

 	

 	
 QL

 	
 Concepts

The
Concept Reference Guide describes concepts relating to SuperBASIC and the QL
hardware. It is best to think of the Concept Guide as a source of information. If
there are any questions about SuperBASIC or the QL itself which arise out of
using the computer or other sections of the manual then the Concept Guide may
have the answer. Concepts are listed in alphabetical order using the most
likely term for that concept. If the subject cannot be found then consult the
index which should be able to tell you which page to turn to.

Where
an example is listed with line numbers, then it is a complete program and can be
entered and run. Examples listed without numbers are usually simple commands
and it may not always be sensible to enter them into the computer in isolation.
Examples which demonstrate stipples will not work properly on a television set.

©1984 SINCLAIR RESEARCH LIMITED

by Stephen Berry (Sinclair Research Limited)

Index

Arrays

BASIC

Break

Channels

Character Set And Keys

Clock

Coercion

Colour

Communications - RS-232-C

Data Types Variables

Devices

Direct Command

Error Handling

Expressions

File Types

Functions and Procedures

Graphics

Identifier

Joystick

Keyword

Maths Functions

Memory Map

Microdrives

Monitor

Network

Operators

Peripheral Expansion

Pixel Coordinate System

Program

Qdos

Repetition

ROM Cartridge Slot

Screen

Slicing

Sound

Start Up

Statement

String Arrays and String Variables

String Comparison

Syntax Definitions

Turtle Graphics

Windows

Arrays

[bookmark: arrays]Arrays must be DIMensioned before they are
used. When an array is dimensioned the value of each of its elements is set to
zero or a zero length string if it is a string array. An array dimension runs
from zero up to the specified value. There is no limits to the number of
dimensions which can be defined other than the total memory capacity of the
computer. An array of data is stored such that the last index defined cycles
round most rapidly:

Example:

the
array defined by

DIM array(2,4)

will
be stored as

0,0 low address

0,1

0,2

0,3

0,4

1,0

1,1

1,3

1,4

2,0

2,1

2,2

2,3

2,4 high address

The
element referred to by array(a,b,c) is equivalent to the element
referred to by array(a)(b)(c)

 	
 Command

 	
 Function

 	

 	

 	
 DIM

 	
 dimension
 an array

 	
 DIMN

 	
 find
 out about the dimensions of an array

 	

 	

BASIC

[bookmark: basic]SuperBASIC includes most of the functions, procedures
and constructs found in other dialects of BASIC. Many of these functions are
superfluous in SuperBASIC but are included for compatibility reasons:

 	

 	

 	
 GOTO

 	
 use
 IF, REPEAT, etc

 	
 GOSUB

 	
 use
 DEFine PROCedure

 	
 ON...GOTO

 	
 use
 SELect

 	
 ON...GOSUB

 	
 use
 SELect

 	

 	

Some
commands appear not to be present. They can always be obtained by using a more
general function. For example, there are no LPRINT or LLIST
statements in SuperBASIC but output can be directed to a printer by opening the
relevant channel and using PRINT or LIST.

 	

 	

 	
 LPRINT

 	
 use
 PRINT #

 	
 LLIST

 	
 use
 LIST #

 	
 VAL

 	
 not
 required in SuperBASIC

 	
 STR$

 	
 not
 required in SuperBASIC

 	
 IN

 	
 not
 applicable to 68008 processor

 	
 OUT

 	
 not
 applicable to 68008 processor

 	

 	

comment

Almost
all forms of BASIC require the VAL(x$) and STR$(x) functions in
order to be able to convert the internal codified form of the value of a string
expression to or from the internal codified form of the value of a numeric expression.

These
functions are redundant in SuperBASIC because of the provision of a unique facility
referred to as "coercion". The VAL and STR$ functions
are therefore not provided.

Break

[bookmark: break]If at any time the computer fails to respond or you wish to
stop a SuperBASIC program or command then

hold down

 	
 CTRL

and then press

 	
 SPACE

A
program broken into in this way can be restarted by using the CONTINUE command.

Channels

[bookmark: channels]A channel is a means by which data can
be output to or input from a QL device. Before a channel can be used it
must first be activated (or opened) with the OPEN command. Certain
channels should always be kept open: these are the default channels and allow
simple communication with the QL via the keyboard and screen. When a channel is
no longer in use it can be deactivated (closed) with the CLOSE command.

A
channel is identified by a channel number. A channel number is a numeric expression
preceded by a #. When the channel is opened a device is linked to a channel
number and the channel is initialised. Thereafter the channel is identified
only by its channel number. For example:

OPEN #5,SER1

Will
link serial port 1 to the channel number 5. When a channel is closed only the
channel number need be specified. For example:

CLOSE #5

Opening
a channel requires that the device driver for that channel be activated.
Usually there is more than one way in which the device driver can be activated,
for example the network requires a station number. This extra
information is appended to the device name and passed to the OPEN
command as a parameter. See concepts device and peripheral expansion.

Data
can be output to a channel by PRINTing to that channel; this is the same
mechanism by which output appears on the QL screen. PRINT without a
parameter outputs to the default channel #1. For example:

10 OPEN #5,mdv1_test_file

20 PRINT #5,"this text is in file
test_file"

30 CLOSE #5

will
output the text "this text is in file test_file" to the file
test_file. It is important to close the file after all the accesses have been
completed to ensure that all the data is written.

Data
can be input from a file in an analogous way using INPUT. Data can be
input from a channel a character at a time using INKEY$

A
channel can be opened as a console channel; output is directed to a specified window
on the QL screen and input is taken from the QL keyboard. When a console channel
is opened the size and shape of the initial window is specified. If more than
one console channel is active then it is possible for more than one channel to
be requesting input at the same time. In this case, the required channel can

be
selected by pressing CTRL C to cycle round the waiting channels. The cursor in
the window of the selected channel will flash.

The
QL has three default channels which are opened automatically. Each of these channels
is linked to a window on the QL screen.

channel 0 - command and error channel

channel 1 - output and graphics channel

channel 2 - program listing channel

Monitor
Television

 	

 	

 	
 Command

 	
 Function

 	

 	

 	

 	

 	
 OPEN

 	
 open
 a channel for I/O

 	
 CLOSE

 	
 close
 a previously opened channel

 	
 PRINT

 	
 output
 to a channel

 	
 INPUT

 	
 input
 from a channel

 	
 INKEY$

 	
 input
 a character from a channel

 	

 	

Character set and keys

[bookmark: characterset]The cursor controls are not built in to the
operating system: however, if these functions are to be provided by
applications software, they should use the keys specified; also the specified
keys should not normally be used for any other purpose.

 	

 	

 	

 	

 	
 Decimal

 	
 Hex

 	
 Keying

 	
 Display/Function

 	

 	

 	

 	

 	
 0

 	
 00

 	
 CTRL
 £

 	
 NULL

 	
 1

 	
 01

 	
 CTRL
 A

 	

 	
 2

 	
 02

 	
 CTRL
 B

 	

 	
 3

 	
 03

 	
 CTRL
 C

 	
 Change
 input channel (see note)

 	
 4

 	
 04

 	
 CTRL
 D

 	

 	
 5

 	
 05

 	
 CTRL
 E

 	

 	
 6

 	
 06

 	
 CTRL
 F

 	

 	
 7

 	
 07

 	
 CTRL
 G

 	

 	
 8

 	
 08

 	
 CTRL
 H

 	

 	
 9

 	
 09

 	
 TAB
 (CTRL I)

 	
 Next
 field

 	
 10

 	
 0A

 	
 ENTER
 (CTRL J)

 	
 New
 line / Command entry

 	
 11

 	
 0B

 	
 CTRL
 K

 	

 	
 12

 	
 0C

 	
 CTRL
 L

 	

 	
 13

 	
 0D

 	
 CTRL
 M

 	
 Enter

 	
 14

 	
 0E

 	
 CTRL
 N

 	

 	
 15

 	
 0F

 	
 CTRL
 O

 	

 	

 	

 	

 	

 	
 16

 	
 10

 	
 CTRL
 P

 	

 	
 17

 	
 11

 	
 CTRL
 Q

 	

 	
 18

 	
 12

 	
 CTRL
 R

 	

 	
 19

 	
 13

 	
 CTRL
 S

 	

 	
 20

 	
 14

 	
 CTRL
 T

 	

 	
 21

 	
 15

 	
 CTRL
 U

 	

 	
 22

 	
 16

 	
 CTRL
 V

 	

 	
 23

 	
 17

 	
 CTRL
 W

 	

 	
 24

 	
 18

 	
 CTRL
 X

 	

 	
 25

 	
 19

 	
 CTRL
 Y

 	

 	
 26

 	
 1A

 	
 CTRL
 Z

 	

 	
 27

 	
 1B

 	
 ESC
 (CTRL SHIFT |)

 	
 Abort
 current level of command

 	
 28

 	
 1C

 	
 CTRL
 SHIFT \

 	

 	
 29

 	
 1D

 	
 CTRL
 SHIFT]

 	

 	
 30

 	
 1E

 	
 CTRL
 SHIFT ´

 	

 	
 31

 	
 1F

 	
 CTRL
 SHIFT ESC

 	

 	

 	

 	

 	

 	
 32

 	
 20

 	
 SPACE

 	

 	
 33

 	
 21

 	
 SHIFT
 1

 	
 !

 	
 34

 	
 22

 	
 SHIFT
 '

 	
 "

 	
 35

 	
 23

 	
 SHIFT
 3

 	
 #

 	
 36

 	
 24

 	
 SHIFT
 4

 	
 $

 	
 37

 	
 25

 	
 SHIFT
 5

 	
 %

 	
 38

 	
 26

 	
 SHIFT
 7

 	
 &

 	
 39

 	
 27

 	
 '

 	
 '

 	
 40

 	
 28

 	
 SHIFT
 9

 	
 (

 	
 41

 	
 29

 	
 SHIFT
 0

 	
)

 	
 42

 	
 2A

 	
 SHIFT
 8

 	
 *

 	
 43

 	
 2B

 	
 SHIFT
 =

 	
 +

 	
 44

 	
 2C

 	
 ,

 	
 ,

 	
 45

 	
 2D

 	
 -

 	
 -

 	
 46

 	
 2E

 	
 .

 	
 .

 	
 47

 	
 2F

 	
 /

 	
 /

 	

 	

 	

 	

 	
 48

 	
 30

 	
 0

 	
 0

 	
 49

 	
 31

 	
 1

 	
 1

 	
 50

 	
 32

 	
 2

 	
 2

 	
 51

 	
 33

 	
 3

 	
 3

 	
 52

 	
 34

 	
 4

 	
 4

 	
 53

 	
 35

 	
 5

 	
 5

 	
 54

 	
 36

 	
 6

 	
 6

 	
 55

 	
 37

 	
 7

 	
 7

 	
 56

 	
 38

 	
 8

 	
 8

 	
 57

 	
 39

 	
 9

 	
 9

 	
 58

 	
 3A

 	
 SHIFT
 ;

 	
 :

 	
 59

 	
 3B

 	
 ;

 	
 ;

 	
 60

 	
 3C

 	
 SHIFT
 ,

 	
 <

 	
 61

 	
 3D

 	
 =

 	
 =

 	
 62

 	
 3E

 	
 SHIFT
 .

 	
 >

 	
 63

 	
 3F

 	
 SHIFT
 /

 	
 ?

 	

 	

 	

 	

 	
 64

 	
 40

 	
 SHIFT
 2

 	
 @

 	
 65

 	
 41

 	
 SHIFT
 A

 	
 A

 	
 66

 	
 42

 	
 SHIFT
 B

 	
 B

 	
 67

 	
 43

 	
 SHIFT
 C

 	
 C

 	
 68

 	
 44

 	
 SHIFT
 D

 	
 D

 	
 69

 	
 45

 	
 SHIFT
 E

 	
 E

 	
 70

 	
 46

 	
 SHIFT
 F

 	
 F

 	
 71

 	
 47

 	
 SHIFT
 G

 	
 G

 	
 72

 	
 48

 	
 SHIFT
 H

 	
 H

 	
 73

 	
 49

 	
 SHIFT
 I

 	
 I

 	
 74

 	
 4A

 	
 SHIFT
 J

 	
 J

 	
 75

 	
 4B

 	
 SHIFT
 K

 	
 K

 	
 76

 	
 4C

 	
 SHIFT
 L

 	
 L

 	
 77

 	
 4D

 	
 SHIFT
 M

 	
 M

 	
 78

 	
 4E

 	
 SHIFT
 N

 	
 N

 	
 79

 	
 4F

 	
 SHIFT
 O

 	
 O

 	

 	

 	

 	

 	
 80

 	
 50

 	
 SHIFT
 P

 	
 P

 	
 81

 	
 51

 	
 SHIFT
 Q

 	
 Q

 	
 82

 	
 52

 	
 SHIFT
 R

 	
 R

 	
 83

 	
 53

 	
 SHIFT
 S

 	
 S

 	
 84

 	
 54

 	
 SHIFT
 T

 	
 T

 	
 85

 	
 55

 	
 SHIFT
 U

 	
 U

 	
 86

 	
 56

 	
 SHIFT
 V

 	
 V

 	
 87

 	
 57

 	
 SHIFT
 W

 	
 W

 	
 88

 	
 58

 	
 SHIFT
 X

 	
 X

 	
 89

 	
 59

 	
 SHIFT
 Y

 	
 Y

 	
 90

 	
 5A

 	
 SHIFT
 Z

 	
 Z

 	
 91

 	
 5B

 	
 [

 	
 [

 	
 92

 	
 5C

 	
 \

 	
 \

 	
 93

 	
 5D

 	
]

 	
]

 	
 94

 	
 5E

 	
 SHIFT
 6

 	
 ^

 	
 95

 	
 5F

 	
 SHIFT
 -

 	
 _

 	

 	

 	

 	

 	
 96

 	
 60

 	
 £

 	
 £

 	
 97

 	
 61

 	
 A

 	
 a

 	
 98

 	
 62

 	
 B

 	
 b

 	
 99

 	
 63

 	
 C

 	
 c

 	
 100

 	
 64

 	
 D

 	
 d

 	
 101

 	
 65

 	
 E

 	
 e

 	
 102

 	
 66

 	
 F

 	
 f

 	
 103

 	
 67

 	
 G

 	
 g

 	
 104

 	
 68

 	
 H

 	
 h

 	
 105

 	
 69

 	
 I

 	
 i

 	
 106

 	
 6A

 	
 J

 	
 j

 	
 107

 	
 6B

 	
 K

 	
 k

 	
 108

 	
 6C

 	
 L

 	
 l

 	
 109

 	
 6D

 	
 M

 	
 m

 	
 110

 	
 6E

 	
 N

 	
 n

 	
 111

 	
 6F

 	
 O

 	
 o

 	

 	

 	

 	

 	
 112

 	
 70

 	
 P

 	
 p

 	
 113

 	
 71

 	
 Q

 	
 q

 	
 114

 	
 72

 	
 R

 	
 r

 	
 115

 	
 73

 	
 S

 	
 s

 	
 116

 	
 74

 	
 T

 	
 t

 	
 117

 	
 75

 	
 U

 	
 u

 	
 118

 	
 76

 	
 V

 	
 v

 	
 119

 	
 77

 	
 W

 	
 w

 	
 120

 	
 78

 	
 X

 	
 x

 	
 121

 	
 79

 	
 Y

 	
 y

 	
 122

 	
 7A

 	
 Z

 	
 z

 	
 123

 	
 7B

 	
 SHIFT
 [

 	
 {

 	
 124

 	
 7C

 	
 SHIFT
 \

 	
 |

 	
 125

 	
 7D

 	
 SHIFT
]

 	
 }

 	
 126

 	
 7E

 	
 SHIFT
 ´

 	
 ~

 	
 127

 	
 7F

 	
 SHIFT
 ESC

 	
 ©

 	

 	

 	

 	

 	
 128

 	
 80

 	
 CTRL
 ESC

 	
 ä

 	
 129

 	
 81

 	
 CTRL
 SHIFT 1

 	
 ã

 	
 130

 	
 82

 	
 CTRL
 SHIFT '

 	
 â

 	
 131

 	
 83

 	
 CTRL
 SHIFT 3

 	
 é

 	
 132

 	
 84

 	
 CTRL
 SHIFT 4

 	
 ö

 	
 133

 	
 85

 	
 CTRL
 SHIFT 5

 	
 õ

 	
 134

 	
 86

 	
 CTRL
 SHIFT 7

 	
 ø

 	
 135

 	
 87

 	
 CTRL
 '

 	
 ü

 	
 136

 	
 88

 	
 CTRL
 SHIFT 9

 	
 ç

 	
 137

 	
 89

 	
 CTRL
 SHIFT 0

 	
 ñ

 	
 138

 	
 8A

 	
 CTRL
 SHIFT 8

 	
 æ

 	
 139

 	
 8B

 	
 CTRL
 SHIFT =

 	
 œ

 	
 140

 	
 8C

 	
 CTRL
 ,

 	
 á

 	
 141

 	
 8D

 	
 CTRL
 _

 	
 à

 	
 142

 	
 8E

 	
 CTRL
 .

 	
 â

 	
 143

 	
 8F

 	
 CTRL
 /

 	
 ë

 	

 	

 	

 	

 	
 144

 	
 90

 	
 CTRL
 0

 	
 è

 	
 145

 	
 91

 	
 CTRL
 1

 	
 ê

 	
 146

 	
 92

 	
 CTRL
 2

 	
 ï

 	
 147

 	
 93

 	
 CTRL
 3

 	
 í

 	
 148

 	
 94

 	
 CTRL
 4

 	
 ì

 	
 149

 	
 95

 	
 CTRL
 5

 	
 î

 	
 150

 	
 96

 	
 CTRL
 6

 	
 ó

 	
 151

 	
 97

 	
 CTRL
 7

 	
 ò

 	
 152

 	
 98

 	
 CTRL
 8

 	
 ô

 	
 153

 	
 99

 	
 CTRL
 9

 	
 ú

 	
 154

 	
 9A

 	
 CTRL
 SHIFT ;

 	
 ù

 	
 155

 	
 9B

 	
 CTRL
 ;

 	
 û

 	
 156

 	
 9C

 	
 CTRL
 SHIFT ,

 	
 ß

 	
 157

 	
 9D

 	
 CTRL
 =

 	
 ¢

 	
 158

 	
 9E

 	
 CTRL
 SHIFT .

 	
 ¥

 	
 159

 	
 9F

 	
 CTRL
 SHIFT /

 	
 `

 	

 	

 	

 	

 	
 160

 	
 A0

 	
 CTRL
 SHIFT 2

 	
 Ä

 	
 161

 	
 A1

 	
 CTRL
 SHIFT A

 	
 Ã

 	
 162

 	
 A2

 	
 CTRL
 SHIFT B

 	
 Â

 	
 163

 	
 A3

 	
 CTRL
 SHIFT C

 	
 É

 	
 164

 	
 A4

 	
 CTRL
 SHIFT D

 	
 Ö

 	
 165

 	
 A5

 	
 CTRL
 SHIFT E

 	
 Õ

 	
 166

 	
 A6

 	
 CTRL
 SHIFT F

 	

 	
 167

 	
 A7

 	
 CTRL
 SHIFT G

 	
 Ü

 	
 168

 	
 A8

 	
 CTRL
 SHIFT H

 	
 Ç

 	
 169

 	
 A9

 	
 CTRL
 SHIFT I

 	

 	
 170

 	
 AA

 	
 CTRL
 SHIFT J

 	
 Æ

 	
 171

 	
 AB

 	
 CTRL
 SHIFT K

 	
 Œ

 	
 172

 	
 AC

 	
 CTRL
 SHIFT L

 	
 α

 	
 173

 	
 AD

 	
 CTRL
 SHIFT M

 	
 δ

 	
 174

 	
 AE

 	
 CTRL
 SHIFT N

 	
 θ

 	
 175

 	
 AF

 	
 CTRL
 SHIFT O

 	
 λ

 	

 	

 	

 	

 	
 176

 	
 B0

 	
 CTRL
 SHIFT P

 	
 μ

 	
 177

 	
 B1

 	
 CTRL
 SHIFT Q

 	
 π

 	
 178

 	
 B2

 	
 CTRL
 SHIFT R

 	
 Φ

 	
 179

 	
 B3

 	
 CTRL
 SHIFT S

 	
 i

 	
 180

 	
 B4

 	
 CTRL
 SHIFT T

 	
 ¿

 	
 181

 	
 B5

 	
 CTRL
 SHIFT U

 	
 Ƨ

 	
 182

 	
 B6

 	
 CTRL
 SHIFT V

 	
 §

 	
 183

 	
 B7

 	
 CTRL
 SHIFT W

 	
 ¤

 	
 184

 	
 B8

 	
 CTRL
 SHIFT X

 	
 «

 	
 185

 	
 B9

 	
 CTRL
 SHIFT Y

 	
 »

 	
 186

 	
 BA

 	
 CTRL
 SHIFT Z

 	
 °

 	
 187

 	
 BB

 	
 CTRL
 [

 	
 ÷

 	
 188

 	
 BC

 	
 CTRL
 \

 	
 ←

 	
 189

 	
 BD

 	
 CTRL
]

 	
 →

 	
 190

 	
 BE

 	
 CTRL
 SHIFT 6

 	
 ↑

 	
 191

 	
 BF

 	
 CTRL
 SHIFT _

 	
 ↓

 	

 	

 	

 	

 	
 192

 	
 C0

 	
 Left

 	
 Cursor
 left one character

 	
 193

 	
 C1

 	
 ALT
 Left

 	
 Cursor
 to start of line

 	
 194

 	
 C2

 	
 CTRL
 Left

 	
 Delete
 left one character

 	
 195

 	
 C3

 	
 CTRL
 ALT Left

 	
 Delete
 line

 	
 196

 	
 C4

 	
 SHIFT
 Left

 	
 Cursor
 left one word

 	
 197

 	
 C5

 	
 SHIFT
 ALT Left

 	
 Pan
 left

 	
 198

 	
 C6

 	
 SHIFT
 CTRL Left

 	
 Delete
 left one word

 	
 199

 	
 C7

 	
 SHIFT
 CTRL ALT Left

 	

 	
 200

 	
 C8

 	
 Right

 	
 Cursor
 right one character

 	
 201

 	
 C9

 	
 ALT
 Right

 	
 Cursor
 to end of line

 	
 202

 	
 CA

 	
 CTRL
 Right

 	
 Delete
 character under cursor

 	
 203

 	
 CB

 	
 CTRL
 ALT Right

 	
 Delete
 to end of line

 	
 204

 	
 CC

 	
 SHIFT
 Right

 	
 Cursor
 right one word

 	
 205

 	
 CD

 	
 SHIFT
 ALT Right

 	
 Pan
 right

 	
 206

 	
 CE

 	
 SHIFT
 CTRL Right

 	
 Delete
 word under & right of cursor

 	
 207

 	
 CF

 	
 SHIFT
 CTRL ALT Right

 	

 	

 	

 	

 	

 	
 208

 	
 D0

 	
 Up

 	
 Cursor
 right

 	
 209

 	
 D1

 	
 ALT
 Up

 	
 Scroll
 up

 	
 210

 	
 D2

 	
 CTRL
 Up

 	
 Search
 backward

 	
 211

 	
 D3

 	
 ALT
 CTRL Up

 	

 	
 212

 	
 D4

 	
 SHIFT
 Up

 	
 Top
 of screen

 	
 213

 	
 D5

 	
 SHIFT
 ALT Up

 	

 	
 214

 	
 D6

 	
 SHIFT
 CTRL Up

 	

 	
 215

 	
 D7

 	
 SHIFT
 CTRL ALT Up

 	

 	
 216

 	
 D8

 	
 Down

 	
 Cursor
 down

 	
 217

 	
 D9

 	
 ALT
 Down

 	
 Scroll
 down

 	
 218

 	
 DA

 	
 CTRL
 Down

 	
 Search
 forwards

 	
 219

 	
 DB

 	
 ALT
 CTRL Down

 	

 	
 220

 	
 DC

 	
 SHIFT
 Down

 	
 Bottom
 of screen

 	
 221

 	
 DD

 	
 SHIFT
 ALT Down

 	

 	
 222

 	
 DE

 	
 SHIFT
 CTRL Down

 	

 	
 223

 	
 DF

 	
 SHIFT
 CTRL ALT Down

 	

 	

 	

 	

 	

 	
 224

 	
 E0

 	
 CAPS
 LOCK

 	
 Toggle
 CAPS LOCK function

 	
 225

 	
 E1

 	
 ALT
 CAPS LOCK

 	

 	
 226

 	
 E2

 	
 CTRL
 CAPS LOCK

 	

 	
 227

 	
 E3

 	
 ALT
 CTRL CAPS LOCK

 	

 	
 228

 	
 E4

 	
 SHIFT
 CAPS LOCK

 	

 	
 229

 	
 E5

 	
 SHIFT
 ALT CAPS LOCK

 	

 	
 230

 	
 E6

 	
 SHIFT
 CTRL CAPS LOCK

 	

 	
 231

 	
 E7

 	
 SHIFT
 CTRL ALT CAPS LOCK

 	

 	
 232

 	
 E8

 	
 F1

 	

 	
 233

 	
 E9

 	
 CTRL
 F1

 	

 	
 234

 	
 EA

 	
 SHIFT
 F1

 	

 	
 235

 	
 EB

 	
 CTRL
 SHIFT F1

 	

 	
 236

 	
 EC

 	
 F2

 	

 	
 237

 	
 ED

 	
 CTRL
 F2

 	

 	
 238

 	
 EE

 	
 SHIFT
 F2

 	

 	
 239

 	
 EF

 	
 CTRL
 SHIFT F2

 	

 	

 	

 	

 	

 	
 240

 	
 F0

 	
 F3

 	

 	
 241

 	
 F1

 	
 CTRL
 F3

 	

 	
 242

 	
 F2

 	
 SHIFT
 F3

 	

 	
 243

 	
 F3

 	
 CTRL
 SHIFT F3

 	

 	
 244

 	
 F4

 	
 F4

 	

 	
 245

 	
 F5

 	
 CTRL
 F4

 	

 	
 246

 	
 F6

 	
 SHIFT
 F4

 	

 	
 247

 	
 F7

 	
 CTRL
 SHIFT F4

 	

 	
 248

 	
 F8

 	
 F5

 	

 	
 249

 	
 F9

 	
 CTRL
 F5

 	

 	
 250

 	
 FA

 	
 SHIFT
 F5

 	

 	
 251

 	
 FB

 	
 CTRL
 SHIFT F5

 	

 	
 252

 	
 FC

 	
 SHIFT
 space

 	
 "Special"
 space

 	
 253

 	
 FD

 	
 SHIFT
 TAB

 	
 Back
 tab (CTRL ignored)

 	
 254

 	
 FE

 	
 SHIFT
 ENTER

 	
 "Special"
 newline (CTRL ignored)

 	
 255

 	
 FF

 	
 See
 below

 	

Codes
up to 20 hex are either control characters or non-printing characters. Alternative
keyings are shown in brackets after the main keying.

Note
that CTRL-C is trapped by Qdos and cannot be detected without changes to the
system variables.

Note
that codes C0-DF are cursor control commands.

The
ALT key depressed with any key combination other than cursor keys or CAPS LOCK
generates the code FF, followed by a byte indicating what the keycode would have
been if ALT had not been depressed.

Note
that CAPS LOCK and CTRL-F5 are trapped by Qdos and cannot be detected without
special software.

Clock

[bookmark: clock]The QL contains a real time clock which runs when the
computer is switched on.

The
format used for the date and time is standard ISO format.

1983 JAN 01 12:09:10

Individual
year, month, day and time can all be obtained by assigning the string returned
by DATE to a string variable and slicing it. The clock
will run from 1961 JAN 01 00:00:00

Comment:

For
a description of the format, see BS5249: Part 1: 1976 and as modified in Appendix
D.2.1 Table 5 Serial 5 and Appendix E.2 Table 6 Serials 1 and 2.

 	
 Command

 	
 Function

 	
 SDATE

 	
 set
 the clock

 	
 ADATE

 	
 adjust
 the clock

 	
 DATE

 	
 return
 the date as a number

 	
 DATE$

 	
 return
 the date as a string

 	
 DAY$

 	
 return
 day of the week

Coercion

[bookmark: coercion]If necessary SuperBASIC will convert the type
of unsuitable data to a type which will allow the specified operation to
proceed.

The
operators used determine the conversion required. For example, if an operation
requires a string parameter and a numeric parameter is supplied then SuperBASIC
will first convert the parameter to type string. It is not always possible to
convert data to the required form and if the data cannot be converted an error
is reported.

The
type of a function or procedure parameter can also be converted to the correct
type. For example, the SuperBASIC LOAD command requires a parameter of type
name but can accept a parameter of type string and which will be
converted to the correct type by the procedure itself. Coercion of this form is
always dependent on the way the function or procedure was implemented.

There
is a natural ordering of data types on the QL, see figure below. String
is the most general type since it can represent names, floating point and integer
numbers. Floating point is not as general as string but is more general
than integer since floating point data can represent integer (almost exactly). The
figure below shows the ordering diagramatically. Data can always be converted moving
up the diagram but it is not always possible moving down.

Example

 	
 a
 = b + c

 	
 (no
 conversion is necessary before performing the addition. Conversion is not
 necessary before assigning the result to a)

 	

 	

 	
 a%
 = b + c

 	
 (no
 conversion is necessary before performing the addition but the result is
 converted to integer before assigning)

 	

 	

 	
 a$
 = b$ + c$

 	
 (b$
 and c$ are converted to floating point, if possible, before being
 added together. The result is converted to string before assigning)

 	

 	

 	
 LOAD
 "mdv1_data"

 	
 (the
 string "mdv1_data" is converted to type name by the LOAD
 procedure before it is used)

Statements
can be written in SuperBASIC which would generate errors in most other computer
languages. In general, it is possible to mix data types in a very flexible
manner:

i.
PRINT
"1" + 2 + "3"

ii.
LET a$ =
1 + 2 + a$ + "4"

COLOUR

[bookmark: colour]Colours on the QL can be either a solid colour
or a stipple - a mixture of two colours to some predefined pattern.
Colour specification on the QL can be up to three items: a colour, a contrast
colour and a stipple pattern.

Single:

colour:=
composite_colour

The
single argument specifies the three parts of the colour specification. The main
colour is contained in the bottom three bits of the colour byte. The next three
bits contain the exclusive or (XOR) of the main colour and the contrast colour.
The top two bits indicate the stipple pattern.

By
specifying only the bottom three bits (i.e. the required colour) no stipple
will be requested and a single solid colour will be used for display.

Double:

colour:
= background, contrast

The
colour is a stipple of the two specified colours. The default checkerboard
stipple is assumed (stipple 3)

Triple:

colour:
= background, contrast, stipple

Background and contrast
colours and stipple are each defined separately.

Colours:

The
codes for colour selection depend on the screen mode in use:

 	
 Code

 	
 bit pattern

 	
 composition

 	
 colour

 	

 	

 	

 	

 	

 	
 8 colour

 	
 4 colour

 	
 0

 	
 0 0 0

 	

 	

 	

 	
 black

 	
 black

 	
 1

 	
 0 0 1

 	

 	

 	
 blue

 	
 blue

 	
 black

 	
 2

 	
 0 1 0

 	

 	
 Red

 	

 	
 red

 	
 red

 	
 3

 	
 0 1 1

 	

 	
 red
 +

 	
 blue

 	
 magenta

 	
 red

 	
 4

 	
 1 0 0

 	
 green

 	

 	

 	
 green

 	
 green

 	
 5

 	
 1 0 1

 	
 green
 +

 	

 	
 blue

 	
 cyan

 	
 green

 	
 6

 	
 1 1 0

 	
 green
 +

 	
 Red

 	

 	
 yellow

 	
 white

 	
 7

 	
 1 1 1

 	
 green
 +

 	
 red
 +

 	
 blue

 	
 white

 	
 white

Colour
Composition and Codes

Stipples

Stipples
mix a background and a contrast colour in a fine stipple pattern. Stipples can
be used on the QL in the same manner as ordinary solid colours although
stipples may not be reproduced correctly on an ordinary domestic television. There
are four stipple patterns:

Stipple
3 is the default.

Example:

i. PAPER 255 : CLS

ii. PAPER 2,4 : CLS

iii. PAPER 0,2,0 : CLS

Warning:

Stipples
may not reproduce correctly on a domestic television set which is fed via the
UHF socket.

COMMUNICATIONS RS-232-C

[bookmark: comms]The QL has two serial ports (called SER1 and SER2) for
connecting it to equipment which uses serial communications obeying EIA
standard RS-232-C or a compatible standard.

The
RS-232-C 'standard' was originally designed to enable computers to send and receive
data via telephone lines using a modem. However, it is now frequently used to
connect computers directly with each other and to various items of peripheral
equipment, e.g. printers, plotters, etc.

As
the RS-232-C 'standard' manifests itself in many different forms on different pieces
of equipment, it can be an extremely difficult job, even for an expert to connect
together for the first time two pieces of supposedly standard RS-232-C equipment.
This section will attempt to cover most of the basic problems that you may
encounter.

The
RS-232-C 'standard' refers to two types of equipment:

1. Data Terminal Equipment (DTE)

2. Data Communication Equipment (DCE)

The
standard envisaged that the terminal (usually the DTE) and the modem (usually
the DCE) would both have the same type of connector.

The
diagram above illustrates how the DTE transmits data on pin 2 whilst the DCE must
receive data on its pin 2 (which is still called transmit data!). Likewise, the
DTE receives data on pin 3 whilst the DCE must transmit data on its pin 3 (which
is still called receive data!). Although this is confusing in itself, it can
lead to far greater problems when there is disagreement as to whether a certain
device should be configured as DCE or DTE.

Unfortunately,
some people decide that their computers should be configured as DCE devices
whilst others configure equivalent computers as DTE devices. This obviously
leads to difficulties in the configuration of the serial ports on each piece of
equipment.

SER1
on the QL is configured as DCE, while SER2 is configurd as DTE. Therefore, it
should be possible to connect at least one of the serial ports to a given device
simply by using whichever port is wired the 'correct' way. The pin-out for the
serial ports is given below. A cable for connecting the QL to a standard 25-way
'D' type connector is available from Sinclair Research Limited.

 	
 SER1

 	

 	
 SER2

 	
 pin

 	
 name

 	
 function

 	

 	
 pin

 	
 name

 	
 function

 	
 1

 	
 GND

 	
 Signal
 ground

 	

 	
 1

 	
 GND

 	
 Signal
 ground

 	
 2

 	
 TxD

 	
 Input

 	

 	
 2

 	
 TxD

 	
 Output

 	
 3

 	
 RxD

 	
 Output

 	

 	
 3

 	
 RxD

 	
 Input

 	
 4

 	
 DTR

 	
 Ready
 input

 	

 	
 4

 	
 DTR

 	
 Ready
 output

 	
 5

 	
 CTS

 	
 Ready
 output

 	

 	
 5

 	
 CTS

 	
 Ready
 input

 	
 6

 	
 -

 	
 +12V

 	

 	
 6

 	
 -

 	
 +12V

 	
 TxD

 	
 Transmit
 Data

 	

 	
 DTR

 	
 Data
 Terminal Ready

 	
 RxD

 	
 Receive
 Data

 	

 	
 CTS

 	
 Clear
 To Send

Once
the equipment has been connected to the 'correct' port, the baud rate (the speed
of transmission of data) must be set so that the baud rates for both the QL and
the connected equipment are the same. The QL can be set to operate at:

75

300

600

1200

2400

4800

9600

19200 (transmit only) baud

The
QL baud rate is set by the BAUD command and is set for both channels.
The baud rates cannot be set independently.

The
parity to be used by the QL must also be set to match that expected by
the peripheral equipment. Parity is usually used to detect simple transmission errors
and may be set to be even, odd, mark, space or no parity, i.e. all 8 bits of
the byte are used for data.

Stop
bits
mark the end of transmission of a byte or character. The QL will receive data
with one, one and a half, or two stop bits, and will always transmit data with
at least two stop bits. Note that if the QL is set up to 9600 baud it will not
receive data with only one stop bit: at least one and a half stop bits are
required.

The
may be necessary to connect the handshake lines between the QL and a
piece of equipment connected to it. This allows the QL and its peripheral to
monitor and control their rate of communication. They may need to do this if
one of them cannot cope with the speed at which data is being transmitted. The
QL uses two handshaking lines:

 	
 CTS

 	
 Clear
 to Send

 	
 DTR

 	
 Terminal
 Ready

If
DTE cannot cope with the rate of transmission of data then it can negate the DTR
line which tells the DCE to stop sending data. Obviously, when the DTE has caught
up it tells the DCE, via the DTR line, to start transmitting again. In the same
way, the DCE can stop the DTE sending data by negating the CTS line. If additional
control signals are required they can be wired up using the 12V supply
available on both serial ports.

Although
transmission from the QL is often possible without any handshaking at all, the QL
will not receive correctly under any circumstances without the use of CTS on
SER1 and DTR on SER2.

Communications
on the QL are 'full duplex', that is both receive and transmit can operate
concurrently.

The
parity and handshaking are selected when the serial channel is opened.

 	
 command

 	
 Function

 	
 BAUD

 	
 set
 transmission speed

 	
 OPEN

 	
 open
 serial channels *

 	
 CLOSE

 	
 close
 serial channels

* see concept 'DEVICE' for a full
specification

DATA TYPES - VARIABLES

integer

[bookmark: datatypes]Integers are whole numbers in the range -32768
to +32767. Variables are assumed to be integer if the variable
identifier is suffixed with a percent %. There are no integer constants in
SuperBASIC, so all constants are stored as floating point numbers.

 	
 syntax:

 	
 identifier%

 	

 	

 	

 	
 example:

 	
 i.

 	
 counter%

 	

 	
 ii.

 	
 size_limit%

 	

 	
 iii.

 	
 this_is_an_integer_variable%

floating
point

Floating
point numbers are in the range +/- (10-615 to 10+615),
with 8 signiflcant digits. Floating point is the default data type in
SuperBASIC. All constants are held in floating point form and can be entered

using
exponent notation.

 	
 syntax:

 	
 identifier
 | constant

 	

 	

 	

 	
 example:

 	
 i.

 	
 current_accumulation

 	

 	
 ii.

 	
 76.2356

 	

 	
 iii.

 	
 354E25

string

A
string is a sequence of characters up to 32766 characters long. Variables
are assumed to be type string if the variable name is suffixed by a $. String
data is represented by enclosing the required characters in either single or
double quotation marks.

 	
 syntax:

 	
 identifier$
 | "text"

 	

 	

 	

 	
 example:

 	
 i.

 	
 string_variables$

 	

 	
 ii.

 	
 "this
 is string data"

 	

 	
 iii.

 	
 "this
 is another string"

name

Type
name has the same form as a standard SuperBASIC identifier and is used
by the name system to name Microdrive files etc.

 	
 syntax:

 	
 Identifier

 	

 	

 	

 	
 example:

 	
 i.

 	
 mdv1_data_file

 	

 	
 ii.

 	
 ser1e

DEVICES

[bookmark: devices]A device is a piece of equipment on the QL to which
data can be sent (input) and from which data can be output.

Since
the system makes no assumptions about the ultimate I/O (input/output) device
which will be used, the I/O device can be easily changed and the data diverted
between devices. For example, a program may have to output to a printer
at some point during its run. If the printer is not available then the output
can be diverted to a Microdrive file and stored. The file can then be
printed at a later date. I/O on the QL can be thought of as being written to
and read from a logical file which is in a standard device-independent
form.

All
device specific operations are performed by individual device drivers specially
written for each device on the QL. The system can automatically find and
include drivers for peripheral devices which are fitted. These should be
written in the standard QL device driver format; see the concept peripheral
expansion.

When
a device is activated a channel is opened and linked to the device. To
correctly open a channel device basic information must sometimes be supplied.
This extra information is appended to the device name.

The
file name should conform to the rules for a SuperBASIC type name though it
is also possible to build up the file name (device name) as a SuperBASIC string
expression.

In
summary the general form of a file name is:

identifier [information]

where
the complete file name (including the extra information) conforms to the rules
for a SuperBASIC identifier.

Each
logical device on the system requires its own particular 'extra information' although
default parameters will be assumed in each case where possible.

Define

device:
= name

where
the form of the device name is outlined below.

example

for
console device

CON_wXhaxXy_k

Console
I/O

 	
 [wXh]

 	
 -
 window width, height

 	
 [AxXy]

 	
 -
 window X,Y coordinate of upper left-hand corner

 	
 [k]

 	
 -
 keyboard type ahead buffer length (bytes)

 	

 	

 	
 default:

 	
 con_448x180a32x16_128

 	

 	

 	
 example:

 	
 OPEN
 #4,con_20x50a0x0_32

 	

 	
 OPEN
 #8,con_20x50

 	

 	
 OPEN
 #7,con_20x50a10x10

SCR_wXhaxXy

Screen
Output

 	
 [wXh]

 	
 -
 window, width, height

 	
 [AxXy]

 	
 -
 window X, Y coordinate

 	
 default:

 	
 scr_448x180a32x16

 	

 	

 	
 example:

 	
 OPEN
 #4, scr _0x10a20x50

 	

 	
 OPEN
 #5, scr_10x10

SERnphz

Serial
(RS-232-C)

 	
 n
 port number (1 or 2)

 	
 [p]
 parity

 	
 [h]
 handshaking

 	
 [z]
 protocol

 	
 e – even

 	
 i – ignore

 	
 r - raw data no EOF

 	
 o – odd

 	
 h – handshake

 	
 z - control Z is EOF

 	
 m – mark

 	

 	
 c - as z but
 converts

 	
 s – space

 	

 	

 ASCII 10 (Qdos

 	

 	

 	

 newline character)

 	

 	

 	

 to ASCII 13

 	

 	

 	

 <CR>)

 	

 	

 	

 	
 default:

 	
 ser1rh (8 bit no parity
 with handshake)

 	

 	

 	
 example:

 	
 OPEN
 #3, serle

 	

 	
 OPEN
 #4, serc

 	

 	
 COPY
 mdv1_test_file TO ser1c

NETd_s

Serial
Network I/O

 	
 [d]
 indicates direction

 	
 [s]
 station number

 	
 i – input

 	
 0 - for broadcast

 	
 o – output

 	
 own
 station
 - for general listen (input only)

 	

 	

 	
 default:

 	
 no
 default

 	

 	

 	
 example:

 	
 OPEN
 #7, neti_32

 	

 	
 OPEN
 #4, neto_0

 	

 	
 COPY
 ser1 TO neto_21

MDVn_name

Microdrive
File Access

n - Microdrive number

name - Microdrive file
name

 	
 default:

 	
 no
 default

 	

 	

 	
 example:

 	
 OPEN
 #9, mdv1_data_file

 	

 	
 OPEN
 #9, mdv1_test_program

 	

 	
 COPY
 mdv1_test_file TO scr_

 	
 Keyword

 	
 Function

 	

 	

 	
 OPEN

 	
 initialise
 a device and activate it for use

 	

 	

 	
 CLOSE

 	
 deactivate
 a device

 	

 	

 	
 COPY

 	
 copy
 data between devices

 	
 COPY_N

 	
 copy
 data between devices, but do

 	

 	
 not
 copy a file's header information

 	

 	

 	
 EOF

 	
 test
 for end of file

 	

 	

 	
 WIDTH

 	
 set
 width

DIRECT COMMAND

[bookmark: directcommand]SuperBASIC makes a distinction between a
statement typed in preceded by a line number and a statement typed in without a
line nurnber. Without a line number the statement is a direct command
and is processed immediately by the SuperBASIC command interpreter. For
example, RUN is typed in on the command line and is processed, the
effect being that the program starts to run. If a statement is typed in with a
line number then the syntax of the line is checked and any detectable syntax
errors reported. A correct line is entered into the SuperBASIC program and
stored. These statements constitute a SuperBASIC program and will only
be executed when the program is started with the RUN or GOTO
command.

Not
alI SuperBASIC statements make sense when entered as a direct command, for example,
END FOR, END DEFine, etc

ERROR HANDLING

[bookmark: errorhandling]Errors are reported by SuperBASIC in a standard
form:

At line line_number
error_text

Where
the line number is the number of the line where the error was detected and the
error text is listed below.

(1)
Not complete

An
operation has been prematurely terminated (or break has been pressed).

(2)
Invalid job

An
error return from Qdos relating to system calls controlling multitasking or
I/O.

(3)
Out of memory

Qdos
and/or SuperBASIC has insufficient free memory.

(4)
Out of range

Usually
results from attempts to write outside a window or an incorrect array index.

(5)
Buffer full

An
I/O operation to fetch a buffer full of characters filled the buffer before a
record terminator was found.

(6)
Channel not open

Attempt
to read, write or close a channel which has not been opened. Can also occur if
an attempt to open a channel fails.

(7)
Not found

File
system, device, medium or file cannot be found. SuperBASIC cannot find an
identifier. This can result from incorrectly nested structures.

(8)
Already exists

The
file system has found an already existing file with the same name as a new file
to be opened for writing.

(9)
In use

The
file system has found that a file or device is already exclusively used.

(10)
End of file

End
of file detected during input.

(11)
Drive full

A
device has been filled (usually Microdrive).

(12)
Bad name

The
file system has recognised the name but there is a syntax or parameter value
error. In SuperBASIC it means a name has been used out of context. For example,
a variable has been used as a procedure.

(13)
Xmit error

RS-232-C
parity error

(14)
Format failed

Attempted
format operation has failed, the medium is possibly faulty (usually a
Microdrive cartridge).

(15)
Bad parameter

There
is an error in the parameter list of a system or SuperBASIC procedure or
function call. An attempt was made to read data from a write only device.

(16)
Bad or changed medium

The
medium (usually a Microdrive cartridge) is possibly faulty

(17)
Error in expression

An
error was detected while evaluating an expression.

(18)
Overflow

Arithmetic
overflow division by zero, square root of a negative number, etc.

(19)
Not Implemented

(20)
Read only

There
has been an attempt to write data to a shared file.

(21)
Bad line

A
SuperBASIC syntax error has occurred.

(22)
PROC/FN cleared

This
is a message which is for information only and is not reporting an error. It is
reporting that the program has been stopped and subsequently changed forcing
SuperBASIC to reset its internal state to the outer program level and so losing
any procedure environment which may have been in effect.

error
recovery

After
an error has occurred the program can be restarted at the nextstatement by
typing

CONTINUE

If
the error condition can be corrected, without changing the program, the program
can be restarted at the statement which triggered the error. Type

RETRY

EXPRESSIONS

[bookmark: expressions]SuperBASIC expressions can be string,
numeric, logical or a mixture: unsuitable data types are automatically
converted to a suitable form by the system wherever this is possible.

define

 	
 monop:
 =

 	
 |
 +

 	

 	
 |
 -

 	

 	
 |
 NOT

 	
 expression:
 =

 	
 |
 [monop] expression operator expression

 	

 	
 |
 (expression)

 	

 	
 |
 atom

 	

 	

 	

 	

 	
 atom:
 =

 	
 |
 variable

 	

 	

 	
 |
 constant

 	

 	

 	
 |
 function | (expression *|, expression *)

 	

 	

 	
 |
 array_element

 	

 	

 	

 	

 	

 	

 	
 variable:
 =

 	
 |
 identifier

 	

 	

 	

 	
 |
 identifier %

 	

 	

 	

 	
 |
 identifier $

 	

 	

 	

 	

 	

 	

 	
 function:
 =

 	
 |
 identifier

 	

 	

 	

 	
 |
 identifier %

 	

 	

 	

 	
 |
 identifier $

 	

 	

 	

 	

 	

 	

 	
 constant:
 =

 	
 |
 digit * [digit] *

 	

 	

 	

 	
 |
 *[digit] *, *[digit]*

 	

 	

 	

 	
 |
 *[digit] * |,| *[digit]* E *[digit]*

The
final value returned by the evaluation of the expression can be integer giving
an integer_expression, string giving a string_expression or
floating point giving a floating expression. Often floating point and
integer expressions are equivalent and the term numeric_expression is
then used.

Logical
operators can be included in an expression. If the specified operation is true
then a one is returned as the value of the operation. If the operation is false
then a zero is returned. Though logical operators can be used in any expression
they are usually used in the expression part of an IF statement.

 	
 example:

 	
 i.
 test_data +
 23.3 + 5

 	

 	
 ii.
 "abcdefghijklmnopqrstuvwxyz"(2
 TO 4)

 	

 	
 iii.
 32.1 *
 (colour = 1)

 	

 	
 iv.
 count =
 -limit

FILE TYPES

[bookmark: filetypes]FILES

All
I/O on the QL is to or from a logical file. Various file types exist.

data

SuperBASIC
programs, text files. Created using PRINT, SAVE, accessed using INPUT,
INKEY$, LOAD etc.

exec

An
executable transient program. Saved using SEXEC, loaded using EXEC, EXEC_W
etc.

code

Raw
memory data, screen images, etc. Saved using SBYTES, loaded using LBYTES.

FUNCTIONS AND PROCEDURES

[bookmark: fnsandprocs]SuperBASIC functions and procedures are
defined with the DEFine FuNction and DEFine PROCedure statements.
A function is activated (or called) by typing its name at the appropriate point
in a SuperBASIC expression. The function must be included in an expression
because it is returning a value and the value must be used. A procedure is
activated (or called) by typing its name as the first item

in
a SuperBASIC statement.

Data
can be passed into a function or procedure by appending a list of actual parameters
after the function or procedure name. This list is compared to a similar list
appended after te name of the function or procedure when it was defined. This
second list is called the formal parameters of the function or

procedure.
The formal parameters must be SuperBASIC variables. The actual parameters must
be an array, an array slice or a SuperBASIC expression of
which a single variable or constant is the simplest form.

Since
the actual parameters are actual expressions, they must have an actual type
associated with them. The formal parameters are merely used to indicate how the
actual parameters must be processed and so have no type associated with them.
The items in each list of parameters are paired off in order when the function
or procedure is called and the formal parameters become equivalent to the
actual parameters. There are three distinct ways of using parameters.

If
the actual parameter is a single variable and if data is assigned to the formal
parameter in the function or procedure then the data is also assigned to the
corresponding actual parameter.

If
the actual parameter is an expression then assigning data to the corresponding
formal parameter will have no effect outside the procedure. Note that a
variable can be turned into an expression by enclosing it within brackets.

if
the actual parameter is a variable but has not previously been set then assigning
data to the corresponding formal parameter will set the variable specified as
the actual parameter.

Variables
can be defined to be local to a function or procedure with the LOCal statement.
Local variables have no effect on similarly named variables outside the
function or procedure in which they are defned and so allow greater freedom in
choosing sensible variable names without the risk of corrupting external variables.

A
local variable is available to any inside function or procedure called from the
procedure function in which it is declared to be local unless the function or
procedure called contains a further local declaration of the same variable
name.

Functions
and procedures in SuperBASIC can be used recursively. That is a function or
procedure can call itself either directly or indirectly.

 	
 Command

 	
 Function

 	
 DEFine
 FuNction

 	
 define
 a function

 	
 DEFine
 PROCedure

 	
 define
 a procedure

 	
 RETurn

 	
 leave
 a function or procedure

 (return
 data from a function)

 	
 LOCal

 	
 define
 local data in a function or procedure

GRAPHICS

[bookmark: graphics]It is important to realise that the QL screen
has non-square pixels and that changing screen mode will change the shape of
the pixels. Thus if the grapics procedures were simply pixel based they would
draw different shapes in the two modes. For example, in one mode we would have
a circle while the same figure in the other mode would be an ellipse.

The
graphics procedures ensure that whatever screen mode is in use, consistent figures
are produced. It is not possible to use a simple pixel count to indicate sizes
of figures, so instead the graphics procedures use an arbitrary scale and coordinate
system to specify sizes and positions of figures.

The
graphics procedures use the graphics co-ordinate system, i.e. draw
relative to the graphics origin which is in the bottom left hand corner
of the specified or default window. Note that this is not the same as the pixel
origin used to define the position of windows and blocks etc.
The graphics origin allows a standard Cartesian coordinate system to be used. A
graphics cursor is updated after each graphics operation: subsequent operations
can either be relative to this cursor or can be absolute, i.e. relative to the
graphics origin.

The
scaling factor is such that the full distance in the vertical direction
in the specified or default window has length 100 by default and can be changed
with the SCALE command. The scale in the x direction is equal to the scale in the
y direction. However, the length of line which can be drawn in the x direction
is dependent on the shape of the window. Increasing the scale factor increases
the maximum size of the figure which can be drawn before the window size is
exceeded. If the graphics output is switched to a different size of window then
the subsequent size of the output is adjusted to fit the new window. If the
figure exceeds its output window then the figure is clipped.

It
is useful to consider the window to be a window onto a larger graphics space in
which the figures are drawn. The SCALE command allows the graphics
origin to be set so allowing the window to be moved around the graphics space.

The
graphics procedures are output to the window attached to the specified or default
channel and the output is drawn in the INK colour for that
channel.

 	
 Command

 	
 Function

 	

 	
 CIRCLE

 	
 draw
 an ellipse or a circle

 	
 }

 	
 LINE

 	
 draw
 a line

 	
 }
 absolute

 	
 ARC

 	
 draw
 an arc of a circle

 	
 }

 	
 POINT

 	
 plot
 a point

 	
 }

 	

 	

 	

 	
 CIRCLE_R

 	
 draw
 an ellipse or a circle

 	
 }

 	
 LINE_R

 	
 draw
 a line

 	
 }

 	
 ARC_R

 	
 draw
 an arc of a circle

 	
 }
 relative

 	
 POINT_R

 	
 plot
 a point

 	
 }

 	

 	

 	

 	
 SCALE

 	
 set
 scale and move origin

 	

 	
 FILL

 	
 fill
 in a shape

 	

 	
 CURSOR

 	
 position
 text

 	

Graphics Fill

Figures
drawn with the graphics and turtle graphics procedures can be optionally 'filled'
with a specified stipple or colour. If FILL is selected then the figure is
filled as it is drawn.

The
FILL algorithm stores a list of points to plot rather than actually
plotting them. When the figure closes there are two points on the same horizontal
line. These two points are connected by a line in the current INK colour and
the process repeats. Fill must always be reselected before drawing a new figure
to ensure that the buffer used to store the list of points is reset.

The
following diagram illustrates FILL:

warning

There
is an implementation restriction on FILL. FILL must not be used for
re-entrant shapes (i.e. a shape which is concave). Re-entrant shapes must be split
into smaller shapes which are not re-entrant and each sub-shape filled independently.

IDENTIFIER

[bookmark: identifier]A SuperBASIC identifier is a sequence of
letters, numbers and underscores.

 	
 define:

 	
 letter:=

 	
 |
 a..Z

 	

 	

 	
 |
 A..Z

 	

 	

 	
 number:=

 	
 |
 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

 	

 	

 	
 identifier:=

 	
 letter
 * || letter | number | _ | | *

 	

 	
 example:

 	
 i.

 	
 a

 	

 	
 ii.

 	
 limit_1

 	

 	
 iii.

 	
 current_guess

 	

 	
 iv.

 	
 counter

 	
 	
 	
 	

An
identifier must begin with a letter followed by a sequence of letters, numbers
and underscores and can be up to 255 characters long. Upper and lower case
characters are equivalent.

Identifiers
are used in the SuperBASIC system to identify Variables, Procedures, Functions,
Repetition loops, etc.

warning

NO
meaning can be attributed to an identifier other than its ability to identify
constructs to SuperBASIC. SuperBASIC cannot infer the intended use of an
identifier from the identifier's name!

JOYSTICK

[bookmark: joystick]The joystick ports marked CTL1 and CTL2,
allow two joysticks to be attached to the QL.

The
joysticks are arranged to generate specific key depressions when moved in a specific
way and any program which uses a joystick must be able to adapt to these keys.
The QL keyboard can be read directly using the KEYROW function.

 	

 	
 CTL1

 	
 CTL2

 	
 mode

 	
 key

 	
 key

 	
 up

 	
 cursor
 up

 	
 F4

 	
 down

 	
 cursor
 down

 	
 F2

 	
 left

 	
 cursor
 left

 	
 F1

 	
 right

 	
 cursor
 right

 	
 F3

 	
 fire

 	
 space

 	
 F5

comment

The
joystick ports can be used for adding other more general purpose control devices
to the QL.

Joysticks
for other computers using a 9-way 'D' connector require an adaptor to be used
with the QL. Such an adaptor is available from Sinclair Research.

KEYWORD

[bookmark: keyword]SuperBASIC keywords are identifiers which are defined
in the SuperBASIC Keyword

Reference
Guide. Keywords have the same form as a SuperBASIC standard

identifier.
The case of the keyword is not significant. Keywords are echoed as a

mixture
of upper and lower case letters and are always reproduced in full. The

upper
case portion indicates the minimum required to be typed in for SuperBASIC

to
recognise the keyword.

The
set of SuperBASIC keywords may be extended by adding PROCEDURES to the QL.

It
is a good idea to define these with their names in upper case and this will

indicate
their special function in the SuperBASIC system. Conversely, ordinary

procedures
should be defined with their names in lower case.

WARNING:
Existing keywords cannot be used as ordinary identifiers within a

SuperBASIC
program. SuperBASIC keywords are:

 	
 List of Keywords

 	
 ABS

 	
 DEFine
 PROCedure

 	
 LEN

 	
 RANDOMISE

 	
 ACOS,ASIN

 	
 END
 DEFine

 	
 LET

 	
 RND

 	
 ACOT,ATAN

 	
 DEG

 	
 LIST

 	
 RECOL

 	
 ADATE

 	
 DELETE

 	
 LOAD

 	
 REMark

 	
 ARC,ARC_R

 	
 DIM

 	
 LOCal

 	
 RENUM

 	
 AT

 	
 DIMN

 	
 LN,LOG10

 	
 REPeat

 	
 AUTO

 	
 DIR

 	
 LRUN

 	
 END
 REPeat

 	
 BAUD

 	
 DIV

 	
 MERGE

 	
 RESPR

 	
 BEEP

 	
 DLINE

 	
 MOD

 	
 RETurn

 	
 BEEPING

 	
 EDIT

 	
 MODE

 	
 RETRY

 	
 BLOCK

 	
 ELLIPSE

 	
 MOVE

 	
 RUN

 	
 BORDER

 	
 ELLIPSE_R

 	
 MRUN

 	
 SAVE

 	
 CALL

 	
 EOF

 	
 NET

 	
 SIN

 	
 CHR$

 	
 EXEC,EXEC_W

 	
 NEW

 	
 SCALE

 	
 CIRCLE

 	
 EXIT

 	
 NEXT

 	
 SCROLL

 	
 CIRCLE_R

 	
 EXP

 	
 ON
 GO TO

 	
 SDATE

 	
 CLEAR

 	
 FILL

 	
 ON
 GO SUB

 	
 SELect

 	
 CLOSE

 	
 FILL$

 	
 OPEN,OPEN_IN

 	
 END
 SELect

 	
 CLS

 	
 FLASH

 	
 OPEN_NEW

 	
 SEXEC

 	
 CODE

 	
 FOR

 	
 OVER

 	
 SQRT

 	
 CONTINUE

 	
 END
 FOR

 	
 PAN

 	
 STOP

 	
 RETRY

 	
 FORMAT

 	
 PAPER

 	
 STRIP

 	
 COPY,COPY_N

 	
 GO
 SUB

 	
 PAUSE

 	
 TAN

 	
 COS

 	
 GO
 TO

 	
 PEEK,PEEK_W

 	
 TO

 	
 COT

 	
 IF,THEN,ELSE

 	
 PEEK_L

 	
 TURN

 	
 CSIZE

 	
 END
 IF

 	
 PENUP

 	
 TURNTO

 	
 CURSOR

 	
 INK

 	
 PENDOWN

 	
 UNDER

 	
 DATA,READ

 	
 INKEY$

 	
 PI

 	
 VER$

 	
 RESTORE

 	
 INPUT

 	
 POINT,POINT_R

 	
 WIDTH

 	
 DATE$,DATE

 	
 INSTR

 	
 POKE,POKE_W

 	
 WINDOW

 	
 DAY$

 	
 INT

 	
 POKE_L

 	

 	
 DEFine
 FuNction

 	
 KEYROW

 	
 PRINT

 	

 	
 END
 DEFine

 	
 LBYTES

 	
 RAD

 	

MATHS FUNCTIONS

[bookmark: mathsfunctions]SuperBASIC has the standard trigonometrical and
mathematical functions.

 	
 Function

 	
 Name

 	
 COS

 	
 cosine

 	
 SIN

 	
 sin

 	
 TAN

 	
 tangent

 	

 	

 	
 ATAN

 	
 arctangent

 	
 ACOT

 	
 arcotangent

 	

 	

 	
 ACOS

 	
 arcosine

 	
 ASIN

 	
 arcsine

 	

 	

 	
 COT

 	
 cotangent

 	
 EXP

 	
 exponential

 	
 LN

 	
 natural
 logarithm

 	
 LOG10

 	
 common
 logarithm

 	

 	

 	
 INT

 	
 integer

 	
 ABS

 	
 absolute
 value

 	

 	

 	
 RAD

 	
 convert
 to radians

 	
 DEG

 	
 convert
 to degrees

 	

 	

 	
 PI

 	
 return
 the value of pi ±

 	

 	

 	
 RND

 	
 generate
 a random number

 	
 RANDOMISE

 	
 reseed
 the random number generator

MEMORY MAP

[bookmark: memorymap]The QL contains a Motorola 68008 microprocessor,
which can address 1 Megabyte of memory, i.e. from 00000 to FFFFF Hex. The use
of addresses within this range are defined by Sinclair Research to be as
follows:

The
screen RAM is organised as a series of sixteen bit words starting at address Hex
20000 and progressing in the order of the raster scan, i.e. from left to right
with each display line and then from the top to the bottom of the picture. The
bits within each word are organised so that a pixel to the left is always more
significant than a pixel to the right (i.e. the pixel pattern on the screen looks
the same as the binary pattern). However, the organisation of the colour information
in the two screen modes is different:

Setting
the Flash bit toggles the flash state and freezes the background colour for the
flash to the value given by R, G and B for that pixel. Flashing is always reset
at the beginning of each display line.

In
high resolution mode, red and green specified together is interpreted by the hardware
as white.

warning

Use
of reserved areas in the memory map may cause incompatibility with future
Sinclair products. Spurious output to addresses defined to be peripheral I/O
addresses can cause unpredictable behaviour. It is recommended that these areas
are NOT written to and not used for any other purpose. Poking areas in use as
Microdrive buffers can corrupt Microdrive data and can result in a loss of

information.
Pokng areas in use such as system tables can cause the system to crash and can
result in the loss of data and programs.

All
I/O should be performed using either the relevant SuperBASIC commands or the QDOS
Operating System traps.

MICRODRIVES

[bookmark: microdrives]Microdrives provide the main permanent storage on
the QL. Each Microdrive cartridge has a capacity of at least 100Kbytes.
Available free memory space is allocated by QDOS as Microdrive buffers when
necessary to improve performance.

Each
blank cartridge must be formatted before use and can hold up to 255
sectors of 512 bytes per sector. QDOS keeps a directory of files stored on the cartridge.
Each microdrive file is identified using a standard SuperBASIC file or device
name.

A
cartridge can be write protected be removing the small lug on the right hand side.

On
receiving new blank microdrive cartridges, format them a few times to condition
the tape.

general
care

Physically
each Microdrive cartridge contains a 200 inch loop of high quality video tape
which is moved at 28 inches per second. The tape completes one circuit every
7.5 seconds.

NEVER touch the tape with
your fingers or insert anything into the cartridge

NEVER turn the computer
on or off with cartridges in place

ALWAYS store cartridges in
their sleeves when not in use

ALWAYS insert or remove
cartridges from the Microdrive slowly and carefully

ALWAYS ensure the cartridge
is firmly installed before starting the microdrive

NEVER move the QL with
cartridges installed - even if not in operation

NEVER touch the cartridge
while the Microdrive is in operation

DO NOT repeatedly insert
and remove the cartridge without running the Microdrive

tape
loops

If
a tape loop appears at either of the two places shown in figure 1 then gently
ease it back into the cartridge. Use a non-fibrous instrument for this, e.g.
the side of a pen or pencil. NEVER touch the tape with your fingers for this or
any reason.

 	
 Command

 	
 Function

 	
 FORMAT

 	
 prepare
 a new cartridge for use

 	
 DELETE

 	
 delete
 a file from a cartridge

 	
 DIR

 	
 list
 the files on a cartridge

 	
 SAVE

 	

 	
 SBYTES

 	
 saves
 data from a cartridge

 	
 SEXEC

 	

 	
 LOAD

 	

 	
 LBYTES

 	

 	
 EXEC

 	
 loads
 data from a cartridge

 	
 MERGE

 	

 	
 OPEN_IN

 	

 	
 OPEN_NEW

 	

 	
 OPEN

 	
 opens
 and closes files

 	
 CLOSE

 	

 	
 PRINT

 	

 	
 INPUT

 	
 SuperBASIC
 file I/O

 	
 INKEY$

 	

warning

If
you attempt to write to a cartridge which is write protected then the QL will repeatedly
attempt to write the data but will eventually give up and give a "bad
medium" error.

MONITOR

[bookmark: monitor]A monitor may be connected to the QL via the RGB socket on
the back of the computer. Connection is via an 8-way DIN plug plus cable for
colour monitors, or a 3-way DIN plug plus cable for monochrome. The RGB socket
connections are as in the following table, and the column indicating wire
colour refers to the colour coding used on the 8-way cable and connector
available from Sinclair Research Limited. Pin designation is as shown in the
diagram below.

 	
 Pin

 	
 function

 	
 signal

 	

 	
 sleeve
 colour on QL RGB colour lead

 	
 1

 	
 PAL

 	
 composite
 PAL

 	
 (4)

 	
 orange

 	
 2

 	
 GND

 	
 ground

 	

 	
 green

 	
 3

 	
 VIDEO

 	
 composite
 monochrome video

 	
 (3)

 	
 brown

 	
 4

 	
 CSYNC

 	
 composite
 sync

 	
 (2)

 	
 yellow

 	
 5

 	
 VSYNC

 	
 vertical
 sync

 	
 (1)

 	
 blue

 	
 6

 	
 GREEN

 	
 green

 	
 (1)

 	
 red

 	
 7

 	
 RED

 	
 red

 	
 (1)

 	
 white

 	
 8

 	
 BLUE

 	
 blue

 	
 (1)

 	
 purple

A
monochrome monitor can be connected using a screened lead with a 3-way or an 8-way
DIN plug at the QL end. Only pins 2 (ground) and 3 (composite video) need to be
connected via the cable to the monitor. The connection at the monitor end will
vary according to the monitor but is usually a phono plug. The monitor must have
a 75 ohm 1V pk-pk composite video non-inverting input (which is the industry
standard). Both 3-way DIN plugs and phono plugs are available from audio shops.

Diagram
of Monitor Connector as viewed from rear of QL, showing pin numbers and

functions.

Diagram of Monitor
Connector as viewed from rear of QL, showing pin numbers and functions

An
RGB (colour) monitor can be connected using a lead with an 8 way DIN plug at the
QL end. The connection at the monitor end will vary according to the monitor (there
is no industry standard) and will often be supplied with it. A suitable cable
with an 8-way DIN plug at one end and bare wires at the other end is available
from Sinclair Research Limited.

A
composite PAL monitor, or the composite video input on some VCRs may
work with the QL. Only pins 2 (ground) and 1 (composite PAL) need to be
connected via a cable to the monitor or VCR.

NETWORK

[bookmark: network]The QL can be connected with up to 63 other QLs. If there
are more than 2 computers on the network then each computer (or station) must
be assigned a unique station number. On the QL this can be done using the NET
command.

Information
is transmitted over the network in blocks. For normal communication between two
stations the receiving station must acknowledge correct reception of the block.
If a block is corrupted then the receiving station will request retransmission.

Using
a network station number of zero has a special meaning. Sending to neto_0 is
called broadcasting: any message sent in this way can be read by any station which
is listening to neti_0. Note that the normal verification that a message has
been received is disabled for broadcasts, so that broadcasting messages of length
more than one block (255 bytes) is unreliable.

A
network station which listens to its own station number (e.g. NET3:LOAD neti_3)
can receive data from any station sending to it.

 	
 Command

 	
 Function

 	
 NET

 	
 assign
 a network station number

 	
 OPEN

 	
 open
 a network channel

 	
 CLOSE

 	
 close
 a network channel

 	
 PRINT

 	

 	
 INPUT

 	
 network
 I/O

 	
 INKEY$

 	

 	
 LOAD

 	

 	
 SAVE

 	

 	
 LBYTES

 	

 	
 SBYTES

 	

 	
 EXEC

 	
 load
 and save via network

 	
 SEXEC

 	

 	
 LRUN

 	

 	
 MRUN

 	

 	
 MERGE

 	

comment

If
you are planning to connect several QLs on the network, or use a long piece of
cable then you should wire it up with low capacitance twin core cable such as 3
amp light flex or bell wire. Take care to connect the centres of each jack to each
other, and the outsides to each other. You will find that although the software
can handle 63 stations, the hardware will not drive more than about 100m of
cable, depending on what type it is.

If
you are only connecting a few machines with the lads supplied, you need not worry.

OPERATORS

 	
 [bookmark: operators]Operator

 	
 Type

 	
 Function

 	
 =

 	
 floating
 string

 	
 logical
 type 2 comparison

 	
 ==

 	
 numeric
 string

 	
 almost
 equal ** (type 3 comparison)

 	
 +

 	
 numeric

 	
 addition

 	
 -

 	
 numeric

 	
 subtraction

 	
 /

 	
 numeric

 	
 division

 	
 *

 	
 numeric

 	
 multiplication

 	
 <

 	
 numeric
 string

 	
 less
 than (type 2 comparison)

 	
 >

 	
 numeric
 string

 	
 greater
 than (type 2 comparison)

 	
 <=

 	
 numeric
 string

 	
 less
 than or equal to (type 2 comparison)

 	
 >=

 	
 numeric
 string

 	
 greater
 than or equal (type 2 comparison)

 	
 <>

 	
 numeric
 string

 	
 not
 equal to (type 3 comparison)

 	
 &

 	
 string

 	
 concatenation

 	
 &&

 	
 bitwise

 	
 AND

 	
 ||

 	
 bitwise

 	
 OR

 	
 ^^

 	
 bitwise

 	
 XOR

 	
 ~

 	
 bitwise

 	
 NOT

 	
 OR

 	
 logical

 	
 OR

 	
 AND

 	
 logical

 	
 AND

 	
 XOR

 	
 logical

 	
 XOR

 	
 NOT

 	
 logical

 	
 NOT

 	
 MOD

 	
 integer

 	
 modulus

 	
 DIV

 	
 integer

 	
 divide

 	
 INSTR

 	
 string

 	
 type
 1 string comparison

 	
 ^

 	
 floating

 	
 raise
 to the power

 	
 -

 	
 floating

 	
 unary
 minus

 	
 +

 	
 floating

 	
 unary
 plus

**almost
equal - equal to 1 part in 10^7

If
the specified logical operation is true then a value not equal to zero will be
returned. If the operation is false then a value of zero will be returned.

precedence

The
precedence of SuperBASIC operators is defined in the table above. If the order
of evaluation in an expression cannot be deduced from this table then the relevant
operations are performed from left to right. The inbuilt precedence of SuperBASIC
operators can be overriden by enclosing the relevant sections of the expression
in parentheses.

 	
 highest

 	
 unary
 plus and minus

 	

 	
 string
 concatenation

 	

 	
 INSTR

 	

 	
 exponentiation

 	

 	
 multiply,
 divide, modulus and integer divide

 	

 	
 add
 and subtract

 	

 	
 logical
 comparison

 	

 	
 NOT
 (bitwise or logical)

 	

 	
 AND
 (bitwise or logical)

 	
 lowest

 	
 OR
 and XOR (bitwise or logical)

PERIPHERAL EXPANSION

[bookmark: peripheral]The expansion connector allows extra peripherals
to be plugged into the QL. The

connections
available at the connector are:

The connector on the
QL is a 64 way (male) DIN-41612 indirect edge connector.

An
'L' appended to a signal name indicates that the signal is active low.

 	
 Signal

 	
 Function

 	
 A0-A19

 	
 68008
 address lines

 	
 RDWL

 	
 Read
 / Write

 	
 ASL

 	
 Address
 Strobe

 	
 DSL

 	
 Data
 Strobe

 	
 BGL

 	
 Bus
 Grant

 	
 DSMCL

 	
 Data
 Strobe - Master Chip

 	
 CLKCPU

 	
 CPU
 Clock

 	
 E

 	
 6800
 peripherals clock

 	
 RED

 	
 Red

 	
 BLUE

 	
 Blue

 	
 GREEN

 	
 Green

 	
 CSYNCL

 	
 Composite
 Sync

 	
 VSYNCH

 	
 Vertical
 Sync

 	
 ROMOEH

 	
 ROM
 Output Enable

 	
 FC0

 	
 Processor
 status

 	
 FC1

 	
 Processor
 status

 	
 FC2

 	
 Processor
 status

 	
 RESETCPUL

 	
 Reset
 CPU

QL
Peripheral Output Signals

 	
 Signal

 	
 Function

 	
 DTACKL

 	
 Data
 acknowledge

 	
 BRL

 	
 Bus
 request

 	
 VPAL

 	
 Valid
 Peripheral Address

 	
 IPL0L

 	
 Interrupt
 Priority Level 5

 	
 IPL1L

 	
 Interrupt
 Priority Level 2

 	
 BERRL

 	
 Bus
 Error

 	
 EXTINTL

 	
 External
 Interrupt

 	
 DBGL

 	
 Data
 bus grab

QL
Peripheral Input Signals

 	
 Signal

 	
 Function

 	
 D0..D7

 	
 Data
 Lines

QL
Peripheral Bi-directional Signals

 	
 Signal

 	
 Functional

 	
 SP0..SP3

 	
 Select
 peripheral 0 to 3

 	
 VIN

 	
 9V
 DC (nominal) - 500mA max.

 	
 VM12

 	
 -12V

 	
 VP12

 	
 +12V

 	
 GND

 	
 ground

Miscellaneous

It
is not intended that the following description of the QL peripheral expansion mechanism
be sufficient to implement an actual expansion device, but rather be read to
gain a basic understanding of the expansion mechanism.

Single
or multiple peripherals may be added to the QL up to a maximum of 16 devices. A
single peripheral can be plugged directly into the QL Expansion Slot while
multiple peripherals must be plugged into the QL Expansion Module, which in
turn is plugged into the QL Expansion Slot via a buffer card.

In
this context the term 'device' also includes expansion memory. Although the areas
of the QL memory map allocated to expansion memory are different from those
allocate to expansion devices, the basic mechanism is the same. Only one expansion
memory peripheral can be plugged into the QL at any one time. The address space
allocated for peripheral expansion in the QL Physical memory map allows 16
Kbytes per peripheral. This area must contain the memory mapped I/O required
for the driver and the code for the driver itself.

QDOS
includes facilities for queue management and simple serial I/O which may be of
use when writing device drivers.

The
position of each peripheral device in the overall memory map of the QL is determined
by the select peripheral lines: SP0, SP1, SP2 and SP3. These select lines
generate a signal corresponding to the slot position in the QL expansion module,
thus for a device to be selected the address input from address lines: A14,
A15, A16 and A17 must be the same as the signals from SP0, SP1, SP2 and SP3

respectively.

PIXEL COORDINATE SYSTEM

[bookmark: pixel]The pixel coordinate system is used to define the
positions and sizes of windows, blocks and cursor
positions on the QL screen. The coordinate system has its origin in the top
left hand corner of the default window (or screen) and always assumes that
positions are specified as though the screen were in 512 mode (high
resolution mode). The system will use the nearest pixel available for the
particular mode set making the coordinate system independent of the screen mode
in use.

Some
commands are always relative to the default window origin, e.g. WINDOW, while
some are always relative to the current window origin, e.g. BLOCK

PROGRAM

[bookmark: program]A SuperBASIC program consists of a sequence of SuperBASIC statements,
where each statement is preceded by a line number. Line numbers are in
the range of 1 to 32767.

 	
 Command

 	
 Function

 	
 RUN

 	
 start
 a loaded program

 	
 LRUN

 	
 load
 a program from a device and start it

 	
 [CTRL]
 [SPACE]

 	
 force
 a program to stop

 	
 syntax:

 	
 line_number:=
 [digit] [range 1,32767]

 	

 	
 *[line_number
 statement *[:statement]*]*

 	
 example:

 	
 i.

 	
 100
 PRINT "This is a valid line number"

 	

 	

 	
 RUN

 	

 	

 	

 	

 	
 ii.

 	
 100
 REMark a small program

 	

 	

 	
 110
 FOR foreground = 0 TO 7

 	

 	

 	
 120
 FOR contrast = 0 TO 7

 	

 	

 	
 130
 FOR stipple = 0 TO 3

 	

 	

 	
 140
 PAPER foreground, contrast, stipple

 	

 	

 	
 150
 CURSOR 0,70

 	

 	

 	
 160
 FOR n = 0 TO 2

 	

 	

 	
 170
 SCROLL 2,1

 	

 	

 	
 180
 SCROLL -2,2

 	

 	

 	
 190
 END FOR n

 	

 	

 	
 200
 END FOR stipple

 	

 	

 	
 210
 END FOR contrast

 	

 	

 	
 220
 END FOR foreground

 	

 	

 	
 RUN

QDOS

[bookmark: qdos]Qdos is the QL Operating System and supervises:

Task Scheduling and resource allocation

Screen I/O (including windowing)

Microdrive I/O

Network and serial channel communication

Keyboard input

Memory management

memory
map

A
full description of Qdos is beyond the scope of this guide but a brief description
is included.

The
system RAM has an organisation imposed by the QDOS operating system and is defined
as follows:

The
terms SV_RAMT, SV_RESPR, SV_TRNSP, SV_BASIC, SV_FREE, SV_HEAP are used to represent
addresses inside the QL. These terms are not recognised by SuperBASIC or the
QDOS operating system. Furthermore, the addresses represented are liable to
change as the system is running.

 	
 sv_ramt

 	
 RAM
 Top

 	

 	
 This
 will vary according to the memory expansion boards attached to the system.

 	

 	

 	
 sv_respr

 	
 Resident
 Procedures

 	

 	
 Resident
 procedures are loaded into the top of RAM. Space can be allocated in the
 resident procedure area using the RESPR function, but this space cannot be
 released except by resetting the QL. Resident Procedures written in machine
 code can be added to the SuperBASIC name list and so become extensions to the
 SuperBASIC system.

 	

 	

 	
 sv_trnsp

 	
 Transient
 Programs

 	

 	
 Transient
 programs are loaded immediately below the resident procedures. Each program
 must be self contained, i.e. it must contain space for its own data and its
 own stack. It must be position independent or must be loaded by a specially
 written linking loader. A transient program is executed from BASIC by using
 the EXEC command or from QDOS by activating it as a job.

 	

 	

 	

 	
 The
 transient program area may be used for storing data only but this data will
 still be treated by QDOS as a job and therefore must not be activated.

 	

 	

 	
 sv_basic

 	
 SuperBASIC
 Area

 	

 	
 This
 area contains all loaded SuperBASIC programs and related data. This area
 expands and contracts using up the free space as required.

 	

 	

 	
 sv_free

 	
 Free
 Space

 	

 	
 Free
 space is used by the Qdos file subsystem to create Microdrive Slave Blocks,
 i.e. copies of Microdrive blocks which can be held in RAM.

 	

 	

 	
 sv_heap

 	
 System
 Heap

 	

 	
 This
 is used by the system to store data channel definitions and also provides
 working storage for the I/O subsystem. Transient programs may allocate
 working space for themselves on the heap via Qdos system calls.

 	

 	

 	

 	
 System
 Tables/System Variables

 	

 	
 This
 area is directly above the screen memory. The System Tables and supervisor
 stack are resident above the system variables.

system
calls

System
calls are processed by Qdos in 'supervisor mode'. When in supervisor mode, Qdos
will not allow any other job to take over the processor. System calls processed
in this way are said to be 'atomic', i.e. the system call will process to
completion before relinquishing the processor. Some system calls are only partially
atomic, i.e. once they have completed their primary function they will relinquish
the processor if necessary. Unless specifically requested all the system calls
are partially atomic.

The
standard mechanism for making a system call is by making a trap to one of the
Qdos system vectors with appropriate parameters in the processor registers. The
action taken by Qdos following a system call is dependent on the particular call
and the overall state of the system at the time the call was made.

input/output

Qdos
supports a multitasking environemtn and therefore a file can be accessed by more
than one process at a time. The Qdos filing sub-system can handle files which
have been opened as EXCLUSIVE files or as SHARED files. A shared file cannot be
written to. QL devices are processed by the SERIAL I/O SYSTEM. As its name
suggests any data output by this system can be redirected to any other

device
also supported by the redirectable I/O system.

The
device names required by Qdos are the same as the device names required by SuperBASIC
and are discussed in the concept section DEVICES. The collection of standard
devices supplied with the QL can be expanded.

devices

The
standard devices included in the system are discussed in this guide in the section
DEVICES. Further devices may be added to the system, given a name (e.g. SER1,
NET) and then accessed in the same way as any other QL device.

multitasking

Jobs
will be allowed a share of the CPU in line with their priority and competition
with other jobs in the system. Jobs running under the control of Qdos can be in
one of three states:

 	
 active:

 	
 Capable
 of running and sharing system resources. A job in this state may not be
 runnign continuously but will obtain a share of the CPU in line with its
 priority.

 	

 	

 	
 suspended:

 	
 The
 job is capable of running but is waiting for another job or I/O. A job may be
 suspended indefinitely or for a specific period of time.

 	

 	

 	
 inactive:

 	
 The
 job is incapable of running, its priority is 0 and so it can never obtain a
 share of the CPU

Qdos
will reschedule the system automatically at a rate related to the 50 Hz frame
rate. The system will also be rescheduled after certain system calls.

 	
 example:

 	
 This
 program generates an on-screen readout of the real-time clock running as an
 independent job.

 	

 	

 	

 	
 First
 RUN this program with a formatted cartridge in microdrive 2. This
 generates a machine code title called 'clock'. Wait for the microdrive to
 stop. Next, set the clock using the SDATE command.

 	

 	

 	

 	
 Then
 type:

 	

 	

 	

 	

 	
 EXEC
 mdv2_clock

 	

 	

 	

 	
 and
 a continuous time display will appear at the top right of the command window.

 	

 	

 	

 100
 c=RESPR(100)

 110
 FOR i = 0 TO 68 STEP 2

 120
 READ x:POKE_W i+c,x

 130
 END FOR i

 140
 SEXEC mdv2_clock,c,100,256

 1000
 DATA 29439,29697,28683,20033,17402

 1010
 DATA 48,13944,200,20115,12040

 1020
 DATA 28691,20033,17402,74,-27698

 1030
 DATA 13944,236,20115,8279,-11314

 1040
 DATA 13944,208,20115,16961,16962

 1050
 DATA 30463,28688,20035,24794

 1060
 DATA 0,7,240,10,272,200

N.B.
Line 1060 governs the position and colour of the clock window - the data terms
are, in order:

border colour/width, paper/ink colour, window
width, height, x-origin, y-origin

These
are pairs of bytes, entered by POKE_W as words.

The
x-origin and the y-origin (the last data item) should be 272 and 202 in monitor
mode, or 240 and 216 in TV mode.

Generate
the paper and ink word, for example, as 256*paper+ink. Thus white paper, red
ink is 256*7 + 2 = 1794

REPETITION

[bookmark: repetition]Repetition in SuperBASIC is controlled by two
basic program constructs. Each construct must be identified to SuperBASIC:

 	
 REPeat identifier

 	
 FOR identifier =
 range

 	

 Statements

 	

 statements

 	
 END
 REPeat
 identifier

 	
 END
 FOR
 identifier

These
two constructs are used in conjunction with two other SuperBASIC statements:

 	
 NEXT identifier

 	
 EXIT identifier

Processing
a NEXT statement will either pass control to the statement following the
appropriate FOR or REPeat statement, or if a FOR range has
been exhausted to the statement following the NEXT.

Prcoessing
an EXIT will pass control to the statement after the END FOR or END
REPeat selected by the EXIT statement. EXIT can be used to
exit through many levels of nested repeat structures. EXIT should always
be used in REPeat loops to terminate the loop on some condition.

A
combination of NEXT,EXIT and END statements allows FOR and
REPeat loops to have a loop epilogue added. A loop epilogue is a
series of SuperBASIC statements which are executed on some special condition
arising within the loop:

The
loop epilogue is only processed if the FOR loop terminates normally. If
the loop terminates via an EXIT statement then processing will continue
at the END FOR and the epilogue will not be processed.

It
is possible to have a similar construction in a REPeat loop:

This
time entry into the loop epilogue is controlled by the IF statement. The
epilogue will or will not be processed depending on the condition in the IF
statement. A SELect statement can also be used to control entry into the
epilogue.

ROM CARTRIDGE SLOT

[bookmark: romcartridgeslot]Allows software to be used in the QL system from a
Sinclair QL ROM Cartridge. The ROM Cartrdge can contain software to directly
change the behaviour of the SuperBASIC system. The cartridge can contain:

i. Software
to be used instead of or with the SuperBASIC system. For example:

assemblers

compilers

debuggers

application software

etc

ii. Software
to expand the SuperBASIC system. For example:

special procedures

etc

It
is not possible to use ZX ROM Cartridges on the QL.

pin
out

Side
b is the upper side of the connector; side a is the lower.

 	
 Signal

 	
 Function

 	
 A0..A15

 	
 Address
 lines

 	
 D0..D7

 	
 Data
 lines

 	
 ROMOEH

 	
 ROM
 Output Enable

 	
 VDD

 	
 5V

 	
 GND

 	
 Ground

warning:

Never
plug or unplug a ROM cartridge while the QL power is on.

SCREEN

[bookmark: screen]512 mode

The
screen is 512 pixels across and 256 pixels deep. Only the solid colours

black

red

green

white

can
be displayed in this mode.

256
mode

Low
resolution mode also has a hardware flash. The screen is 256 pixels across and
256 pixels deep. The full set of solid colours is available in this mode:

black

blue

red

magenta

green

cyan

yellow

white

warning

A
domestic television is not capable of displaying the complete QL screen.
Portions of the screen at the top and the sides will not be reproduced. The
default initial window will take account of this and will reduce the effective
picture size. The full size can be restored with the WINDOW command.

 	
 Command

 	
 Function

 	
 MODE

 	
 set
 screen mode

SLICING

[bookmark: slicing]Under certain circumstances it is possible to refer to more
than one element in an array i.e. slice the array The array slice can be
thought of as defining a subarray or a series of subarrays to
SuperBASIC. Each slice can define a continuous sequence of elements belonging
to a particular dimension of the

original
array. The term array in this context can include a numeric array, a string
array or a simple string.

It
is not necessary to specify an index for the full number of dimensions of an array.
If a dimension is omitted then slices are added which will select the full
range of elements for that particular dimension, i.e. the slice (0 TO). SuperBASIC
can only add slices to the end of a list of array indices.

 	
 syntax:

 	
 index:
 =

 	
 |
 numeric_exp

 	
 {single element}

 	

 	

 	
 |
 numeric_exp TO numeric_exp

 	
 {range of elements}

 	

 	

 	
 |
 numeric_exp TO

 	
 {range to end}

 	

 	

 	
 |
 TO numeric_expression

 	
 {range from
 beginning}

 	

 	

 	
 array_reference:=

 	
 |
 variable

 	

 	

 	
 |
 variable (| index * |,index| * |)

 	
 	
 	
 	
 	

An
array slice can be used to specify a source or a destination subarray for an
assignment statement.

 	
 example:

 	
 i.

 	
 PRINT
 data array

 	

 	
 ii.

 	
 PRINT
 letters$(1 TO 15)

 	

 	
 iii.

 	
 PRINT
 two_d_array (3) (2 TO 4)

String
slicing is performed in the same way as slicing numeric or string arrays.

Thus

 	
 a$(n)

 	
 will
 select the nth character.

 	
 a$(n
 TO m)

 	
 will
 select all characters from the nth to the mth, inclusively

 	
 a$(n
 TO)

 	
 will
 select from a character n to the end, inclusively

 	
 a$(1
 TO m)

 	
 will
 select from the beginning to the nth character inclusively

 	
 a$

 	
 will
 select the entire contents of a a$

Some
forms of BASIC have functions called LEFT$, MID$, RIGHTS. These
are not necessary in SuperBASIC. Their equivalents are specified below:

 	
 SuperBASIC

 	
 Other
 BASIC

 	
 a$(n)

 	
 MID$(a$,n,1)

 	
 a$(n
 TO m)

 	
 MID$
 (a$,n,m+1-n)

 	
 a$(1
 TO n)

 	
 LEFT$
 (a$,n)

 	
 a$(n
 TO)

 	
 RIGHTS
 (a$,LEN(a$)+1-n)

warning

Assigning
data to a sliced string array or string variable may not have the desired
effect. Assignments made in this way will not update the length of the string.
The length of a string array or string variable is only updated when an
assignment is made to the whole string.

START UP

[bookmark: startup]Immediately after switch on (or reset) the QL will
perform a RAM test which will give a spurious pattern on the display. If the
RAM test is passed then the screen will be cleared and the copyright screen
displayed.

After
start up, the QL displays the copyright message and asks whether it is being
used on a television or a monitor. The QL will set different initial screen
modes and window sizes depending on the answer.

Press
F1 if you are using a monitor and F2 if you are using a television set.

The
QL has the ability to 'boot' itself up from programs contained in either the
ROM cartridge slot or in Microdrive 1. If the ROM cartridge slot contains a self
starting program then start up will continue under the control of the program
in the ROM cartridge. If nothing suitable is found then the QL will check
Microdrive 1 for a cartridge. If a cartridge is found and if it contains a file
called BOOT it is loaded and run.

default
screen

The
QL has three default channels which are linked to three default windows.

Channel
0 is used for listing commands and error messages, channel 1 for program and
graphics output and channel 2 for program listings. The default channel can be
modified using the optional channel specifier in the relevant command.

It
is important NOT to switch on the QL with a Microdrive cartridge in position. If
booting from a Microdrive cartridge is required then the cartridge must be inserted
between switching on and pressing either F1 or F2.

SOUND

[bookmark: sound]Sound on the QL is generated by the QL's second processor (an
8049) and is controlled by specifying:

up to two pitches

the rate at which the sound must move between
the pitches, the ramp

how the sound is to behave after it has
reached one of the specified pitches, the wrap

if any randomness should be built into the
sound, i.e. deviations from the ramp

if any fuzziness should be built into the
sound. i.e. deviations on every cycle of the sound

Fuzziness
tends to result in buzzy sounds while randomness, depending on the other
parameters, will result in 'melodic' sounds or noise.

The
complexity of the sound can be built up stage by stage gradually building more
complex sounds. This is, in fact, the best way to master sound on the QL.

Specify
a duration and a single pitch. The specified pitch will be beeped for the
specified time.

LEVEL
1

This
is the simplest sound command, other than the command to stop the sound, on the
QL.

LEVEL
2

A
second pitch and a gradient can be added to the command. The sound will then 'bounce'
between the two pitches at the rate specified by the gradient.

The
sounds produced at this level can vary between: semi musical beeps, growls, zaps
and moans. It is best to experiment.

LEVEL3

A
parameter can be added which controls how the sound behaves when it becomes equal
to one of the specified pitches. The sound can be made to 'bounce' or 'wrap'.

The
number of wraps can be specified, including wrap forever. It is even more important
to experiment.

LEVEL4

Randomness
can be added to the sound. This is a deviation from the specified step or
gradient.

Depending
on the amount of randomness added in relation to the pitches and the gradient,
it will generate a very wide and unexpected range of sounds.

LEVEL
5

More
variation can be added by specifying 'fuzziness'. Fuzziness adds a random factor
to the pitch continuously Fuzziness tends to make the sound buzz.

Combining
all of the above effects can make a very wide range of sounds, many of them
unexpected. QL sound is best explored through experiment. By specifying a time
interval of zero the sound can be made to repeat forever and so a sequence of BEEP
commands can be used until the sound generated is the sound which is required.
A word of warning: slight changes in the value of a single parameter can have
alarming results on the sound generated.

STATEMENT

[bookmark: statement]A SuperBASIC statement is an instruction to
the QL to perform a specific operation, for example:

LET a = 2

will
assign the value 2 to the variable identified by a.

More
than one statement can be written on a single line by separating the individual
statements from each other by a colon (:), for example:

LET a = a + 2 : PRINT a

will
add 2 to the value identified by the variable a and will store the result back
in a. The answer will then be printed out

If
a line is not preceded by a line number then the line is a direct command and
SuperBASIC processes the statement immediately. If the statement is preceded by
a line number then the statement becomes part of a SuperBASIC program and is
added into the SuperBASIC program area for later execution.

Certain
SuperBASIC statements can have an effect on the other statements over the rest
of the logical line in which they appear i.e. IF, FOR, REPeat, REM, etc.
It is meaningless to use certain SuperBASIC statements as direct commands.

STRING ARRAYS, STRING VARIABLES

[bookmark: stringarrays]String arrays and numeric arrays are essentially
the same, however there are slight differences in treatment by SuperBASIC. The
last dimension of a string array defines the maximum length of the strings
within the array. String variables can be any length up to 32766. Both string
arrays and string

variables
can be sliced.

String
lengths on either side of a string assignment need not be equal. If the sizes
are not the same then either the right hand string is truncated to fit or the length
of the left hand string is reduced to match. If an assignment is made to a
sliced string then if necessary the 'hole' defined by the slice will be padded
with spaces.

It
is not necessary to specify the final dimension of a string array. Not specifying
the dimension selects the whole string while specifying a single element will
pick out a single character and specifying a slice will define a sub string.

COMMENT:
Unlike many BASICs SuperBASIC does not treat string arrays as fixed length
strings. If the data stored in a string array is less than the maximum size of
the string array then the length of the string is reduced.

WARNING:
Assigning data to a sliced string array Or string variable may not have the
desired effect. Assignments made in this way will not update the length of the
string and so it is possible that the system will not recognise the assignment.
The length of a string array or a string variable is only

updated
when an assignment is made to the whole string.

 	
 Command

 	
 Function

 	
 FILL$

 	
 generate
 a string

 	
 LEN

 	
 find
 the length of a string

STRING COMPARISON

[bookmark: stringcomparison]order:

.
(decimal point/full stop)

digits
or numbers in numerical order

AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz

space
! " # $ %
& ' () * + , - . / : ; < = > ? @ [|] ^ _ / { | } ~ ©

other
non printing characters

The
relationship of one string to another may be:

 	
 equal:

 	
 All
 characters or numbers are the same or equivalent

 	

 	

 	
 lesser:

 	
 The
 first part of the string, which is different from the corresponding character
 in the second string, is before it in the defined order.

 	

 	

 	
 greater:

 	
 Thefirst
 part of the first string which is different from the corresponding character
 in the second string, is after it in the defined order.

Note
that a '.' may be treated as a decimal point in the case of string comparison
which sorts numbers (such as SuperBASIC comparisons). Note also that comparison
of strings containing non-printable characters may give unexpected results.

types
of comparison

type
0 case dependent - character by character comparison

type
1 case independent - character by character

type
2 case dependent - numbers are sorted in numerical order

type
3 case independent - numbers are sorted in numerical order

type
0 not normally used by the SuperBASIC system.

usage

type
1 File and variable comparison

type
2 SuperBASIC <, <=, =, >= ,>, INSTR and <>

type
3 SuperBASIC == (equivalence)

SYNTAX DEFINITIONS

[bookmark: syntaxdefinitions]SuperBASlC syntax is defined using a
non-rigorous 'meta language' type notation. Four types of construction are used
:

 	

 	
 |
 | Select one of

 	

 	
 [
] Enclosed item(s) are optional

 	

 	
 *
 * Enclosed items are repeated

 	

 	

 	

 	
 ..
 Range

 	

 	

 	

 	
 {
 } Comment

 	

 	

 	

 	
 e.g.

 	
 |
 A | B |

 	
 A
 or B

 	

 	
 [
 A]

 	
 A
 is optional

 	

 	
 *
 A *

 	
 A
 is repeated

 	

 	
 A..Z

 	
 A,
 B, C, etc

 	

 	
 {this
 is a comment}

 	

Consider
a SuperBASIC identifier.

A
sequence of numbers, digits, underscores, starting with a letter and finishing
with an optional % or $

 	
 letter:=

 	
 |
 A..Z

 	

 	

 	
 |
 a..z

 	

 	

 	
 {a letter is one
 of:

 	
 ABCDEFGHIJKLMNOPQRSTUVWXYZ}

 	

 	
 or

 	
 abcdefghijklmnopqrstuvwxyz

 	

 	

 	

 	
 digit:
 =

 	
 |
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

 	

 	

 	
 Underscore:=

 	
 _

 	

 	
 {an
 underscore is _}

TURTLE GRAPHICS

[bookmark: turtle]SuperBASIC has a set of turtle graphics commands:

 	
 Command

 	
 Function

 	
 PENUP

 	
 stop
 drawing

 	
 PENDOWN

 	
 start
 drawing

 	
 MOVE

 	
 move
 the turtle

 	
 TURN

 	
 turn
 the turtle

 	
 TURNTO

 	
 turn
 to a specific heading

The
set of commands is the minimum and normally would be used within another

procedure
to expand on the commands. For example:

100 DEFine PROCedure forward(distance)

110 MOVE distance

120 END DEFine

130 DEFine PROCedure backwards(distance)

140 MOVE -distance

150 END DEFine

160 DEFine PROCedure left(angle)

170 TURN angle

180 END DEFine

190 DEFine PROCedure right(angle)

200 TURN -angle

210 END DEFine

These
will define some of the more famous turtle graphic commands.

Initially
the turtle's pen is up and the turtle is pointing at 0 degrees which is to the
right hand side of the window.

The
FILL command will also work with figures drawn with turtle graphics. Also ordinary
graphics and turtle graphics can be mixed, although the direction of the turtle
is not modified by the ordinary graphics commands.

WINDOWS

[bookmark: windows]Windows are areas of the screen which behave, in
most respects, as though each individual window was a screen in its own right,
i.e. the window will scroll when it has become filled by text, it can be
cleared with the CLS command, etc.

Windows
can be specified and linked to a channel when the channel is opened. The
current window shape can be changed with the WINDOW command and a border added
to a window with the BORDER command. Output can be directed to a window by
printing to the relevant channel. Input can be directed to have come from a
particular window by inputting from the relevant channel If more than one

channel
is ready for input then input can be switched between the ready channels by
pressing

[CTRL] C

The
cursor will flash in the selected window

Windows
can be used for graphics and non-graphic output at the same time. The non
graphic output is relative to the current cursor position which can be positioned
anywhere within the specified window with the CURSOR command and at any
line-column boundary with the AT command. The graphics output is relative to a
graphics cursor which can be positioned and manipulated with the graphics
procedures.

PARTS

Certain
commands (CLS, PAN etc.) will accept an optional parameter to define part of
the current window for their operation. This parameter is as defined below:

 	
 part

 	
 description

 	
 0

 	
 whole
 screen

 	
 1

 	
 above
 and excluding cursor line

 	
 2

 	
 bottom
 of screen excluding cursor line

 	
 3

 	
 whole
 of cursor line

 	
 4

 	
 line
 right of and including cursor

 	
 Command

 	
 Function

 	
 WINDOW

 	
 re-define
 a window

 	
 BORDER

 	
 take
 a border from a window

 	
 PAPER

 	
 define
 the paper colour for a window

 	
 INK

 	
 define
 the ink colour for a window

 	
 STRIP

 	
 define
 a strip colour for a window

 	
 PAN

 	
 pan
 a window's contents

 	
 SCROLL

 	
 scroll
 a window's contents

 	
 AT

 	
 position
 the print position

 	
 CLS

 	
 clear
 a window

 	
 CSIZE

 	
 set
 character size

 	
 FLASH

 	
 character
 flash

 	
 RECOL

 	
 recolour
 a window

image007.png
™

Stipple 0 Stipple 1 Stipple 2 Stipple 3

image008.png
| -0 o e [2

o | 0 () e— | 5

7 | -0) e— | 7

image005.png
not alvays e

possivle

foating point

integer

always possible

image006.png

image003.jpg

image001.png
sirci=ir

image004.jpg

image002.png
182

image009.png
con__wXhaxXy__k

Select Console Device
Underscore

Window Width
Separator

Height

Separator - read as AT
Window X coordinate
Separator

Window Y coordinate
Separator

fength of keyboard type
ahead buffer

image011.png
(7550)

(1020)

FILL1:LINE 10,20 T0 75,50 To 50,80

image010.png
100

©0) B

The Graphics Coordinate System

cover.jpeg
QL

User Guide

image022.png

image021.png
VoD
A14
A1

sLor
At
FOMOEH
A0
A5

D5

D3

image013.png
high byte
40=0

lowbyte
0:

6GGGGGGE|

RARRARAR

512 mode(high res)

GFGFGFGF

REABRBAE

256 mode lowres)

G—green

B blue

R

red Fil

image012.png
FFFFF

o000

40000

28000

20000

18000

ocooo

00000

RESERVED

RESERVED

Aa
96 Kbytes

A
S2Koyles

o

ROM
16Koytes

ROM
48Kbytes

expansion 0
addonRAM
mainRAM
screenRAM
aLio
PluginFOM
SysiemAOM

Physical Memory Map

image015.png
POWER o) RGB

T £ (groon)
3 compose. 1 (composite PAL)
monochvome)

4 (composite synch)

g
o eus, ® (olue)
—— i

5 (verical synah]
2 (ground)

image014.png
———tape loop.

ratex
ape toop wite protect lug

a Microdrive cartidge:

image017.png
©0) X (0512)

(256,0)

The Pixel Coordinate System

image016.png
VM2
VIN

J

B LT

BB EEE NN R LR EE NS EE S EE BB B R

|

GND
02

o1

00

ASL
DSL
ROWL
DTACKL.
BGL
BAL

ATS
RESETCPUL
CSYNCL.
E
VSYNCH
VPAL
GREEN
BLUE
FC2

FCt

FCo

0
FOMOEH
AT

2

SP3.
IPLOL
BERRL
IPLIL
EXTINTL
VIN

VIN

image019.png
FOR identifier = for__iist

stalements «—— exit

NEXT identiier____nex
epiogue

END FOR identifier -«

image018.png
SV_RAMT-1

SV_RESPR

SV_TRNSP

SV_BASIC

SV_FREE

Resident
procectures

L

Transint
programs.

4 iils

SuperBasic command
interpreter data
and
SuperBasic programs

fils

Fiing subsysiem
shve biock

SV_HEAP

Channess and ather
heap flms.

System tables
and

System Variatles

Display Memoy

fls

28000 Hex

QDS Memory Map

image020.png
REPeat identifier
statements
IF condiion THEN NEXT identifer

epiogue
END REPeat identifier

image024.png
pitch

time

image023.png
Monitor Television

image026.png
a

i o

e

pitch2

image025.png
pich

pitch2

image028.png
identifier = jetter *|ietter | cigit | underscore |* | % | § |

[——
with a leter

a sequence of letlers
digils and underscores
iie repeat something
which is optional

image027.png
iche
I il ”

pich

I =1 pren 1

Tme

