not
compiled, but is a difference between interpreting a program within the
permanent SuperBASIC interpreter and executing a transient
program.

2. An interpreted program may be interrupted and rerun (so that the
starting state may be different each time), while a compiled program
will always start "clean" (always having the same starting state).

3. An interpreted program will report error messages to window #0 while
compiled programs have their own error message facilities.

From the point of view of the last two differences, SBASIC is always much
closer to SuperBASIC than to a compiled BASIC. For the first (and most
important difference) SBASIC can behave either like a compiled BASIC or
SuperBASIC.

 If SBASIC is started off with an SBASIC command, then SBASIC
behaves like SuperBASIC: window #0 (at least) is open.

 If SBASIC is started off with an EX (etc.) command or from a
HOTKEY or QPAC2 EXEC menu, then SBASIC behaves more like a
compiled program: there are no windows open by default and window
#0 is not required.

Unfortunately, the code that usually appears at the start of these compatible
programs does not distinguish between compiled and interpreted
environments, but between job 0 and other jobs.

100 IF JOB$(-1)<>'' :REMark is it a named job (NOT
SuperBASIC)
110 CLOSE #0,#2 :REMark close spare windows in
case
120 OPEN #1,con_512x256a0x0 :REMark our #1
130 ELSE
140 WINDOW 512,256,0,0 :REMark for SuperBASIC, just set
#1
150 END IF
160 CLS

35

When used in an SBASIC daughter job, this will treat SBASIC as compiled
whereas it should possibly be treated as interpreted as SBASIC programs can
be re-run.

The problem cannot be resolved by using a function to distinguish between
compiled, SuperBASIC and SBASIC, as there is no such function in
SuperBASIC and it cannot be assumed that a suitable extension has been
loaded.

SBASIC jobs are, however, always called SBASIC until the name is set by the
JOB_NAME command.

The best approach would be to have program start up code which is sensitive
to the environment and not having a different behaviour just because the job
number is 0 or the job has no name. This is however, not practical with the old
QL BASIC compilers.

The least bad solution may be to have a "four way switch" at the start of the
program.

100 my$ = 'myjob': j$ = JOB$(-1) :REMark set my assumed and real
names
110 IF j$ = '' :REMark is it an unnamed job
(SuperBASIC)?
120 do SuperBASIC or SBASIC job 0 fiddles
130 END IF
140 IF j$ = 'SBASIC' :REMark is it start of an SBASIC
daughter?
150 do SBASIC daughter initialisation
160 JOB_NAME my$:REMark from now on it is a
named job
170 j$ = '' :REMark no further action
required
180 END IF
190 IF j$ = my$:REMark is it rerun an SBASIC
daughter?
200 do SBASIC daughter re-initialisation
210 j$ = '' :REMark no further action
required
220 END IF
230 IF j$ <> '' :REMark must be compiled!
240 do compiled BASIC initialisation
250 END IF

36

DEVTYPE

Within the initialisation code for SBASIC, the DEVTYPE function may be used
to determine whether a channel is open.

This returns an integer value of which only the most significant (the sign bit)
and least significant two bits are set. To ensure future compatibility, nothing
should be assumed about the other bits.

The value returned will be negative if there is no channel open. Otherwise bit 0
indicates that it will support window operations (i.e. it is a screen device), bit 1
indicates that it will support file positioning operations (i.e. it is a file).

100 a% = DEVTYPE (#3) :REMark find the type of device
open as #3
110 IF a% < 0: PRINT '#3 not open' :REMark negative is not open
120 SELECT ON a% && %11 :REMark ensure we only look at
bits 0 and 1
130 = 0: PRINT '#3 is a purely serial device'
140 = 1: PRINT '#3 is a windowing device'
150 = 2: PRINT '#3 is a direct access (filing system) device'
160 = 3: PRINT '#3 is totally screwed up'
170 END SELECT

Error Reporting and Statement Numbering

SBASIC will, usually, report error in the form:

At line 250:3 end of file

The number after the colon is the statement number within the line.

N.B. SBASIC generates a small number of additional statements (jumps round
DEF PROCs, jumps to END SELect before each ON and END statements on
inline clauses) which are not visible in the SBASIC program. If you like piling
up structures and statements into a single line, you may find that the
statement number in the error report is larger than you would expect!

Extended SuperBASIC Commands and Functions

File Keywords

37

LOAD LRUN MERGE MRUN

LOAD, LRUN, MERGE and MRUN have been extended to accept Liberation
Software's _SAV file format. In addition, if the filename supplied is not found,
SBASIC will try first with _BAS and then _SAV added to the end of the
filename (it will try .BAS or .SAV if the given device contains a DOS-formatted
medium).

SAVE SAVE_O

If no filename is given, the name of the file that was originally loaded will be
used (if necessary substituting _BAS for _SAV at the end or vice versa). The
file will be saved with a version number one higher that the file version when it
was LOADed. (Repeated SAVEs do not, therefore, keep on incrementing the
version number).

If a filename is given, the version number is set to 1.

QLOAD QLRUN

The extension of the SBASIC LOAD command makes the real QLOAD and
QLRUN commands (which require a copy or near copy of QDOS ROMs to
function at all) nearly redundant. QLOAD and QLRUN are implemented in
SBASIC as versions of LOAD and LRUN that ensure that there is a _SAV at
the end of the filename.

QMERGE QMRUN QSAVE QSAVE_O

These are versions of MERGE, MRUN, SAVE and SAVE_O which work with
_SAV files.

If there are 4 SBASIC programs in the data default directory called FRED,
JOE, ANNE and CLARA with either _BAS or _SAV at the end of the names.
FRED
JOE_BAS
ANNE_SAV
CLARA_BAS
CLARA_SAV

QLOAD fred Fails as there is no FRED_SAV
LOAD fred Loads FRED
SAVE Saves the program as FRED

38

QSAVE Saves the program as FRED_SAV (quickload
format)
SAVE junk_bas Saves the program as JUNK_BAS
QSAVE Saves the program as JUNK_SAV (quickload

format)
MERGE joe Merges the file JOE_BAS into the program
MERGE anne Quick merges the file ANNE_SAV into the
program
SAVE Saves it as JUNK_BAS (MERGE does not change
the name)
LOAD clara Loads CLARA_BAS
QLOAD clara Quick loads CLARA_BAS
LOAD clara_sav Also quick loads CLARA_BAS

RESET

RESETs the computer. Using this command could result in loss of data (e.g.
when you RESET while sectors are being written to your floppy disk or
harddisk), therefore much care should be taken if this command is used
without the control of the user.

LBYTES SBYTES SBYTES_O SEXEC SEXEC_O

All accept a channel number in place of a name. This can improve efficiency.

nc = FOP_IN ('file') Open file once only
base = ALCHP (FLEN(#nc)) . . . to allocate bit of heap
fdt = FUPDT (#nc) . . . get the update date
LBYTES #nc,base . . . and load it
CLOSE #nc

EPROM_LOAD

The EPROM_LOAD (filename) command is a special trick for loading the
image of a QL EPROM cartridge. Most EPROM cartridges are programmed so
that the cartridge may be at any address. Some require to be at exactly
$C000, the QL ROM port address. The first time the command is used after
reset, the EPROM image will be loaded at address $C000. Subsequent
images may be loaded at any address. Fussy EPROM images must,
therefore, be loaded first. An EPROM image file must not be longer than 16
kilobytes.

39

To make an EPROM image, put the EPROM cartridge (for example the
Prospero PRL cartridge) into your QL and turn on. SBYTES the image to a
suitable file with the magic numbers 49152 ($C000) for the base address and
16384 (16 kilobytes) for the length.

SBYTES flp1_prl, 49152, 16384 Save Prospero PRL image

On your SMSQ machine copy the file to your boot diskette or disk and add the
EPROM_LOAD statement to your "boot" file.

EPROM_LOAD flp1_prl Load Prospero PRL image

QL Based Hardware

SMSQ on QL based hardware recognises plug-in ROM cartridges and copies
them to fast memory when the system is booted. EPROM_LOAD can still be
used, however, to load ROM images. If the ROM slot is vacant, then the first
EPROM load will load to the QL ROM Port address. Otherwise, all EPROM
images will be loaded to arbitrary addresses.

Peeking and Poking

PEEK$ POKE$

PEEK$ (address, number of bytes) returns a string with the number of bytes
starting from address. The bytes need not, of course, be text.

POKE$ (address, string) pokes the bytes of the string starting from the
address.

PEEK$ and POKE$ can be used for copying memory.

a$ = peek$ (base1,1000) Peek 1000 bytes from address base1
poke$ base2,a$. . . and poke them back to base2

PEEK$ and POKE$ can accept all the extended addressing facilities of PEEK
and POKE. Indeed, POKE$ is identical to POKE which can now accept string
parameters.

PEEK PEEK_W PEEK_L PEEK_F

POKE POKE_W POKE_L POKE_F

40

The standard PEEK functions and POKE procedures have been extended to
provide compatibility with the Minerva versions. There are three main
changes.

1. The address may be specified relative to the base of the system
variables or the (current) SBASIC variables.

2. The contents of the memory at the address may itself be used as
a base address with a second value providing an offset for this
address.

3. More than one value may be POKEd at a time.

 For POKE_W and POKE_L, the address may be followed by
a number of values to poke in succession.

 For POKE the address may be followed by a number of
values to poke in succession and the list of values may
include strings. If a string is given, all the bytes in the string
are POKEd in order. The length is not POKEd.

Absolute PEEK, POKE

The standard forms of PEEK and POKE are supported even though the use of
PEEK and POKE is best regarded as a form of terrorism.

a=RESPR (2000)
LBYTES myfile,a Load myfile
PRINT PEEK (a), Prints the value of the byte of myfile
POKE_L a+28, DATE,0 Set the 28th to 35th bytes to the DATE (4

bytes) and 4 zeros
POKE a+8, 0,6,'My_Job' Set the standard string (word length

followed by the chars)

An additional form to handle floating point values has been introduced.
PEEK_F and POKE_F function like the existing forms, but handle 6-byte
floating point values.

v = 1.23 : POKE_F a, v Set the 6 bytes at address a to the value of

the variable v
v = PEEK_F(a) Read the 6 byte floating point value at

address a

Peeking and Poking in the System Variables

If the first parameter of the peek or poke is preceded by an exclamation mark,
then the address of the peek or poke is in the system variables or referenced

41

via the system variables. There are two variations: direct and indirect
references.

 For direct references, the exclamation mark is followed by another
exclamation mark and a an offset within the system variables.

 For indirect references, the exclamation mark is followed by the offset
of a pointer within the system variables, another exclamation mark
and an offset from that pointer.

ramt = PEEK_L (!!$20) Find the top of RAM $20 bytes on from the

base of sysvars
POKE_W !!$8e,3 Set the auto-repeat speed to 3
job1 = PEEK_L (!$68!4) Find the base address of Job 1 (4 on from

base of Job table)
POKE !$B0!2, 'WIN' change the first three characters of

DATA_USE to WIN

There is slightly more parameter checking than in the Minerva versions.
Nevertheless, errors and deliberate abuse are not likely to be detected and
may have different effects on SMSQ and Minerva.

Peeking and Poking in the SBASIC Variables

If the first parameter of the peek or poke is preceded by an backslash, then
the address of the peek or poke is in the SBASIC variables or referenced via
the SBASIC variables. There are two variations: direct and indirect references.

 For direct references, the backslash is followed by another backslash
and an offset within the SBASIC variables.

 For indirect references, the backslash is followed by the offset of a
pointer within the SBASIC variables, another backslash and an offset
from that pointer.

dal = PEEK_W (\\$94) Find the current data line number
n6 = PEEK_W (\$18\2+6*8) Find the name pointer for the 6th name in

the name table
nl6 = PEEK (\$20\n6) . . . and the length of the name
n6$ = PEEK$ (\$20\n6+1, nl6) . . . and the name itself.

Screen Functions

SCR_BASE SCR_LLEN

42

The SCR_BASE (channel) and SCR_LLEN (channel) functions are provided
for those who wish to start peeking and poking in the display. They return the
base address of the screen and the line length (in bytes). The channel
numbers are optional (default is #0), and, in current versions, the values
returned are the same for all screen channels.

SCR_XLIM SCR_YLIM

The SCR_XLIM (channel) and SCR_YLIM (channel) return the maximum pixel
(+1) for the channel. This is not the same as the current window size, but it
defines the maximum size that a window can be. SCR_XLIM and SCR_YLIM
should only be called for a primary window (usually #0 for and SBASIC job).
#0 is the default channel.

ssz = SCR_LLEN * SCR_YLIM Screen size is number of lines * line

length in bytes
SBYTES s1, SCR_BASE, ssz . . . so we can save the screen
WINDOW SCR_XLIM,SCR_YLIM,0,0 Set window (#1) to cover the whole

of the screen

File I/O

BPUT BGET

BPUT will accept string parameters to put multiple bytes. BGET will accept a
parameter that is a sub-string of a string array to get multiple bytes.

BPUT #3,27,'R1' Put ESC R 1 to
channel #3
DIM a$(10): a$(10)=' ':BGET #3, a$(1 to 6) Get 6 bytes from #3
into a$

WGET, WPUT, LGET, LPUT

Works like BGET and BPUT, but they always read a word or longword instead
of a byte.

HGET, HPUT

For reading and writing the first parts of a file header. Both commands accept
up to 5 parameters, which are of the type floating point. The first parameter is
the file length (long), followed by the access byte (byte), followed by the file

43

type (byte), then comes the dataspace (long) and finally the extra-information
(long).

OPEN#3,datei
HGET#3,length,access,type,space,extra
HPUT#3,length,access,1,1024,extra
CLOSE#3

converts a file into an executable file with 1kByte dataspace.

UPUT

Works as BPUT, but will never translate the character. Very useful to send
translated text to a channel which does use TRA, as well as sending printer
control codes using UPUT to the same channel.

Maths

ATAN

The ATAN function has been extended to provide 4 quadrant result by taking
two parameters. If x is greater than 0, ATAN (x,y) give the same results as
ATAN (y/x). Otherwise it returns values in the other quadrants (>p/2 and <-
p/2).

Date Keywords

PROT_DATE

Where the system has a separate battery backed real time clock. The date is
read from the clock when the system is reset. Thereafter, the clock is kept up
to date by the SMSQ timer. (Thus the impressive speed gains made by some
accelerator software: slowing the clock down by disabling interrupts can do
wonders for your benchmark timings).

In general, the system real time clock is updated whenever you adjust or set
the date. As some QL software writers could not resist the tempation of setting
the date to their birthday (or other inconvenient date) this can play havok with
your file date stamps etc.

PROT_DATE (0 or 1) is used to protect (1) or unprotect (0) the real time clock.
If the real time clock is protected, setting the date affects only SMSQ's own
clock, the real time will be restored then next time the computer is reset.

44

PROT_DATE 1 protect the RTC (should never be required)
PROT_DATE 0 unprotect the RTC (normal)

YEAR% MONTH% DAY% WEEKDAY%

These functions complement the DATE and DATE$ functions, by providing
extensions to return the year, month, day and weekday numbers
corresponding to a given date stamp. WEEKDAY returns the day number of
the week (0…6 Sunday…Saturday).

datestamp = DATE[(year, month, day, hour, minute, second)]

 returns the number of seconds
since 1

st
 January 1961. If no

parameters are supplied to the
DATE function, the current time in
seconds is returned.

yr% = YEAR%[(datestamp)] Return year number (1961…2097)
of the date value supplied. If no
datestamp is supplied, the current
year is returned.

m% = MONTH%[(datestamp)] Return month number (1…12) of
the date value supplied. If no
datestamp is supplied, the current
month is returned.

d% = DAY%[(datestamp)] Return day of the month (1…31) of
the date value supplied. If no
datestamp is supplied, the current
day is returned.

wd% = WEEKDAY%[(datestamp)] Return day of the week (0…6). If no
datestamp is supplied, the current
day of the week is returned.

Thus yr% = YEAR% and yr% = YEAR%(DATE) are functionally identical, for

example.

VER$ Function

VER$

The VER$ function has been extended to take an (optional, Minerva
compatible) parameter. If it is non zero, information is taken from the OS call

45

for system information. Otherwise, the normal SBASIC version (HBx) is
returned.

PRINT ver$ prints HBA (or later SBASIC version ID)
PRINT ver$(0) also prints HBA (or later SBASIC version ID)
PRINT ver$(1) prints 2.22 (or later SMSQ version number)

With a negative parameter, VER$ does not return a version at all, but returns
a fairly arbitrary choice of information.

PRINT ver$(-1) print the Job ID (0 for initial SBASIC)
PRINT ver$(-2) prints the address of the system variables

(163840), WHY?

INSTR and INSTR_CASE

INSTR_CASE

The INSTR operator of SuperBASIC assumes that character strings are being
compared and it ignores the case of the characters. It is often useful to use
strings to hold data other than characters, and even if the strings contain
characters it may be useful to perform a search which requires the case of the
characters to match.

SBASIC allows both case independent (SuperBASIC compatible) and case
dependent INSTR operations. To maintain compatibility, SBASIC does not
introduce a new operator which could cause chaos if the program were to be
compiled, but introduces a command to switch the operation of INSTR.

INSTR_CASE 0 from now on INSTR is SuperBASIC compatible
INSTR_CASE 1 from now on INSTR does direct byte by byte
comparisons

The internal INSTR_CASE flag is cleared on NEW, LOAD, MERGE and RUN.

System Fonts

It is possible to change the system default fonts in SMSQ/E. This can be
achieved with the new command

CHAR_DEF

CHAR_DEF font1,font2

46

 where font1 and font2 may be of the following parameters:
 address of a valid QL-font or
 0 (which will select the inbuilt system font) or
 -1 (do not change this parameter)

If you have defined a new QL font, which contains the characters SPACE
(CHR$(32) to arrow down CHR$(191), and you want to keep the second font
(to get the chequeboard pattern if the character is not printable), then you can
do it this way:

fb=RESPR(fontsize)
LBYTES font_file,fb
CHAR_DEF fb,0

All windows which are opened now will use the new system fonts (except they
define their own fonts, of course).

Channels already open will not use the new fonts automatically for various
reasons: the most obvious is, that if the font file did not contain any font data,
you will not be able to correct this as all characters printed will look like
complete rubbish.

CHAR_USE

It is possible to attach the new fonts to channels already open:

CHAR_USE [#channel,] font1,font2 (you know it from Toolkit II)

which allows three parameters:
 address of a valid QL-fonts (as usual) or
 0 (to use the current system font) or
 -1 (to leave it as it is)

For SuperBASIC the following line would change the fonts of the channels:

FOR ch=0 TO 2:CHAR_USE #ch,0,0

Program Editing

ED

47

Offers a new feature: if you press F10 (or SHIFT F5) while the cursor is over a
program line, then this line is put (without line number) into the HOTKEY
Buffer. It can easily be retrieved by pressing ALT SPACE in any program
where input is expected. In order to work, the HOTKEY System has to be
going (use HOT_GO to activate).

Just a quick reminder: F9 (or SHIFT F4) toggles between insert and overwrite
mode.

The SuperBASIC commands AUTO and EDIT are retained for compatibility,
but now function like the ED command and no longer have their original
actions.

Command Line History

Basic has a new command line history: if you press the up/down arrows, you
get the latest commands entered.

Stuffer Buffer

HOT_GETSTUFF$

A function which returns the content of the hotkey stuffer buffer. If given a
parameter of 0, or no parameter, it returns the current content of the stuffer
buffer, like ALT-SPACE. A parameter of -1 gets the previous content, like ALT-
SHIFT-SPACE.

result$ = HOT_GETSTUFF$ get current content of stuffer

buffer
result$ = HOT_GETSTUFF$(0) get current content of stuffer

buffer
result$ = HOT_GETSTUFF$(-1) get previous content of stuffer

buffer

Outlining

OUTLN

If you have not used OUTLN yet, then do not worry about this command and
ignore it. If you have written BASIC programs using the Window Manager,
then you have to be familiar with OUTLN. Older versions of the OUTLN
command provided by various toolkits need a channel (or default to #0) and a

48

window definition, and usually resize the window. This new OUTLN accepts all
parameters as before, to maintain compatibility, but there is a special feature:

If OUTLN is used without parameter, then it will declare the smallest area
which outlines all windows currently opened for the job to be the Outline for
that job without changing the primary window.

Job ID Function

JOBID

id = JOBID[({nr,tag} | <name>)]

JOBID returns the 32-bit ID of the given job details as a decimal value. The
optional parameters may be either a job number and job tag (as displayed by
the JOBS command), or the job name. If no parameters are supplied, the Job
ID number of the current job is returned.

id = JOBID (job_number, job_tag) returns the Job ID of the job

specified by job_number and
job_tag

id = JOBID(job_name$) returns the Job ID of the job
specified in job_name$

id = JOBID returns the Job ID of the current
job

Suspend JOB Command

SUSJB

SUSJB {nr,tag}|<name>,ticks
From version 3.34 of SMSQ/E, the SUSJB command is provided to suspend a
job for a given number of ticks (-1 = infinite). Takes the same parameters as
other Toolkit 2 job control commands – a job number/tag (or a job name) plus
the number of ticks.

SUSJB 5,7,50 suspend job 5,7 for 50 ticks (1 second)

SUSJB ‘myprog’,10 suspend job called ‘myprog’ for 10 ticks

(1/5 second)

EX command extensions

49

The S*Basic extensions FEX (and synonym EXF), FEW, FET and FEP have
been added to SMSQ/E V3.00 and later. These are function calls
corresponding to the procedures EX (EXEC), EW (EXEC_W), ET and EXEP.

FEX EXF

job_id = FEX(filename)
job_id = EXF(filename)

Executes and returns the ID of the job filename. This ID can be used to
manipulate the job in various ways by using the other job control extensions,
such as SPJOB, MOB, RIOB, etc. The full syntax using input and output
channels, as well as filters, is supported. See the TK2 documentation, section
8.xx for details.
Note: In the event of filters being set up, only the ID of the first job is returned.
Note: The name FEX clashes with the eponymous keyword from Filelnfo2. For
this reason, the synonymous function EXF has been introduced to avoid this
clash. By the time you read this a later version of F12 may be available,
otherwise you will need to patch one or the other of the keywords to access
both.

FET

As for FEX above, except the job is not activated.

FEW

error_code = FEW(fitename)

Returns the error code returned by the (first) job. Syntax as for FEX above.
Note: FEW tries to open the channels of files supplied in the parameter list
before executing the job(s). Any errors arising from this, including erroneous
parameters, are returned to the caller as “hard’ errors.

FEP

job_id = FEP(thingname)

Executes and returns the ID of the job thingname. FEP is the implementation
of EXEP as a function. Refer to your Qpac2 manual for details.

50

EX_M FEX_M

This behaves a bit like EX in that the calling job continues executing (like EX
and contrary to EW) but the job created is owned by the calling job (like EW).
This means that if you get rid of the calling job, you will also get rid of the
created job(s). FEX_M is a function version.

Medium Information - DMEDIUM_xxx

The following set of functions can be used to obtain information about a device
driver or a medium which is currently driven by this driver, which could not be
obtained easily in the past (or not at all). These functions should be used on
directory devices (RAM, FLP, WIN etc.) only. The parameter passed to these
functions can either be a channel number (#channel) or a \directory or \file (as
with most other file-functions known from Toolkit II, e.g. FDAT, FLEN).

DMEDIUM_NAME$

Returns the medium name of the specified device.

OPEN #3,flp1_boot
PRINT DMEDIUM_NAME$(#3) what's the name of the disk in
flp1_?
CLOSE #3

PRINT DMEDIUM_NAME$(\win1_) returns the name of WIN1_?

DMEDIUM_DRIVE$

Returns the real device name of the specified file or device. This is the only
way to check if the access is done to the device it is intended to be done, as
devices may be renamed using RAM_USE, FLP_USE, WIN_USE etc. This
function also allows to discover the "real" device which may be hidden behind
"DEV".

DEV_USE 1,win1_ DEV1_ accesses WIN1_
OPEN_NEW #3,dev1_test let's open a new file
PRINT DMEDIUM_DRIVE$(#3) really, it's on WIN!
CLOSE #3

51

DMEDIUM_RDONLY

Returns 1 if the medium is write-protected, otherwise 0. It checks the various
possibilities of write protection, even the software write-protection which is
possible for harddisks and removable harddisks.

DMEDIUM_REMOVE

Returns 1 if the specified device is a removable harddisk.

DMEDIUM_DENSITY

Returns the density: 1=DD, 2=HD etc. RAM-Disks return -1, as they have no
density.

DMEDIUM_FORMAT

Returns the logical format of the medium or partition: 1=QDOS/SMSQ,
2=DOS/TOS.

DMEDIUM_TYPE

Returns information abouth the physical drive: 0=RAM-Disk, 1=Floppy Disk,
2=Harddisk, 3=CD-ROM.

DMEDIUM_TOTAL DMEDIUM_FREE

returns the total number and number of free sectors respectively (in 512 bytes
sectors).

EOFW

The EOFW is a variation on the SuperBASIC compatible EOF function. While
EOF does not wait, and can miss the end of file under some conditions,
EOFW waits for data/end of file.

Print Formatting

PRINT_USING

PRINT_USING #channel,format$,list

52

format$ contains formatting information about the result string. Various special
characters define how the following list of numbers should be placed inside
the result string.

Special characters inside format$ are:
© the next character will be printed as it is, even if it is one of the special
characters.
" or ' will output all characters up to the next " or '.
\ generates a new line
$ will shift the following currency symbol(s) directly in front of the
following number.
The other special characters + - # * , . ! > appear in "fields" within format$. The
fields define the format of the number to be output. For every numerical field a
number is taken from the list and - depending on the format information
properly formatted. The fields define the format of the element as well as the
length. Lots of possible combinations are possible (field length is assumed to
be 5).

Field Format

Numbers from the list are right-justified integers; strings from

the list are left-justified and, if too long, truncated.
***** Numbers are right-justified, the leading spare characters are

filled with '*' (e.g. ***12).
####.## Fixed point decimal number, two digits after the dot.
****.** As above, but leading spaces are converted to '*'.
##,###.## Fixed point decimal number, thousands are separated with a

comma.
,*.** as above, but with '*' filling.
-#.####!!!! Exponential form with optional sign.
+#.####!!!! Exponential form, always signed.
###.>> Fixed point decimal, scaled (i.e. if you calculate in pennies).

If you choose the exponential form, it always has to start with a sign, a # or a
decimal point or -comma and it has to end in !!!!.
A decimal field can have + or - as pre- or postfix, or it can be put in brackets. +
or - can be placed in front of a currency symbol or after. If brackets are used,
they are shown for negative values only. In case of - the sign is shown only if
the value is negative, with + it is always shown.

Numbers can be printed with comma or full stop representing the decimal
point. If the field contains one of these characters only, then this character is
used as the decimal point. If there is more than one comma or full stop, then

53

the last character is used as the decimal point and the other one is used for
separating multiples of 1000. If the decimal point is the last character of the
fielt then it is not printed. This allows you to specify 1000-separators on
integers.

Currency sysmbols between $ and the first '#' or '*' are put into the numerical
field close to the numerical value (i.e. $DM#.###,## or $£###.##).

PRINT_USING #2,"$DM###.###,##\",1250.6 prints to #2: DM1.250,60. '\'
generates a newline.

If you use the conversion more than once you simply define a string:
dm$ = '$DM***.***,**'
PRINT_USING dm$, 31.265 gives *****DM 31,27

(rounding!).

Multiple Copies of SBASIC

There never was much problem getting multiple copies of SuperBASIC to run
under QDOS. There is even less of a problem getting multiple copies of
SBASIC to run under SMS. The problem was always what to do with the
windows.

SBASIC has four distinct forms.

1. Job 0 is the "guardian" of SBASIC extensions, permanent memory

allocation and channel 0.
2. SBASIC "daughter jobs" may be created with the SBASIC command.

These may be created with the same set of 3 windows as the initial
Job 0 windows. Alternatively, they may be created with a single
channel #0 or even no windows open at all.

3. SBASIC source files (ending in _bas) may be executed by EX, EXEC,
EW, EXEC_W.

4. SBASIC may be invoked as a Thing which may either operate within
the context of an invoking Job, or, once set up, operate as an
independent daughter Job.

SBASIC Daughter Jobs

Having a number of SBASIC jobs which completely cover each other may not
be very useful. SBASIC daughter jobs may, therefore, either be created either
with the full set of standard windows (in which case they all overlap) or they
may be created with only one small window (#0).

54

SBASIC Command

The SBASIC command, which creates SBASIC daughter jobs, has an optional
parameter: the x and y positions of window #0 in a one or two digit number (or
string).

- If no parameter is given, the full set of standard windows will be
opened. Otherwise, only window #0 will be opened: 6 rows high and
42 mode 4 characters wide within a 1 pixel wide border (total 62x256
pixels).

- If only one digit is given, this is the SBASIC "row" number: row 0 is at
the top, row 1 starts at screen line 64, row 4 is just below the standard
window #0.

- If two digits are given, this is the SBASIC "column, row" (x,y) position:
column 0 is at the left, column 1 starts at 256 pixel in from the left.

SBASIC create an SBASIC daughter with the 3 standard windows
SBASIC 1 create an SBASIC daughter with just channel #0 in row 1
SBASIC 24 create an SBASIC daughter to the right of and below the

standard windows (a 800x600 display is required)

Because it is quite normal for an SBASIC job to have only #0 open, all the
standard commands which default to window #1 (PRINT, CLS etc.) or window
#2 (ED, LIST etc.) will default to window #0 if channel #1 or channel #2 is not
open. This may not apply to extension commands.

WTV WMON

If you have a screen larger than 512x256 pixels, it is useful to be able to re-
position the SBASIC windows. The TK2 WMON and WTV commands have
been extended to take an extra pair of parameters: the pixel position of the top
left hand corner of the windows. If only one extra parameter is given, this is
taken to be both the x and y pixel positions.

WMON 4,50 reset windows to standard monitor layout displaced 50

pixels to the right and 50 pixels down.

If the mode is omitted, the mode is not changed, and, if possible, the contents
are preserved and the outline (if defined) is moved.

WMON ,80,40 reset windows to standard monitor layout displaced 80

pixels to the right and 40 pixels down, preserving the
contents

55

A border has been added to window #0 to make it clearer where an SBASIC
Job is on the screen.

JOB_NAME

The procedure JOB_NAME (job name) can be used to give a name to an
SBASIC Job. It may appear anywhere within a program and may be used to
reset the name whenever required. This command has no effect on compiled
BASIC programs or Job 0 prior to SMSQ/E version 3.34. May be up to 48
characters.

JOB_NAME Killer sets the Job name to "Killer"
JOB_NAME "My little Job" sets the Job name to "My little Job"

Executing SBASIC Programs

SBASIC program files (ending in _BAS, _bas, _SAV or _sav) may be
executed using the EX (EXEC) and EW (EXEC_W) commands.

EX my_little_prog_bas executes the SBASIC program
"my_little_prog_bas"

Just as for "executable" programs, if file or device names (or channels) are
given after the program name, the first file device or channel will be #0 within
the program, the second will be #1 etc.

A simple program for "uppercasing" could be

100 JOB_NAME UC
110 REPeat
120 IF EOF(#0): QUIT
130 BGET #0,a%
140 SELect ON a% = 97 to 122: BPUT #1, a% ^^ 32: = REMAINDER
BPUT #1, a%
150 END REPeat

Saved as "uc_bas", this can be used for printing a file in upper case:

EX uc_bas, any_file, par

It can also be used as a filter to uppercase the output of any program sending
its output to the "standard output".

56

EX my_prog TO uc_bas, par

The command QUIT should be used to get rid of an SBASIC job whether it
has been created by the SBASIC command, EX or any other means.

Channel #0

There are some oddities in the handling of channel #0 which have been
introduced to make the use of SBASIC a little easier.

- On normal completion of a program, if #0 is not open. SBASIC will die
naturally. If #0 is open, SBASIC will wait for a command.

- In case of error, if #0 is not open, a default window #0 will be opened
for the error message.

- Likewise, if an operation is requested on a default channel (#0, #1 or
#2) and neither the default channel nor #0 are open, a default window
#0 will be opened for the operation.

SBASIC and Resident Extensions

Resident extensions linked into Job 0 (the initial SBASIC) are available to all
SBASIC jobs. If extension procedures and functions are linked into other
SBASIC Jobs (using LRESPR), they are local to those Jobs and will be
removed when the Jobs die or are removed.

Note that, because of this feature, LRESPR cannot be used from a Job, other
than Job 0, to load files which include system extensions (i.e. MENU_REXT,
QTYP etc.).

SBASIC Executable Thing

The SBASIC executable Thing is called "SBASIC". The provision of an
SBASIC executable Thing enables the diehard QDOS fanatic to go well
beyond the facilities provided by the SBASIC and EX commands.

On being invoked, SBASIC expects to find some channel IDs and a string on
the stack (standard QDOS conventions). Because, however, SBASIC requires
some BASIC source code in order to be able to execute, the treatment these
channel IDs and the string on the stack are slightly unconventional.

If SBASIC is invoked without any channel IDs on the stack, SBASIC will
behave either as a normal SBASIC interpreter, with the standard set of
windows, or as an interpreter with no windows initially opened.

57

- If the string on the stack is null, the standard set of windows is opened

and SBASIC waits for a command. (This is what happens when
you give an SBASIC command without parameters or when you start
SBASIC from the QPAC2 EXEC menu without a command string.)

- If the string on the stack is not null, no windows are opened and the
string is treated as a command line. (This is what happens when
you start SBASIC from the QPAC2 EXEC menu after specifying a
command string.)

If there are one or more channel IDs on the stack, SBASIC will normally treat
the first ID as the SBASIC program source file, the next ID as channel #0, the
next ID as channel #1 and so on. The string defines the initial value of the
CMD$ variable within the SBASIC program. (This is what happens when EX
executes an SBASIC program.)

There is a special "trick" for setting up an SBASIC program with just window
#0 open. The x,y coordinates of the top left hand corner of the required
window #0 are complemented and put on the stack in place of a channel ID.

- If there is only one channel ID on the stack, and this is a "false" ID (i.e.
the ID is negative), a 6 line by 42 column channel #0 is opened with
the origin at NOT the MSW (x) and NOT the LSW (y) of the false ID.
The string is treated as a command line. (This is what happens when
you give a SBASIC command specifying the position of window #0.)

- If there are two channel IDs on the stack and the second is a "false"
ID, first is used as the SBASIC program source file and the second ID
is used to define window #0. The string defines the initial value of the
CMD$ variable. (This could be useful.)

The SBASIC Interface Things

Two interface Things are provided for the interface to the SBASIC extension
which are compatible with two of the established executable program
interfaces. The first is called "SBAS/QD" which provides a QD5 compatible
F10 interface (Jochen Merz). The second is a "FileInfo" Thing (Wolfgang
Lenerz) which recognises and executes files starting with _sav or _bas.

If QD (version 5 or later) is configured to use the SBAS/QD thing, then you
can create (line numbered or unnumbered) SBASIC programs with QD and
execute them by pressing F10 (SHIFT F5). QD may be temporarily configured
to do this by executing it with the appropriate command string.

58

EX QD;'\T SBAS/QD' Execute QD using SBAS/QD Thing

The FileInfo Thing is used by the QPAC2 Files Menu (amongst others) to
determine how to "Execute" a file. With the default FileInfo Thing incorporated
into SMSQ, files ending with _sav or _bas may be executed directly from the
Files menu and any other utility program which uses the FileInfo Thing.

Terminate An SBASIC Program

QUIT

QUIT [value]

Terminates an SBASIC program. Please note that QUIT cannot terminate JOB
0, the main SBASIC interpreter.

The “Quit” keyword takes an optional parameter (long integer) that is passed
to the calling job. For example, you could have two BASIC programs, the first
calling the second with:

return_code = FEW (your_second_program)

Input Line Editing

The range of standard input line editing keystrokes is now much wider, and
has been made consistent for INPUT, ED and the Window Manager. The
move to start of word and delete start of word have been made reasonably
intelligent and are particularly useful for editing filenames (QPAC2 Files) and
SBASIC source (ED).

 Key With Operation

 move left one character
 move right one charater
 TAB SHIFT move left eight characters
 TAB move right eight characters
 SHIFT move left one word
 SHIFT move right one word
 ALT move to start of line
 ALT move to end of line
 CTRL delete left one character
 CTRL delete right one character
 CTRL SHIFT delete left one word

59

 CTRL SHIFT delete right one word
 CTRL ALT delete to start of line
 CTRL ALT delete to end of line

 CTRL delete whole line

Some keyboards have Delete and Backspace keys.

 Bspace delete left one character
 Delete delete right one character
 Bspace SHIFT delete left one word
 Delete SHIFT delete right one word
 Bspace ALT delete to start of line
 Delete ALT delete to end of line

Language Facilities

SMSQ/E incorporates several language variations and extra variations may be
add "at run time".

Language Specification

A language may be specified either by an international dialling code or an
international car registration code. These codes may be modified by the
addition of a digit where a country has more than one language.

 Language Code Car Registration Language and
Country

 33 F French (in France)
 44 GB English (in England)
 49 D German (in
Germany)
 1 USA USA (in USA)

Language Control Procedures

There is a set of procedures and functions which allow the language of the
messages, the keyboard layout and the printer translate tables to be set.
Where a language is to be specified, the parameter may be an integer value
(the telephone dialing code), a string (the car registration letters) a variable or
expression which yields an integer or string result, or a variable name.

It is not necessary for the car registration letters to be in upper case.

60

LANG_USE

The language of the messages is set by the LANG_USE lang command. This
sets the OS language word, and then scans the language dependent module
list selecting modules and filling in the message table.

LANG_USE 33 set language to French
LANG_USE D set language to German
LANG_USE 'g'&'b' set language to English

WARNING: if you assign a value to a variable, then you will not be able to use
that variable name to specify the car registration letters.

D=33: LANG_USE D set language to French (dialing code 33)

rather than German (car registration D)

LANGUAGE LANGUAGE$

The LANGUAGE and LANGUAGE$ functions are used to find the currently set
language, or to find the language that would be used if a particular language
were requested. They can also be used to convert the language (dialing code)
into car registration and vice versa.

PRINT LANGUAGE the current language
PRINT LANGUAGE$ the car registration of the current
language
PRINT LANGUAGE (F) the language corresponding to F
PRINT LANGUAGE$ (45) the car registration corresponding to 45
PRINT LANGUAGE (977) the language that would be used for Nepal

KBD_TABLE

The keyboard tables are selected by the KBD_TABLE lang command.

KBD_TABLE GB keyboard table set to English
KBD_TABLE 33 keyboard table set to French

Private keyboard tables may also be loaded.

i = RESPR (512): LBYTES "kt",i: KBD_TABLE i keyboard table set

to table in "kt"

61

For compatibility with older drivers, a "private" keyboard table loaded in this
way should not be prefaced by flag word.

TRA

The SBASIC TRA command differs very slightly in use from the QL JS and
MG TRA. The differences are quite deliberate and have been made to avoid
the unfortunate interactions between functions of setting the OS message
table and setting the printer translate tables. If you only wish to set the printer
translate tables, the only difference is that TRA 0 and TRA 1 merely activate
and disactivate the translate. They do not smash the pointer to the translate
tables if you have previously set it with a TRA address command.

If you wish to change the system message tables, then the best way is to
introduce a new language: this is done by LRESPRing suitable message
tables.

Language dependent printer translate tables are selected by the TRA 1,lang
command. If no language code or car registration code is given, the currently
defined language is used.
Language independent translate tables are set by the TRA n command where
n is a small odd number.
Private translate tables are set by the TRA addr command where addr is the
address of a table with the special language code $4AFB.

TRA 0 translate off, table unchanged
TRA 0, 44 translate off, table set to English
TRA 0, F translate off, table set to French

TRA 1 translate on, table unchanged
TRA 1, GB translate on, table set to English
TRA 1, 33 translate on, table set to French

TRA 3 translate on, table set to IBM graphics
TRA 5 translate on, table set to GEM VDI

A = RESPR (512): LBYTES "tratab",A: TRA A translate on, table

set to table in
"tratab"

To use the language independent tables, your printer should be set to USA (to
ensure that you have all the # $ @ [] { } \ | ^ ~ symbols which tend to go

62

missing if you use one of the special country codes (thank you ANSI)), and
select IBM graphics or GEM character codes as appropriate.

For the IBM tables, QDOS codes $C0 to $DF are passed through directly and
QDOS codes $E0 to $EF are translated to $B0 to $BF to give you all the
graphic characters in the range $B0 to $DF. QDOS codes $F0 to $FF are
passed though directly to give access to the odd characters at the top of the
IBM set.
For the GEM tables, QDOS codes $C0 to $FF are passed through directly.

The Home Thing

The Home Thing implements "home directories". A home directory in this
context is defined as meaning the directory from which an executable file was
executed. A home filename is also supplied by the HOME thing, which is the
combination of the filename and the home directory. Once set up, the home
directory and home filename may not be changed (with the sole exception of
the SBASIC interpreter, which can load BASIC programs from more than one
location, or with different filenames).

The Home Thing also implements a "current directory". This is inherited from
the job that is setting up the home directory (in most cases the parent job). If
the calling job does not have a current directory, a copy of the home directory
is used instead.

HOME_xxx Extensions

HOME_DIR$

result$ = HOME_DIR$ [(job_id)]

This function returns the home directory for the job given as job_id. The job
ID is optional, in that case -1, meaning the current job, will be assumed. To
avoid programs stopping with an error if the home directory cannot be found
for some reason, this function returns an empty string if that error happens.

result$=HOME_DIR$ return the Home Directory

for the current job (job’s
own Home Directory)

result$=HOME_DIR$(-1) return the Home Directory
for the current job (job’s
own Home Directory)

63

result$=HOME_DIR$(JOBID(‘launchpad’)) returns the Home Directory
for job called ‘Launchpad’,
using the JOBID function to
provide the job ID of
‘Launchpad’

HOME_FILE$

result$ = HOME_FILE$ [(job_id)]

This function returns the home filename for the job given as job_id. The job
ID is optional, in that case -1, meaning the current job, will be assumed.

result$=HOME_FILE$ return the Home Filename for the current

job

HOME_CURR$

result$ = HOME_CURR$(job_id)

This function returns the current directory for the job given as job_id. The job
ID is optional, in that case -1, meaning the current job, will be assumed.

result$=HOME_CURR$ return the Current Directory for the current

job

HOME_DEF

HOME_DEF job_name$, file_name$

This sets a default filename for a job with the name given as first parameter.
This is useful for "executable things", where no filename is readily available, or
for file managers that haven't integrated calls to the home thing. With this
keyword, you set up the default job name and filename that is to be used for
the home/current file/dir.

Please note that the file_name$ parameter must indeed be a FILENAME,
not a directory name.

HOME_DEF "Sbasic", "dev1_sbasic_test_bas" set default

filename for Sbasic
to

64

dev1_sbasic_test_
bas

HOME_VER$

Function to get the version number of the HOME thing.

result$ = HOME_VER$ get the HOME thing version number into

the string result$
PRINT HOME_VER$ display the version number of the HOME

thing

HOME_CSET

HOME_CSET [job_ID],directory$

Set the current directory for the job indicated. The job ID is optional, in that
case -1 (meaning the current job), will be assumed if no job_ID is given.

HOME_CSET 262148,’Win1_Launchpad_’ set Current Directory for

job with ID of 262148
($00040004) to
Win1_Launchpad_

HOME_SET

HOME_SET job_id,device_directory_and_filename$

Normally, jobs should not try to set up a home directory for themselves.
This should be left to the system/filemanager. When a job is started with EX,
EW or any of the similar commands, this is done automatically. However,
filemanager writers may be interested in this information.

The HOME_SET command can be used to set the home directory, home
filename and current directory. You pass the thing the job ID of the job for
which this is to be set up and the entire filename, including the device and
directory. The thing extracts the home directory from the filename. If you
want to set up the home directory for the current job, you may pass -1 as
parameter.

Since there can only be one home directory for a job and since that can only
be defined once, the keyword will give an ‘in use’ error if the home

65

directory is already set for this job. Otherwise, this keyword will set the home
directory, the home file and the current directory.

This keyword exists mainly for testing purposes.

HOME_SET -1,’win1_dir_myprog_exe’ set job’s own home

directory, home file and
current directory

The Recent Thing

The Recent Thing maintains lists with the names of recently opened files so
that you can find out what program recently opened files, and so that
application programs may propose a list of the files the user recently opened :

 There is one general list, which contains the name of files recently
opened, irrespective of the job which opened them.

 Then there is a list for each job that opened one or several files and
which only contains the files opened by this job.

The RECENT Thing is an “extension thing” in the usual SMSQ/E meaning.

Various ways are provided to obtain the list(s) from the thing. There is an
assembler interface to the thing and the extensions, and various SBASIC
keywords that map onto the extensions.

Concepts

The RECENT Thing is called directly from the system's open file trap, without
any user intervention. Whenever a file is opened, its name is added to the
general list and to the job's list, and then becomes the first element of these
lists.

There is no provision to delete files from the lists. However, since every list
only has a finite size, when it is full and a new file is added to it, this will push
the most ancient file off the list and the newest on it. There is also the
possibility to remove an entire list for a job.

The system's open file call tries to filter out calls to open a directory, so that a
directory open call does not cause the name of the directory to be added to

66

the list. The same is true for the SAVE file. You can configure the size of the
lists (i.e. how many files it should contain).

The lists

Each list is implemented as a LIFO (Last In First Out) buffer : the last (most
recently) opened file will be the first in the list. There is one exception to this
rule:
The thing makes sure that a file only exists once in a list. So it checks the
general list and the job's list and, if it detects that a file is already in a list, it will
not be put in again, NOR WILL IT MOVE TO THE FIRST POSITION.

There is one general list and as many job lists as there are jobs that opened
files, or even more than that if lists were LOADed.

The general list is immediately adjacent to the thing itself. Its size is of:
rcnt_end + xx * rc_entryl bytes (see dev8_keys_recent_thing in the SMSQ/E
sources) where xx is the number of files configured by the user. The general
list always exists.

Job lists are in heaps, i.e. memory allocated on the common heap, one per job
that opens a file. The memory is allocated for job 0 and doesn't go away when
the job is removed. Heap size is: rcnt_hdr + xx * rc_entryl bytes (see
dev8_keys_recent_thing in SMSQ/E sources) again, xx is the number of files
as configured by the user.

Job IDs

The primary way of identifying which list goes with which program is, of
course, the job Id. Each list contains the ID of the job that opened it, and when
the same job tries to open a new file, its name is added to the list of the job
with the same Job ID. However, as a general rule, when trying to work with the
RECENT Thing and it requires a Job ID, it is better to pass it a job name:

Over the course of a session, a user will typically launch several programs
which will open a variety of files. Many of these programs will really be
transient and will be removed from the system when they are done. (Note jobs
started from Hotkeys are also created and removed, just as if they were
loaded from disk). When a program is removed, its list stays in the system, for
several reasons.

67

First it is to speed up the system - constantly removing and adding new lists
(which are allocated on the common heap) would just slow the system down
(see performance penalty, below).

Second, the information should be saved when the RECENT Thing lists are
saved to disk, to be re-loaded in a later session.

Third, and most importantly, a mechanism is provided for jobs with the same
name but different job Ids to use only one list.

Note that this scheme only works with jobs that keep the same name. QD, for
example, changes its name when you load a file, and Xchange also changes
its name sometimes. In that case, if the job must be found via a hash, it will
not be possible to find the previous list.

The same problem also arises when LOADing the lists at boot time (or
whenever): The lists are stored with the Job IDs as they were when the list
was saved.

In a nutshell, when trying to use the RECENT Thing, it is better to pass it a job
name rather that a Job ID. The mechanism to do that is explained below (see
JobIDs and Name pointer for the INFO extension). It is important to
understand that, if two jobs have the same name, they will be using the same
list (e.g. several instances of SBASIC, unless you changed their name).

Buffers

Whenever a buffer is required, this means an area of memory starting at an
even address. The thing does not check that the address is even, if it isn't,
mayhem may ensue.

The Thing Interface In Assembler

See the QDOS / SMS Reference Manual, section 23.2.

SBASIC Keywords

The following keywords allow use of the Thing from SBASIC:

RCNT_INFO A function to get some information on a list.

68

RCNT_JOBS A function to get some info on the jobs the thing holds
lists for.

RCNT_ADDF A keyword to add a file to the list. Should not be used.
RCNT_GFFA$ A function to get the first (=most recent) file name in

the general list.
RCNT_GFFJ$ A function to get the first (=most recent) file name in

the list for a certain job.
RCNT_GALL A function to get all filenames from the general list.
RCNT_GALJ A function to get all filenames from the list for a

certain job.
RCNT_GARR A keyword to get all filenames from the general list

into an array.
RCNT_GARJ A keyword to get all filenames from the list for a

certain job into an array.
RCNT_SAVE A keyword to save the lists to a preconfigured file
RCNT_LOAD A keyword to load the lists from a preconfigured file
RCNT_REMV A keyword to remove a list from the thing.
RCNT_SYNC A keyword to synchronize job ids with those in the

lists.
RCNT_HASH$ A function to get a hash from a string.

RCNT_INFO

length = RCNT_INFO ([job_id,] str_nbr%,str_len%,max_nbr%)

Get information on a list of files, where:

length = space needed for getting all strings, including length word
job_id = optional id of job the info is about

EITHER as a long int where
0 means get the general list,
-1 means get the list for myself (= default if omitted)
OR as a string with the name of the job

str_len% = RETURN parameter, max length of string
str_nbr% = RETURN parameter, number of strings currently held
max_nbr% = RETURN parameter, max number of strings in lists

This gets some information about the lists of files maintained by the thing,
either the general list (job_id) = 0 or the list for a certain job. The Job ID may
be passed as a long word, or, preferably, as a string with the entire name of
the job.

69

On return the function returns the size for using the "RCNT_GALL" or
"RCNT_GALJ" keywords. The size is the size necessary to store all strings + a
length word for each string + a possible byte necessary to even out each
individual string length.

The other three parameters are filled in on return of the function:

 The str_len% parameter contains the length of the longest filename
currently being stored by the Recent list for this job, on in the general
list. This length may vary, though, if a new file with a longer name is
later opened. It will never exceed 41 characters, though.

 The number of files in the list, returned in the str_nbr% parameter,
may also vary, if a new file is later opened.

 Finally, the max_nbr% is the maximum number of files a list may hold
(as configured by the user).

RCNT_JOBS

result% = RCNT_JOBS (length,buffer)

Get a list of all jobs into a buffer:

length = length of buffer, in bytes
buffer = space for the list, preferrably a space allocated with ALCHP
result% = 0 or +ive: number of jobs in the list

else negative error code (e.g. "buffer full" if the buffer was too small)
= -1 means get the list for myself (= default if omitted)

if there is an error, as much as possible is filled in the buffer

This gets a listing of all jobs for which the thing holds lists of files.

For each job, the listing in the buffer holds the Job ID in a long word followed
by a standard string with the job name (which my be 0 if the job has no name).

The list is terminated by a long word of -1. If the buffer is too small to hold all
job names, the buffer will be filled in as much as possible, and the error
err.bufl will be returned.

There is no guarantee that any of the jobIDs returned are still valid : if the job
with that ID has been removed, the jobID will no longer be valid.

70

The return in value holds the number of jobs in the buffer, unless it is a
negative error code.

RCNT_ADDF

RCNT_ADDF [job_ID,] filename$

adds a file name to the list

filename is the name of the file to add
job_id is the optional jobID of the job supposed to have opened the file
(defaults to -1, i.e. myself)

This adds a file to the list. USE OF THIS KEYWORD IS STRONGLY
DISCOURAGED.

Normally, a program should not call this, the adding of file is handled by the
system whenever a file is opened.

The JobID MUST be passed as a long word.

RCNT_GFFA$

file$ = RCNT_GFFA$ ()
Returns the name of the first (i.e. most recently opened) file from the general
list. If the list is empty, this will be a null length string.

RCNT_GFFJ$

file$ = RCNT_GFFJ$ (job_ID)

Gets the name of the first (i.e. most recently opened) file for the job passed as
parameter. If the parameter is omitted, it will default to -1, i.e. the current job. If
the list is empty, the result will be a null length string.

RCNT_GALL

result% = RCNT_GALL (length,buffer)

71

Get ALL file names from the general list into a buffer.

length = length of buffer - this should be at least as much as that returned by
the RCNT_INFO keyword

buffer = space for list

result% = 0 or +ive: number of files got if all went ok else negative error code:

err.bffl Buffer too small
err.ipar Wrong number of parameters
err.ijob Wrong job id
Any error from the thing use routine

If the error is err.bffl, as much as possible is filled in the buffer

This gets all filenames of the general list into a buffer. The filenames will be
copied one after the other, the name of the most recently opened file being the
first one to be copied. If the filenames don't all fit, as many as possible will be
copied and the error "buffer full" is returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened
out to start at an even address. This might be used as follows:

str_len%=0
str_nbr%=0
str_max%=0
blength=RCNT_INFO(,0,str_nbr%,str_len%,str_max%) get info on

size
buffer=ALCHP(blength) get buffer
result%=RCNT_GALL (blength,buffer)

Perhaps a better way to get the filenames for the basic programmer is the
RCNT_GARR function.

RCNT_GALJ

result% = RCNT_GALJ ([jobID,] length, buffer)

Get ALL file names for a job into a buffer.

length = length of buffer - this should be at least as much as returned by the
RCNT_INFO keyword for this jobs

72

buffer = space for list

job_id = (optional) id of job:

EITHER as a long int where -1 means get the list for myself (=default)
OR as a string with the name of the job

result% = 0 or +ive: number of files got if all went ok

else negative error code:
err.bffl buffer too small
err.ipar wrong number of parameters
err.ijob wrong Job ID
any error from the thing use routine

if the error is err.bffl, as much as possible is filled in the buffer

This gets all filenames of the list for a job into a buffer.

The filenames will be copied one after the other, the name of the most recently
opened file being the first one to be copied. If the filenames do not all fit, as
many as possible will be copied and the error "buffer full" is returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened
out to start at an even
address.

This might be used as follows:

str_len%=0
str_nbr%=0
str_max%=0
blength=RCNT_INFO("Prowess",str_nbr%,str_len%,str_max%) get
info on size
buffer=ALCHP(blength) get
buffer
result%=RCNT_GALL (blength,buffer) data
info buffer

RCNT_GARR

RCNT_GARR array$

Get all filenames from the general list into an ARRay

73

array$=a 2 dimensional string array.

This is similar to the GALL call, in that all, or as many as possible, filenames
will be copied. Here however, they will be copied into what must be a two-
dimensional string array (i.e. DIM a$(xx,yy). If the filenames do not all fit, as
many as possible will be copied, and no error is returned.

An error bad parameter will however be returned if:

 The array isn't a two-dimensional string array

 The second dimension of the array is too small for the longest element
in the list.

Note that filenames will not be longer than 41 characters, so a DIM a$(x,41)
will guarantee that that error
won't happen.

The first array element to be filled in will be element 0.

This might be used as follows:

str_len%=0
str_nbr%=0
blength=RCNT_INFO(0,str_nbr%,str_len%,str_max%) get info on
size
DIM files$(str_nbr%,str_len%) or better DIM
files$(str_nbr%,41)
RCNT_GARR files$

RCNT_GARJ

RCNT_GARJ array$

Get all filenames for a job into an ARRay. Array$ is a 2-dimensional string
array. The array will be filled in starting at element 0.

This is similar to the GALJ call, in that all, or as many as possible, filenames
will be copied. Here however, they will be copied into what must be a two-
dimensional string array (i.e. DIM a$(xx,yy). If the filenames don't all fit, as
many as possible will be copied, and no error is returned.

74

An error bad parameter will however be returned if :

 The array isn't a two-dimensional string array

 The second dimension of the array is too small for the longest element
in the list.

Note that filenames will not be longer than 41 characters, so a DIM a$(x,41)
will guarantee that that error won't happen.

The first array element to be filled in will be element 0.

This might be used as follows:

str_len%=0
str_nbr%=0
blength=RCNT_INFO("Prowess",str_nbr%,str_len%,str_max%) get

info on size
DIM files$(str_nbr%,str_len%) or better dim

files$(str_nbr%,41)
RCNT_GARJ files$

RCNT_HASH$

hash$=RCNT_HASH$(string$)

Returns the hash from the string
string$ = a normal string to turn into a hash

This returns the hash, as used by the RECENT Thing for job names, from the
string passed as parameter. The hash algorithm used is a very simple one, the
consideration was speed over anything else. So this hash is certainly very
easy to break and probably not very collision proof....

That said, running it over an entire qxl.win file with about 10.000 files did not
give any collision for any of the
filenames.

RCNT_SAVE

RCNT_SAVE

75

SAVE lists to configured file : no parameters

This saves the lists for all jobs currently held in the thing, into the file
configured by the user. The file is overwritten. You can't specify another file.
The general list is NOT saved. The name of the SAVE file is NOT added to
any list of files, not even the general one, when SAVEing or LOADing.

RCNT_LOAD

RCNT_LOAD

LOAD lists from configured file : no parameters.

This loads the lists as saved by the RCNT_SAVE extension. All lists existing in
the thing, except for the general list, will be removed prior to loading. The file
from which the lists are loaded is as configured by the user, you can not
specify another file.

Thus, if you LOAD the lists as the very first thing in your boot file, they will also
fill up with the files opened up during your normal boot.

If you LOAD the lists at the end of your boot file, they will replace all lists
generated up to that time (except for the general list).

When SAVEing or LOADing, the name of the SAVE file is NOT added to any
list of files, not even the general one.

It is possible to save the lists, re-configure SMSQ/E to use lists with a different
size, and load the lists after a reboot with the newly configured SMSQ/E. In
that case:

 If the new list size is smaller than the saved size, only some files will
be copied to the new list. THERE IS NO GUARANTEE THAT THESE
will include the newest files opened.

 If the list size is larger than the saved size, all filenames will be
copied.

In the latter case, and also when the sizes stay the same between saving and
loading, the order of the
filenames will be preserved.

76

RCNT_REMV

RCNT_REMV [jobid]

REMoVe a list for a job. This removes the list for the job passed as parameter.
If no such job exists, it returns an error.

RCNT_SYNC

RCNT_SYNC

Tries to give current Job IDs to jobs in heap

As explained above, the Job IDs stored in the RECENT Things may not
correspond to the Job IDs of the jobs currently executing, for example after
loading the lists. The SYNC runs through the list of all iobs currently executing
in the system and if a list exists for a job with that name, it sets the Job ID of
that list to that name.

Configuration

Using the usual standard config program, you can configure:

 Whether SMSQ/E should use the RECENT Thing at all. If not, neither
the thing nor the SBASIC extensions for it will be initialised/usable.

 The size of the lists (i.e. how many files they should contain):
The maximum allowed size is 255. The minimum allowed size is 1.
The longer the list, the higher the performance penalty (see below).
All lists have the same size. The default list size is 20.

 The name of the SAVE file if you want to be able to save/load the lists
between sessions.

Performance penalty

There is, of course, a performance penalty involved when opening files, since
the RECENT Thing must be used and the lists searched through, but the time
necessary to check and add the file to the list is small. As an indication,
compiling all of SMSQ/E, under SMSQmulator, in a version of SMSQ/E 3.23

77

without the RECENT Thing takes about 118 seconds. The same with the
RECENT Thing takes about 125 seconds. This is with a list size of 250 files.

Under QPC, these were 58 seconds without the RECENT Thing and 63
seconds with the Recent
thing.

Machine Type Functions

Two standard functions to determine the machine type are supplied.
MACHINE returns a number (based on the value held in the system variable
sys_mtyp at offset $A7, decimal 167) which identifies the machine or emulator
type. PROCESSOR returns a number (based on the value held in the system
variable sys_ptyp at offset $A1, decimal 161) which identifies the type of
processor and if any floating point unit is available.

MACHINE

The MACHINE function returns the machine type.

0 Atari ST / STM / STF / STFM.
1 ditto, with blitter.
2 Mega ST (without blitter) or ST etc. with real-time clock.
3 Mega ST (with blitter) or ST etc. with RTC and blitter.
4 Stacy
6 Atari STE
8 Mega STE (without blitter!).
9 Mega STE.
10 Gold Card
11 Gold Card with Hermes
12 Super Gold Card
13 Super Gold Card with Hermes
16 Atari Falcon
17 Q40
18 Q68
20 SMSQmulator
24 TT 030
28 QXL
30 QPC
31 QLay emulator

PROCESSOR

78

The PROCESSOR function returns the 680x0 family member.

0 – 68000 or 68008
10 – 68010
20 – 68020
30 – 68030
40 – 68040
60 – 68060

IF MACHINE = 12 : PRINT "Super Gold Card fitted"
IF PROCESSOR = 60 : PRINT”I have a 68060 processor!”

Display Extensions

As of version 2.98 of SMSQ/E, the DISP_xxx command set has been
extended to allow the colour depth to be specified. The DISP_COLOUR
command follows the same principles as the other DISP_xxx commands.
These commands may vary from hardware to hardware – please check the
notes for the various hardware platforms.

DISP_xxx Keywords

DISP_BLANK

DISP_BLANK x blank [, y blank] sets the size of the blank area to the sides of
and above and below the image for the QVME card on Atari only: it is ignored
for all other Atari display cards and other hardware ssytems. If the blank is too
small, you will loose some of your image, if it is too large, the image will be too
small.

DISP_BLANK 128,64 set horizontal blank to 128 pixels and

vertical to 64 lines

As the display size is altered, the blank is automatically adjusted to maintain
the proportion of blank. The DISP_BLANK command will not usually be
required.

If preferred, the parameters for the DISP_RATE and DISP_BLANK commands
may be tacked on to the DISP_SIZE command.

DISP_SIZE 640,480,60 set standard VGA
DISP_SIZE 800,480,80 set 80 Hz refresh rate, squashed

VGA.

79

DISP_SIZE 800,600,70,,128,60 set all of size, frame scan rate and
x and y blank

Note that if you specify both frame and line rates, as well as the number of
blank lines, the line rate is over-specified: it will be determined by the frame
rate and the total number of lines (visible + blank) and the line rate will be
ignored.

DISP_COLOUR

DISP_COLOUR colour depth

Specifies the colour depth to be used - 0 for QL, 2 for 8-bit, 3 for 16 bit (also 1
for 4 bit, and 4 for 24 bit - but these do not exist).

DISP_COLOUR 0 QL mode display
DISP_COLOUR 1 16 colour (4-bit) display mode – not currently

implemented
DISP_COLOUR 2 256 colour (8-bit) display mode, currently used on

Aurora and QPC2
DISP_COLOUR 3 65,536 colour (16-bit) display mode
DISP_COLOUR 4 24-bit colour mode – not currently implemented

It is possible to specify the display size immediately after the colour depth.

DISP_COLOUR 3, 800, 600 specifies a 800x600 16 bit display

Naturally, since the DISP_SIZE size definition can also followed by the frame
and line rates, the DISP_COLOUR definition can also specify the frame rate,
the line rate and the x and y blank.

DISP_COLOUR colour depth [,xsize [,ysize [,framerate [,linerate [,xblank
[,yblank]]]]]]
DISP_SIZE xsize [,ysize [,framerate [,linerate [,xblank [,yblank]]]]]
DISP_RATE framerate [,linerate [,xblank [,yblank]]]
DISP_BLANK xblank [,yblank]

Any parameter can be left undefined, thus

DISP_SIZE , ,72, , , 30

80

specifies that the frame rate will be 72 Hz and the y (frame) blanking period
will be 30 lines - leaving all the other parameters unchanged. Note that on
most machines, most parameters will no effect at all!

DISP_INVERSE

The DISP_INVERSE (0 or 1) command is used to invert the monochome
display from the normal (black background) to inverse (white background)
state. On hardware with no monochrome display, this is ignored.

DISP_INVERSE 1 Invert black and white
DISP_INVERSE 0 Restore normal

DISP_RATE

DISP_RATE (frame rate, line rate) is used to specify the frame and line scan
rates for the QVME card on the Atari ST only: it is ignored for all the other
Atari display cards and other hardware. It would be usual to specify only the
frame rate: the line rate is equal to the frame rate multiplied by the total
number of lines.

DISP_RATE 75 set the frame rate to 75 Hz
DISP_RATE 70,48000 set the frame rate to 70 Hz and line rate to

48 kHz (686 lines)

DISP_SIZE

DISP_SIZE (xpixels, ylines) is used to set the display size. The nearest
feasible size will be selected by the driver.

It is best not to change the display size when the pointer sprite is visible, or
you may get some spurious blobs left on the display. There should be few
other problems changing from a smaller size to a larger size. You should,
however, avoid changing from a larger size to a smaller if there are any
windows outside the smaller screen.

Note that, for the QVME card on Atari, the width and height are set in
increments of 32 pixels and 8 lines respectively, while for the extended QL
mode 4 card on Atari, any width of 512 or less will select the standard
resolution mode while any width greater than 512 pixels will select the
extended mode.

81

Certain hardware may only support specific display sizes, e.g. the Q40 and
Q60 may only support 512x256 and 1024x512 pixels, while the Aurora card
supports only a range of sizes in 4:3 and 2:1 aspect ratios.

DISP_SIZE 1 is a special form, which resets the a QL-sized 512x256 display,
originally for use on the Atari extended Mode 4 emulator card.

DISP_SIZE 1024,768 change to SVGA size on a PC
DISP_SIZE 1024,512 change to Q40/Q60 resolution display
DISP_SIZE 800,600 change to 800x600 (Atari QVME) or

768x280 (Atari extended mode 4)
DISP_SIZE 1 change to 512x256 (extended mode 4)

(ignored by QVME)

DISP_TYPE

The DISP_TYPE function is used to find the type of display. For standard QL
style displays in MODE 4 (any resolution) DISP_TYPE returns 0. The value
returned on other display systems may vary according to the hardware and
colour depth. In general, on SMSQ/E versions supporting higher colour
modes, and on Atari emulator cards, the following values may be returned.

0 – QL style display (MODE 4)
1 - Extended mode 4 emulator (standard and extended display sizes)
on Atari.
2 - QVME mode 4 emulator on Atari.
3 - Aurora LCD
4 - Monochrome display on Atari.
5 - Aurora QL mode
8 – QL MODE 8 display
16 – 8-bit (256 colour) mode
32 – 16-bit colour mode on QPC, QXL and SMSQmulator
33 – 16-bit colour mode on Q40 and Q60
64 – 24-bit colour mode (no hardware supports this at the time of
writing)

IF DISP_TYPE > 0 THEN PRINT”Not a standard QL display.”
IF DISP_TYPE <> 8 : PRINT”Sorry, this game only runs in MODE 8.”
IF DISP_TYPE = 4 THEN PRINT”Monochrome display.”

REMark test how many colours this system can display
ncol = 4 : REMark assume 4 colours
dt = DISP_TYPE : REMark check display type

82

SELect ON dt
 =0,1,2 : ncol=4 : REMark 4 colours
 =4 : ncol = 2 : REMark monochrome on Atari
 =8 : ncol = 8 : REMark 8 colours in MODE 8
 =16 : ncol = 256 : REMark 256 colour mode
 =32,33 : ncol = 65536 : REMark 16-bit colour modes 32 and 33
 =64 : ncol = 2^24 : REMark 16,777,216 colours, 24-bit system
END SELect
PRINT”This system can display “;ncol;” colours.”

Graphic Device Interface Version 2

This part describes the use of the extended colours introduced from version
2.98 of SMSQ/E

Limitations

The modifications limit the colour depth for normal colour stippled colour
definitions to 16 bit. Plain colours are limited to 32 bits.

The modifications limit the colour depth for stippled borders to 8 bit. Plain
border colours are limited to 16 bits.

The calls to specify the colours can only handle

- QL 8 (or 4 of 8) colour definition,
- 256 palette mapped colour definition,
- true colour (24 bit),
- native colour.

Sprites (patterns and blobs) can be handled in

- QL 8 (or 4 of 8) colour definition,
- 256 palette mapped colour definition,
- 256 grbgrbgm colour definition,
- native colour.

The operating system mode call does not change the display mode.

Extended Colour SBASIC Procedures.

All the normal SBASIC procedures that set or use colours can work with any
of the three "standard" SBASIC colour definitions.

1. QL colour: a value from 0 to 7.
2. Palette mapped colour: a value from 0 to 255.

83

3. True colour: red (0-255) * 65536 + green (0-255) * 256 + blue (0-
255).

They can also work with the "native" colour definition. Note that, for ease of
programming, the true colour definition used in SBASIC is not the same as
used for the device driver interface.

The BGCOLOUR_xx, BGIMAGE, COLOUR_xx and PALETTE_xx procedures
described below all require a valid window channel ID. The default is the same
as PRINT: #1 or #0 for mini SBASICs that have only #0 open.

Wallpaper

A plain or stippled background can be defined using either QL colours or true
colours.

BGCOLOUR_QL

BGCOLOUR_QL QL colour

sets the background to the QL colour (0-255).

BGCOLOUR_24

BGCOLOUR_24 full colour

sets the background colour to the plain true colour.

100 BGCOLOUR_QL 255 set background to black / white check
110 BGCOLOUR_QL 0,7 set background to black / white check
120 BGCOLOUR_QL 0,7,3 set background to black / white check
130 BGCOLOUR_24 40 set the background to deep blue

You can get stippled extended colours by cheating. Set two of the QL palette
entries (see below) to the colours you require before calling BGCOLOUR_QL.

BGIMAGE

BGIMAGE filename

loads a background image from file.

150 BGIMAGE win1_wallpaper load my wallpaper

84

Background images must be in the form of a screen snapshot. It is relatively
simple to create background images.

500 WINDOW SCR_XLIM, SCR_YLIM, 0, 0 : REMark whole screen window
510 ... draw the wallpaper on the screen
520 SBYTES_0 win1_wallpaper, SCR_BASE, SCR_LLEN * SCR_YSIZE

Palette Maps

The colours used to display the QL colours 0 to 7 are not necessarily the
boring old black, blue, red, magenta, green, cyan, yellow and white. They can
be set to other colours if you wish. The palette mapped colours can also be
changed although they have been pre-defined to put the most useful colours
first.

PALETTE_QL

PALETTE_QL start, true colour 1, true colour 2, ...

sets QL palette entries starting with the start entry.

PALETTE_8

PALETTE_8 start, true colour 1, true colour 2, ...

sets 256 colour (8 bit) palette entries starting with the start entry.

On hardware that does not have a true palette map, palette map changes do
not affect the information already drawn on screen.

There is a practical reason for changing the QL palette map entries. Many
programs define some of the colours displayed as "white-colour" on a 4 colour
QL display, white-red appears as green. White-red, however, is really cyan,
not green. As a result, many QL mode 4 programs take on rainbow hues when
displayed on a 256, 65536 or full colour display.

This can be "fixed" by redefining the colours so that colour 2 is a bright
crimson and colour 4 is a bright sea green. This will ensure that colour 2 +
colour 4 = colour 7. We also need to ensure that colour 0 = colour 1, colour 2
= colour 3, etc.

600 crimson = 255 * 65536 + 100

85

crim
son
is
red
+ a
bit
of
blue

610 sea = 255 * 256 + 155 sea
gree
n is
gree
n +
rest
of
blue

620 white = crimson + sea
630 PALETTE_QL 0, 0, 0, crimson, crimson, sea, sea, white, white set

8
colo
urs

The following program can be used to display the current 256 colour palette
using the up and down arrow keys. If new colours are required, they should
replace colours towards the top of the table so that the low colours remain
unchanged. You change palette entry 0 at your own risk.

100 OPEN #0,con: out = 0
110 WINDOW #out, 16*10+2,16*10+2,50,50
120 COLOUR_PAL: BORDER #out,1,0,1
130 bottom=-16
140 FOR i = 1 TO 16: up
150 REPeat
160 BGET #0,a
170 IF a=$D0: IF bottom < 255-16: up
180 IF a=$D8: IF bottom > 0: down
190 END REPeat
200 :
210 DEFine PROCedure up
220 bottom = bottom+1
230 PAPER bottom+15 : SCROLL -10
240 l = bottom+1015 : l$ = l
250 PAPER #out, l&&1 : INK #out, (l+1)&&1

86

260 AT #out, 15,0 : PRINT #out; l$(2 TO 4);
270 END DEFine
280 :
290 DEFine PROCedure down
300 bottom = bottom-1
310 PAPER bottom : SCROLL 10
320 l = bottom+1000 : l$ = l
330 PAPER #out, l&&1 : INK #out, (l+1)&&1
340 AT #out, 0,0 : PRINT #out; l$(2 TO 4);
350 END DEFine

SBASIC Colour Definition Selection

SBASIC has a new set of procedures for selecting colour definition used by
INK, PAPER, STRIP, BORDER, BLOCK.

COLOUR_QL

selects the standard QL colour definitions (the QL colours can be mapped to
colours other than the standard black, blue, red, magenta, green, cyan, yellow
and white).

COLOUR_PAL

selects the 256 colour palette mapped definition.

COLOUR_24

selects the true colour (24 bit) definition.

COLOUR_NATIVE

selects the native colour definition - the significance of the colour numbers
specified by INK, PAPER, etc. depends on the hardware.

200 COLOUR_24 select true colour mode
210 BORDER 2, 128*65536 + 128*256 +128 grey border
220 BORDER 2,$808080 grey border for
hexadecimal hackers

The commands have no effect on any other programs executing. When an
SBASIC program starts executing, it is set to QL colour definition.

87

Alpha Blending

ALPHA_BLEND

Alpha Blending is the process of combing a translucent foreground colour,
with a background colour, thereby producing a new blended colour. The
degree of the foreground colour's translucency may range from completely
transparent to completely opaque. It takes two parameters, a channel and an
alpha weight from 0 to 255 with 0 being transparent and 255 being opaque.

So, after executing for example ALPHA_BLEND #1,128 all future graphics
commands on channel 1 including BLOCK, CIRCLE, LINE and PRINT will
draw their contents half-transparent over the existing background until alpha
blending is disabled again (by setting the weight to the default of 255:
ALPHA_BLEND #1,255).

100 PAPER 0 : CLS
110 ALPHA_BLEND 128 half-transparent
120 FILL 1 : INK 2 : CIRCLE 40,50,20 overlapping circles
130 FILL 1 : INK 4 : CIRCLE 65,50,20
140 FILL 1 : INK 1 : CIRCLE 50,75,20
150 CSIZE 2,0 : AT 10,4
160 PRINT “Alpha blending!” superimpose some text
170 ALPHA_BLEND 255 back to normal

The System Palette and Window Manager 2

Colours List

The new Window Manager introduced by SMSQ/E v3.00 maintains a table of
colour settings for programs to use as “standard colours”. This is called the
System Palette, also known as a ‘colour theme’. Four system palette tables, or
themes, are currently supplied with the operating system and more may by
designed using software such as Wolfgang Uhlig’s Q-CoCo (Colour
Configurator) program.

The list includes colour values to be used for display items such as window
background, border, loose items and so on. The items are referenced by a 4-
digit hex number (16-bit value) as per the list below, or the decimal number
equivalent. These numbers should not be used in standard INK, PAPER and
BORDER statements – they are not colour values, merely an index to an entry

88

in a list of colour values. They should be used with the WM_x equivalent
commands below, which will look up the colour values to be used for the item
numbers in the list.

Number Meaning

$0200 Window border
$0201 Window background
$0202 Window foreground
$0203 Window middleground
$0204 Title background
$0205 Title text background
$0206 Title foreground
$0207 Loose item highlight
$0208 Loose item available background
$0209 Loose item available foreground
$020a Loose item selected background
$020b Loose item selected foreground
$020c Loose item unavailable background
$020d Loose item unavailable foreground
$020e Information window border
$020f Information window background
$0210 Information window foreground
$0211 Information window middleground
$0212 Subsidiary information window border
$0213 Subsidiary information window background
$0214 Subsidiary information window foreground
$0215 Subsidiary information window middleground
$0216 Application window border
$0217 Application window background
$0218 Application window foreground
$0219 Application window middleground
$021a Application window item highlight
$021b Application window item available background
$021c Application window item available foreground
$021d Application window item selected background
$021e Application window item selected foreground
$021f Application window item unavailable background
$0220 Application window item unavailable foreground
$0221 Pan/scroll bar
$0222 Pan/scroll bar section
$0223 Pan/scroll bar arrow
$0224 Button highlight

89

$0225 Button border
$0226 Button background
$0227 Button foreground
$0228 Hint border
$0229 Hint background
$022a Hint foreground
$022b Hint middleground
$022c Error message background
$022d Error message foreground
$022e Error message middleground
$022f Shaded area
$0230 Dark 3D border shade
$0231 Light 3D border shade
$0232 Vertical area fill
$0233 Subtitle background
$0234 Subtitle text background
$0235 Subtitle foreground
$0236 Menu index background
$0237 Menu index foreground
$0238 Separator lines etc.

Colour Commands

The WM_xxx commands allow access to the System Palette colours. They
take a 4 digit hexadecimal colour value for the item in question from the table
above. The parameters to these commands are otherwise exactly the same as
for the “normal” commands as their corresponding command names without
the WM_ prefix (INK, PAPER, BORDER, STRIP, BLOCK). The channel
number is optional. If the command is to be compiled using a compiler which
does not allow the $number notation, please use the HEX function instead.

WM_INK

Sets the ink colour for the channel indicated to the colour for the specified item
number from the table above.

WM_INK #0,$0210 set channel 0 ink colour to information

window foreground ink colour specified in
the System Palette

WM_INK #2,HEX(‘0202’) set channel 2 ink colour to main window
foreground ink colour specified in the
System Palette

90

WM_INK $0218 set default channel (1) ink colour to
application window foreground ink colour
specified in the System Palette

WM_PAPER

Sets the paper colour for the channel indicated to the colour for the specified
item number from the table above. WM_PAPER also sets the STRIP colour as
is the case with the normal PAPER command. But there is also the
WM_STRIP colour command to set the strip colour only.

WM_PAPER #2,$020F set the paper colour for channel 2 to the

information window background colour
specified in the System Palette

WM_STRIP

Sets the strip colour for the channel indicated to the colour for the specified
item number from the table above.

WM_STRIP #ch,$0203 set the strip colour for channel ch to the

window middleground colour specified in
the System Palette.

WM_BORDER
Sets the border colour for the channel indicated to the colour for the specified
item number from the table above.

WM_BORDER #0,$0200 set the border colour for channel 0 to the

main window border colour specified in
the System Palette.

WM_BLOCK

Draw a block in the channel indicated in the colour for the specified item
number from the table above.

WM_BLOCK #1,100,40,0,0,$0201 draw a 100x40 block of colour at

0,0 in the window background
colour

System and Job Palette Handling

91

There are commands to set/get the system palette and commands to set/get
the “per job” palettes.

a - System palette keywords:

SP_RESET

SP_RESET [#channel] [,number]

This resets the colour palette given in number to the original values (as
configured). Default is number 0.

SP_GETCOUNT

result% = SP_GETCOUNT

Gets the number of elements contained in a system palette. Each system
palette, of course, has the same number of elements.

SP_GET

SP_GET [number,] address, first, count

This gets the colours from a system palette and puts them somewhere. The
optional "number" parameter tells us which system palette we want (0 to 3,
default = 0). "address" is the address of the space for the information, "first" is
the number of the first system palette colour to get (starting from 0) and
"count" is the number of colours to get.

The space pointed to by "address" MUST have enough space for the number
of colours! This is NOT checked by the keyword and it is the programmer's
responsibility to make sure that this is so.

As an example, you could use the following code to get ALL of the colours of a
system palette:

totcol%= SP_GETCOUNT get number of colours in system
palette
address= ALCHP(totcol%*2)+4 enough space for colours +
security
first=0
SP_GET #1,0,address,first,totcol%

92

SP_SET

SP_SET [#channel,] [number,] address, first, count

Sets the system palette entries, the address pointing to a space containing the
colours. The parameters are similar to those for SP_GET.

b - Job palette keywords

SP_JOBPAL

SP_JOBPAL [#channel], jobID/Job_name, number

Set the system palette for the job given to the number. The job is given either
as a string or as a standard Job ID number.

SP_JOBOWNPAL

SP_JOBOWNPAL [#channel],jobID/Job_name, pal_pointer

Set the job palette to the palette given in pal_pointer. Of course, the palette
must have the format of a standard system palette.

Window Move

As of version 3.01 of SMSQ/E, new ways of moving a window about the
screen have been added.

There are now three ways a window be moved:

0 - the old way - the pointer changes to the "move window" sprite which is
moved about the screen.

1 - "Outline": click on the move icon with the MOUSE - KEEP HOLDING THE
BUTTON DOWN, an outline of the window appears which you can move
around and position where you want it. Release the mouse button and the
window positions itself correctly. Please note that you cannot use this move
mode with anything but the mouse – the keyboard (cursor keys) will not work.

2 - "Full window". This is the same as 1 above, but instead of an outline, the
entire window is moved. For Q40/Q60 users, switching on the Cache is
advisable... Please note that you cannot use this move mode with anything
but the mouse – the keyboard (cursor keys) will not work.

93

3 - "Full window with tranparency" (implemented in SMSQ/E v. 3.16). This is
the same as 2 above, but the window to be moved is made "transparent" : one
can "see through" it. This is done via "alpha blending". Alpha blending
requires A LOT of computing power. So, even if your machine can
theoretically handle this type of move, in practice it might not be feasible. For
Q40/Q60 users, switching on the Cache is advisable...

This type of move is only implemented for display modes where alpha
blending actually makes sense, i.e. modes 16, 32 and 33. In other display
modes, such as the QL screen modes, or Atari mono modes, this will be
redirected to move mode 2.

Please note that you cannot use this move mode with anything but the mouse
– the keyboard (cursor keys) will not work.

The move modes are configured on a system-wide basis - you cannot have
one job moving in mode 0 and the other in mode 1.

Thus, all jobs are affected by the move mode, even those written a long time
ago (unless, such as Qlib, the job doesn't use the WMAN move routine).

The move mode can be changed in two ways:

1. Configure SMSQ/E (WMAN) to a mode of your liking.
2. Use the new WM_MOVEMODE keyword

WM_MOVEMODE

This takes one parameter, an integer from 0 to 2:

WM_MOVEMODE 0 the old way, using the “move window”
sprite
WM_MOVEMODE 1 the "outline" move
WM_MOVEMODE 2 the "full window" move
WM_MOVEMODE 3 the “full window with transparency” move

The degree of transparency can be set with the keyword WM_MOVEALPHA.
This defines the amount of transparency the window should have when moved
about, from 1 (nearly transparent) to 255 (totally opaque). A value of 0 is
allowed, but this would make the window completely transparent and you
could only see the background, so a value of 255 will actually be used. Note

94

that no check is made on the value of this keyword – only the lower byte is
used.

WM_MOVEALPHA 1 window move is almost completely

transparent
WM_MOVEALPHA 128 window move is half way between

transparent and opaque
WM_MOVEALPHA 255 window move is opaque

Background drawing

PE_BGON PE_BGOFF

Even when a window is partially covered, printing into this window continues.
This goes with two new BASIC commands: PE_BGON to turn this feature on,
PE_BGOFF to turn this feature off. By default, this feature is TURNED OFF,
so use the PE_BGON command in your boot file if you want to keep it on.

PE_BGOFF turn off background window drawing
PE_BGON turn on background window drawing

Cursor Extensions

From version 3.06 onwards, SMSQ/E allows you to use a sprite for a cursor.
The sprite to be used as a cursor:

- MUST be of size 6x10 (WxH), else it will not be used.
- MUST be the one set at position 36 in the system sprites
- MUST be showable in the current screen resolution

If any of the above conditions is not met, then the normal cursor is shown.

How to load a cursor sprite

CURSPRLOAD

CURSPRLOAD “filename”

This loads "filename" and uses it as a cursor sprite. Please make sure that this
file only contains the sprite data for a valid cursor sprite. The command does
NOT check this. If this command seems to fail, i.e. the cursor sprite doesn't
change to what you want it to be, the data contained in this file is perhaps not
a valid cursor sprite for the current screen resolution.

95

How to use a sprite as cursor.

On a system-wide basis:

Configure your system. As of version 3.06 of SMSQ/E, a new configration item
lets you configure whether you want to use sprites as cursor or not.

On a per job basis

Independently of your system-wide cofiguration, you may switch the use of a
sprite to be used for the cursor on a per job basis.

CURSPRON CURSPROFF

The keywords CURSPRON and CURSPROFF may be used to switch using
the sprite cursor on/off.

CURSPRON job_name or job_number, job_tag
CURSPROFF job_name or job_number, job_tag

Example: Let us suppose you have Xchange running on your machine. Typing
'jobs' will tell you more about this job, something like this:

Job Tag Owner Priority Job-Name
9 8 0 8 Xchange V3.90J

You can now use:

CURSPRON "Xchange V3.90J" Turn sprite cursor on for Xchange

3.90J
CURSPROFF 9,8 Turn sprite cursor off for job with

job number 9 and job tag 8

Load A Sprite And Set As System Sprite Number

SYSSPRLOAD

SYSSPRLOAD system_sprite_number,file_name$

load the file and sets it as the system sprite with the given number.

This file must contain the sprite data for a valid sprite. The command does
NOT check this. If this command seems to fail, i.e. the corresponding system

96

sprite doesn't change to what you want it to be, the data contained in this file
is probably not a valid sprite for the current screen resolution.

Common keyboard driver

The keyboard drivers have been rationalised. This means that some special
keystrokes may have moved on some versions and some "special features"
have disappeared.

Pause / break on IBM keyboards has been made equivalent to Undo on the
Atari keyboards (it is in the same place).

NUMLOCK on IBM keyboards has no effect - the keypad is always a keypad!

Special actions

SCROLL LOCK (IBM) freeze screen
CTRL F5 freeze screen
CTRL SCROLL LOCK (QXL) freeze QXL PC communications
CTRL SPACE break
CTRL BREAK (IBM) break
CTRL UNDO (Atari) break
CTRL SHIFT ALT TAB soft reset (restarts current SMSQ)
CTRL SHIFT ALT BREAK (IBM) hard reset (restarts host system)
CTRL SHIFT ALT UNDO (Atari) hard reset (restarts host system)

CTRL-C Action

A new job switching behaviour has been introduced. Instead of the bottom-
most window being picked to the top when you press CTRL-C (original
behaviour on QDOS and older versions of SMSQ/E), the window just below
the one you’ve currently worked with will be picked. This is more logical
behaviour as the window at the bottom of the pile is often at that place for a
good reason: you just don’t currently need it.

Then, if you keep CTRL pressed down and tap C again, the picker will work its
way towards the bottom of the pile of windows. But if you release CTRL, then
press CTRL-C again, the game will start again at the top. When you get used
to it, the new behaviour becomes easier and more logical. If you can’t get
used to it, disable it using MenuConfig (dependent on implementation in a
given version of SMSQ/E).

97

SERIAL IO Devices

The range and number of serial IO devices depends on the hardware on
which SMSQ/E is being used. The interface to these devices is kept
consistent.

SMSQ/E has serial (SER) and parallel (PAR) port drivers which are just about
recognisable as great-great-grandchildren of the QL SER driver. Output sent
to any serial or parallel port can be buffered dynamically (that is the output
buffer is allocated automatically and expanded as required. In addition,
several channels may be open to one output port at any time: the data is
buffered and will be sent to the port in the order in which the channels are
opened.

Any serial or parallel port can be referred to using the pseudonym PRT
(printer) and for compatibilty with ancient software, PAR ports can be referred
to as SER and vice versa. The PRT_ABORT, PRT_BUFF and PRT_CLEAR
commands are included for compatibility.

Serial and Parallel Port Names

The serial and parallel ports are accessed through devices called SER, SRX,
STX or PAR with a variety of optional characters following the name.

 SER n p f t c e Serial Port receive and transmit
 SRX n p f t c e Serial Port receive only
 STX n p f t c e Serial Port transmit only
 PAR n t c e Parallel Port (transmit only)
 PRT Printer Port (either SER or PAR)

 Parameter Characteristic Possible Values Meaning

 n port number 1, 2, 3 or 4

 p parity O 7 bit + odd parity

 E 7 bit + even parity
 M 7 bit + mark=1
 S 7 bit + space=0
 default is none

 f flow control H Hardware CTS/DTR

 I Ignore flow control
 X XON/XOFF

98

 default is H

 t translate D Direct output
 T Translate
 default is use TRA
setting

 c <CR> R Raw, no effect

 C <CR> is end of line
 A <CR><LF> is end of
line
 <CR><FF> is end of
page
 default is R

 e end of file F <FF> at end of file

 Z CTRL Z at end of file
 default none

Usually the only options that will be required are the "F" for form feed, the "D"
and "T" options for character translation and the "C" or "A" option for
daisywheel printers. If you are only going to use the SER port for output, it is
better to use the STX name as this will enable the serial input port to be used
by another program.

OPEN_IN #3, SRX2X OPEN a channel to the serial port 2

receiver with XON/XOFF
COPY myfile TO PARF COPY myfile to parallel port and put a form

feed at the end

Serial Port Control

In general, the serial port control commands require a port to be specified. If
no port number is given, SER1 is assumed.

Standard BAUD Command

BAUD

The effect of the standard BAUD command depends on the history of the
hardware.

99

For the QL based versions, the baud rate is applied to both SER1 and SER2
as, historically, the baud rates for the two ports were generated by the same
hardware.
For the QXL, the standard BAUD command mimics the QL BAUD command.
For the Atari ST series, the baud rate only applies to SER1, which, historically,
was the only port available.

BAUD 4800 Set SER1 and SER2 to 4800 baud Gold Card / QXL

 Set SER1 to 4800 baud Atari ST / TT

Extended BAUD Command

Both the SuperBASIC BAUD command and the OS baud trap have been
extended to support independent baud rates for each serial port. The baud
rates are now calculated, which allows the use of non standard rates where
this is supported by the serial controller chip. The rate must, however, be a
multiple of 10. If the baud rate is specified as zero, the highest baud rate
available is used.

BAUD 1,19200 Set SER1 to 19200 baud
BAUD 2,0 Set SER2 to 153600 baud

SER_FLOW

SER_FLOW (port number, H, X or I) specifies the flow control for the port:
"Hardware", "XON/XOFF" or "Ignored". It usually takes effect immediately. If,
however, the current flow is "Hardware" and handshake line CTS is negated
and there is a byte waiting to be transmitted, the change will not take effect
until either the handshake is asserted, or there is an output operation to that
port.

The default flow control is hardware unless the port does not have any
handshake connections, in which case XON/XOFF is the default.

The flow control for a port is reset if a channel is opened to that port with a
specific handshaking (H, X or I) option.

SER_FLOW X XON/XOFF on SER1
SER_FLOW 2,H Hardware (default) handshaking on SER2

SER_ROOM

100

SER_ROOM (port number, spare room) specifies the minimum level for the
spare room in the input buffer. When the input buffer is filled beyond this level,
the handshake (hardware or XOFF as specified by SER_FLOW) is negated to
stop the flow of data into the port. Some spare room is required to handle
overruns (not all operating systems can respond as quickly as SMSQ). For
hardware handshaking, a few spare bytes are all that is required. For
connection to a dinosaur using XON/XOFF handshaking, up to 1000 spare
bytes may be required.

SER_FLOW 2,X: SER_ROOM 2,1000 connect SER2 to a UNIX system
SER_FLOW 1,H: SER_ROOM 1,4 hardware handshaking on SER1

SER_ROOM will not usually be required as SER_BUFF (see below) also sets
SER_ROOM to one quarter of the buffer size. You will not succeed in setting
SER_ROOM to greater than SER_BUFF, however, as SER_ROOM will
always ensure that the buffer is at least twice the size of the spare room.

SER_BUFF

SER_BUFF (port number, output buffer ,input buffer) specifies the output
buffer size and, optionally, the input buffer size. The output buffer should be at
least 5 bytes to avoid confusion with the port number. If the output buffer is
specified as zero length, a dynamic buffer is used.

SER_BUFF 200 200 byte output buffer on SER1
SER_BUFF 4,0,80 dynamic output buffer, 80 byte input buffer on
SER4

SER_CLEAR SER_ABORT

SER_CLEAR (port number) and SER_ABORT (port number) clear the output
buffers of any closed channels to the port. Channel still open are not affected.
SER_ABORT also sends the "ABORTED" message to the port.

SER_ABORT 3 abort output to SER3

SER_CDEOF

SER_CDEOF (port number, ticks to eof) specifies a timeout from CD being
negated to the channel returning an end of file. The timeout should be at least
5 ticks to avoid confusion with the port number. If the timeout is zero, CD is
ignored. This command is ignored on the QXL and QL.

101

SER_USE

SER_USE (name) specifies a name for the serial ports. The name can be
SER or PAR. SER_USE is provided for compatibility, its use is not
recommended.

SER_USE PAR From now on, when you open PAR, you open a
serial port
SER_USE SER Sets you back to normal
SER_USE . . . as does this

Parallel Port Control

There are no implementations with more than one parallel port. Software
writer should not assume that this will always be true. In general, the parallel
port control commands allow a port to be specified in the same way as the
serial port commands.

PAR_BUFF

PAR_BUFF (port number, output buffer) specifies the output buffer size. The
output buffer should be at least 5 bytes to avoid confusion with the port
number. If the output buffer is specified as zero length, a dynamic buffer is
used.

PAR_BUFF 200 200 byte output buffer on PAR
PAR_BUFF 0 dynamic output buffer on PAR

PAR_CLEAR PAR_ABORT

PAR_CLEAR (port number) and PAR_ABORT (port number) clear the output
buffers of any closed channels to the port. Channel still open are not affected.
PAR_ABORT also sends the "ABORTED" message to the port.

PAR_ABORT abort output to PAR

PAR_USE

PAR_USE (name) specifies a name for the parallel ports. The name can be
SER or PAR. PAR_USE is provided for compatibility, its use is not
recommended.

102

PAR_USE SER From now on, when you open SER, you open a
parallel port
PAR_USE PAR Sets you back to normal
PAR_USE . . . as does this

PRT_USE

The PRT_USE (port name) command differs from the implementation in the
old QJUMP RAMPRT operating system extension included in QRAM and the
GOLD card and QXL card software. As all output ports incorporate dynamic
buffering so an "add-on" printer buffer is not required.

The SMSQ/E version of PRT_USE is identical to that of the Atari ST drivers
for QDOS. It merely specifies which port will be opened if you open the device
PRT.

PRT_USE PAR
COPY fred to PRT COPY fred to PAR
PRT_USE SER4XA
OPEN #5,PRT OPEN a channel to SER4 with XON/XOFF and
<CR><LF>

Virtual Devices

Virtual devices are not associated with any physical hardware. NUL devices
are complete dummy (very useful for benchmarking: SMSQ/E has one of the
fastest, if not the fastest, fully functional NUL device in the world). PIPEs and
HISTORY devices are buffers for storing information or passing it from one
task to another. The PIPE is double ended: what goes in one end, comes out
the other in the same order (FIFO - first in first out). The HISTORY device is
single ended, what goes in one end, comes out the same end in the reverse
order (LIFO - last in first out).

NUL Device

The NUL device may be used in place of a real device. The NUL device is
usually used to throw away unwanted output. It may, however, be used to
provide dummy input or to force a job to wait forever. There are five variations.

 NULP waits (forever or until the specified timeout) on any input or

output operation.

103

 NUL, NULF, NULZ and NULL ignore all operations (the output is
thrown away).

 NUL, NULF, NULZ and NULL return a zero size window in response

to window information requests. Pointer Information calls (IOP.PINF,
IOP.RPTR) return an invalid parameter error.

 NUL is an output only device, all input operations return an invalid

parameter error.

 NULF emulates a null file. Any attempt to read data from NULF will

return an End of File Error as will any file positioning operation.
Reading the file header will return 14 bytes of zero (no length, no
type).

 NULZ emulates a file filled with zeros. The file position can be set to

anywhere. Reading the file header will return 14 bytes of zero (no
length, no type).

 NULL emulates a file filled with null lines. The file appears to be full of

the newline character (10). The file position may be set to anywhere.
Reading the file header will return 14 bytes of zero (no length, no
type).

PIPE Device

There are two variations on the PIPE driver: named and unnamed pipes. Both
of these are used to pass data from one program to another. Unnamed pipes
cannot be opened with the SBASIC OPEN commands but are opened
automatically by the EX and EW commands when these are required to set up
a "production line" of Jobs. Whereas, if a pipe is identified by a name, any
number of Jobs (including SBASIC) can open channels to it as either inputs or
outputs.

If, using named pipes, matters become confused, then that is a problem to be
solved by the Jobs themselves. This is not as bad as it sounds. Unlike other
devices, named pipes transfer multiple byte strings atomically unless the pipe
allocated is too short to hold the messages. This means that provided the
messages are shorter than the pipe, many jobs can put messages into a
named pipe and many jobs can take messages out of a named pipe without
the messages themselves becoming scrambled.

104

If a PIPE is shared in this way, there are two simple ways of ensuring that the
messages are atomic. The first, using fixed length messages, is not available
to SBASIC programs. The second, using "lines" terminated by the newline
character, works perfectly. N.B. the standard PRINT command will not
necessarily send a line as a single string for each item output.

PRINT #3,a$ \ b$ Bad, sends 4 strings: the newline

characters are separate
PRINT #3,a$ & CHR$ (10); Good, sends 1 string, including the

newline
INPUT #4,b$ Good, reads a single line from the

pipe

Named pipes should be opened with OPEN_NEW (FOP_NEW) for output and
OPEN_IN (FOP_IN) for input. A named pipe is created when there is an open
call for a named pipe which does not exist. It goes away when there are no
longer any channels open to it and it is has been emptied. As well as the
name, it is possible to specify a length for a named pipe. If the pipe already
exists, the length requested is ignored.

OPEN_NEW #4, PIPE_xp1 Open named output pipe of default

length (1024 bytes)
OPEN_NEW #5, PIPE_frd_2048 Open named output pipe of length

2048 bytes
OPEN_IN #6, PIPE_xfr Open named input pipe

HISTORY Device

A HISTORY device is much simpler than a PIPE as it only has one end. It is
used to store a number of messages which may then be retrieved in reverse
order: if it becomes full, the oldest messages are thrown away. The messages
are separated by newline characters.

There are two types of history devices: private and public. Private HISTORY
devices are for use within a particular application and may only have one
channel open to them. Public HISTORY devices are named and so may be
accessed by many applications at the same time, or at different times. A public
HISTORY device may even be used as a "mailbox".

A HISTORY device is opened by name, just like any other device. The name
starts with "HISTORY" which is, for a public HISTORY device, followed by
public name and then, optionally, the HISTORY device size. If no size is given,

105

1 kilobyte of message space is assumed. If a public HISTORY device already
exists, then the size is ignored!

HISTORY A private HISTORY, 1024 bytes total space
HISTORY_512 A private HISTORY, 512 bytes total space
HISTORY_thoughts A public HISTORY for thoughts
HISTORY_box_80 An 80 byte small mailbox called BOX

Single character names should not be used: these are reserved as keys for
special variations which may be made available in the future.

HISTORY_U_FILES A public HISTORY with all entries unique???

Messages may be put into a HISTORY device by either using PUT or PRINT.
If the HISTORY device becomes full, the oldest message(s) are thrown away.

Messages may be taken out using GET or INPUT. But which message?

For a private HISTORY it is fairly simple. The first GET or INPUT after a
message has been put into the HISTORY will get the most recent message.
The next GET or INPUT will get the previous message until there are either no
messages left (in which case GET or INPUT return null strings) or another
message is put in. Note that GETting or INPUTting messages does not take
them out of the HISTORY.

OPEN_NEW #4, HISTORY_512 Open a private HISTORY device to

hold 512 bytes
PRINT #4, msg1$ For a private HISTORY, the

message need not be atomic
PUT #4, msg2$... but this also puts a message in.
INPUT #4, a$ Inputs msg2$ into a$
GET #4,b$ Gets msg1$ into b$

For a public HISTORY, the channels are fairly independent. A channel being
used to read messages would continue to fetch messages in reverse order
even if new messages are being added through other channels. In order to get
the most recent message, a channel being used for read operations only
needs to be able to reset its internal pointer. This is possible using the file
positioning facility. Usually the position will be set to 0 (the most recent
message) but it may be set to any (smallish) number.

GET #4\0, a$, b$ Get the most recent and next most

recent messages

106

GET #4\4, x$ Get the fifth most recent message.

HISTORY has some characteristics of a filing system device. You can get a
directory of public HISTORY devices, you can VIEW a public HISTORY and
you can delete a public HISTORY.

DIR HISTORY Get a list of public HISTORY
devices
VIEW HISTORY_thoughts Have a look at my thoughts
DELETE HISTORY_thoughts ... and get rid of them

DEV - A Virtual Filing System Device

DEV is a defaulting device that provides up to 8 default search paths to be
used when opening files. As it was designed to be dumped on top of QDOS it
is not very clean, but, equally, it is reasonably efficient.

Each DEV (DEV1 to DEV8) device is a pseudonym for a real filing system
device or directory on a filing system device.

Files on a DEV device can be OPENed used and DELETEd in the same way
as they can on the real device.

DEV_USE

Each DEV device is defined using the DEV_USE (number, name, next) which
specifies the number of the DEV device, the real device or directory and the
next device in the chain.

DEV_USE 1, ram1_ DEV1_ is equivalent to ram1_
OPEN #3, dev1_f1 opens ram1_f1
DEV_USE 2, flp1_ex_ DEV2_ is equivalent to flp1_ex_
OPEN #3, dev2_f1 opens flp1_ex_f1
DEV_USE 3, win1_work_new DEV3_ is equivalent to win1_work_new
OPEN #3, dev3_f1 opens win1_work_newf1
DELETE dev3__junk deletes win1_work_new_junk

Note that, unlike the defaulting commands PROG_USE and DATA_USE, the
underscore at the end of the real device or directory is significant.

There is a neat variation on the DEV_USE call which enables you to to set up
default chains. If you put a "next" number at the end of the DEV_USE
command, this will be taken as the DEV to try if the open fails. This next DEV

107

can also chain to another DEV. You can even close the chain: the DEV driver
will stop chaining when it has tried all the DEVs in the chain.

DEV_USE 1, ram1_, 3 DEV1_ is equivalent to ram1_, next is

DEV3
DEV_USE 2, flp1_ex_, 1 DEV2_ is equivalent to flp1_ex_, next is

DEV1
DEV_USE 3, win1_work_, 2 DEV3_ is equivalent to win1_work_ next

is DEV2
LOAD dev1_anne will try ram1_anne (DEV1) then

win1_work_anne (DEV3) and finally
flp1_ex_anne (DEV2)

LOAD dev2_anne will try flp1_ex_anne (DEV2) then
ram1_anne (DEV1) and finally
win1_work_anne (DEV3)

Note that DELETE only operates on the DEV specified: it does not chain.

A DEV default may be cleared by giving no name.

DEV_USE 2 clear definition for DEV2

DEV_LIST

DEV_LIST (channel) lists the currently defined DEVs in the specified channel
(default #1)

DEV_LIST lists the current DEVs in #1
DEV_LIST#2 lists the current DEVs in #2

DEV_USE$ DEV_NEXT

The DEV_USE$ (number) function returns the usage for the specified DEV.
The DEV_NEXT (number) function returns the next DEV after the specified
DEV.

PRINT DEV_USE$(3) prints the usage for DEV3
PRINT DEV_NEXT(1) prints the next DEV in the chain after
DEV1

Interaction between DATA_USE, PROG_USE and DEV

108

If you are going to use the DEV defaults, it makes sense to set the
DATA_USE and PROG_USE defaults to use DEV, and when moving from
directory to directory change the DEV definition rather than the DATA_USE.

DATA_USE dev1_ data default directory is DEV1_
DEV_USE 1, flp2_myprogs_ . . . which is myprogs on FLP2
PROG_USE dev2_ programs from DEV2_
DEV_USE 2, flp1_ex_, 1 . . . which is flp1_ex or my data default!

DEV_USEN

Allows renaming of the DEV device. Both DEV_USE or DEV_USEN with one
parameter will rename the DEV device, DEV_USEN without parameter will
reset the name of DEV back to DEV.

DEV_USEN mdv DEV is now called MDV
DEV_USEN and now its name is DEV again

Directory Devices

The devices which handle individual files, organised in directories (with at
least one root directory) will behave as before, i.e. the drive RAM is used to
access the RAM-disk, FLP is used to access the floppy disk, and WIN is used
to access the harddisk. More details can be found in the hardware-dependent
sections of this manual. SMSQ/E will read and write from and to QL floppy
disk (DD and HD, if your hardware permits).

In addition, SMSQ/E comes with inbuilt drivers to recognise TOS harddisk
partitions, DOS floppy disks, and TOS floppy disks (DD and HD).

The SBASIC command DIR has been extended to show density and format of
a medium. There are new functions which allow you to fetch this information,
see the DMEDIUM_xxx range of functions.

If you insert a QDOS 720k floppy disk into flp1_ and type:

DIR flp1_

then you will see the following (or similar) output on the screen:

diskname QDOS DD
720/1440 sectors
... directory ...

109

If you insert a DOS high-density disk and ask for the directory again, you
should see:

DISKNAME MSDOS HD
720/2880 sectors
... directory ...

DOS disks

You can load files from DOS disks as if they were QL disks. You can save files
to DOS disks, but you have to make sure that the filename does match the
DOS naming convention, i.e. up to eight characters, full stop, up to three
characters for the extension.

All the filing system calls will work on DOS disks, you can create
subdirectories, delete files. You cannot, however, use the FORMAT command
to format a floppy disk to DOS format - it will always be the preferred (QDOS)
format.

The DOS filing system does not have the concept of different filetypes.
Different filetypes are distinguished by their filename extension. Therefore,
QDOS "executable" programs (filetype 1) cannot be handled the way they are
handled on a QDOS disk. From SMSQ/E version 2.87 on, you can copy
executable files onto DOS disks, which can later be executed from this disk.
They will get a special extension '.EXn' where n is the number which specifies
the dataspace (which is usually held invisible to the user in the file header): it
is 512*2^n. This extension will be invisble in SMSQ/E, but will be seen in
DOS. Example (assuming flp1_ contains a DOS disk):

COPY win1_CLOCK, flp1_CLOCK

will create a file flp1_CLOCK.EX1 on the DOS disk. You can still refer to it as
flp1_CLOCK, it will be shown in the directory as flp1_CLOCK only, but if you
look at this disk on a DOS computer, then you will see the real name.
Extensions of executable files will be removed automatically, e.g.

COPY win1_PROGRAM_bin, flp1_PROGRAM.bin

will not create a file flp1_PROGRAM.bin, it will create a file
flp1_PROGRAM.EX3, but you have to refer to it as flp1_PROGRAM only, e.g.

EX flp1_PROGRAM

110

As the filename extension is lost anyway even if you copy the file back, we
suggest that you do not specify an extension. This will also make sure that you
do not end up with files having the same filename.

SMSQ/E Event Handling

Principles

V2.71 of SMSQ/E introduces facilities for event handling which can be either
used as an extension to the Extended Environment window events or
independently.

An event is notified from one task to another.

A job may wait for one or more events. If one of the events has already
occurred, then the wait will terminate immediately, otherwise the operating
system will suspend the job until one of the events has occurred.

SBASIC Implementation

WAIT_EVENT

The WAIT_EVENT (event mask, timeout) function is used to wait for one or
more events. 8 events are defined; they are numbered 1, 2, 4, 8 . . . 256. The
timeout is an optional 9th event.

The function returns the event or events that have occurred. The events that
are returned are removed from the job's "event accumulator". Note that, if
WAIT_EVENT is called to wait for events 2 or 4 and events 2 and 8 have
occurred, only event 2 is returned: event 8 remains pending and can be
checked on another call.

evt = WAIT_EVENT (6) Wait for event 2 or 4 (2+4=6)
 Events 2 and 8 are notified by another job

so the wait is terminated and evt is set.
PRINT evt Prints 2
PRINT WAIT_EVENT (15) Wait for event 1, 2, 4, or 8, prints 8 as event

8 is pending
PRINT WAIT_EVENT (15) Wait for event 1, 2, 4, or 8, wait as no

events now pending

111

If a timeout is specified, then, if no event of interest has occurred before the
end of the timeout, the call will return the value 0 (no events). A timeout 0 can
be used to check for events.

evt = WAIT_EVENT (6,50) Wait for event 2 or 4 (2+4=6) for no more

than 1 second
 No events are notified by another job so

the wait
 is terminated after one second and evt is

set to 0.
PRINT evt Prints 0
PRINT WAIT_EVENT (3,0) Test for event 1 or 2 without waiting

SEND_EVENT, FSEND_EVENT

The SEND_EVENT job ID, events procedure is used to notify events to
another job. The job ID can be the whole number, the job number and tag or
the job name.

SEND_EVENT 'fred',9 Send events 1 and 8 (1+8=9) to job fred
SEND_EVENT 20,4,8 Send event 8 to job 20, tag 4
SEND_EVENT OJOB(-1),2 Send event 2 to my owner

The FSEND_EVENT function is a version of the SEND_EVENT procedure
which works as a function and returns an error value rather than an error
message. The syntax is:

error = FSEND_EVENT(job ID, events)

Possible return values are 0 (no error), and -2 (invalid job ID).

error = FSEND_EVENT(‘fred’,9) Send events 1 and 8 (1+8=9) to job
fred
error = FSEND_EVENT(20,4,8) Send event 8 to job 20, tag 4
error = FSEND_EVENT(OJOB(-1),2) Send event 2 to my owner

Utility Programs

DRVCHK and DRVLINK Hard Disk Utilities

DRVCHK and DRVLINK are two hard disk utilities. In an ideal world you
should need neither, and if all is well there should be no harm done if you try

112

them. The programs will work on “QLWA” type hard disks, i.e. on the Miracle
Harddisk, all ACSI and SCSI harddisks connected to ATARIs, the QXL and QL
formatted disks on the Q60. They will also work with QXL.WIN type hard disk
containers, as used on QPC, SMSQmulator, Q68 and newer versions of
SMSQ/E for the Q60. We have no experience with the Falkenberg Harddisk
interface (it might trash your harddisk, we don't know), but it will not work on
the QUBIDE.

DRVCHK is rather like a soft format which checks the readability of the free
sectors on the drive. It does not check the sectors which have been allocated
to files. If you find that reading some files is becoming unreliable, you should
copy the contents to a new file and then delete the old file. This returns the
sectors to the free space list. Executing DRVCHK will check all the free
sectors and eliminate unreadable sectors. Unreliable sectors may not get
eliminated and it might be useful to execute DRVCHK more than once. If you
have a rather unreliable drive, you may find it worthwhile executing DRVCHK
after a hard disk format as an additional check.

DRVLINK is intended to repair the hard disk map of contents when this has
been corrupted. (Note that as the hard disk map is in the form of linked lists
similar to those used by MSDOS and other low grade operating systems,
continuing to create, delete or modify files on the disk when you suspect that it
may be corrupted is very unwise. It is safe to copy files to new backup disks,
but DO NOT OVERWRITE old backup disks, or you may find that your
backups are corrupted as well!). The hard disk map can be corrupted by a
variety of software: the main culprits are probably the GST Linker (old version,
not the one supplied by Quanta) and any software which draws arcs or uses
ATAN, ASIN or ACOS (QDOS only, not SMSQ/E!).

The most obvious symptoms of corrupted maps are "drive full" messages
when the drive is not full or "bad or changed medium" when accessing files. In
the latter case, execute DRVLINK first, then delete the bad files, and finally
execute DRVCHK to check the freed sectors.

DRVLINK may not completely repair the hard disk map, but it should put it into
a state where it will not get any worse. BEWARE: although DRVLINK is
believed to be safe, there could possibly be circumstances where the cure
could be worse than the disease. Corrupted maps are quite rare, so there has
not been much opportunity to exercise DRVLINK.

SERNET V3

113

SERNET provides you with low-cost networking like the Toolkit 2-Network.
SERNET allows you to connect two machines together via the serial ports.
SERNET V3 has been significantly improved over previous versions. The
configuration is easier, you can control more than one SERNET link on one
machine (previously, modifications applied to the most recently loaded
SERNET only), and it is even possible to use a SERNET via modem between
two machines.

To connect two machines, use a standard Null-Modem-Cable (note: NOT a
laplink cable!).

SERNET has to be configured so that it knows which port to use as its
communication port (default is SER1), and it needs to know its device name
(default is S). Use MenuConfig to configure SERNET.RXT or SERNET_REXT
(depending on your disk format) and define the port. Please note that the
serial port needs to support independent channels (SRX and STX), hardware
handshake and direct, untranslated data flow (parameters "hd"). You need to
have SMSQ/E in order to use SERNET!

You can run differently configured SERNETs at the same time to form different
circular networks, just by giving a different port number and a different device
name.

The BASIC commands which correspond to a SERNET driver start with the
same character which is configured as a device name. Therefore, with more
than one SERNET being loaded into the same machine, you have
independent control of the net by specifying the corresponding BASIC
command. For example, if your net is configured to be "S" (default), then all
commands will start with S (e.g. SNET, SNET_START, SNET_STOP). If its
device name is, for example, N, then the commands will be NNET,
NNET_START, NNET_STOP etc.

BEFORE you LRESPR the SERNET driver you have to set the port to the
correct BAUD rate. Naturally, all machines in the SERNET circle require to
have their SERNET ports set to the same baudrate.

The default setting is that, when you LRESPR the SERNET, it is set up fully
functional with the server being started (default configuration, but it can be
turned to off to start with).

The following commands exist, replace the "x" by the configured SERNET
device name letter:

114

xNET_STATION

xNET_STATION n a procedure to set the SERNET station number.

Default is to station 1 - does not normally need to
be changed.

xNET_STATION%

xNET_STATION% is a function which returns the current SERNET

station number.

xNET_TEST%

xNET_TEST% (s) is a function which informs whether another

station with station number s is on the net.

xNET_START

xNET_START is a procedure to open the channels for SERNET

and to start the SERNET server job. Unless you
configured it off, SERNET will start with fully
working with the server job running. You can
invoke this command after you accidentally
removed the server job or closed SERNETs
channels "from outside", or, of course, after a
xNET_STOP.

xNET_STOP

xNET_STOP is a procedure which closes the channels used by

SERNET and removes the SERNET server job - in
case you need to use the serial ports for other
reasons.

xNET_BAD%

xNET_BAD% is a function which returns the total number of

bad packages received since SERNET has started.

xNET_RETRIES%

xNET_RETRIES% is a function which returns the number of retries

to re-send packages.

115

SERNET via Modem

It is also possible to use SERNET between two machines as a client/server
relationship via modem. The server is the machine which is sitting somewhere
remotely, waiting for the client to dial in and initiate the connection. You should
be sitting in front of the client. You need to configure SERNET to be used with
a modem, and you need to have two configurations, one SERNET being the
server, one being the client. Make sure both versions have the same
password!

To properly configure the modem init string, refer to the modem's manual. We
suggest, you add an instruction to turn the modem's compression off, because
this will speed up transferring small packages (which is, what SERNET does).
Modify modem dial and modem hangup strings only if required.

You can configure up to 10 destinations to dial to. Simply insert the phone
numbers here.

Please note that the whole protocol is not very error-proof, line drops of either
side etc. may not be detected so follow the exact route of initiating a transfer
and closing it. Some systems (hardware-dependent) allow the loss of carrier
detection, so try to issue a SER_CDEOF command for the SER port to which
SERNET connects.

Get the server-SERNET running on the remote machine.

Get the client-SERNET running on the machine in front of you. You will see a
new button appearing, saying "CONNECT xxx" where xxx is the phone
number #0. To select any of the other numbers, press the keys 0 to 9 while
having the mouse over the SERNET button. To dial, press SPACE or ENTER.
SERNET will not try to dial out to the other modem, and after success, you will
hear a beep and the button will display "DISCONNECT". Only disconnect via
this button, do not turn the modem etc. otherwise one or both machines will
not react to future SERNET calls until reset.

As soon as you see the DISCONNECT, the connection is established and you
can access the remove machine over the modems in exactly the same way as
with "standard" SERNET.

It is even possible to make the button automatically dial out. Send an event to
the SBASIC Button job, which is called "x_SERNET Client" (of course, x

116

needs to be replaced by the SERNET name character). The event should be
the number to dial (0 to 9)+16. Example:

SEND_EVENT "S_SERNET Client",2+16

will dial phone number #2. You should then check the function

xNET_CONNECT%

xNET_CONNECT% is a function which returns true if you are
connected

until it becomes true (put a PAUSE of 25 or 50 between every check), transfer
the required files, and send the same event to disconnect.

SERNET File Protection

Files beginning with (or in directories beginning with) *H or *h will be treated
as Host Only, and cannot be read over the net. Any attempt to use these files
will return 'not found'.

Files beginning with *R will be classed as Read Only, and can be read, but not
written to, as if the device is write protected.

Files beginning *D will return 'not implemented' to prevent hackers accessing
disallowed files by direct sector techniques.

These facilities allow you to keep sensitive files on a hard disc without anyone
on the network being able to access them. However, these can cause
problems with some software which does not expect access to be denied.

SERNET Batchfile Execution

It is possible to invoke an SBASIC job on a remote machine and instruct it to
execute a given SBASIC program. With this facility, you can do everything you
like on the remote machine because you can provide SBASIC programs which
do whatever you want them to do. To start an SBASIC program on a remote
machine, use

EX "n1_*dev1_program_bas"

117

where "n1_" can be any kind of network name and station number, e.g. s2_,
m1_ etc. and "dev1_program_bas" can be any program on any device on the
remote machine.

Example: You would like to see what kind of jobs are running on another
machine. Create the following short program first, and save it to, say
n1_ram1_jobs_bas

10 OPEN#3,n1_con this is OUR machine, seen from
the remote!
20 BORDER#3,1,4:CLS#3
30 JOBS#3
40 INPUT#3,"Press ENTER"!a$ Wait for an ENTER press

Then, after having it transferred to the remote machine, start it there with

EX "n1_*ram1_jobs_bas"

Please note, that the SBASIC filename specified must be the full filename,
including device and extension. The server will not check PROG_USE
settings, check for _BAS or _SAV endings because the remote machine can
have totally different default devices than your machine, possibly resulting in
an execution of a different program.

SMSQ/E Troubleshooting

I get a "not found" error message when trying to write a file to a TOS or
DOS format diskette.

There are three problems to watch out for:
- The first is that it is obligatory to create directories on a DOS or TOS

format disk before you put files into them. You cannot just use any
name you like as you have been accustomed to do on QDOS format
disks.

- The second is that the filing system does not automatically attempt to
convert files which end in, for example, _bas to files ending in .bas.

Files which I intended to write to a DOS format floppy disk were copied
instead to my data default directory with "FLP1_" in front of the name.

The same problem as above.

When I try to QMON a file, I end up tracing Job 0 in a rather bizarre way.
Unlike SuperBASIC, SBASIC initialises all variables to zero or null string.

118

In order to distinguish a name (which would be a filename) from a number
(which would be a Job number) QMON, and a small number of other
programs, made the assumption that a file name would not have a value. This
is not necessarily true for SuperBASIC, it is never true for SBASIC.
Either put the file name in quotes or upgrade your QMON.

I have some software which works in the initial SBASIC but does not
work when I try to use it from an SBASIC daughter.

The initial SBASIC is 99.9% compatible with SuperBASIC. SBASIC daughter
Jobs are only 99% compatible with SuperBASIC. In particular

 they are not Job 0 and

 the channel IDs for #0, #1 and #2 are not $00000, $10001 and
$20002.

Some naughty software cannot cope with this difference.

 Old versions of QMON cannot, but old versions of JMON can.

 The Turbo compiler (NOT Turbo compiled programs!) cannot, but
QLiberator can.

Either update the software or use this software in the initial SBASIC only.

I only get the end of the error message when I use the SBAS/QD F10
Thing.

Some of the SBASIC error messages are longer (hopefully more helpful) than
the old SuperBASIC error messages. Older versions of the Menu extensions
cannot cope with these long messages. Update your MENU_REXT.
MENU_REXT is now freeware and can be downloaded from Marcel Kilgus’ or
Dilwyn Jones’ sites.

When I try to use the SuperBASIC channel table from another Job I find
that it is empty.

As you can have many SBASIC Jobs, you can have many SBASIC channel
tables: one in each set of SBASIC variables. From within an SBASIC Job,
these look just the same as the SuperBASIC channel table.

The tricks that can be used with QDOS to find the SuperBASIC variables area
will, in SMSQ, find a dummy variables area which holds only the global name
table. This is the only part of the SuperBASIC environment which is common
to all SBASIC jobs.

To find any other part of a SuperBASIC variables area from another Job, you
must define which copy of SBASIC you wish to poke about in. To do this you
need to go to supervisor mode and find the value of A6 for the particular
SBASIC Job you are about to interfere with: the channel table and most other

119

parts of the SuperBASIC variables area will be found at their usual offsets
from A6.

Sysmon runs at 200 times its normal speed on the TT.

Until the authors manage to update Sysmon to cope with the TT Fast RAM,
process your copy with the program SYSMON_BAS. The newer versions of
SYSMON should work correctly across all systems.

Not all of my programs run on the TT.
Configure SMSQ/E to ignore Fast RAM: it will be much more QL compatible.

QREF crashes when I use it with a program which has binary or
hexadecimal constants
Much "poke around in SuperBASIC" Software, including QREF, does not
recognise binary (%1010) or hexadecimal ($4AFB) constants. In general,
avoid using these types of constants if you intend to use old SuperBASIC
analysers, reformatters or compilers.

QREF (and QLOADREF) may be processed by the QREF_BAS program,
which is believed to be harmless, but keep a spare copy of your original QREF
or QLOADREF just in case. After processing, they happily accept binary or
hexadecimal constants.

My System does unexpected things right from the start, e.g. crash, does
not recognise SBASIC commands anymore, does not remove windows,
Sysmon wails immediately etc.

You should first check the extensions which you load in your BOOT file. Try
putting STOPs into your BOOT file and see how far you get until your system
falls over, to track down the offending system extension or command. We
have put a list of system extensions together which you should first check -
extensions in the list will either be marked as bad or good. Ignore the good
ones and remove the bad ones and be suspicious about extensions which are
not in the list.

Moreover, please be aware that loading extensions from within a procedure or
function in SMSQ/E before version 3.33 could seriously corrupt your system.

After loading my BOOT file, my BASIC does not recognise procedures
like PRINT.
One or more of the extensions which you load in your BOOT file overwrite part
of the memory which is used for storing the name table (where all BASIC
names are stored). A good candidate is QPTR V0.06 or earlier. REMark
suspicious extensions and re-boot again, until you find the one(s) which cause

120

the trouble. Please notify us about faulty extensions, so that other users can
be warned.

I get an error when I try to load EASYPTR extensions

For some reason, versions of EASYEXT before V3.02 checks for the position
where it is loaded. EASYEXT is part of EasyPtr, which is now freeware and
can be downloaded from Marcel Kilgus’ or Dilwyn Jones’ sites.

The Archive Runtimes don't work anymore
They were never designed to multitask properly. ARCHRTM grabs all but a
few Kbytes of RAM. ARCHRTM can be modified, so that you can tell it how
much memory it shall get. ARCHRTM_bas will modify it, so that it will find the
variable RTMEM% again. As it is not possible to specify more than 32k to be
left, this isn't very useful. However, if you type the following line (where
max_space is the maximum amount that ARCHRTM can take) before you
execute it, then things will happily multitask:

 POKE_L !!$24,max_space

DATEs in Archive/Abacus fails

If you find that, when you try to access the DATE in Psion programs, the
program crashes, becomes very slow or returns silly dates like 31/-7/8995
then the language you're using on your system does not seem to be the same
as the language in which the Psion software runs. If you want to run an
English XChange, then you need to set the language of your system to
English too (LANG_USE GB). As Archive and Abacus convert the Month to a
month number by comparing the names (e.g. Mar = 3), it cannot find the right
name if you set the system language to German or French (it might work on
Jan, but not on Mar/Mär or Oct/Okt).

C-compiled programs crash on the QXL
Some versions of C68 have own 68030 and 68040 cache handlers which are
faulty. Fortunately, the code checking for the processor is faulty too, so that
the 68030 cache handler is never called. Bad news for the 68040 on the QXL:
it is called! As SMSQ/E handles the cache (very well) itself, there is no need
for the C68 programs to do that. You can completely patch the cache handling
in the programs out by using the C68_40.BAS program. This does not
recognise all versions of C68, but it does work on common programs like
BlackKnight. It is better to recompile programs which were compiled with
earlier versions of C68.

QLiberators EXTERNals do not work

121

If you have compiled own procedures and functions using QLiberator, which
you want to load using LRESPR, then you have to patch QLIB_RUN and
QLIB_OBJ first to make them work. You will find two BASIC programs with the
same name which will do this for you. You should also patch files with already
inbuilt EXTERNals.

QLOADed files look strange - the numbers are gone
If you QLOADed files which were saved with Minerva Integer tokens, then you
will see funny effect like
 WINDOW , < , , ,
then you have to go back to a Minerva machine, QLOAD it there and SAVE it
back in ordinary ASCII. Then you can load it into SMSQ/E. If you QSAVE it
here, you can QLOAD it into any system.

TRA does not seem to work anymore
As you have probably noticed by reading the SMSQ/E manual(s), there are
various new translating features like the "D" parameter in the device name,
UPUT for untranslated output etc. The way TRA is handled is different, much
more logical and consistent on SMSQ/E. When you open a channel to, say
PAR or SER, then the current TRA setting for this port stays active as long as
the port is open. So, if you open PAR with TRA 0 being active and you active
TRA 3 later on, the open port is not affected. Two operations affect open
ports: changing the BAUD rate and changing the translation table to channels
with activated translates. Changing TRA from 0 to an address or vice versa is
ignored on open channels.

The program stops after "OK to overwrite.. Y or N" has been answered
"N"

Save did not overwrite on QDOS anyway, therefore this is no compatibility
problem. We think it is better to stop because the action did not finish properly,
and you still have the choice to trap it using WHEN ERROR in your program.

ALTKEYs and Last Line Recall (ALT ENTER) do not work anymore

Type the command HOT_GO (or better add it to your BOOT file) and both
ALTKEYs and ALT ENTER will work again. Both functions have been
integrated into the much more powerful HOTKEY System II. Separate
documentation for the HOTKEY System II is available.

Hints on various extensions and files

ATR_rext not required, as DV3 are more flexible anyway. Don't

load!

122

ATARI_rext not required. Versions before V2.37 might crash on
SMSQ/E.

ATARIDOS_rext not required, as DV3 are more flexible anyway.
DEV_rext not required, as DEV is inbuilt into SMSQ/E. Don't

load!
EASYEXT before V3.02 creates problems, use newer versions.
HOT_rext not required, as HOTKEY System II is inbuilt into

SMSQ/E. Don't load!
JMON safe. Better use V2.10 or higher on SMSQ/E for

proper parameter handling.
LIGHTNING not required anymore. SMSQ/E's screendriver is very

fast already. Will refuse to load.
MENU_rext safe. Better use V5.08 or higher on SMSQ/E for

proper error report in SBAS/QD F10 Thing.
MIDINET_rext safe.
Pointer Tools (from W.Lenerz) - if you loose some SBASIC

Procedures, this version is too old. Newer versions
can be obtained from Wolfgang Lenerz’ or Dilwyn
Jones’ sites.

PTR_GEN not required, as it is inbuilt into SMSQ/E. Don't load!
PTRMENR_cde safe.
QBASIC_rext not really required, as SBAS/QD is better. Can safely

be used for QLiberator.
QD safe.
QLIB_bin safe.
QLIB_run safe, as SMSQ/E makes sure the faults are cured.
QLIB_ext safe.
QLOADREF_bin not required, as QLOAD is inbuilt into SMSQ/E. Use

QREF_bin instead.
QMON should be safe. Better use V2.10 or higher on

SMSQ/E for proper parameter handling and proper
channel use in SBASIC daughter jobs.

QPAC2 safe.
QPTR From V0.09 onwards safe. Versions before should be

upgraded (smashes some SBASIC commands).
QTYP_SPELL safe.
SDUMP safe.
SPEEDSCREEN not required anymore. SMSQ/E's screendriver is

faster and more compatible anyway. Don't load it, as it
may crash the system.

THING_rext safe.
TRA_rext safe, but check if it is still required, as SMSQ/E's TRA

has been extended.

123

WMAN not required, as it is inbuilt into SMSQ/E.

124

SMSQ/E for Atari ST and TT

Introduction

From the point of view of the hardware dependent features, SMSQ/E as
implemented on the Atari ST and TT series computers is very similar to the
latest E level drivers for QDOS. There are two main changes. Firstly,
monochrome monitors are supported. Secondly, the incorporation of the DV3
disk driver subsystem, which replaces the V2 disk driver used by the E level
drivers means that Atari GEMDOS partitions of hard disks and GEMDOS (as
well as IBM) format floppy disks may be read and written.

Machine Type

The two standard functions to determine the machine type are, of course,
supported.

MACHINE

The MACHINE function returns the machine type.

0 ST / STM / STF / STFM.
1 ditto, with blitter.
2 Mega ST (without blitter) or ST etc. with real-time clock.
3 Mega ST (with blitter) or ST etc. with RTC and blitter.
8 Mega STE (without blitter!).
9 Mega STE.
24 TT 030

PROCESSOR

The PROCESSOR function returns the 680x0 family member - 0 or 30 for the
Atari ST and TT series. The PROCESSOR function is provided in addition to
the MACHINE function as it is possible to fit an MC68030 accelerator card in
the lesser ST machines.

IF MACHINE < 24 AND PROCESSOR = 30: PRINT "68030 accelerator
fitted"

Memory Protection

125

One feature of the ST series of computers is its memory access control. This
causes a system error (access fault) if a program attempts to access memory
which does not exist or which can only be accessed in supervisor mode (the
vector area, the TOS system variables and the IO hardware).

Early versions of SMSQ on the ST series of computers detected legitimate
accesses to the QL vector area but trapped all other memory access faults.
This provided a certain measure of protection against the worst excesses of
QL software. While this policy provided compatibility with well written, fault
free, QL software, not much of the other 99% would work at all. A new policy
has, therefore, been introduced.

1. All legitimate read operations from the QL vector area are
allowed.

2. All other read operations from protected areas read 0.
3. All write operations to protected areas are ignored.

This policy can be applied to all Jobs or just to Job 0. If an access fault is
trapped. The job goes into a state of hibernation with the fault program counter
on the stack and all other registers preserved. The Job may, therefore, be
examined by a debugger.

PROT_MEM

The PROT_MEM (level) procedure sets the level of the memory protection. All
legitimate accesses to the vector area are always allowed. Other access faults
may be trapped or ignored depending on the level. The default level is 3 which
will trap common faults in C programs, but allows certain famous system
extensions to be LRESPRed. Cautious users should change this to level 7.
Devil-may-care users should change it to level 0.

There are five levels: 0, 1, 2, 3 and 7.

- Level 0 does not trap any memory access faults.
- Level 1 traps write access faults in all jobs except Job 0. Read

operations from a protected area read 0.
- Level 2 traps read access faults in all jobs except Job 0. Write

operations to a protected area are ignored.
- Level 3 traps both read and write access faults in all Jobs except Job

0.
- Level 7 traps access faults in all Jobs.

PROT_MEM 0 Ignore all access faults - almost like the QL

126

PROT_MEM 1 Ignore all but write access faults from Jobs other
than Job 0
PROT_MEM 7 Trap all access faults

POKES POKES_W POKES_L POKES_F POKES$

POKES (address, value) POKES_W (address, value) POKES_L (address,
value) and POKES_F (address, value) are the "supervisor mode" equivalents
of POKE, POKE_W, POKE_L and POKE_F. POKES_F pokes a floating point
value to the given address. POKES$ is the “supervisor mode” equivalent of
POKE$. By operating in supervisor mode they enable data to be written to the
ST series IO hardware. Do not be surprised if your computer self-destructs
when you use them.

PEEKS PEEKS_W PEEKS_L PEEKS_F PEEKS$

PEEKS (address) PEEKS_W (address) PEEKS_L (address) and PEEKS_F
(address) are the "supervisor mode" equivalents of PEEK, PEEK_W PEEK_L
and PEEK_F. PEEKS_F(address) returns a floating point value from the given
address. PEEKS$ is the “supervisor mode” equivalent of PEEK$. By operating
in supervisor mode they enable data to be read from the ST series IO
hardware. Do not be surprised if your computer self-destructs when you use
them.

Atari ST and TT Displays

Display Type

DISP_TYPE

The DISP_TYPE function is used to find the type of display adapter. For the
Atari ST and TT computers, there are four values that may be returned.

0 Original ST QL emulator (this value is returned on QL based
hardware).

1 Extended mode 4 emulator (standard and extended display
sizes).

2 QVME mode 4 emulator.
4 Monochrome display.

ncol = 4 Assume 4 colour display
if DISP_TYPE = 4: ncol = 2 If it is monochome, there are two

colours only - grey and grey

127

Monochrome Display

If you have an ST series computer and there is a monochome monitor
plugged in when you boot, SMSQ/E will automatically load the monochrome
(ST high resolution 640x400) display driver. If you have a TT computer, and
SMSQ/E does not find a QVME card, then SMSQ/E will set the TT to ST high
resolution and load the monochrome display driver.

In either case, if you have not bought the monochrome display driver, you will
not get a picture!

DISP_INVERSE

The DISP_INVERSE (0 or 1) command is used to invert the monochome
display from the normal (black background) to inverse (white background)
state.

DISP_INVERSE 1 Invert black and white
DISP_INVERSE 0 Restore normal

Colour Displays

SMSQ/E supports the old QL emulator card, in its original form and modified
for MODE 8, the extended QL mode 4 card and the QVME card.
The extended QL mode 4 card may be switched from normal to extended
display, and the display size of the QVME card may be changed at will.

DISP_SIZE

DISP_SIZE (xpixels, ylines) is used to set the display size. The nearest
feasable size will be selected by the driver. It is best not to change the display
size when the pointer sprite is visible, or you may get some spurious blobs left
on the display. There should be few other problems changing from a smaller
size to a larger size. You should, however, avoid changing from a larger size
to a smaller if there are any windows outside the smaller screen. Note that, for
the QVME card, the width and height are set in increments of 32 pixels and 8
lines respectively, while for the extended QL mode 4 card, any width of 512 or
less will select the standard resolution mode while any width greater than 512
pixels will select the extended mode.

DISP_SIZE 800,600 change to 800x600 (QVME) or 768x280

(extended mode 4)

128

DISP_SIZE 1 change to 512x256 (extended mode 4)
(ignored by QVME)

DISP_RATE

DISP_RATE (frame rate, line rate) is used to specify the frame and line scan
rates for the QVME card only: it is ignored for all the other display cards. It
would be usual to specify only the frame rate: the line rate is equal to the
frame rate multiplied by the total number of lines.

DISP_RATE 75 set the frame rate to 75 Hz
DISP_RATE 70,48000 set the frame rate to 70 Hz and line rate to

48 kHz (686 lines)

DISP_BLANK

DISP_BLANK (x blank, y blank) sets the size of the blank area to the sides of
and above and below the image for the QVME card only: it is ignored for all
the other display cards. If the blank is too small, you will loose some of your
image, if it is too large, the image will be too small.

DISP_BLANK 128,64 set horizontal blank to 128 pixels and

vertical to 64 lines

As the display size is altered, the blank is automatically adjusted to maintain
the proportion of blank. The DISP_BLANK command will not usually be
required.

If preferred, the parameters for the DISP_RATE and DISP_BLANK commands
may be tacked on to the DISP_SIZE command.

DISP_SIZE 640,480,60 set standard VGA
DISP_SIZE 800,480,80 set 80 Hz refresh rate, squashed

VGA.
DISP_SIZE 800,600,70,,128,60 set all of size, frame scan rate and

x and y blank

Note that if you specify both frame and line rates, as well as the number of
blank lines, the line rate is over-specified: it will be determined by the frame
rate and the total number of lines (visible + blank) and the line rate will be
ignored.

DISP_SIZE Experimenter

129

The QVME card does not have an infinite choice of pixel rates. Some
combinations of size and display rates may not be acceptable to your monitor.
A small experimenter program can be used to change the size and frame rate
in small intervals.

This program starts off with the standard VGA settings and adjusts the width
when you press the W key, the height when you press the H key and the
frame rate when you press the F key. Because you cannot see the display
when you have struck an unsatisfactory combination, you can save a
satisfactory setting with the S key and restore it later with the R key.

If, for example, you are increasing the width (SHIFT W) and the display
dissolves, DONT PANIC. Pressing the key a few more times may shift you
past a bad patch. Alternatively, adjusting the frame rate up or down may
improve matters. It is for you to find out what your monitor will accept.

The true hackers can add code to this program to adjust the blank as well.

100 REMark - This is an experimenter for the QVME display size and
frame rate.
110 REMark
120 REMark - w reduces the width - SHIFT W increases the
width.
130 REMark - h reduces the height - SHIFT H increases the
height.
140 REMark - f reduces the frame rate - SHIFT F increases the
frame rate.
150 REMark - s saves the current settings
160 REMark - r restores the saved settings
170 REMark
180 REMark - ESC finishes
190 REMark
200 REMark - Set initial values for standard VGA
210 sw=640: sh=480: sf=60
220 a%=CODE('r')
230 :
240 REPeat
250 SELect ON a%
260 =27: STOP
270 =CODE('w'): dw=dw-32
280 =CODE('W'): dw=dw+32
290 =CODE('h'): dh=dh-16

130

300 =CODE('H'): dh=dh+16
310 =CODE('f'): df=df-1
320 =CODE('F'): df=df+1
330 =CODE('s'): sw=dw: sh=dh: sf=df
340 =CODE('r'): dw=sw: dh=sh: df=sf
350 END SELect
360 DISP_SIZE dw,dh,df: REMark - Set width, height and frame rate.
370 PRINT #1,dw,dh,df
380 BGET #1,a%
390 END REPeat

This program demonstrated that a perfectly legible 1600x496 (266 column)
display was obtainable using a standard monochrome VGA monitor (cost
about DM 200).

Serial (RS232) Ports on the Atari ST and TT Series

The number of serial ports depends on the model.

 SER1 MODEM 1 ST/STE Mega STE TT
 SER2 MODEM 2 Mega STE TT
 SER3 SERIAL 1 TT
 SER4 SERIAL 2 Mega STE TT

The ports themselves are connected to three different serial controllers of two
different types. The communications speeds are, therefore, a bit special.

SER1

The rates available on this port are sub-multiples of 19,200. All the standard
rates from 300 to 19,200 are available except 7,200.

SER2

The rates available on this port are sub-multiples of 250,000. 19,200 is very
close to 250,000/13. All the standard rates from 300 to 19,200, including 7200
(within 1%) are supported. In addition it supports 1x and 2x MIDI speeds as
well as 38,400, 76,800, 83,333 and 125,000 baud. If the rate is specified as 0,
the rate used is 153,600 (19,200x8).

SER3

131

The rates available on this port are sub-multiples of 19,200. All the standard
rates from 300 to 19,200 are available except 7,200. Hardware handshaking is
not available on this port.

SER4

The rates available on this port are sub-multiples of 114,750. All standard
rates from 300 to 38,400 are supported (within 0.4%) as well as 57,600
(19,200x3). If the rate is specified as 0, the rate used is 230,000.

Atari ST Printer Port

The Atari ST (and TT) printer port (the SMSQ/E PAR device) is notionally
"centronics compatible", unfortunately a combination of very substandard drive
capability on the part of the ST computers, excessive drive requirements of
some printers (notably Canon) and long cables can significantly reduce the
reliability of the printer connection. The problem can be reduced by extending
the length of the strobe pulse.

PAR_PULSE

PAR_PULSE (pulse length) sets the notional pulse length in microseconds.
The time will depend on the processor and the clock speed.

PAR_PULSE 50 drive a Canon printer from a standard ST
PAR_PULSE 500 ... or from a HyperCache 030

Atari ST and TT Hard Disks

ACSI and SCSI Drives

Hard disks for the Atari ST and TT series computers come in two varieties:
ACSI and SCSI. Although most drives attached to the ACSI bus will be full
standard SCSI devices, the SMSQ/E drivers assume that any drive connected
to the ACSI bus does not necessarily conform to the SCSI CCS specifications
so, normally, no attempt is made to do anything other than read or write
sectors or read the error status on these devices. This means that, for
example, the drivers cannot detect whether an ACSI disk drive has a
removable cartridge.

On the other hand, the SMSQ/E drivers assume that all drives connected to
the SCSI bus (TT only) conform to the minimum CCS specifications for hard

132

disk operations. Any disk drive which responds "OK" to a request to lock the
door is considered to have a removable cartridge.

If a file is open on a removable cartridge, the door is locked. It will be unlocked
automatically later.

WIN Drive Numbers and Name

ACSI and SCSI drives are identified by a whole series of numbers: the "target"
number, the "unit" number and the "partition" number. The target number is
the identification number of the disk drive controller. For internal drives, this is
0. For external drives, this is the number (0 to 7) that you set on the little
switches on the back of the box. The unit number selects one of a number of
drives controlled by a single controller. It is possible, but rare in the Atari
world, for a controller to have up to 8 units. In general, there is only one unit
per controller, and 99% of Atari hard disk utility software assumes that you can
only have one unit per controller, so the unit number is usually 0. Finally, the
partition number defines a section of the disk reserved for a particular purpose
(e.g. GEM partitions, QDOS partitions etc.).

GEMDOS numbers its target, unit and partitions from 2 (=C) as it finds them.
This is a superficially attractive scheme which collapses completely if you
have removable media with different numbers of partitions or if the medium is
not in the disk drive when you boot the computer.

SMSQ/E adopts a more cumbersome approach which is, however, much
more precise. Unless you configure SMSQ/E to boot from a target and
partition other than 0,0, the initialisation code will attempt to find a file called
"BOOT" on any partition on target 0. (For the TT, SMSQ/E will try SCSI 0 first
and then try ACSI 0). WIN1 will be set to this partition. Thereafter, you must
define your own WIN drives for any other target, unit and partition you wish to
access.

WIN_DRIVE

WIN_DRIVE (drive, target, unit, partition) is used to select a particular target,
unit and partition combination to be accessed using a particular WIN drive.

If an SCSI drive is to be accessed, 8 should be added to the target number.
The unit number may be omitted or both the unit and partition numbers may
be omitted.

WIN_DRIVE 2,1,0,2 WIN2 is ACSI target 1, unit 0, partition 2

133

WIN_DRIVE 3,9 WIN3 is SCSI target 1, unit 0, partition 0
WIN_DRIVE 4,3,1 WIN4 is ACSI target 3, unit 0, partition 1

Issuing a WIN_DRIVE command for a particular drive will cause the drive map
to be re-read the next time the disk is accessed. It can, therefore, be used to
force the drivers to recognise a disk change.

WIN_DRIVE$

WIN_DRIVE$ is a function which returns a string giving the target, unit and
partition used by a particular WIN drive.

WIN_DRIVE 2,1,0,2 WIN2 is ACSI target 1, unit 0, partition 2
WIN_DRIVE 3,9 WIN3 is SCSI target 1, unit 0, partition 0
PRINT WIN_DRIVE$(2) Prints 1,0,2
PRINT WIN_DRIVE$(3) Prints 9,0,0
PRINT WIN_DRIVE$(4) Prints nothing if WIN4 has not been set

WIN_USE

WIN_USE may be used to set the name of the WIN device. The name should
be 3 characters long and in upper or lower case.

WIN_USE MDV The WIN device is renamed MDV
WIN_USE win The WIN device is restored to WIN
WIN_USE The WIN device is restored to WIN

Handling ACSI Adapter Timing Faults

Certain ACSI adapters exhibit a timing fault. If commands are issued too
quickly one after the other, the adapter fails. The SMSQ/E ACSI driver can be
slugged to bring its interval between commands down to GEMDOS levels.

WIN_SLUG

The WIN_SLUG (value) command sets the mimumum time that must elapse
between operations on the ACSI bus (in units of 80 µs). ICD recommend 1 ms
for their adapters. As an interval of 2.5 ms between operations has proved
adequate for most adapters, this is the default. As the typical access times for
ACSI hard disks are of the order of 20 ms to 30 ms, this does not represent a
large overhead.

WIN_SLUG 12 Wait at least 12*80 µs between ACSI operations

134

WIN_SLUG 30 Wait at least 30*80 µs between ACSI operations
(default)

Format WIN

As SMSQ/E is "hosted" on the Atari ST and TT computers, it only takes
control of and formats partitions on the hard disk which you have previously
marked as being reserved for QDOS compatible disk drivers. We know that
you would not destroy all your GEM desktop publishing files by formatting a
QDOS disk on top of them, but someone else might do it.

Before formatting a QDOS compatible partition, therefore, you will need to use
your favourite GEM utility to make a suitable partition available, marking it as
"QWA" (GEMDOS partitions are identified by the letters "GEM" or "BGM").

Before formatting a WIN drive with SMSQ/E, it is necessary to define the ACSI
or SCSI target number (and the unit number if it is not 0) and partition.

WIN_FORMAT

The next step is to allow the drive to be formatted. SMSQ/E has a two-level
protection scheme, to make sure you (or somebody else) cannot format your
harddisk accidentally. All drives are protected by default, so you have to
declare them to be formattable before you issue the FORMAT command.

WIN_DRIVE 2,1 Set WIN2 to ACSI target 1, unit 0, partition
0
WIN_FORMAT 2 allow WIN2_ it to be formatted
FORMAT win2_Fred and FORMAT it

 ... you have to echo the two characters
displayed ...
WIN_FORMAT 2,1 protect WIN2_ again

WIN_DRIVE 1,8,2 Set WIN1 to internal TT drive, partition 2
WIN_FORMAT 1 allow WIN1_ it to be formatted
FORMAT win1_BOOT and FORMAT it
 ... you have to echo the two characters
displayed ...
WIN_FORMAT 1,1 protect WIN1_ again

WIN Control Commands

135

The rest of the commands specific to the Atari ST and TT WIN device control
or set the characteristics of a specific WIN drive.

WIN_WP

WIN_WP (drive, 0 or 1) is used to software write protect a WIN drive.

WIN_WP 1,1 Set the "write protect" flag for the drive accessed
by WIN1
WIN_WP 1,0 Clear the "write protect" flag for the drive
accessed by WIN1

WIN_START WIN_STOP

The WIN_START (drive) and WIN_STOP (drive) commands may be used to
start and stop a drive. If you issue one of these commands for an ACSI drive,
the drivers may assume that the drive will accept other SCSI control
commands.

WIN_STOP 2 Stop the drive accessed by WIN2
WIN_START 2 Start the drive accessed by WIN2

WIN_REMV

WIN_REMV (drive, 0 or V) is used to notify that the target accessed by the
WIN drive has a removable medium. It is usually detected automatically,
unless you turned the auto-detection off (see configuration). Drives connected
to the SCSI ports are detected automatically, so it is only required on the ACSI
port, provided, auto-detection is off. No parameter is required to mark the drive
as being a standard removable device. A "V" marks the drive as a VORTEX
naughty drive. A "0" cancels the removable medium flag.

WIN_REMV 2 Set the "removable" flag for the drive accessed by
WIN2
WIN_REMV 2,0 Clear the "removable" flag for the drive accessed
by WIN2
WIN_REMV 3,V Set the VORTEX flag for the drive accessed by
WIN3

Atari ST and TT Floppy Disks

Most of the models in the ST and TT range are equipped with a single DD 3.5"
floppy disk drive. Some of the later models are equipped with an HD drive.

136

The SMSQ/E FLP driver can read or write QL5A, QL5B, TOS and MSDOS
format diskettes. It can format QL5A (DD) and QL5B (HD) format diskettes.

Floppy Disk Driver Name

The default name of the floppy disk driver is FLP. The internal drive is FLP1.
The external drive (if any) is FLP2.

FLP_USE

FLP_USE may be used to set the name of the FLP device. The name should
be 3 characters long and in upper or lower case.

FLP_USE mdv The FLP device is renamed MDV
FLP_USE FLP The FLP device is restored to FLP
FLP_USE The FLP device is restored to FLP

Format FLP

The SMSQ/E FLP driver will usually format a diskette to the highest density it
can. The density may, however, be set using the FLP_DENSITY command or
by adding a special code to the end of the medium name in the format
command.

FLP_DENSITY

The SMSQ/E format routines will usually attempt to format a disk to the
highest density possible for a medium. The FLP_DENSITY (code) is used to
specify a particular recoding density during format. The density codes are "S"
for single sided (double density), "D" for double density and "H" for high
density.

FLP_DENSITY S Set the default format to single sided
FLP_DENSITY H Set the default format to high density
FLP_DENSITY Reset to automatic density selection

The same code letters may be added (after a *) to the end of the medium
name to force a particular density format. (For compatibility with older drivers,
if the code letter is omitted after the *, single sided format is assumed.

FORMAT 'FLP1_Disk23' Format at highest density or as specified

by FLP_DENSITY
FORMAT 'FLP1_Disk24*' Format single sided

137

FORMAT 'FLP1_Disk25*S' Format single sided
FORMAT 'FLP1_Disk25*D' Format double sided, double density

FLP_TRACK

The FLP_TRACK (number of tracks) is used to limit the number of tracks
formatted.

FLP_TRACK 23 Only format 23 tracks

FLP Control Commands

FLP_SEC

FLP_SEC (level) was used to set the security level. The security of the data
stored on the diskettes can be seriously compromised if you change diskettes
while there are files open. The security level affects the amount of time the
FLP driver spends maintaining the data on the diskette up to date with the
internal copies of the data in memory. In principle, a lower level is more
efficient, but more risky. With the increasing use of hard disks, the security
level of the FLP has been fixed at level 2: the most secure. FLP_SEC is
ignored.

FLP_START

The FLP_START (ticks) command specifies the number of ticks (1/50th of a
second) that the FLP driver waits after starting the drive before writing to it.
This allows the diskette to get up to speed before the write operation. The
default value is 24, which is a wait of about 0.5 s. There should not be any
reason to use this command.

FLP_STEP

In the days when QLers used scrap 5¼" disk drives with 30 ms step rates,
FLP_STEP allowed the disk drive step rate to be set. In the 5 years that the
Atari drivers for QDOS were distributed, no-one ever complained that
FLP_STEP was completely ignored. It still is ignored in the SMSQ/E drivers.

Configuration

It is possible to configure the file SMSQ.PRG to pre-define various settings.
For doing that, you require the Menu-Extension to be present in your machine,
and you need the program MenuConfig to be able to configure the

138

SMSQ.PRG file. Both files (the extension and the config program) can be
found on nearly every commercial program disk (QD, QSpread, QSUP,
QMAKE etc.), but if you do not happen to find them on any of your commercial
program then it is advisable that you get a copy of the QMenu package, which
contains both files you need.

You can pre-define the boot partition of the harddisk to be WIN1_ (0 to 7 for
ACSI, 8 to 15 for SCSI and the partition number). If both values are set to 0,
then it is "automatic", i.e. SCSI 8 and ACSI 0 are searched from partition 0
onwards until it finds a file called WIN1_BOOT. It then sets WIN1_ to that
partition and LRUNs the BOOT file. This means, that you could run your
BOOT file from a TOS partition if you wish. Default is 0,0.

Next comes the language code. You can enter here the numerical values
explained in LANG_USE. Default is English.

The next setting allows you to disable the use of TT Fast RAM (if it exists). We
have not found programs so far which refuse to run in Fast RAM, but it is here,
just in case.

You can pre-define the display adaptor, but there is no reason not to leave it in
"automatic" mode unless you happen to have more than one QL emulator
installed in your machine.

Then you can pre-define all six parameters for the QVME DISPlay, so that you
immediately get a picture even if your monitor cannot handle the default rates
(50 Hz, 15.625kHz).

Finally, you can turn off the auto-detector of removable harddisks on the ACSI
port. You should disable this feature only in case your harddisk controller
crashes during the first access (we had no controller yet who did it).

139

SMSQ/E for Gold and Super Gold Cards

Introduction

SMSQ/E for the GOLD and Super GOLD Cards has a number of important
improvements in the handling of the serial and parallel ports. In addition, the
V2 disk driver supplied with the GOLD and Super GOLD cards has been
replaced by the DV3 disk driver subsystem. This means that IBM format floppy
disks may be read and written as easily as QL format disks.

Loading SMSQ/E

SMSQ/E for the GOLD and Super GOLD Cards is supplied as an executable
file (SMSQ_GOLD) which may be loaded at any time using the LRESPR
command or by executing it. Note that you cannot LRESPR a version of
SMSQ_GOLD if that using the same version of SMSQ (you can, however,
execute it). This means that the LRESPR command for SMSQ_GOLD can
safely be put within (preferably at the start of) a normal BOOT file.

100 PRINT VER$ VER$ will be printed by QDOS and then by
SMSQ
105 TK2_EXT required on a GoldCard only
110 LRESPR SMSQ_GOLD QDOS will load SMSQ, SMSQ will ignore

this
120 LRESPR QPAC2 QDOS will not get this far, SMSQ will load

QPAC2

Note that SMSQ incorporates the latest versions of the pointer environment
(PTR_GEN, WMAN and HOT_REXT) so these should not be loaded.
Lightning cannot be used when the Pointer Environment is already installed,
but this does not matter too much as the CON driver of SMSQ/E is, under
most circumstances, within a few percent of that speed.

Machine Type

The two standard functions to determine the machine type are, of course,
supported.

MACHINE

The MACHINE function returns the machine type:

10 GOLD Card.

140

11 GOLD Card with HERMES.
12 Super GOLD Card.
13 Super GOLD with HERMES.

PROCESSOR

The PROCESSOR function returns the 680x0 family member - 0 for the GOLD
card or 20 for Super GOLD Card.

IF MACHINE = 11 OR MACHINE = 13 : PRINT "HEY! I've got Hermes!"
IF MACHINE = 12 AND PROCESSOR <> 20: PRINT "Where's my 68020
gone!!"

GOLD Card Display

DISP_TYPE

The DISP_TYPE function is used to find the type of display. For the Gold and
Super GOLD card, this is the standard QL display so DISP_TYPE always
returns 0.

IF DISP_TYPE : PRINT "This is not a QL display"

Serial (RS232) Ports on the GOLD & Super GOLD Card

Unlike the QL serial ports drivers, the SMSQ serial port drivers are
dynamically buffered. There is, therefore, no need to use the PRT device.

There are two serial ports on the outside of standard QL although there is only
one serial port inside which is shared between the two external ports. This
sharing places serious limitations on the capabilities of these ports.

In addition, the implementation of the IPC, which provides serial input on the
QL, left a lot to be desired. The Hermes replacement chip provides a number
of major improvements. Apart from general improvements in reliability, the
Hermes chip also permits the receive baud rate to be different for each
external port and to be different from the transmit baud rates.

BAUD

The Baud rates supported by the GOLD and Super GOLD Card are

141

19200
9600
4800
2400
1275 1200 receive 75 transmit (Hermes only)
600
300
75 75 receive 1200 transmit (Hermes only)

Note that, if different baud rates are be used for transmitting on the two ports,
you are unlikely to be able to receive any data without the Hermes chip.

BAUD 19200 set both ports to 19200 / 19200
BAUD 2,1275 reset SER2 to 1200 receive, 75 transmit (V23)

STX

Because the internal receive hardware is shared between the two input ports,
having an input port open unnecessarily can reduce the performance of the
other port considerably. For example, if you are using SER2 to connect your
QL to a modem for accessing a bulletin board, opening SER1 to print a log file
will seriously affect the performance of SER2. If, on the other hand, you open
the transmitter side of the SER1 port only (using the device name STX1) the
receive performance of SER2 will not be affected.

OPEN #3, ser2 receive and transmit on SER2
OPEN #4, stx1 transmit only on SER1

XON XOFF

Although it has been stated by Sinclair that hardware handshaking is required
for serial communication with the QL, the XON XOFF protocol is supported by
SMSQ/E. The problem is that whether the main flow of data is from the QL or
to the QL, the loss of any data on reception by the QL can completely screw
up the protocol. Test have shown, however, that the SMSQ/E implementation
of XON / XOFF allows heavy flows of data at up to 4800 baud from the QL,
and, more surprisingly, heavy flows of data at up to 2400 baud to the QL. With
Hermes fitted, higher speeds should be possible.

SER_PAUSE

This procedure allows you to define the length of the stop bits in microseconds
independently for both serial ports. The higher the value, the longer the

142

stopbit. This might be helpful if characters sent by the serial port get lost or the
device connected, e.g. printer, prints undefined characters. The longer the
pause, the slower is the transfer rate.

Super GOLD Card Printer Port

The PAR device (parallel printer port) is only available on the Super GOLD
card. By default output is dynamically buffered: the PRT devices is not
required.

GOLD Card Floppy Disks

SMSQ/E for the GOLD card and Super GOLD card supports up to 4 disk
drives which may be single, double, high or extra high density. The SMSQ/E
FLP driver can read or write QL5A, QL5B, TOS and MSDOS format diskettes.
It can format QL5A (DD) and QL5B (HD, ED) format diskettes.

Floppy Disk Driver Name

The default name of the floppy disk driver is FLP.

FLP_USE

FLP_USE may be used to set the name of the FLP device. The name should
be 3 characters long and in upper or lower case.

FLP_USE mdv The FLP device is renamed MDV
FLP_USE FLP The FLP device is restored to FLP
FLP_USE The FLP device is restored to FLP

Format FLP

The SMSQ/E FLP driver will usually format a diskette to the highest density it
can. The density may, however, be set using the FLP_DENSITY command or
by adding a special code to the end of the medium name in the format
command.

FLP_DENSITY

The SMSQ/E format routines will usually attempt to format a disk to the
highest density possible for a medium. The FLP_DENSITY (code) is used to
specify a particular recoding density during format.

143

The density codes are "S" for single sided (double density), "D" for double
density, "H" for high density and "E" for extra high density.

FLP_DENSITY S Set the default format to single sided
FLP_DENSITY H Set the default format to high density
FLP_DENSITY Reset to automatic density selection

The same code letters may be added (after a *) to the end of the medium
name to force a particular density format. (For compatibility with older drivers,
if the code letter is omitted after the *, single sided format is assumed.)

FORMAT 'FLP1_Disk23' Format at highest density or as specified

by FLP_DENSITY
FORMAT 'FLP1_Disk24*' Format single sided
FORMAT 'FLP1_Disk25*S' Format single sided
FORMAT 'FLP1_Disk25*D' Format double sided, double density

FLP_TRACK

The FLP_TRACK (number of tracks) is used to limit the number of tracks
formatted.

FLP_TRACK 23 Only format 23 tracks

FLP Control Commands

FLP_SEC

FLP_SEC (level) was used to set the security level. The security of the data
stored on the diskettes can be seriously compromised if you change diskettes
while there are files open. The security level affects the amount of time the
FLP driver spends maintaining the data on the diskette up to date with the
internal copies of the data in memory. In principle, a lower level is more
efficient, but more risky. With the increasing use of hard disks, the security
level of the FLP has been fixed at level 2: the most secure. FLP_SEC is
ignored.

FLP_START

The FLP_START (ticks) command specifies the number of ticks (1/50th of a
second) that the FLP driver waits after starting the drive before writing to it.
This allows the diskette to get up to speed before the write operation. The

144

default value is 24, which is a wait of about 0.5 s. There should not be any
reason to use this command.

FLP_STEP

Some drives require step rates slower than the 3ms which is standard in the
SMSQ/E FLP driver. For these, the FLP_STEP command may be used to set
the step rate either for all drives or for a particular drive.

FLP_STEP 6 set all drives to 6 ms step rate
FLP_STEP 2,4 set FLP2 to 4 ms step rate.

GOLD Card Microdrives

This version does not support the QL microdrives.

SER Mouse

Copyright 1992-1995 Albin Hessler Software

SERMouse is a software driver to connect a serial PC mouse to one of the
serial ports SER1 or SER2 of a QL. Therefore a specially wired cable interface
is necessary. The driver exists both, in a 2-button mouse (Microsoft mode
compatible) and a 3-button mouse (PC mouse systems compatible) version.

Most 3-button mice without mode switch are switched into 3-button mode by
pressing the left button during power-on. Mice switching automatically (by
software) between 2-button or 3-button mode may only work in 2-button mode
on a QL.

If the serial ports are used for a mouse and a serial printer only, the power for
the mouse can be drawn from the QL without any problem.

The mouse is then supplied through pin 6 (pin 9 on a QL with SUB-D9) of the
serial port which nominally has +12V. Not more than 10mA should be drawn,
as else, through a resistor in the QL, the voltage would fall below +5V.

The negative voltage comes from the receive line (RxD), while the mouse
sends data over the send line (TxD).

If the other serial port shall also be connected to a device which draws power
from the +12V pin (i.e. a serial to parallel converter), then pin 6 (pin 9 SUB-

145

D9) of each ports should be connected separately through a resistor (680
Ohm) to +12V on the QL board.

Loading the driver

The driver code is loaded residently. New SuperBASIC commands (described
below) are initialised and available. If the driver is configured to initialise on
startup, it is immediately installed and active, else only after SERMON.

For testing purposes the code can be started as a job too. Then the driver is
installed directly, but the SuperBASIC commands are not available. Removing
the job will remove the driver automatically.

Function

The mouse is driven at 1200 baud at one of the serial ports SER1 or SER2.
The driver receives the signals from the mouse and passes them to the
Pointer Interface or the keyboard driver.

Printer

Unfortunately, on a standard QL the baud rate affects both ports. SERMouse
saves the actual baud rate before initialisation, then sets the baud rate to
1200. If a channel to the other serial port is opened, the mouse is
automatically suspended and the baud rate set back to its previous value.

If the channel is closed again, the mouse is reactivated automatically.

If the old baud rate coincides with the mouse baud rate (i.e. 1200) then the
mouse is still working, even if the other port is used.

Cable Connector

Some mice may even require a different wiring!

Mouse with pin name or QL SER1 QL SER2 QL SER1
 QL SER2
SUB D25 function SUB D9 SUB D9 BT
 BT
--

2 TxD 3 2 3
 2

146

3 RxD 2 3 2
 3
4 +12V 9 9 6
 6
7 GND 7 7 1
 1

Mouse with pin name or QL SER1 QL SER2 QL SER1
 QL SER2
SUB D9 function SUB D9 SUB D9 BT
 BT
--

2 TxD 2 3 2
 3
3 RxD 3 2 3
 2
5 GND 7 7 1
 1
7 +12V 9 9 6
 6

or

Mouse with pin name or QL SER1 QL SER2 QL SER1
 QL SER2
SUB D25 function SUB D9 SUB D9 BT
 BT
--

1 GND 1 1 1
 1
2 TxD 3 2 3
 2
3 RxD 2 3 2
 3
4 GND 1 1 1
 1
7 GND 1 1 1
 1

147

20 +12V 9 9 6
 6

Mouse with pin name or QL SER1 QL SER2 QL SER1
 QL SER2
SUB D9 function SUB D9 SUB D9 BT
 BT
--

2 TxD 2 3 2
 3
3 RxD 3 2 3
 2
4 +12V 9 9 6
 6
5 GND 7 7 1
 1
7 +12V 9 9 6
 6

Focussing

Resolution, speed, acceleration and wake up speed are all configurable
through the config block. They can also be controlled through the SuperBASIC
commands SERMSPEED and SERMAWS at run-time. SERMSPEED directly
alters the data delivered by the mouse, while SERMAWS determines how
these are processed by the Pointer Interface.

Hermes

The SERMouse driver is fully compatible with Hermes, the replacement IPC
8749 for the QL. Hermes allows separate baud rates, e.g. the mouse can be
driven on SER2 at 1200 Baud, while SER1 can be set to 19200 baud for a
printer. The automatic control of the baud rate by the mouse driver as
described above is no longer necessary. The SERMouse driver detects
Hermes on initialisation if the suspend options in the config block are disabled.

If you have Hermes installed in your QL, then please set:

Set mouse baud rate on initialisation > yes
Suspend driver if baud rate changed > no
Suspend driver if other serial port open > no

148

Then, and only then, Hermes is detected and only the receive baud rate for
the mouse is set. The system baud rate is not changed. Subsequent changes
of the system baud rate will not affect the mouse.

Attention: on a QL with a standard 8049 IPC all the above options must be set
to yes.

Configuration

The SERMouse driver can be configured with the standard config program of
the Pointer Environment. Before you make changes to the preset values, you
should try to find out the best values with the SuperBASIC commands
SERMSPEED, SERMAWS and BLS. The configuration is widely self-
explaining. Here are the recommended default values:

Baud rate 1200
Set baud rate on initialisation yes
Port ser2
Suspend driver if baud rate changed without Hermes yes
 with Hermes no
Suspend driver if other serial port open without Hermes yes
 with Hermes no
Pointer Speedup 0
Pointer Slowdown 0
Acceleration Mouse 4
Acceleration Pointer Interface 6
Cursor Speedup 1
Cursor Slowdown 1
Double click delay (50=1 sec) 10
Double HIT=DO? no
Time to blank screen 5
Initialise on
 startup
Save working copy as file

(A working copy of the SERMouse driver is saved to the given file. This copy
does contain the configurated data only but not the configuration block with
the descriptive text.)

Mouse Buttons

All mouse buttons are configurable. Therefore three separate config blocks
are present. Changing the mouse buttons should be done with great care. It is

149

possible to assign any control code and SPACE to a button ($00 - $20 and
$E8 - $FF). Some codes can not be entered through the keyboard (e.g.
ENTER and ESC), but a translate option exists:

Button: NULL HIT DO Cancel SPACE ENTER ESC ALT
Number: 0 1 2 3 6 7 8 9

When such a number was entered, the corresponding key is shown
immediately in MenuConfig, while the standard config program shows the
keys on a second run only.

Please notice: the IPC reset is performed from the code 255=$FF=ALT (type
number 9) - (all three buttons pressed simultaneously by default).

The mouse hotkey is performed from the code 254=$FE=SHIFT ENTER (left
and right button pressed simultaneously by default).

The Pointer Interface cancel (code 3) does work in pointer programs only and
does not generate an ESC in other programs! On the other hand, an ESC
character (27=$1B) is translated by the Pointer Interface to a cancel (code 3)
and always works. Therefore we have set an ESC for the middle button. The
3-button reset can be switched off easily by setting another code (e.g. NULL)
to do nothing.

BASIC Commands

BAUDRATE%

bd%=BAUDRATE

returns the actual baud rate of the system.

BLS

BLS time%

time% 0 off
time% 1-20 minutes
time% 21-59 seconds

The screen is blanked after the time elapsed if no key was pressed on the
keyboard and the mouse was not moved. Any keypress or mouse movement
will bring the screen contents back.

SERMAWS

150

SERMAWS acc%,wup%

acc% 0-9 mouse acceleration (Pointer Interface)

Sets the mouse acceleration and wakeup speed as processed by the Pointer
Interface. These are the same values as in Sysdef of QPAC2. They take
global effect, i.e. for all programs. See configuration.

SERMCUR SERMPTR

SERMCUR switches to cursor mode if the driver is in the pointer mode and
the cursor is visible (waiting for keyboard input). In cursor mode the cursor can
be moved with the mouse. The cursor speed can be set through the
configuration and can be altered with the SERMSPEED parameters at
runtime.

If a program waiting for keyboard input, the driver can also be switched to
cursor mode by a double-click on the left button.

SERMPTR resets to pointer mode if the driver is in cursor mode. The driver
can also be switched back to pointer mode from cursor mode with a double
click on the left button. The driver is automatically switched to pointer mode if
a job reading the pointer is picked on top.

SERMOFF
Removes the SERMouse driver.

SERMON
Installs and activates (or re-activates after SERMWAIT) the SERMouse driver.

SERMRESET
Resets the coprocessor (IPC 8049) which controls the serial ports. To be used
if the internal buffer of the coprocessor is desynchronised (uncontrolled mouse
movements).

SERMSPEED

SERMSPEED mul%,div%,acc%[,cursormul%,cursordiv%]

mul% 0-127 Speedup factor 0=off
div% 0-127 Slowdown factor 0=off
acc% 0-8 Acceleration factor 0=off
cursormul% 0-127 Cursor mode speedup factor
cursordiv% 0-127 Cursor mode slowdown factor

151

The step rate sent by the mouse is multiplied with the speedup and divided
through the slowdown factor. This changes the mouse resolution linearly. The
recommended values have the effect that only two third of the step rate is
passed to the Pointer Interface, i.e. the physical resolution of the mouse is
decreased slightly.

The accelerator factor determines a progressive speed up, i.e. on a slow
movement nothing is changed, but the faster the mouse is moved, it is
accelerated more and more. See configuration.

The recommend values (see configuration) should only be changed if
changing the mouse acceleration factor of the Pointer Interface (see
SERMAWS or Sysdef in QPAC2) does not lead to a satisfactory mouse
movement.

The alternative parameters cursormul% and cursordiv% take effect in cursor
mode only.

SERMWAIT
Suspends the SERMouse driver. See SERMON.

Configuration

It is possible to configure the file SMSQ_GOLD to pre-define various settings.
For doing that, you require the Menu-Extension to be present in your machine,
and you need the program MenuConfig to be able to configure the
SMSQ_GOLD file. Both files (the extension and the config program) can be
found on nearly every commercial program disk (QD, QSpread, QSUP,
QMAKE etc.), but if you do not happen to find them on any of your commercial
program then it is advisable that you get a copy of the QMenu package, which
contains both files you need.

First comes the language code. You can enter here the numerical values
explained in LANG_USE. Default is English.

Next, specify if you have an ABC keyboard. The "maybe" setting tries to
determine automatically whether an ABC keyboard interface is connected or
not. "No" will not check, "Yes" assumes it is connected.

152

SMSQ/E for the Aurora

Introduction

The Aurora card is a QL-compatible motherboard, developed by Zeljko
Nastasic, originally available from Qubbesoft P/D. It supports QL-compatible
screen modes, plus a 16-colour mode (unsupported in current versions of
SMSQ/E) and a 256-colour mode (compatible with QPC2 256-colour mode)
when the Aurora is used with a Super Gold Card. This section lists the minor
differences between the Aurora and QL/Gold Card version. See SMSQ/E for
Gold and Super Gold Cards for other details.

Loading SMSQ/E

The loading procedure is similar to that for the standard Gold Card version,
except that the filename of the version downloaded from the SMSQ/E
Registrar’s website is AURORA.BIN

100 PRINT VER$ VER$ will printed by QDOS and then by
SMSQ/E
105 TK2_EXT Required oon a Gold Card only
110 LRESPR Aurora.bin QDOS will load SMSQ, SMSQ will ignore

this
120 LRESPR QAPC2 QDOS will not get this far, SMSQ will load

QPAC2

Note that SMSQ incorporates the latest versions of the pointer environment
(PTR_GEN, WMAN and HOT_REXT) so these should not be loaded.
Lightning cannot be used when the Pointer Environment is already installed,
but this does not matter too much as the CON driver of SMSQ/E is, under
most circumstances, within a few percent of that speed.

Machine Type

The two standard functions to determine the machine type are, of course,
supported.

MACHINE

153

The MACHINE function returns the machine type:
10 GOLD Card.
11 GOLD Card with HERMES.
12 Super GOLD Card.
13 Super GOLD with HERMES.

PROCESSOR

The PROCESSOR function returns the 680x0 family member - 0 for the GOLD
card or 20 for Super GOLD Card.

IF MACHINE = 11 OR MACHINE = 13 : PRINT "HEY! I've got Hermes!"
IF MACHINE = 12 AND PROCESSOR <> 20: PRINT "Where's my 68020
gone!!"

GOLD Card Display

DISP_TYPE

The DISP_TYPE function is used to find the type of display. For the Gold and
Super GOLD card, this is the standard QL display so DISP_TYPE always
returns 0 on a QL.

Additional modes available on the Aurora mean that the following values can
be returned:

3 Aurora LCD
5 Aurora QL mode
16 8-bit (256 colour) mode

IF DISP_TYPE = 16 : PRINT”This is a 256 colour (8-bit) display”

DISP_COLOUR

DISP_COLOUR depth specifies the colour depth to be used.

DISP_COLOUR 0 QL mode display
DISP_COLOUR 1 16 colour (4-bit) display mode – not currently

implemented
DISP_COLOUR 2 256 colour (8-bit) display mode

154

It is possible to set the display size immediately after the colour depth,
although only a limited range of display sizes are available in the 256-colour
mode due to the limited amount of screen memory available.

DISP_SIZE

DISP_SIZE xpixels, ypixels is used to set the display size. The nearest
feasible size will be selected by the driver. Only a limited range of resolutions,
based on 2:1 or 4:3 aspect ratios, are available on Aurora with Super Gold
Card, as listed in the Aurora manual.

DISP_SIZE 640,480 switch to VGA resolution of 640x480 pixels
DISP_SIZE 512,256 restore QL 512x256 display resolution

155

SMSQ/E for the QXL

Introduction

SMSQ/E for the QXL is similar to the basic SMSQ operating system supplied
with the QXL. The principal differences lie in the compatibility of the facilities.
Whereas the basic SMSQ version shipped with the QXL is designed to be a
continuation of the line of QL extensions starting with the first Miracle Trump
card, SMSQ/E follows the line which started with the first QL clones (the
Futura and others which were never put into production) and passed through
the Atari ST series and which will, hopefully, continue to develop.

This line includes more flexible serial device drivers, additional "virtual"
devices and the Pointer Interface integrated into a "lightning fast" console
driver.

Loading SMSQ/E

SMSQ/E for the QXL is supplied as an IBM PC executable file - SMSQE.EXE
(or SMSQEQXL.EXE, if downloaded from the SMSQ/E Registrar’s website).
This should be copied to your PC hard disk. When it is executed,
SMSQE.EXE will create a small file (QXL.DAT), in the current directory, which
holds the default address of the QXL card.

SMSQ/E is executed in the same way as the basic SMSQ version for the QXL.

C:QXL>SMSQE Start SMSQ/E on the QXL at the default
address
C:QXL>SMSQE /300 Set default address to 300 and start
SMSQ/E
C:QXL>SMSQE / Return to the QXL without restarting
SMSQ/E

Note that SMSQ/E incorporates the latest versions of the pointer environment
(PTR_GEN, WMAN and HOT_REXT) so these should not be loaded in your
BOOT file. Lightning cannot be used when the Pointer Environment is already
installed, but this does not matter too much as the CON driver of SMSQ/E for
the QXL is, under most circumstances, as fast or faster.

Machine Type

156

The two standard functions to determine the machine type are, of course,
supported.

MACHINE

The MACHINE function returns the machine type - 28 for the QXL.

PROCESSOR

The PROCESSOR function returns the 680x0 family member - 40 for the QXL.

IF MACHINE = 28 AND PROCESSOR <> 40: PRINT "Where's my 68040
gone!!"

QXL Display

DISP_TYPE

The DISP_TYPE function is used to find the type of display. For the QXL, this
is an emulation of the standard QL display in mode 4 or mode 8, so
DISP_TYPE always returns 0 for those modes. When used in 16-bit colour
mode, DISP_TYPE returns 32.

IF DISP_TYPE : PRINT "This is not a QL display"
IF DISP_TYPE = 32 : PRINT”I am in 16-bit colour mode”

DISP_SIZE

DISP_SIZE xpixels, ylines is used to set the display size. The nearest feasible
size will be selected by the driver. It is best not to change the display size
when the pointer sprite is visible, or you may get some spurious blobs left on
the display. There should be few other problems changing from a smaller size
to a larger size. You should, however, avoid changing from a larger size to a
smaller if there are any windows outside the smaller screen. Values that are
well out of range are ignored.

DISP_SIZE 800,600 change to 800x600 (SVGA)
DISP_SIZE 1 ignored.

Serial (COM) Ports on the PC

Unlike the basic SMSQ serial port drivers, the SMSQ/E serial port drivers are
dynamically buffered. There is, therefore, no need to use the PRT device.

157

BAUD

The Baud rates supported by SMSQ/E on the QXL are

19200
9600
4800
2400
1200
600
300

If one of the ports is already committed to a mouse, the BAUD command will
not affect it.

BAUD 19200 set both ports to 19200
BAUD 2,1200 reset SER2 to 1200 baud

PC Printer Port

The PAR device drives the PC printer port. By default, output is dynamically
buffered: the PRT device is not required.

PC Floppy Disks

SMSQ/E accesses the PC floppy disks via the BIOS calls. This, although it
allows almost any PC to be used as a host for the QXL, is dependent on the
efficiency of your BIOS. The efficiency can usually be greatly improved by
using one of the public domain BIOS level cache utilities that are available for
the PC.

Floppy Disk Driver Name

The default name of the floppy disk driver is FLP. A: is FLP1 and B: is FLP2.

FLP_USE

FLP_USE may be used to set the name of the FLP device. The name should
be 3 characters long and in upper or lower case.

FLP_USE mdv The FLP device is renamed MDV
FLP_USE FLP The FLP device is restored to FLP

158

FLP_USE The FLP device is restored to FLP

Format FLP

We have not yet discovered any way of reliably formatting diskettes on any PC
manufactured since 1985. (All published information that we have found either
dates from before the introduction of the PC AT and only applies to 180 kbyte
drives or has proved to be wrong). FORMAT, therefore, performs a re-format
operation only and cannot be used with virgin disks.

FLP Control Commands

FLP_SEC FLP_START FLP_STEP

The QXL floppy disk driver may not be controlled.

PC Hard Disks

SMSQ/E accesses the PC hard disks via the PCDOS calls (the BIOS calls do
not appear to work). This, requires a file (called QXL.WIN) to be set up in the
ROOT directory of any hard disk you wish to use as a QDOS format disk. This
file is the QDOS format disk.

Hard Disk Driver Name

The default name of the hard disk driver is WIN. C:QXL.WIN is WIN1, and
D:QXL.WIN is WIN2 etc.

WIN_USE

WIN_USE may be used to set the name of the WIN device. The name should
be 3 characters long and in upper or lower case.

WIN_USE mdv The WIN device is renamed MDV
WIN_USE WIN The WIN device is restored to WIN
WIN_USE The WIN device is restored to WIN

Format WIN

Formatting a WIN device requires the creation of a large file under DOS. This
takes a long time. The "name" of the WIN device should be the size required
in Megabytes.

159

WIN_FORMAT

Before you can actually issue the FORMAT command, you have have to allow
the drive to be formatted. SMSQ/E has a two-level protection scheme, to
make sure you (or somebody else) cannot format your harddisk accidentally.
All drives are protected by default, so you have to declare them to be
formattable before you issue the FORMAT command.

WIN_FORMAT 1 Allow WIN1_ to be formatted
FORMAT WIN1_10 Create a 10 Megabyte WIN device on C:

 ... you have to echo the two characters
displayed ...
WIN_FORMAT 1,0 protect WIN1_ again against unwanted
formatting

Configuration

It is possible to configure the file SMSQE.EXE to pre-define various settings.
For doing that, you require the Menu-Extension to be present in your machine,
and you need the program MenuConfig to be able to configure the
SMSQE.EXE file. Both files (the extension and the config program) can be
found on nearly every commercial program disk (QD, QSpread, QSUP,
QMAKE etc.), but if you do not happen to find them on any of your commercial
program then it is advisable that you get a copy of the QMenu package, which
contains both files you need.

You can predefine the port address of your QXL card. Default is 2B0h.

Next you can predefine the default display resolution for SMSQ/E. Default is
512x256.

You can specify if you wish to BOOT from FLP1_ (drive A:) or FLP2_ (drive
B:) or none, provided, a disk is inserted. Otherwise specify a WIN drive
number to boot from.

The three following items deal with the settings for PAR, SER1 and SER2.

Finally, you can specify the language code (numerical value) as described in
the LANG_USE procedure explanation.

160

SMSQ/E for Q40

Introduction

From the point of view of the hardware dependent features, SMSQ/E as
implemented on the Q40 is very similar to other SMSQ implementations. The
only significant differences are minor improvements.

The hard disk and floppy disk drivers can handle multiple disk formats, two
floppy disk drives and four hard disk drives. Two IO cards can be used to
provide up to 4 serial ports and 3 parallel printer ports.

Machine Type

The two standard functions to determine the machine type are, of course,
supported.

MACHINE

The MACHINE function returns the machine type. This function returns 17 for
the standard Q40.

PROCESSOR

The PROCESSOR function returns the 680x0 family member - 40 for the Q40.

Memory Protection

All production Q40s include a memory management unit but this is not yet fully
used by SMSQ/E. The PROT_MEM procedure has, therefore, no effect in
current versions and the supervisor mode access peeks and pokes do not
have any different effect from their user mode cousins.

PROT_MEM

The PROT_MEM (level) procedure sets the level of the memory protection.
This is ignored in current versions.

POKES POKES_W POKES_L POKES_F POKES$

161

POKES address, value
POKES_W address, value
POKES_L address, value and
POKES_F address, value
POKES$ address, s$

are the "supervisor mode" equIvalents of POKE, POKE_W POKE_L POKE_F
and POKE$. By operating in supervisor mode they enable data to be written to
the Q40 IO hardware. Do not be surprised if your computer self-destructs
when you use them.

PEEKS PEEKS_W PEEKS_L PEEKS_F PEEKS$

value%=PEEKS (address)
value%=PEEKS_W (address)
value=PEEKS_L (address)
value=PEEKS_F (address) and
s$=PEEKS$(address, bytes)

are the "supervisor mode" equivalents of PEEK, PEEK_W PEEK_L PEEK_F
and PEEK$. By operating in supervisor mode they enable data to be read
from the QL IO hardware. Do not be surprised if your computer self-destructs
when you use them.

Q40 Display

DISP_MODE

You may set the Q40 screen modes with the DISP_MODE command (from
version 3.30 of SMSQ/E):

DISP_MODE mode

where mode can take the following values:

0 = QL 8 colour mode

the standard 512 x 256 pixels mode in 8 colours. In this mode you can also set
mode 4, with the usual MODE keyword. This is then equivalent to setting
DISP_MODE 1.

1 = QL 4 colour mode

162

the standard 512 x 256 pixels in 4 colours mode. In this mode you can also set
mode 8, with the usual MODE keyword. This is then equivalent to setting
DISP_MODE 0.

2 = Small 16 bit mode
512 x 256 pixels in mode 33 (16 bits per pixel).

3 = Large 16 bit mode

1024 x 512 pixels in mode 33 (16 bits per pixel).

DISP_TYPE

The DISP_TYPE function is used to find the type of display. For the Q40,
there are two values that may be returned.

0 Original ST QL emulator (this value is returned on QL based
hardware).

1 16 bit colour mode.

ncol = 4 Assume 4 colour display
if DISP_TYPE = 1 : ncol=65536 If it is 16 bit, there are 65536

DISP_INVERSE

The DISP_INVERSE (0 or 1) command is used to invert a monochome
display. It has no effect on the Q40.

DISP_SIZE

DISP SIZE (xpixels, ylines) is used to set the display size. When a size greater
than 512x256 is specified, 16 bit colour mode is selected (not implemented in
this version).

DISP_SIZE 1024,512 change to 1024x512 16 bit colour

DISP_RATE

DISP_RATE (frame rate, line rate) is used to specify the frame and line scan
rates. It has no effect on the Q40

DISP_BLANK

163

DISP_BLANK (x blank, y blank) sets the size of the blank area to the sides of
and above and below the image. It has no effect on the Q40.

Mouse driver

The mouse driver checks serial ports 4, 3, 2 and 1, in that order, looking for a
Microsoft compatible two or three button mouse. If a mouse is used, it should
be plugged into the highest port number available.

Because current serial mice for the PC have a much higher resolution (the
pointer moves faster) than older mice, the original pointer interface scheme
(accelerating slow mice) is no longer adequate. The new MOUSE_SPEED
command is used to define the "acceleration" . The value specified for the
MOUSE_SPEED is the same as the value that can be specified in the QPAC2
SYSDEF menu.

MOUSE_SPEED

MOUSE_SPEED (#channel, speed, wake)
defines both a scaling for the mouse movement and an acceleration factor
used for large movements.

SPEED SCALING ACCELERATION

0 1/8 low
1 1/8 normal

2 1/4 low

3 1/4 normal

4 1/2 low

5 1/2 normal
6 1 low
7 1 normal
8 1 high
9 1 extreme

The optional 'wake' defines how far the mouse will need to move before the
pointer will appear (waking up the pointer) in a text input window.

The channel is optional, if the default channel is available, and is a console, no
channel need be specified.

164

MOUSE_SPEED 2 standard Microsoft mouse with low
acceleration

MOUSE_SPEED #0,5,8 cheap mouse with acceleration, pointer
reluctant to wake up

Speeds 7 to 9 are the same as for previous versions. Speeds 0 to 6 are all
slower than in previous versions. If a "low acceleration" speed is chosen, the
pointer movement may be slightly viscous (this is an advantage in some
applications). The default mouse speed is 7 (old mouse with normal
acceleration). This default is overwritten by a configurable speed when
QPAC2 is loaded.

The default wake speed is 3 which is fairly sensitive. This default is overwritten
by a configurable speed when QPAC2 is loaded.

MOUSE_STUFF

MOUSE_STUFF (#channel, string)

defines a 0, 1 or 2 character string to be stuffed into the keyboard queue when
the centre (or left and right) buttons are pressed. This is usually used to send
a Hotkey. If a Hotkey is required, the first character should be CHR$(255).

ERT HOT_THING(".","Button_Pick") ALT . picks the button bar
MOUSE_STUFF CHR$(255)&'.' The middle mouse button

picks the button bar

The default stuff string is CHR$(255) & ".". This default is overwritten by a
configurable Hotkey when QPAC2 is loaded.

The channel is optional, if the default channel is available, and is a console, no
channel need be specified.

Serial (RS232) Ports on the Q40

The serial ports correspond to the standard IBM COM ports. Note that, unlike
the PC BIOS SMSQ does not attempt to renumber the ports if it finds that one
or more are missing.

SER1 COMl address $3F8
SER2 COM2 address $2F8
SER3 COMl/3 address $3E8
SER4 COM2/4 address $2E8

165

The baud rates correspond to the normal PC baud rates: standard rates up to
38400 baud and then 57600, 115200, 230400, 460800 and 921600 baud.
Only 16550A/16450 compatible serial ports are supported (i.e. any IO card
made in the past few years). The availability of rates above 115200 depends
on whether the IO card supports these rates and whether the mechanism to
produce these rates is recognised by the drivers.

All the SMSQ/E standard serial port control commands are available.

Parallel Printer Ports

The parallel printer ports correspond to the standard IBM LPT ports.

PARl LPTl/2 address $378
PAR2 LPT2/3 address $278
PAR3 LPT1/2/3 address $3BC

The standard parallel port driver assumes that the parallel port is IEEE 1284
compatible (ECP) and it will normally operate in SPP FIFO mode. The port
can also operate in original PC mode. There are three reasons for operating in
original PC mode.

1. Some IO cards are not compatible, in ECP mode, with the Q40
interrupt system. If possible, this problem should be resolved by
removing the IRQ7/IRQ5 jumper so that the card does not produce
parallel port interrupts at all. It may, however, be necessary to set the
jumpers on the card to SPP (original PC) mode.

2. Some printers may require a longer strobe pulse than is provided in

FIFO mode.

3. It is PAR3 which is the LPT port at address $3BC. This is not an ECP
port address.

PAR_PULSE

PAR PULSE (port, pulse length)

sets the notional strobe pulse length in ISA bus cycles. If the port is not
specified, PARl is assumed. If the pulse length is zero, then the parallel printer
port will operate in FIFO mode. If it is greater than 0, then the parallel printer
port will operate in original PC mode.

166

PAR_PULSE 2,2 drive an old Epson printer on PAR2
PAR_PULSE 0 ...set PAR1 to FIFO mode

FIFO mode should be used if possible. The default value for PAR_PULSE is 0
if the IO card is configured for ECP mode or 1 if the IO card is configured for
SPP mode.

PAR_WAIT

PAR_WAIT (port, wait cycles) sets the length of time that the parallel port
driver will wait for the printer to be ready before it gives up and lets the Q40 do
something else. This has no effect in FIFO mode, but in original PC mode it
allows the buffer in the printer to be stuffed in bursts. The default value is 0.
The larger the value, the higher the probability that a more than one byte of
data can be sent on each interrupt, but the higher the load on the machine.

If the IO card does not provide IRQ7 and the machine is busy, PAR_PULSE
with have a much greater effect than ifIRQ7 is used and/or the machine is idle.

PAR_WAIT 2,20 give the printer on PAR2 a high priority
PAR_WAIT 0 ...set PAR1 use the minimum of processor time

For an Epson Stylus COLOR Pro printer, PAR_WAIT 10 and PAR_WAIT 50
improved the transfer speed by 30% on an idle machine : the rate was
primarily determined by the printer. On a busy machine with no interrupts,
PAR_WAIT 10 improved the transfer speed by a factor of 3 and PAR_WAIT
50 improved the transfer speed by a factor of 5. The speed of other tasks in
the machine was reduced.

Q40 Hard Disks

IDE drives

The current IDE driver does not support removable drives.

WIN Drive Numbers and Name

ATA (IDE) drives are identified by the bus to which they are attached (primary
or secondary), whether they are drive 0 or 1 on that bus (for historical reasons
these are often called the master and slave drive although ATA compliant
drives are neither master nor slaves: they are truly independent) and a
partition on the drive.

167

Windows numbers its drives from C: as it finds them. This causes chaos if a
removable media drive (or a normal drive in a rack) is used. (One of my PCs is
obsessed by a phantom drive F: it thinks it is a 100kbyte CDROM).

SMSQ/E adopts a rather more cumbersome approach which is, however,
much more precise. The initialisation code will attempt to find a file called
"BOOT" on any partition on drive 0 . WIN1 will be set to this partition.
Thereafter, you must define your own WIN drives for any other drive and
partition you wish to access.

This means that if, for example, you have a drive in a rack, the other drive
numbers stay the same regardless of whether the drive is in or out when you
boot the system.

SMSQ/E does not require the whole of a drive to be used for itself: the drive
can be partitioned between different operating systems. Depending on the
format of used by the other operating systems, SMSQ/E may be able to read
or write these "foreign" partitions. Partitions are numbered from 0.

WIN_DRIVE

WIN_DRIVE (drive, target, unit, partition)

is used to select a particular drive, unit and partition combination to be
accessed using a particular WIN drive.

The "target" and "unit" notion comes from the SCSI bus terminology, the target
is a physical device and the unit is a subdivision of that device. For IDE bus
drives, there is only one unit per drive so the unit number is always zero and
may be omitted. If the partition is omitted as well, then partition 0 (or the whole
drive) is assumed.

Target Bus Drive
0 Primary 0 (Master)
1 Primacy 1 (Slave)

2 Secondary 0 (Master)

3 Secondary 1 (Slave)

Issuing a WIN_DRIVE command for a particular drive will cause the drive map
to be re-read the next time the disk is accessed. It can, therefore, be used to
force the drivers to recognise a disk change.

168

WIN_DRIVE 2,0,1 WIN2 is drive 0 on the primary bus, partition 1
WIN_DRIVE 3,3 WIN3 is drive 1 on the secondary bus (whole drive

or partition 0)

WIN_DRIVE$

WIN DRIVE$ is a function which returns a string giving the target, unit and
partition used by a particularWIN drive.

WIN_DRIVE 2,0,1 WIN2 is drive 0 on the primary bus,
partition 1
WIN_DRIVE 3,3 WlN3 is drive 1 on the secondary bus
(whole drive or partition 0)

PRINT WIN_DRIVE$(2) Prints 0,0, 1
PRINT WIN_DRIVES(3) Prints 3,0,0

WIN_USE

WIN_USE may be used to set the name of the WIN device. The name should
be 3 characters long and in upper or lower case.

WIN_USE MDV The WIN device is renamed MDV
WIN_USE win The WIN device is restored to WIN
WIN_USE The WIN device is restored to WIN

Format WIN

If a drive is unformatted (or not recognisably formatted) you can format the
whole drive as an SMSQ drive.

WIN_FORMAT 1 Allow WIN drives to be formatted
WIN_DRIVE 3,2 Set WIN3 to secondary drive 0, whole drive
FORMAT win3_Fred FORMAT WIN3
WIN_FORMAT 0 Prevent WIN drives from being formatted

On the other hand, if you wish to share a drive between different operating
systems, you can partition the drive by executing the MKPART utility before
formatting.

WIN_FORMAT 1 Allow WIN drives to be formatted
WIN_DRIVE 3,2,1 Set WIN3 to secondary drive 0, partition 1
EW MKPART Partition drive, setting partition 1 to "QWA"

169

FORMAT WIN3_Fred FORMAT WIN3
WIN_FORMAT 0 Prevent WIN drives from being formatted

WIN Control Commands

There are a number of "odd" WIN device control commands.

WIN_WP

WIN_WP (drive, 0 or 1) is used to software write protect a WIN drive.

WIN_WP 1,1 Set the "write protect" flag for the drive accessed
by WIN1
WIN_WP 1,0 Clear the "write protect" flag for the drive
accessed by WIN1

WIN_START WIN_STOP

The WIN_START (drive) and WIN STOP (drive, time) commands may be
used to start and stop a drive. If a time is given on the WIN_STOP command,
the drive should not stop immediately: the time is the period without any disk
accesses that must elapse before the drive automatically enters standby
mode. A zero time cancels the automatic standby timer.

WIN_STOP 2 Stop the drive accessed by WIN2 now
WIN_STOP 2,3 Stop the drive accessed by WIN2 when there has

been no access for 3 minutes
WIN_STOP 2,0 Do not stop the drive accessed by WIN2
WIN_START 2 Start the drive accessed by WIN2

Note that all the operations that might be used to restart a drive (there is no
"official" ATA command) are "vendor specific". on your particular drive, the
drive may not start again until you try and read from (or write to) the drive, or it
may never start again. You should also note that, on some drives, WIN_STOP
drive, time will not only set the timer but stop the drive immediately as well.

As with any ATA command, these commands will work if they work, otherwise
they will not work.

Q40 Floppy Disks

170

The Q40 will normally have one or two HD disk drives. The SMSQ/E FLP
driver can read or write QL5A, QL5B and MSDOS format diskettes. It can
format QL5A (DD) and QL5B (HD) format diskettes.

Floppy Disk Driver Name

The default name of the floppy disk driver is FLP. The internal drive is FLP1.
The external drive (if any) is FLP2.

FLP_USE

FLP USE may be used to set the name of the FLP device. The name should
be 3 characters long and in upper or lower case.

FLP_USE mdv The FLP device is renamed MDV
FLP_USE FLP The FLP device is restored to FLP
FLP_USE The FLP device is restored to FLP

Format FLP

The SMSQ/E FLP driver will usually format a diskette to the highest density it
can. The density may, however, be set using the FLP_DENSITY command or
by adding a special code to the end of the medium name in the format
command.

FLP_DENSITY

The SMSQ/E format routines will usually attempt to format a disk to the
highest density possible for a medium. The FLP DENSITY (code) is used to
specify a particular recording density during format.

The density codes are "S" for single sided (double density), "D" for double
density and "H" for high density.

FLP_DENSITY S Set the default format to single sided
FLP_DENSITY H Set the default format to high density
FLP_DENSITY Reset to automatic density selection

The same code letters may be added (after a *) to the end of the medium
name to force a particular density format. (For compatibility with older drivers,
if the code letter is omitted after the *, single sided format is assumed).

171

FORMAT 'FLP1 Disk23' Format at highest density or as specified
by FLP_DENSITY

FORMAT 'FLPl_Disk24*' Format single sided
FORMAT 'FLP1_Disk25*S' Format single sided
FORMAT 'FLPl_Disk25*D' Format double sided, double density

FLP_TRACK

The FLP_TRACK (number of tracks) is used to limit the number of tracks
formatted.

FLP_TRACK 23 Only format 23 tracks

FLP Control Commands

FLP_SEC

FLP_SEC (level) was used to set the security level. The security of the data
stored on the diskettes can be seriously compromised if you change diskettes
while there are files open. The security level affects the amount of time the
FLP driver spends maintaining the data on the diskette up to date with the
internal copies of the data in memory. In principle, a lower level is more
efficient, but more risky. With the increasing use of hard disks, the security
level of the FLP has been fixed at level 2: the most secure. FLP_SEC is
ignored.

FLP_START

The FLP_START (ticks) command specifies the number of ticks (1/50th of a
second) that the FLP driver waits after starting the drive before writing to it.
This allows the diskette to get up to speed before the write operation. The
default value is 24, which is a wait of about 0.5 s. There should not be any
reason to use this command.

FLP_STEP

The FLP_STEP (drive, step) command specifies the step rate for a particular
drive. If the drive number is omitted, the step rate applies to both drives. The
step rate will be adjusted downwards by the driver if there are repeated seek
errors. The FLP_STEP command should not, therefore, be necessary.

Sampled Sound System

172

The SMSQ/E sampled sound system for the Q40 assumes that a sampling
rate of 20 kHz will always be used.

The system is based on a 2 byte wide queue. Sound generators should stuff
pairs of bytes (left, right) in the queue. The queue is 200 kilobytes long which
allows up to 5 seconds free running. A normal "boing" can be set up in a
single operation.

The SMSQ/E sampled sound system provides four basic functions to add a
single sample, to add an arbitrary number of samples, to stop the sound and
to estimate the length of sound samples remaining in the queue.

The SMSQ / E sampled sound system should be accessed in supervisor
mode (in principle, this will be a sound device driver) via the interrupt level 4
auto vector.

move.l $70,a3 interrupt level 4 auto vector
move.l -(a3),a2 address of sample sound system functions
cmp.l #'SSSS',-(a3) SMSQ/E Sampled Sound System
bne.s oops

... jsr $04(a2) add a sample
... jsr $08(a2) set up to add multiple samples
... jsr $0C(a2) notify that multiple samples have been added
... jsr $10(a2) kill the sound

SSS_ADD 1 ($04)

The sss_add1 call is used to add one sample to the sound queue. To limit the
overheads, it does not save any registers.

D1 call byte left hand sound level
D2 call byte right hand sound level
A1 smashed
A3 call pointer to 'SSSS' flag (see code above)

The sound level is a byte value between 0 and 255. The sound "zero" level is
128. This should be the last value written to the left and right hand sound
queues.

This call does not have a standard error return. It returns status Z if the
operation sample has not been added because the queue is full.

173

SSS_SETM ($08)

The sss setm call sets up to add multiple samples to the sound queue.

A1 return the pointer to the next free byte pair in the
queue

A2 return the pointer past the last free byte pair in the
queue

A3 call pointer to 'SSSS' flag (see code above)

The calling routine can fill the area from al to a2 with pairs of bytes. It does
not, however, need to fill the whole of the area. When it has put samples into
the queue, it should call SSS_ADDM to notify the sampled sound system.

SSS_ADDM ($0C)

The sss_addm call notifies that samples have been added to the sound
queue.

A1 call the updated pointer to the next free
byte pair in the queue

A3 call pointer to 'SSSS' flag (see code
above)

move.l $70,a3 interrupt level 4 auto vector
move.l -(a3),a2 address of sample sound system

functions
cmp.l #'SSSS',-(a3) SMSQ/E Sampled Sound System
bne.s oops

jsr sss_setm(a2) setup
bra.s end_loop

loop
calculate next sample in d1.b, d2.b
move.b d1,(a1)+ add left sample
move.b d2,(al)+ add right sample

end_loop
cmp.l a2,a1 more samples to do?
blt.s loop

174

jsr sss_addm(a2) notify sampled sound system

SSS_KILL ($10)

The sss_kill call stops the sound system and throws the queue away.

A3 call pointer to 'SSSS' flag (see code
above)

SSS_SAMPLE ($14)

The sss_sample call estimates the number of samples remaining in the
queue. This figure should be divided by 400 to give the length of the sound in
ticks or divided by 20000 to give the length of sound in seconds.

D0 return long number of samples remaining in queue
A3 call pointer to 'SSSS' flag (see code above)

175

SMSQ/E for QPC2

Mouse

QPC supports the mouse wheel transparently to the applications. For every
tick of the mouse wheel several Alt + up/down key combinations are stuffed
into the keyboard buffer. The amount depends on the global Windows setting.
As Alt + up/down are the standard key-combination for scrolling a window,
many applications can immediately profit from the wheel.

MOUSE_SPEED

MOUSE_SPEED [#ch,] acceleration, wakeup

This function adjusts the mouse acceleration and wake up factor. The
acceleration factor is of no con-sequence to QPC2. The wakeup values,
however, may still be set. They range from 1 to 9, with 1 being the most
sensitive.

MOUSE_STUFF

MOUSE_STUFF [#ch,] hot$

This function adjusts the string that is stuffed into the keyboard queue when
the middle mouse button is pressed (or both left and right buttons are pressed
simultaneously). The string cannot be longer than two characters, but this is
enough to trigger any hotkey, which in turn, can do almost anything.

MOUSE_STUFF ‘.’ Generates a dot if middle mouse

button is pressed
MOUSE_STUFF CHR$(255)&’.’ Generates hotkey Alt + .

Machine Type

There are two standard functions to determine the machine type

MACHINE

mach% = MACHINE

Returns the machine type SMSQ/E is running on; 30 for QPC.

176

PROCESSOR

proc% = PROCESSOR

Returns the 680x0 family type; 20 for QPC (10 for versions below 3.33).

IF MACHINE=30 AND PROCESSOR<>20:PRINT 'This can hardly be QPC!'

QPC-Specific Commands

QPC_CMDLINE$

cmd$ = QPC_CMDLINE$

This returns the argument that was supplied to QPC after the “-cmdline”
command line argument. This can be used to do different actions depending
on the way QPC was started.

QPC_EXEC

QPC_EXEC command$[, parameter$]
This command can be used to call an external DOS or Windows program. The
name of the executable file is given in the first parameter. Optionally, you can
also supply a second parameter, which is then passed to the executed
program as its command line arguments.

Furthermore, you can supply a data file as the first parameter. In this case, the
associated application for this file type is executed.

QPC_EXEC 'notepad','c:\text.txt' Start notepad and load the c:\text

file
QPC_EXEC 'c:\text.txt' Start the default viewer for .txt files

QPC_EXIT

QPC_EXIT

This simply quits QPC.

QPC_HOSTOS

os% = QPC_HOSTOS

177

This function returns the host operating system under which QPC was started.
Possible return codes are:
0 = DOS (QPC1) 1 = Win9x/ME (QPC2) 2 = WinNT/2000/XP (QPC2)

QPC_MAXIMIZE QPC_MINIMIZE QPC_RESTORE

QPC_MAXIMIZE, QPC_MINIMIZE, QPC_RESTORE

Maximizes, minimizes or restores the QPC window.

QPC_MSPEED

QPC_MSPEED x_accel, y_accel

This command has no effect on QPC2.

QPC_NETNAME$

name$ = QPC_NETNAME$

This function returns the current network name of your PC (the one you
supplied upon installation of Windows). The result can be used to distinguish
between different PCs (e.g. in a BOOT program).

QPC_QLSCREMU

QPC_QLSCREMU value

Enables or disables the original QL screen emulation. When emulating the
original screen, all memory write accesses to the area $20000-$27FFF are
intercepted and translated into writes to the first 512x256 pixels of the big
screen area. If the screen is in high colour mode, additional colour conversion
is done.

Possible values are:
-1: automatic mode
0: disabled (default)
4: force to 4-colour mode
8: force to 8-colour mode

When in QL colour mode, the emulation just transfers the written bytes to the
larger screen memory, i.e. when the big mode is in 4-colour mode, the original
screen area is also treated as 4-colour mode. In high colour mode however,

178

the colour conversion can do both modes. In this case, you can pre-select the
emulated mode (parameter = 4 or 8) or let the last issued MODE call decide
(automatic mode). Please note that that automatic mode does not work on a
per-job basis, so any job that issues a MODE command changes the
behaviour globally.

Please also note that this transition is one-way only, i.e. bytes written legally to
the first 512x256 pixels are not transferred back to the original QL screen (in
the case of a high colour screens this would hardly be possible anyway).
Unfortunately, this also means that not all old programs will run perfectly with
this type of emulation. If you experience problems, start the misbehaving
application in 512x256 mode.

QPC_SYNCSCRAP

QPC_SYNCSCRAP

In order to rapidly exchange text passages between Windows and SMSQ/E
the Syncscrap functionality has been introduced. The equivalent of the
Windows clipboard is the scrap extension of the menu extensions. After
loading the menu extensions you can call this command, which creates a job
that periodically checks for changes in either the scrap or the Windows
clipboard, and synchronizes their contents if necessary. Please note that only
text data is supported. The character conversion between the QL character
set and the Windows ANSI set is done automatically. The line terminators (LF
or LF+CR) are converted too.

QPC_VER$

v$ = QPC_VER$

This returns the current QPC version.

PRINT QPC_VER$ will print 4.00 or higher.

QPC_WINDOWSIZE

QPC_WINDOWSIZE x, y

This sets the size of the client area (the part that displays SMSQ/E) of the
QPC window. It does NOT alter the resolution SMSQ/E runs with, so the
pixels are effectively zoomed. It is equivalent to the “window size” option in the
main configuration window. If QPC is currently in full screen mode it will switch

179

to windowed mode. Window size cannot be set smaller than the SMSQ/E
resolution or bigger than the desktop resolution.

DISP_SIZE 512,256 set QPC to 512x256 screen

resolution
QPC_WINDOWSIZE 1024,512 do a 200% zoom of the QPC

window

QPC_WINDOWTITLE

QPC_WINDOWTITLE title$

Sets the string that can be seen when QPC runs in windowed mode. This can
be used to easily distinguish between several QPC instances.

QPC_WINDOWTITLE “Accounting” sets the title to “Accounting”

Serial (COM) Ports

Unlike the basic SMSQ serial port drivers, the SMSQ/E serial port drivers are
dynamically buffered. There is therefore no need to use the PRT device.

BAUD

The Baud rates supported by SMSQ/E on QPC are

115200
57600
38400
19200
9600
4800
2400
1200
600
300

The BAUD command works as in SMSQ/E on the Atari: If the port number is
omitted, only SER1 is affected:

BAUD 19200 set SER1 to 19200 baud
BAUD 3,115200 set SER3 to 115200 baud

180

SER_GETPORT$

com$ = SER_GETPORT$(port%)

Returns the device the SER port is connected to, for example “COM1”.

SER_SETPORT

SER_SETPORT port%, com$

Sets the COM port a SER port should be connected with. The change will take
effect on the next open of the specified serial port.

SER_SETPORT 4,”COM32” Associate SER4 with COM32

Printer Support (PAR)

The PAR device can be linked to a printer port or to a Windows printer queue.
By default, output is dynamically buffered: the PRT device is not required.

Please note that no translation of the printer data is done, the data sent to the
device is directly piped into the printer itself. The only exception is the “filter”
option in the configuration dialog. A filter gets the raw data and can process it
however it wants. QPCPrint, which is sold separately, is just such a filter that
emulates the popular ESC P/2 printer language.

PAR_DEFAULTPRINTER$

name$ = PAR_DEFAULTPRINTER$

This returns the name of Windows' default printer. The name can later be
used with PAR_SETPRINTER for example.

PAR_GETPRINTER$

name$ = PAR_GETPRINTER$(port%)

This returns the PAR port setting: "LPT1", "LPT2" or "LPT3" if it isn't linked to
a printer but directly to a printer port or the name of the printer otherwise. An
empty string designates the default printer.

PAR_SETPRINTER

181

PAR_SETPRINTER port%, name$

Connects the PAR port either to a hardware port (e.g. name$ is "LPT1") or to
the printer spooler (name$ is one of the names returned by
PAR_PRINTERNAME$).

PAR_GETFILTER

state% = PAR_GETFILTER(port%)

This returns whether the printer filter is enabled for the specified port.

PAR_SETFILTER

PAR_SETFILTER port%, state%

Enables (state% = 1) or disables (state% = 0) the printer filter for the specified
port. If the printer should be enabled although none is available a “not found”
error is returned.

PAR_PRINTERCOUNT

n% = PAR_PRINTERCOUNT

This returns the number of printers available on this system.

PAR_PRINTERNAME$

name$ = PAR_PRINTERNAME$(n)

This returns the name of printer number n (counted from 1 to
PAR_PRINTERCOUNT).

PC Floppy Disks

QPC2 supports both native floppy access and access to floppy images.

Native Floppy Support

Access to native PC floppy disks is done via low-level Windows calls. Read
accesses are buffered internally by QPC2 and should be quite fast. This is not
true for write accesses; depending on your Windows version, these might be

182

quite slow. As of version 4 QPC does not physically format floppy disks
anymore. The disk must already have been formatted by Windows or any
other means. Formatting the disk in QPC only writes the SMSQ/E file system
to it.

Floppy Image Support

QPC2 can accept any standard floppy disk image. You can create your own
images by formatting an image and filling it with contents:

FLP_DRIVE 2,”C:\TEMP\FLOPPY.IMG” change location of image

file
FORMAT FLP2_ format HD floppy image
WCOPY FLP1_,FLP2_ copy contents from
physical floppy

Floppy Disk Driver Name

The default name of the floppy disk driver is FLP.

FLP Control Commands

FLP_USE

FLP_USE may be used to set the name of the FLP device. The name should
be three characters long, in upper or lower case.

FLP_USE mdv The FLP device is renamed MDV
FLP_USE FLP The FLP device is restored to FLP
FLP_USE The FLP device is restored to FLP

FLP_DRIVE

FLP_DRIVE drive%, drive$

This changes the drive/image the floppy device is connected to.

FLP_DRIVE 2,"C:\FLOPPY.IMG" now FLP2_ is assigned to the

floppy image FLOPPY.IMG
FLP_DRIVE 2,"B:\" now FLP2_ is assigned to the

physical B:\ floppy

FLP_DRIVE$

183

drive$ = FLP_DRIVE$(drive%)

This reads back the current connection of the floppy device.

PRINT FLP_DRIVE$(2) will tell you the current setting

FLP_DENSITY

FLP_DENSITY code

The SMSQ/E format routines will usually attempt to format a disk to the
highest density the medium supports. The FLP_DENSITY (code) is used to
specify a particular density during format. The density codes are "S" for single
sided (double density), "D" for double density and "H" for high density.

FLP_DENSITY S Set the default format to single sided
FLP_DENSITY H Set the default format to high density
FLP_DENSITY Reset to automatic density selection

The same code letters may be added (after a *) to the end of the medium
name to force a particular density format. (For compatibility with older drivers,
if the code letter is omitted after the *, single sided format is assumed).

FORMAT 'FLP1_Disk23' Format at highest density or as specified

by FLP_DENSITY
FORMAT 'FLP1_Disk24*' Format single sided
FORMAT 'FLP1_Disk25*S' Format single sided
FORMAT 'FLP1_Disk25*D' Format double sided, double density

FLP_SEC, FLP_START and FLP_STEP

QPC has no influence over how the Windows disk driver works, therefore
these commands are ignored.

WIN Disks

SMSQ hard disks for QPC are just large files on the host operating system’s
file system. The files usually have the suffix “. WIN” but anything else is fine,
too. Name and directory can be configured separately for all drives. (See also
the configuration section). SMSQ/E’s FORMAT command creates the file.

Hard Disk Driver Name

184

The default name of the hard disk driver is WIN.

WIN_USE

WIN_USE may be used to set the name of the WIN device. The name should
be three characters long, in upper or lower case.

WIN_USE mdv The WIN device is renamed MDV
WIN_USE WIN The WIN device is restored to WIN
WIN_USE The WIN device is restored to WIN

Format WIN

Formatting a WIN drive simply creates a large file on the PC’s hard disk. The
"name" of the WIN device should be the size required in megabytes.

Before you issue the FORMAT command, you have to allow the drive to be
formatted. SMSQ/E has a two-level protection scheme to make sure you (or
somebody else) cannot format your hard disk acci-dentally. All drives are
protected by default so you have to enable them to be formatted first.

Please note that the FORMAT command for a WIN drive should only be used
from the console of job 0, i.e. the first SBASIC.

FORMAT will fail if there is not sufficient space left on the specified drive, if the
medium is write-protected, or if the file *.WIN already exists and contains
invalid information (e.g. a DOS-subdirectory).

WIN_FORMAT 1 Allow WIN1_ to be formatted
FORMAT WIN1_10 Create a 10 Megabyte WIN device.

... You have to echo the two characters displayed...

WIN_FORMAT 1,0 protect WIN1_ again against

unwanted formatting

Drive/Filename Assignment

WIN_DRIVE WINDRIVE$

185

Every WIN drive number is assigned to a file on your hard disk, which contains
the complete contents of your WINx_. It is possible to change the filename of
the file that is assigned to a WIN drive number while QPC2 is running:

WIN_DRIVE 2,"D:\QPC.WIN" now WIN2_ is assigned to the WIN

file QPC.WIN
PRINT WIN_DRIVE$(2) will tell you the current filename.

Removable Drives

WIN_REMV

Removable drives, such as ZIP or SyQuest, are now supported. If auto-
detection fails use the WIN_REMV command:

WIN_REMV 2 declares WIN2_ to be a removable
drive.
WIN_REMV 2,1 does the same for WIN2_.
WIN_REMV 2,0 magic - WIN2_ is no longer

removable!

When a drive is declared removable, the .WIN file is closed after all SMSQ/E
files on it are closed. This can also be used to allow a single .WIN file to be
shared over a network. (Files on a remote computer QPC2 are automatically
set to be removable). As long as one instance of QPC has open files on the
drive, no other instance can access it.

The DOS Device

The DOS device has been created to transfer data between the Windows and
SMSQ/E environments. Using this device you can directly browse your PC
hard disks (network drives, CD-ROMs or whatever), as well as read and write
files.

Please note that the DOS device is NO replacement for the WIN device (it was
never intended to be), all SMSQ header information gets lost on DOS drives;
therefore, you cannot store executable code on them.

Drive/Directory Assignment

By default, DOS1_ corresponds to C:\, DOS2_ to D:\ and so on, but the base
can be freely chosen in the configuration dialog or even at runtime:

186

DOS_DRIVE 2,"C:\WINDOWS" assign DOS2_ to the windows
directory
PRINT DOS_DRIVE$(2) would now return “C:\WINDOWS”

Restrictions And Some Background Information On The DOS
Device

You can use this device in the same way as any other QL directory device to
access and exchange files between Windows and SMSQ/E. It is easier than
ever before. The usual restrictions imposed by the general QDOS file naming
convention apply, i.e. the length of the directory + filename is limited to 36
characters. Names longer than that won’t show up in the directory lists!
Therefore, it is a good idea to place files that you want to access from both
SMSQ/E and Windows only one or two directory levels deep, or change the
base of a DOS drive to one directly above the desired directories.

Many filenames that are valid under SMSQ are not valid under Windows. The
offending characters (e.g. *, /, ? etc. or filenames with spaces at their end) are
translated into other, valid ANSI characters. This conversion works quite well,
but you are advised to only use valid filenames wherever possible.

One problem with the SMSQ way of accessing files is that the “_” separator
can be a valid part of a name or a directory separator. Therefore, the relation
SMSQ filename -> Windows filename is ambiguous. This can cause quite
some problems:

Let’s say you have two directories named C:\QL\STUFF\ and
C:\QL\STUFF_NEW\ and you want to create a file called
dos1_QL_STUFF_NEW_BRANDNEW.TXT. Where does that file belong? It
could mean any of the following:

C:\QL_STUFF_NEW_BRANDNEW.TXT
C:\QL\STUFF_NEW_BRANDNEW.TXT
C:\QL\STUFF\NEW_BRANDNEW.TXT
C:\QL\STUFF_NEW\BRANDNEW.TXT

Your intention was probably the last one, but how should QPC now? The easy
solution is not to use underscores in directory names. However, if you can’t
help it, it becomes essential to know how the DOS device works. The current
algorithm is based on the simple assumption that if you have a directory called
“QL_STUFF” you won’t also want to create “QL\STUFF”.

187

The exact working of the algorithm is not easy to describe, but I’ll try
nonetheless. The basic principle is that the algorithm always searches for the
longest consecutive part of the name. In the example above, QPC would
begin by searching for any directory starting with “C:\QL”. If none was found,
the process completes and the result is simply
“C:\QL_STUFF_NEW_BRANDNEW.TXT”. Otherwise, it will look for any
directory starting with “C:\QL_STUFF”. If found QPC will try
“C:\QL_STUFF_NEW” and so on. If not found, however, it will test whether the
last successful part (“C:\QL_STUFF”) is itself a directory. If it is, it is
considered part of the filename and all future searches use this as the base
(i.e. the next step would be “C:\QL_STUFF\NEW”). If not, the search
terminates with the result again being
“C:\QL_STUFF_NEW_BRANDNEW.TXT”.
If this sounds too confusing or too badly explained (probably both) just
remember one thing: never use “_” within directory names.

Finally, please note that you cannot use RENAME to rename files on a DOS
drive. SMSQ/E allows you to rename files from one directory to another one,
but this is not compatible with the DOS way of doing things. If you want to
rename a file, you need to COPY it to the new location and DELETE the old
file.

DOS Control Commands

DOS_USE

DOS_USE may be used to set the name of the DOS device. The name should
be three characters long, in upper or lower case.

DOS_USE mdv The DOS device is renamed MDV
DOS_USE DOS The DOS device is restored to DOS
DOS_USE The DOS device is restored to DOS

DOS_DRIVE

DOS_DRIVE drive%, directory$

This changes the directory the DOS device is connected to.

DOS_DRIVE 2,"C:\WINDOWS" now DOS2_ points to C:\WINDOWS

188

DOS_DRIVE$

directory$ = DOS_DRIVE$(drive%)

This reads back the currently connected directory of the DOS device.

The QPC CD-Audio Module

As a little extra bonus, QPC contains a module to play Audio CDs. There are
23 new BASIC commands for the complete control of all audio functions of a
CD-ROM drive. A tiny CD-player comes with QPC2 as an example.

First some terms of CD programming:

Track: one title Frame: one sector of a CD. The sector length on Audio CDs is

2352 Bytes

REDBOOK-Format: a standard format for direct sector addressing. Sectors
are addressed through a time index in the form of a longword formatted as
$00MMSSFF. MM is the minute, SS the second and FF is the frame. One
second has 44100(Hz)*2(Stereo)*2(16 Bit)/2352 (sector length) = 75 frames.

HSG-Format: another format to address a sector. Here they are only

addressed sequentially.

HSG=(minute*60+second)*75+frame

New Basic Commands

As usual, all parameters in square brackets are optional. Unless specified, all
sectors are addressed in Redbook-Format.

CD_INIT

CD_INIT ['name']

This command must be used before any other in order to initialize the CD
drive for SMSQ. After the first call, the command is ignored on all subsequent
calls. The string parameter is ignored on QPC2.

CD_PLAY

CD_PLAY [start[,end]]

189

This is the most important command. Without parameters the whole CD is
played. An optional start and end track can be given. The command returns as
soon as the CD starts playing. The parameters are given in tracks (bit 31
clear) or in sector units (bit 31 set).

CD_PLAY 3 or with the same effect
CD_PLAY CD_TRACKSTART(3) + $80000000

CD_STOP
Pauses playing. If the driver was already in pause mode, a complete stop is
performed (as if a new CD was inserted; restart from track 1 and so on)

CD_RESUME

Resumes playing from where it stopped.

CD_EJECT, CD_CLOSE

Opens/closes the drive tray.

CD_ISPLAYING, CD_ISCLOSED, CD_ISINSERTED, CD_ISPAUSED

x% = CD_xxx

These functions return the current status according to the keyword. Please
note that Windows cannot tell whether the tray is closed or not, therefore
CD_ISCLOSED always returns the same result as CD_ISINSERTED when
used on QPC2. An empty tray was obviously something the Microsoft
geniuses could not imagine.

CD_TRACK

track% = CD_TRACK

Returns the number of the track currently being played.

CD_TRACKTIME

x = CD_TRACKTIME

Returns the elapsed time within the current track.

190

CD_ALLTIME

x = CD_ALLTIME

Returns the total elapsed time of the CD.

CD_HSG2RED, CD_RED2HSG

red=CD_HSG2RED hsg hsg=CD_RED2HSG red

Converts an HSG address to Redbook and vice versa.

CD_TRACKSTART

x = CD_TRACKSTART track

Returns the start sector of a track.

CD_TRACKLENGTH

x = CD_TRACKLENGTH track

Returns the length of a track. Attention: This is the only function that returns

an HSG-number.

CD_FIRSTTRACK, CD_LASTTRACK

x% = CD_xxx

Returns the number of the first/last track.

CD_LENGTH

x = CD_LENGTH

Returns the total length of the CD.

CD_HOUR, CD_MINUTE, CD_SECOND

x% = CD_xxx Redbook

Returns the hour, minute or second of a Redbook address

191

SMSQ/E for Q68

Introduction

This manual explains the SMSQ/E particulars as they pertain to the Q68.

SDHC cards

The Q68 uses SDHC memory cards for mass storage. These must be SDHC
cards – simple SD cards are not compatible. There are two card sockets into
which you can insert the cards. The left card socket is socket 1, the one on the
right is socket 2 (like mdv1_ and mdv2_). From here onward, the card inserted
into the left socket will be called card1, the card inserted into the right socket
will be called card2.

For the cards to be useful, they must be partitioned and the first primary

partition must be formatted in FAT32 format (this cannot be done on the Q68).
The different files the Q68 needs must be put into that partition, which should
be possible from any machine running an OS that can read/write SDHC cards
(Linux, Windows, macOs): just copy the files to the card.

The Q68 always tries to start up from card1, by loading the operating system
from that card. Once SMSQ/E is loaded, it will follow its own usual boot
process, normally running the boot file found on win1_.

Using container, OS and other files on the card

Under SMSQ/E, the Q68 uses qxl.win type container files as the main mass
storage devices. These files must lie in the first primary partition on the SDHC
card which must be formatted with a FAT32 file system. Moreover, these
container files must be located within the first 16 directory entries of this
FAT32 formatted partition. This is also true for the file containing SMSQ/E
itself.
.
Special precautions must be taken when writing the container and OS file(s)
themselves to the card. Indeed, SMSQ/E expects a container file not to be
fragmented in the FAT32 file structure. It assumes that, once it has found the
beginning of a container file, the rest of that container file lies in contiguous
sectors on the card. This is also true for the SMSQ/E binary files (named

192

"Q68_RAM.SYS" or “Q68_SMSQ.WIN”) itself. Thus the files on the cards
must not be fragmented.

The best way to achieve this is to make sure that, before writing the SMSQ/E
binary file and the container files, the card is freshly formatted. Then write
each container (or other) file, one after the other, immediately after formatting
the card.

Hence, you should dedicate a card solely for the purpose of using it with the
Q68.

Do not drag and drop several files onto the card at once. Do not delete files

from the card – always format it. It is very much recommended that you read
the section Avoiding fragmentation to make sure you treat the card as you
should.

Naming scheme

The file name of a container or OS file MUST be in "8.3" format, i.e. a name of
1 to 8 characters, possibly followed by a decimal point and a three letter
extension. Missing letters are filled up with spaces. The name and extension
must be in upper case and the extension, if present, must be separated from
the name by a period (".").

Please only use plain ASCII characters for the name and no accented
characters, i.e. the letters A-Z and numbers 0-9.

In all commands or configuration items where you must give or configure a
name, SMSQ/E tries to help you as much as possible. Names are
automatically converted into upper case and correctly formatted, so that
“qlwa.win” would automatically be converted to “QLWA .WIN”. However, a “_”
is not converted to a “.” .

See also the default names of OS and container files.

Initialising a card

CARD_INIT

193

With the Q68, before you can use drives on an SDHC card, the card must be
initialised (it would actually be more accurate to say that the card reader a
card is in must be initialised, i.e. put in a state where it will read a card). Card1
is automatically initialised at boot time. By design, card2 is not initialised at
boot time, though this will depend on you configuration options. If it is not
initialised, you have to initialise it yourself. You can do this with the supplied
CARD_INIT command. The card itself is not touched by this command (it is
not formatted, written to or anything).

Syntax:
CARD_INIT card_number

where card_number is the card to be initialised (1 or 2).

Example:

CARD_INIT 2.

Initialisation will fail with the error “medium check failed” if no card is in the
drive.

Swapping cards

As a general rule, cards may be swapped in and out, even when the system is
running - but this is not a recommended practice. However, if you insist on
doing this, you must be aware of a few rules:

1 – Do not remove a card when there are files still open to a drive and
certainly not whilst the machine is reading/writing to a card. If you remove a
card whilst there are still files open or files being written, data loss WILL (not
“may”) occur. Note that you will NOT be able to write the missing data to the
card even if you reinsert it immediately after having removed it from the
socket. Some device drivers have a special keyword telling you whether it is
safe to remove a card from its socket (see, e.g. WIN_SAFE).

2 – When a card is removed from its socket, the card reader in that socket
becomes uninitialised. Before using the new card that you just inserted, you
must initialise it, as described above. This is true whether you insert a new
card or re-insert the old one that was just removed.

Win drives on SDHC cards

194

For the Q68, SMSQ/E uses “qxl.win” type container files as the main mass
storage devices. These files must comply with the rules set out above
.
The corresponding SMSQ/E device is called "WIN" and, potentially, you may
have up to 8 different drives for this device, called "win1_" to "win8_".

Each WIN drive can point to one container file lying indiscriminately on SDHC
card one or two. For each WIN drive, you must set the name of the container
file, and the number of the card on which this file is to be found. You may do
so by configuring this with the standard configuration program. You can also
set the names of the container files at any time with the WIN_DRIVE

command. Menuconfig is the best choice here.

Safety precaution

Do not point two different WIN drives to the same container file on the same
card. For the time being, the system doesn't stop you from doing so, but data
loss and file corruption WIN (not "can") occur as a result!
If in doubt, use the WIN_DRIVE$ function to consult the list of container files

already assigned to a drive.

Basic commands for WIN drives

The basic commands related to WIN drives are as follows:

WIN_DRIVE

assigns a container file on a card to become a drive.

Syntax:
WIN_DRIVE drive, card, file_name$

where:
 - drive is the WIN drive number (1... 8) to be assigned.
 - card is the SDHC card on which the file can be found (1 or 2).
 - file_name$ is the name of the container file. The file name MUST be in
"8.3" format, i.e. a name of one to 8 characters, a decimal point and an
extension of up to three letters. The extension, if present, must be separated
from the name by a period (".").

195

Please note that this command does not check that the file is actually present
and readable on the card.

The WIN_DRIVE command has an intended side-effect:

If the command is applied to a card that isn't present (any more), all
channels to all drives that would have corresponded to files on that card
are closed, and the drive definition blocks for such drives are removed.

This is a protection against a card being ripped out of the drive, a new
one inserted and a write operation to the new card being made. That
way, at least, no old information will be written to the new card.

Example:

WIN_DRIVE 2,6,"QXL.WIN" make the file "QXL.WIN" on card 2 into

WIN drive 6.

WIN_DRIVE$

This function returns the name of a container file corresponding to a drive, and
the card on which this file should be found.

Syntax:
name$=WIN_DRIVE$(drive)

where:
 - drive is the drive to be questioned (1 to 8)

The function returns, as a string, the name of the container file assigned to the
drive passed as parameter, as well as the number of the card this file is on (1
or 2), separated from the name by a comma. Please note that this does not
tell you whether such a file actually exists on the card.

Example:

PRINT WIN_DRIVE$(6) returns "QL_WIN6.WIN,2"

this means that the drive win6_ is assigned to a file called "QL_WIN6.WIN"
which is to be found on the card in socket 2.

196

WIN_SAFE

This command checks whether it is safe to remove a card as far as the WIN
driver is concerned.

Syntax:
WIN_SAFE card

Where
 - card is the SDHC card on which the file can be found (1 or 2). If this
command returns without error, then, as far as the WIN driver is concerned,
the card may be safely removed. If not, it will return the error “is in use”. Be
patient then and retry a few seconds later.

Example:

WIN_SAFE 1 checks whether card 1 may be safely removed.

WIN_CHECK

Checks whether a WIN container file on the card is indeed in contiguous
sectors on the card.

Syntax:
WIN_CHECK drive

where
 - drive is the container file containing the WIN drive in question. If the
command does not return an error, the container file corresponding to the
drive is OK.

WIN_FORMAT

Please see below in the section “Formatting a drive”.

WIN_USE and WIN_WP

These are the standard SMSQ/E keywords and work as expected.

197

WIN_START, WIN_STOP, WIN_REMV, WIN_SLUG

These typical SMSQ/E commands are not needed and do not exist.

Formatting a drive.

Formatting a drive means that an EXISTING file on a card is made into a
qxl.win type container file. This is achieved with the usual FORMAT command:

FORMAT winX_name

where, as usual, "X" is the drive number and "name" the formatted name of
the drive. This may be up to 10 characters long. Anything longer will be
truncated to 10 letters. Please note that this is NOT the name of the container
file on the card, just the name that will be displayed when doing a DIR on the
drive.

Formatting a drive will irretrievably erase some of the content of the file on the
card and make it into a qxl.win container file.

As a security precaution, before issuing the FORMAT command, you must
issue the WIN_FORMAT command:

WIN_FORMAT drive, yes_or_no

where
- drive is the drive to be formatted, and "yes_or_no" is 1 for allowing the drive
to be formatted and 0 for refusing to do so. Please note that this overrides any
write protection you may have set for this drive with the WIN_WP command.
Trying to format the drive without issuing the WIN_FORMAT command first

will fail.

Moreover the FORMAT command itself MUST be issued from the main
SBasic job, i.e.job 0. This is because the FORMAT command will invite you,

as an additional precaution, to enter two random letters into channel#0 of job
0. Failing to enter the letters will make the machine seem to hang. Entering
different letters will make the FORMAT command fail. Even though the letters
to be entered are displayed in upper case, you may enter them in lower case.
If you issue the FORMAT command from another job than job 0, the
machinemay seem to have crashed - so don’t.

Example:

198

WIN_DRIVE 3,1,”example.win” set drive 3 to correspond to an
existing file called EXAMPLE.WIN
on card1.

WIN_FORMAT 3 prepare to allow formatting
FORMAT “win3_WINDRIVE 3” format the file to become a qxl.win

container.

You can only format an existing file. You cannot create a new container file on
the card with the
FORMAT command (you can do this with the CARD_CREATE command).

The FAT device

The FAT device is a FAT16 driver for the Q68 (and possibly other SMSQ/E
systems). Its purpose is to allow you to exchange files easily between the Q68
(qxl.win type) container files and the outside world. It can read/write a FAT16
formatted partition on the SDHC card. This means that, in addition to the
standard FAT32 formatted partition that an SDHC card must have to be
recognized by SMSQE, there must be another partition, formatted in FAT16. If
you only have one SDHC card, the FAT16 partition must lie AFTER the main
FAT32 partition.

Please note that, by default, SMSQ/E may be configured NOT to load this
driver at all. If you want to use this device, you might configure SMSQ/E first
to use it.

Principle

You just use the FAT device like any other device. There are potentially 8
drives you may use (FAT1_ to FAT8_). You must however configure SMSQ/E
to use the device at all and set the device particulars, either by configuration
or with the FAT_DRIVE command.

Limitations

The FAT driver comes with a few caveats.

1 – The FAT driver can only handle standard DOS names (i.e. 8.3 names).
None of the extended name schemes invented for FAT16 is used by the FAT
driver. The presence of extended names doesn't harm the FAT driver's

199

operation, it just won't use them – and when writing back to the partition, it
might destroy the extended names (but not the normal ones nor the data!).

2 – The FAT driver can only handle FAT16 partitions formatted with a cluster
size of 8 sectors per cluster and a sector size of 512 bytes.

Under Linux, this can be achieved with the command:
mkdosfs -F 16 -s 8 /(your device)

3 – The maximum partition size the FAT driver can handle is limited to 255
MiB.

A ready-made file containing a 1.5 GiB FAT32 partition and a 250 MiB FAT16
partition can be downloaded from “www.wlenerz.com/Q68/empty_image
_file.zip”. This is a compressed empty file under 3MiB in size which will be
expanded to 1.8 GiB when decompressed.

Under Linux, you can use the "dd" command to copy that to an SDHC card,
which will give you the necessary partition scheme to start using the SHDC
card with the Q68. Under windows, you might use the win32diskimager
freeware https://sourceforge.net/ projects/win32diskimager/.

4 – Each FAT16 partition must be a primary partition, not be contained in an
extended one (remember there can only be 4 primary partitions on an SDHC
card. The first one must be the FAT32 partition, any of the others could be an
extended one which the Q68 will not use).

5 – Formatting a FAT drive is not possible.

Configuration

In the "Fat drives" section of the configuration (see below) you can configure
on what card and what partition the FAT drives should be.

Basic keywords

There are several keywords to be used with the FAT drive:

FAT_USE

200

You may use the usual FAT_USE keyword to set the usage name of the FAT
device:

FAT_USE “flp” results in the device being called FLP instead of

FAT.

FAT_DRIVE

With this command you can set, for any FAT drive, the card and partition it is
to be found on.

Syntax:
FAT_DRIVE drive, card, partition

where:
 - drive is the drive to be set (1 to 8)
 - card is the SDHC card it is on (1 or 2)
 - partition is the primary FAT16 partition (1 – 4)

FAT_DRIVE$

This function will return the card and partition for which a FAT drive is
configured.

Syntax:
result = FAT_DRIVE$(drive)

where:
 - drive is the drive number (1 to 8).

This will return a string formatted thus:
Card: <card_number>, Partition: <partition_number>

Example:
PRINT FAT_DRIVE$(1)

might return "Card: 1, Partition: 2".

If the drive isn't configured for any card, the card number will be "N" (for
"None"). If the drive isn't configured for any partition, the partition number will
be 0.

201

FAT_WP

Sets/removes a software write protection on the drive, just like the usual
WIN_WP.

The QUB device

This device allows you to the read the first (!) partition of a container image file
formatted the Qubide way. Hence, each drive corresponds to one container
file on the card, This is just like the WIN drive. The purpose is mainly for you to
be able to get data off the Qubide drive and onto a proper WIN drive. You
should not operate a Qubide type drive as your main storage system, use the
win drives for that..

So basically, this device behaves just like the WIN device, except that it uses
different container files.

Please note that, by default, SMSQ/E may be configured NOT to load this
driver at all. If you want to use this device, you might configure SMSQ/E
first.

The device is called QUB and there are 8 drives. Like for the WIN device, you
must indicate for each drive the name of the container image file and the card
it is on. Again, sensible names have been preconfigured.
There are the following basic commands: QUB_USE, QUB_WP,
QUB_DRIVE and QUB_DRIVE$ which behave in a similar way to the

WIN_xxx commands.

OS and Container filenames

There are several types of files that lie on an SDHC card during normal use of
the Q68 with SMSQ/E. All of these must adhere to the 8.3 naming scheme.

 The SMSQ/E file itself. This may come in two types :

1. as a “naked” file, containing just SMSQ/E itself. In this case, the file
MUST necessarily be called “Q68_RAM.SYS”as a qxl.win type
container file. In this case, the file MUST necessarily be called
“Q68_SMSQ.WIN”.

2. This allows a much easier configuration of SMSQ/E, see below the
section on configuration. If you use a container file for the OS, this

202

must contain the file called “Q68_SMSQ” in the root directory, and this
file MUST be the very first item in the root directory, even before any
sub-directory. When delivered, the Q68 comes with a small (1 MiB)
file called “Q68_SMSQ.WIN”, which adheres to this rule. It contains
some other software to allow you to configure SMSQ/E (see the
configuration section). Or course, you may create your own container
file(s) of any reasonable size and use it for the QS. Just remember

that it must be called “Q68_SMSQ.WIN” and that the file called “
Q68_SMSQ” must be the very first item in the root directory. Perhaps
it is better to have a dedicated small container file just for the OS –
this will make upgrading it much easier. Despite the fact that the
“Q68_SMSQ.WIN” is a qxl.win type container file, there is no
obligation to assign it to any of the win drives – the boot process is
independent of win drives assignment. By default, however, SMSQ/E
is set up to use this file as win8_.

One of these two files must be present on card1, else SMSQ/E will not be
booted. It is not possible to change the names of these two files - if you
do, they will not be recognized as SMSQ/E files. If both are present,
SMSQ/E will be loaded from the container file.

 The WIN device container files. These should be called QLWAx.WIN

where x can be any number between 0 and 9999, or be omitted. It is
recommended, but not mandatory, that you stay with this naming scheme.
Since the names of the container files are configurable, you may basically
call them whatever you like, provided you adhere to the 8.3 naming rules.
SMSQ/E comes pre-configured with what the designers of the Q68 think
are sensible names and values. You can configure thesenames with the
usual configuration program, Menuconfig is the best choice here.You can
also use the WIN_DRIVE command.

 The QUB device container files. These should be called QL_BDIx.BIN
where x can be any number between 0 and 99. Again, it is recommended
but not mandatory that you stay with this naming scheme. However, since
the names of the container files are configurable, you may basically call
them whatever you like, provided you adhere to the 8.3 naming rules.
There again, a sensible default naming scheme has been devised:

 QL_BDI.BIN on card1 for qub1_
 QL_BDI.BIN on card2 for qub2_
 QL_BDI3.BIN and QL_BDI4.BIN on card1 for qub3_ and qub4_.
 QL_BDI5.BIN to QL_BDI8.BIN on card2 for qub5_ to qub8_.

203

Please remember that the qub device should not be your main storage
system for the Q68.

Setting the screen modes

The Q68 has several different screen modes presenting different screen sizes
and colours. Please note that the more colours are displayed and the higher
the resolution, the slower the Q68 will become.

DISP_MODE

You may set the Q68 screen modes with the DISP_MODE command:

DISP_MODE mode

where mode can take the following values:

0 = QL 8 colour mode

the standard 512 x 256 pixels mode in 8 colours. In this mode you can also set
mode 4,
with the usual MODE keyword. This is then equivalent to setting DISP_MODE
1.

1 = QL 4 colour mode

the standard 512 x 256 pixels in 4 colours mode. In this mode you can also set
mode 8, with the usual MODE keyword. This is then equivalent to setting
DISP_MODE 0.

2 = Small 16 bit mode
512 x 256 pixels in mode 33 (16 bits per pixel).

3 = Large 16 bit mode

1024 x 512 pixels in mode 33 (16 bits per pixel). Please note that this mode
will slow down the Q68, you should not use this mode when doing something
time-critical.

4 = Large QL Mode 4
1024 x 768 pixels in QL 4 colours mode (there is no mode 8 in this display
mode).

5 = Aurora compatible 8 bit colours

204

1024 x 768 pixels in Aurora 256 colours mode. This allows you to have a big
screen with nicer colours while still being reasonably fast (but slower than the
QL modes).

6 = Medium 16 bit mode
512 x 384 pixels in mode 33 (16 bits per pixel).

7 = Very large 16 bit mode

1024 x 768 pixels in mode 33 (16 bits per pixel). Please note that this mode
will severely slow down the Q68, you should not use this mode when doing
something time-critical.

DISP_xxx

With the exception of the DISP_TYPE function, which returns the standard
SMSQ/E values, the other DISP_xxxx keywords, whilst they exist, have no
effect on the Q68.

Configuring SMSQ/E for the Q68

Configuring SMSQ/E for the Q68 should be made via a standard configuration
program. “MenuConfig” is certainly the way to go here.

If you opt to have SMSQ/E in a qxl.win container file called “Q68_SMSQ.WIN”,
you can directly configure the file “Q68_SMSQ” in there. Thus, you do not
have to leave the Q68 to configure its operating system. Please note,
however, that once you have configured the Q68_SMSQ file to your liking, you
MUST switch the Q68 off and on again. Simply resetting the machine (with the
RESET command or otherwise) is not enough, as the OS is then not re-read
from the card.

To make things easier, the Q68_SMSQ.WIN file delivered with the Q68
contains all files necessary for configuring SMSQ/E. As standard, this file is
allocated to win8_. If you run win8_boot, it will LRESPR the necessary Menu
extensions and launch MenuConfig. Please note that these two programs are
© Jochen Merz.

The Q68 configuration block is divided into several sections, as follows:

SMSQ/E for the Q68

205

In this block, you can configure several standard SMSQ/E facilities
(keyboard/message languages and so on). There should be no need to go into
more details for them here, except perhaps to mention that the new CTRL
behaviour enables you to keep CTRL+C pressed and the jobs will
continuously cycle through.

A - Q68

This section contains some Q68 specific configuration items:

1.Initial display mode

Here you can set the display mode the Q68 should have when booting
SMSQ/E. You may choose between the following:

Normal QL Mode 4
the standard 512 x 256 pixels in 4 colours mode. In this mode you can also set
mode8, with the usual MODE keyword.

Large QL Mode 4
1024 x 768 pixels in QL 4 colours mode (no mode 8 possible).

Aurora compatible 256 colours mode
1024 x 768 pixels in Aurora 8 bit colours mode.

Small 16 bit mode
512 x 256 pixels in mode 33 (16 bits per pixel).

Medium 16 bit mode
512 x 384 pixels in mode 33 (16 bits per pixel).

Large 16 bit mode
1024 x 512 pixels in mode 33 (16 bits per pixel). Please note that this mode
will severely slow down the Q68, you should not use this mode when doing
something time-critical.

Very large 16 bit mode
1024 x 768 pixels in mode 33 (16 bits per pixel). Please note that this mode
will severely slow down the Q68, you should not use this mode when doing
something time-critical.

2.Initialise card 2 when booting

206

This allows you to determine whether card2 should be initialised automatically
during the boot process. Note that this will only work if there is actually a card
in the socket to be initialised. You may choose between the following options:

- Never initialise the card when booting. This means that you will have
to initialise it later yourself.

- Always initialise the card when booting. The driver will attempt to
initialise card 2. Note that this will fail if no card is inserted at boot
time. The driver does NOT tell you that the initialisation has failed in
such a case.

- Only initialise the card during booting if a WIN drive is configured to be
located there. This is the default option.

3.Boot from

Here you may set from what device SMSQ/E will attempt to load a boot file.
You may choose between WIN drives 1 to 8, FAT drive 1, or no drive at all.
Please note that if you choose to boot from FAT1, then the FAT device will be
called FLP (i.e. you’ll be booting from FLP1_). Using the command
“FAT_USE” in your boot file will let the device be called FAT again.

4.Switch LED off when SMSQ/E is set up

The Q68 has a configurable LED which is switched on when SMSQ/E is
loaded. Here you can determine whether it should stay on or not once
SMSQ/E is fully set up.

B - Configuring the WIN drives

The following items may be configured for the WIN drives:

1.Filenames for win1_ to win8_

Each win drive corresponds to one container file on an SDHC card inserted
into one of the two sockets. Here you may enter the file names for the
container file for each of the 8 drives. Each name must respect the file name
rules set out above – you won't be able to enter a name that does not comply
with the 8.3 FAT32 standard, but you may give the name in lower case, it will
be converted to upper case later by the system.
Please also make sure to check the warning given above.

2.Card assignment

207

Giving the file name of the container file for a win drive is not enough. The
system must also know on what card this container file should be. Here you
tell the system, for each drive, whether the corresponding container file should
be on card1, card2, or on no card at all.

C - Configuring the FAT device

The following items may be configured for the FAT device:

1.Is the device to be loaded at all?

By default, the device is not linked into the system. If you do need it, set this
configuration item to “yes”. In not, neither the device, nor its control thing nor
the basic keywords associated with it are loaded.

2.On what card is the partition for each drive?

For a FAT drive to work, one (or both) SDHC card(s) must have at least one
FAT16 formatted partition. You must thus tell the system, for each drive, on
what card it must search for its partition.

3.What is the partition on that card for each drive?

The system also needs to know which partition on the card it is to look for. The
partition needs to be a primary partition, not an extended partition. Since there
can be only 4 primary partitions on an SDHC card to be used by the Q68, you
can choose partitions 1-4. Note that in general, at least card1 will have a
FAT32 partition as its first partition.

D - Configuring the QUB device and drives

The following items may be configured for the QUB device and drives:

1.Is the device to be loaded at all?

By default, the device is NOT linked into the system. If you do need it, set this
configuration item to “yes”. In not, neither the device, nor its control thing, nor
the basic keywords associated with it are loaded.

2.Filenames for qub1_ to qub8_

208

Each win drive corresponds to one container file on an SDHC card inserted
into one of the two sockets. Here you may enter the file names for the
container file for each of the 8 drives. Each name must respect the
file name rules set out above – you won't be able to enter a name that does
not comply with the 8.3 FAT32 standard, but you may give the name in lower
case, it will be converted to upper case later by the system.
Please also make sure to check the warning given above.

3.Card assignment

Giving the file name of the container file for a QUB drive is not enough. The
system must also know on what card this container file should be. Here you
tell the system, for each drive, whether the corresponding container file should
be on card1, card2, or on no card at all (in which case, the drive doesn’t exist).

Additional keywords and facilities

Sound

The Q68 tries to emulate the QL beep sounds. This is far from perfect. The
sound will often be too “clean”. Moreover, the “wrap”, “random” and

“fuzziness” parameters to the BEEP command are simply ignored.

On the other hand, the Q68 uses a more modern sound system than the QL.
This enables it to play stereo files with a surprisingly good sound. To make
use of this, SMSQ/E for the Q68 uses the SSSS (SMSQ/E Sampled Sound
System). This allows you to play “_ub” files.

 To make this easier, some new keywords exist:

SOUNDFILE

Loads and plays a sound file through the SMSQ/E Sampled Sound System.

SOUNDFILE "file_name" [,rep%]

where:
“file_name” is the file to be played. This loads and plays this sound file.
Please note that the file is not loaded into memory all at once. Hence, it seems

209

desirable to load it from a fast device (e.g. a ram disk) to avoid the music
being broken up. The quotes around the name are necessary unless it is a
string variable.

The rep% parameter means that, when the end of the file is reached, the file
will be replayed again as often as indicated by the rep% parameter. So if the
parameter is 1, it will be replayed once again, which means that it will be
played twice in total (once + 1 repetition). Please use only positive values from
1 to 32766.

SOUNDFILE2

SOUNDFILE2 "file_name"[,rep%]

Does just about the same as SOUNDFILE, but the sound is played through
another job created just for this. This means that the command comes back
immediately after the sound playing job has been set up – it allows your
program to continue whilst the sound is being played.

The sound playing job is owned by the job issuing the SOUNDFILE2
command, so if you remove that job, the sound playing job will be removed,
too.

The parameters have the same meaning as for SOUNDFILE.

SOUNDFILE3

SOUNDFILE3 "file_name"[,rep%]

Is the same as SOUNDFILE2, but the job playing the sound is totally
independent of the one issuing the command.

The parameters have the same meaning as for SOUNDFILE.

For all of these jobs, please note that the sound may continue to play for a few
seconds after the soundjob is killed, as there is an internal buffer. Use
KILLSOUND (below) to stop

KILLSOUND

210

Kills (stops) the sound.

Please note that this also removes the first job called "SOUNDFILE JOB" that
it can find. NORMALLY, this should be the only sound playing job that runs in
the machine. It is indeed not advisable to have several jobs all trying to make
sounds in the machine, since the sound will be totally intermingled and
garbled! So, having multiple sound sources playing all at once is not a good
idea...

Access to fast memory

The Q68 has some “fast” memory, which can be accessed faster than the
normal memory. There is only a very limited amount of fast memory available,
some of which is already used by SMSQ/E.

Two keywords exist to get the amount of fast memory still available, and to
reserve some space in it. Note: once reserved, the space cannot be given
back (just like RESPR on a normal QL)!

FREE_FMEM

This function returns the amount, in bytes, of memory that is still FREE in the
Fast MEMory area. It does NOT free any memory in that area.

result = FREE_FMEM

where result will be the amount of fast memory that is still free. In a freshly
booted system this should be around 10 KiB.

ALFM
This function ALlocates Fast Memory and returns the address of the allocated
space in the fast memory area.

address = ALFM (size)

where:

size is the amount of memory to allocate, in bytes. If you try to reserve more
than is available, then the function returns with an out of memory error and no
memory will have been reserved.

211

address is the start address of the memory allocated if the call was
successful. You may then use up to
size bytes in the memory area starting at address. Note that the system does
NOT stop you from using more than that – but sooner or later (and probably
sooner rather than later) you WILL crash the system doing so.

Slug

The SLUG command can slow the machine down, which might be useful for
some games.

SLUG how_much

where how_much is a value between 0 (no slug) and 255 (slowed down to a
crawl).

Limited direct access to the card or the FAT32 file system

There are a few very limited (in number and scope) commands that allow
some direct access to a card or the FAT32 file system of the first partition on a
card. All of the related commands start with CARD_ as they relate to a card
and not to any SMSQ/E device.
WARNING : please read this section carefully if you want to make use of
these comands. Only use them if you know what you are doing!

CARD_INIT

Please see the section on initialising a card. This command is safe to use for
everyone.

CARD_DIR$
This function shows the first 16 entries in the FAT32 root directory of the first
partition on a card.

result$ = CARD_DIR$(card)

where card is the card to question (1 or 2).

212

On return, result$ will contain a large string with the 8.3 formatted names of
the 16 entries, separated between them by a linefeed (CHR$(10)). These
names may also be shown as“-- Empty --” which shows that the corresponding
entry in the FAT32 root directory is empty, or “-Long name-” which shows that
this entry does not point to a file but to a long name. The latter is NOT
considered by SMSQ/E to be an empty entry in the directory.

CARD_RENF

This allows you to REName a File already existing in the first 16 entries in the
FAT32 root directory of the first partition on a card.

CARD_RENF card,”old name”,”new name”

where

 card is the card in question (1 or 2).

 “old name” is the name of the existing file to be renamed. It is
preferred but not required that this be within quotes.

 “new name” is the new name of that file. It is preferred but not
required that this be within quotes. If the new name already exists, the
command fails with that error (see below, note 2).

Both names must comply with the “8.3” naming scheme

CARD_CREATE

Allows creation of a file in the FAT32 file system of the first partition on a card.
Remember, this partition must be a FAT32 partition. There must be a an
empty slot for this file within the first 16 entries in the root directory of this
partition (which you can check with CARD_DIR$).

CARD_CREATE card, size, file_name$

where

 card is the card on which the file is to be created (1 or 2).

 size is the size, in MiB, of the file to be created. For the time being,
this cannot be more than 16 GiB in most cases (see below, note 1)

 file_name is the name of the file to be created**. This must obey the
“8.3 rule”. It is recommended (but not necessary) that the name be
within quotes.

213

The content of the file thus created is not “nulled”. It may contain random
bytes.

Error returns

Due to the complexity of this command, there are numerous possible error
returns each
having a different meaning:

name number meaning

err.drfl (= -1) drive full - there is no space for a file of this
size within contiguous

sectors on the card.
err.imem (= -3) insufficient memory for operation (I’d like to
know how you managed that).
err.orng (= -4) the projected size of the is file too big, or 0 or
negative.
err.bffl (= -5) buffer full - there is no space in the first 16
directory entries for a new file.
err.fex (= -8) already exists - a file with this name already
exists in the first 16 directory

entries for a new file (see below note 2).
err.inam (= -12) Invalid file name (not an 8.3 name).
err.ipar (= -15) wrong card number (not 1 or 2).
err.mchk (= -16) medium check failed because card wasn't
readable (perhaps absent / not

initialised) or this isn't a valid FAT32 partition

If everything goes alright, the command comes back without any error.

Example:

CARD_CREATE 1,200,”test.win”

This will create a file called “TEST.WIN” on card 1, with a size of 200 MiB.

Finally, this command, combined with others, allows you to create a new
qxl.win container on the card. To do this, you should proceed as follows:

10 CARD_CREATE 1,200,”test.win” : REM create empty file, 200MiB in
size

214

20 WIN_DRIVE 4,1,”test.win” : REM point win4_ to it
30 WIN_FORMAT 4 : REM allow formatting of win4_
40 FORMAT win4_your_name : REM format win4_

(of course, you can use any other win drive for this, not only win4_).

Remember that the steps in lines 30 and 40 MUST be made from job 0, the
main Sbasic job, not from a daughter job!

Notes:

(1) The actual maximum size depends on the “cluster size” of the FaA32 file
system on your card. As an indication:

Cluster size of max file size
2 just under 8 GiB
4 just under 16 GiB
8 just under 32 GiB

(2) Please be careful when creating or renaming a file. SMSQ/E only checks
for an existing file in the first 16 directory entries. If you have filled your card
with enough files so that there are more than 16 entries (with some empty slot
in the first 16 entries), then the risk exists that you may create a file with the
name of an existing file.

Avoiding fragmentation

SMSQ/E for the Q68 expects that all container files (i.e. files for WIN drives,
and also for QUB drives) lie in contiguous sectors on the SDHC card. If this is
not the case, the file is said to be “fragmented”. Fragmented files are deadly
on the Q68 under SMSQ/E: SMSQ/E assumes that, once it has found the
beginning of a container file, the rest of that container file lies in contiguous
sectors on the card, and it will cheerfully write into those contiguous sectors
which it deems still belong to that file. If the file is fragmented, these
contiguous sectors may not belong to it but to another file, which will thus be
irretrievably corrupted.

This is also true for the SMSQ/E binary file (named "QL_RAM.BIN") itself.

So, special precautions must be taken when writing the container and
OS file(s) themselves to the card. The best and recommended way to achieve
this is to make sure that, before writing the SMSQ/E binary file and the

215

container files, the card is freshly formatted. Then, one after the other, write
each container file to the card immediately after formatting the card.

Hence, you should dedicate a card solely for the purpose of using it with the
Q68.

Note : practise has shown that in most cases it may not be necessary to
reformat the card. You could also delete every single file on the card before
copying new files onto it. Under no circumstances, however, should you only
delete files selectively: this may leave “holes” in the file allocation table and
this lead to fragmented files (see below). However, the recommendation still is
to format the card and not just to delete all files from it.

When copying several files to the freshly formatted card, make sure that the
copy process of each file is finished before you start that for the next file. If
not, it may happen that the two copy processes write concurrently to the card,
which could mean that the sectors for the two files interleave. Depending on
the operating system you use (linux, windows, mac os) if you drag several files
to the card at once, several concurrent copy processes might be started which
might lead to file fragmentation. So, to avoid this, just drag the files to copy
one after the other.

Moreover, never just delete a single file -be it a container file or any other file-
from the card, but always format it (or at least delete ALL files from the card),
and then write the files to the card again: If you delete a single file from the
card and later write another, bigger, container file to the card, it is possible that
part of this container file will lie in the sectors previously occupied by the
deleted file, and the rest in previously unoccupied sectors. This file would then
be fragmented and not lie in contiguous sectors on the card: a recipe for a
disaster.

If a container file becomes fragmented, you WILL experience data loss,
and other files on the card might also be irrecoverably damaged!

For some file systems, a special command exists to check whether a
container file is fragmented
or safe to use (see, e.g. the WIN_CHECK command)

216

SMSQ/E Manual Revision History

1.00 First release version. [02/04/14]

1.01 Indexes and headings changed at suggestion of Marcel Kilgus to use
Word Table of Contents and Index systems to make it easier to
update the content. [08/04/14]

1.02 Long list of typos corrected (thank you, Dave Westbury). New sections
added on CTRL-C behaviour and Execution Delay Times (sys_xdly)
[28/04/14]

1.03 Some minor typos and layout issues fixed. FEX_M keyword added.
HTML version created for online use. [09/02/16]

1.04 Added documentation for ALPHA_BLEND, Recent Thing and
SMSQ/E for Aurora. [12/02/17]

1.05 Updated notes for DRVCHK and DRVLINK utility programs. Added
documentation for new FSEND_EVENT function. Q68 SMSQ/E pages
added. SMSQ/E Troubleshooting section updated by Wolfgang
Lenerz. Q68 SMSQ/E manual added. [18/04/18]

1.06 Added documentation for SUSJB, DISP_MODE for Q40 and change
to JOB_NAME. [27/01/19]

217

Index

$ Hex Values 30
$nnn ... 25
% and $ 119
% Binary Values 30
%nnn.. 25
ABC keyboard 151
ACSI and SCSI Drives on ST/TT

 ... 131
ALFM 210
ALPHA_BLEND 87
ALT ENTER 121
ALTKEY 121
Archive Runtimes 120
ATAN 25, 43
Atari ST and TT 124
Atari ST and TT Hard Disks 131
Atari ST Printer Port 131
ATARI_rext 122
ATARIDOS_rext 122
ATR_rext 121
Aurora 2, 152
Background drawing 94
BAUD 25, 98, 140, 157, 179
BAUDRATE% 149
BGCOLOUR_24 83
BGCOLOUR_QL 83
BGCOLOUR_xx 25
BGET 25, 42
BGIMAGE 25, 83
BLS .. 149
BPUT 25, 42
C programs on QXL 120
CACHE_OFF 25, 28
CACHE_ON 25, 28
CARD_CREATE 212
CARD_DIR$ 211
CARD_INIT 192, 211
CARD_RENF 212
CD_ALLTIME 190
CD_CLOSE 189

CD_EJECT 189
CD_FIRSTTRACK 190
CD_HOUR............................... 190
CD_HSG2RED 190
CD_INIT 188
CD_ISCLOSED 189
CD_ISINSERTED 189
CD_ISPAUSED 189
CD_ISPLAYING 189
CD_LASTTRACK 190
CD_LENGTH........................... 190
CD_MINUTE 190
CD_PLAY 188
CD_RED2HSG 190
CD_RESUME 189
CD_SECOND 190
CD_STOP 189
CD_TRACK 189
CD_TRACKLENGTH 190
CD_TRACKSTART 190
CD_TRACKTIME 189
CD_xx 25
CHAR_DEF 25, 45
CHAR_USE 46
Colour Commands 89
COLOUR_24 86
COLOUR_NATIVE 86
COLOUR_PAL 86
COLOUR_QL 86
COLOUR_xx 25
Colours List 87
Common keyboard driver 96
Configuration137, 148, 151, 159
Cursor Extensions 94
CURSPRLOAD 25, 94
CURSPROFF 25, 95
CURSPRON 25, 95
DATA_USE 107
DATEs in Archive/Abacus 120
DAY% 25, 44

218

DEV 25, 106, 107
DEV_LIST 25, 107
DEV_NEXT 25, 107
DEV_rext 122
DEV_USE 25, 106, 107
DEV_USE$ 25
DEV_USEN 25, 108
DEVTYPE 25, 36
Directory Devices 108
DISP_BLANK 78, 128, 162
DISP_COLOUR 79
DISP_INVERSE 80, 127, 162
DISP_MODE 161, 203
DISP_RATE 80, 128, 162
DISP_SIZE 80, 127, 156, 162
DISP_SIZE Experimenter 128
DISP_TYPE 81, 126, 140, 153,

156, 162
DISP_xxx 25, 78, 204
DMEDIUM_DENSITY 51
DMEDIUM_DRIVE$ 50
DMEDIUM_FORMAT................. 51
DMEDIUM_FREE 51
DMEDIUM_NAME$ 50
DMEDIUM_RDONLY 51
DMEDIUM_REMOVE 51
DMEDIUM_TOTAL 51
DMEDIUM_TYPE 51
DMEDIUM_xxx 25, 50
DOS Device 185
DOS disks 109, 117
DOS_DRIVE 187
DOS_DRIVE$ 188
DOS_USE 187
DOS_xx 25
DRVCHK 111
DRVLINK 111
EASYEXT 122
EASYPTR 120
ED .. 25, 46
END ... 31
END FOR 25
END REPeat 25

EOF_W 25
EOFW 51
EPROM_LOAD 25, 38
Event Handling 110
EW .. 25
EX ... 25
EX_M 25, 50
EXEC .. 25
EXEC_W 25
EXF 25, 26, 49
EXIT 25, 31
FAT_DRIVE............................. 200
FAT_DRIVE$........................... 200
FAT_USE 199
FAT_WP 201
FEP 26, 49
FET 26, 49
FEW 26, 49
FEX 26, 49
Floppy Image Support 182
FLP_DENSITY .136, 142, 170, 183
FLP_DRIVE 182
FLP_DRIVE$ 182
FLP_SEC . 137, 143, 158, 171, 183
FLP_START ... 137, 143, 158, 171,

183
FLP_STEP137, 144, 158, 171, 183
FLP_TRACK............ 137, 143, 171
FLP_USE . 136, 142, 157, 170, 182
FLP_xxx 26
FOR 26, 31
Format WIN 184
FREE_FMEM 210
FSEND_EVENT 111
GD2 ... 82
Gold Card 139
GOLD Card Display 140, 153
Gold Card Microdrives 144
Hermes 147
HGET 26, 42
HISTORY 26
HISTORY Device 104
Home Thing, The 62

219

HOME_CSET 64
HOME_CURR$ 63
HOME_DEF 63
HOME_DIR$ 62
HOME_FILE$ 63
HOME_SET 64
HOME_VER$ 64
HOME_xxx 26, 62
HOT_GETSTUFF$ 26, 47
HOT_GO 121
HOT_rext 122
HPUT 26, 42
HSG-Format 188
IF …………………..………... 26, 30
In-Line Loops 31
Input Line Editing 58
INSTR .. 45
INSTR_CASE 26, 45
IO_PRIORITY 26, 28
JMON............................... 118, 122
JOB_NAME 26, 55
JOBID 26, 48
KBD_TABLE 26, 60
KILLSOUND 209
LANG_USE 26, 60
LANGUAGE 26, 60
LANGUAGE LANGUAGE$ 60
LANGUAGE$ 26
LBYTES 26, 38
LGET 26, 42
LIGHTNING 122
LOAD 26, 37
Loading SMSQ/E 139, 155
LPUT.................................... 26, 42
LRESPR 26
LRUN 26, 37
MACHINE ... 26, 77, 124, 139, 152,

156, 160, 175
Memory Protection 124
MENU_rext 122
MERGE 26, 37
MIDINET_rext 122
Monochrome Display 127

MONTH% 26, 44
MOUSE_SPEED 26, 163, 175
MOUSE_STUFF 26, 164, 175
MRUN 26, 37
NEXT 26, 31
NUL ... 26
NUL Device 102
OUTLN 26, 47
PALETTE_8 84
PALETTE_QL............................ 84
PALETTE_xx 26
PAR 26, 157
PAR_ABORT........................... 101
PAR_BUFF.............................. 101
PAR_CLEAR 101
PAR_DEFAULTPRINTER$ 180
PAR_GETFILTER 181
PAR_GETPRINTER$ 180
PAR_PRINTERCOUNT 181
PAR_PRINTERNAME$ 181
PAR_PULSE 165
PAR_SETFILTER 181
PAR_SETPRINTER 180
PAR_USE................................ 101
PAR_WAIT 166
PAR_xx 26
Parallel Port Control 101
PC Floppy Disks 157, 181
PC Hard Disks 158
PE_BGOFF 26, 94
PE_BGON 26, 94
PEEK 26, 39, 40
PEEK$ 26, 39
PEEK_F 39
PEEK_L 39
PEEK_W 39
PEEKS 26, 126, 161
PEEKS$ 126, 161
PEEKS_F 126, 161
PEEKS_L 126, 161
PEEKS_W 126, 161
PIPE .. 26
PIPE Device 103

220

Pointer Tools 122
POKE 26, 39, 40
POKE$ 27, 39
POKE_F 39
POKE_L 39
POKE_W 39
POKES 27, 126, 160
POKES$ 126, 160
POKES_F 126, 160
POKES_L 126, 160
POKES_W 126, 160
PRINT_USING 27, 51
PROCESSOR 27, 77, 124, 140,

153, 156, 160, 176
PROG_USE 107
PROT_DATE 27, 43
PROT_MEM 27, 125, 160
PRT.. 27
PRT_USE 27, 102
PTR_GEN 122
PTRMENR_cde 122
Q40 Display 161
Q40 Floppy Disks 169
Q40 Hard Disks 166
Q40 Mouse driver 163
Q40 Parallel Printer Ports 165
Q40 Serial Ports 164
Q40 Sound 172
Q40/Q60 160
QBASIC_rext 122
QD ... 122
QLIB_bin 122
QLIB_ext 122
QLIB_run 122
QLiberators EXTERNals 120
QLOAD 27, 37, 121
QLOADREF_bin 122
QLRUN 27, 37
QMERGE 27, 37
QMON...................... 117, 118, 122
QMRUN 27, 37
QPAC2..................................... 122
QPC CD-Audio Module 188

QPC_CMDLINE$ 176
QPC_EXEC 176
QPC_EXIT............................... 176
QPC_HOSTOS 176
QPC_MAXIMIZE 177
QPC_MINIMIZE 177
QPC_MSPEED 177
QPC_NETNAME$ 177
QPC_QLSCREMU 177
QPC_RESTORE 177
QPC_SYNCSCRAP 178
QPC_VER$ 178
QPC_WINDOWSIZE 178
QPC_WINDOWTITLE 179
QPC_xx 27
QPC2 175
QPC2 Mouse 175
QPC2 Printer Support (PAR) ... 180
QPC2 Serial (COM) Ports 179
QPC2 WIN Disks 183
QPTR 122
QREF 119
QSAVE 27, 37
QSAVE_O 27, 37
QTYP_SPELL 122
QUB_DRIVE............................ 201
QUB_DRIVE$.......................... 201
QUB_USE 201
QUB_WP 201
QUIT 27, 58
QXL ... 155
QXL Display 156
QXL.WIN 183
RCNT_ADDF....................... 68, 70
RCNT_GALJ 68, 69, 71
RCNT_GALL68, 69, 70, 71, 72
RCNT_GARJ 68, 73, 74
RCNT_GARR 68, 71, 72, 73
RCNT_GFFA$ 68, 70
RCNT_GFFJ$ 68, 70
RCNT_HASH$ 68, 74
RCNT_INFO .67, 68, 71, 72, 73, 74
RCNT_JOBS 68, 69

221

RCNT_LOAD 68, 75
RCNT_REMV 68, 76
RCNT_SAVE 68, 74, 75
RCNT_SYNC 68, 76
Recent Thing, The 65
REDBOOK-Format 188
REPeat 27, 32
RESET 27, 38
Sampled Sound System 171
SAVE 27, 37
SAVE_O 27, 37
SBAS/QD F10 Thing 118
SBASIC 27, 54, 118
SBYTES 27, 38
SBYTES_O 27, 38
SCR_BASE 27, 41
SCR_LLEN 27, 41
SCR_XLIM 27, 42
SCR_YLIM 27, 42
SDUMP 122
SELect 27, 30
SEND_EVENT 27, 111, 116
SER ... 27
SER Mouse 144
SER_ABORT 100
SER_BUFF 100
SER_CDEOF 100
SER_CLEAR 100
SER_FLOW 99
SER_GETPORT$ 180
SER_PAUSE 141
SER_ROOM 99
SER_SETPORT 180
SER_USE 101
SER_xx 27
Serial (RS232) on ST/TT 130
SERIAL IO Devices.................... 97
Serial Port Control...................... 98
SERMAWS 149
SERMCUR 150
SERMOFF 150
SERMON 150
SerMouse Cable Connector 145

SERMPTR 150
SERMRESET 150
SERMSPEED 150
SERMWAIT 151
SERNET Batchfile Execution .. 116
SERNET V3 112
SERNET via Modem 115
SEXEC 27, 38
SEXEC_O 27, 38
SLUG 27, 29, 211
SMSQ/E Troubleshooting 117
SNET_xx 27
SOUNDFILE 208
SOUNDFILE2 209
SOUNDFILE3 209
SP_GET 91
SP_GETCOUNT 91
SP_JOBOWNPAL 92
SP_JOBPAL 92
SP_RESET................................ 91
SP_SET 92
SP_xx .. 27
SPEEDSCREEN 122
SRX ... 27
STX 27, 141
Super Gold Card 139
Super Gold Card Printer Port .. 142
Sysmon 119
SYSSPRLOAD 27, 95
System Palette 87
THING_rext 122
TRA 27, 61, 121
TRA_rext 122
UPUT 27, 43
VER$ 27, 44
Virtual Devices 102
WAIT_EVENT 27, 110
Wallpaper 83
WEEKDAY% 27, 44
WGET 28, 42
WHEN ERRor...................... 27, 30
WIN_CHECK 196
WIN_DRIVE132, 167, 184, 194

222

WIN_DRIVE$ 133, 168, 195
WIN_FORMAT 134, 159, 168, 196,

197
WIN_REMV 135, 185, 197
WIN_SAFE 196
WIN_SLUG 133, 197
WIN_START 135, 169, 197
WIN_STOP 135, 169, 197
WIN_USE 133, 158, 168, 184, 196
WIN_WP 135, 169, 196
WIN_xxx 27
Window Manager 2 87
Window Move 92
WINDRIVE$ 184
WM_BLOCK 90
WM_BORDER 90
WM_INK 89
WM_MOVEALPHA 27

WM_MOVEMODE 27, 93
WM_PAPER 90
WM_STRIP 90
WM_xxx 27, 89
WMAN 123
WMON 28, 54
WPUT 28, 42
WTV 28, 54
xNET_BAD% 114
xNET_RETRIES% 114
xNET_START.......................... 114
xNET_STATION 114
xNET_STATION% 114
xNET_STOP............................ 114
xNET_TEST% 114
XON XOFF 141
YEAR% 28, 44

