

 	

 	
 QL

 	
 Beginner’s
 Guide

© SINCLAIR RESEARCH LIMITED

By Roy Atherton (Bulmershe College Computer Centre)

INDEX

Chapter
1 - Starting Computing

Self
Test On Chapter 1

Chapter
2 - Instructing The Computer

Self
Test On Chapter 2

Problems
On Chapter 2

Chapter
3 - Drawing On The Screen

Self
Test On Chapter 3

Problems
On Chapter 3

Chapter
4 – Characters And Strings

Self
Test On Chapter 4

Problems
On Chapter 4

Chapter
5 - Known Good Practlce

Self
Test On Chapter 5

Problems
On Chapter 5

Chapter
6 – Arrays And For Loops

Self
Test On Chapter 6

Problems
On Chapter 6

Chapter
7 – Simple Procedures

Self
Test On Chapter 7

Problems
On Chapter 7

Chapter
8 – From Basic To Superbasic

Chapter
9 - Data Types Variables And Identifiers

Problems
On Chapter 9

Chapter 10 – Logic

Problems
On Chapter 10

Chapter 11 – Handling Text – Strings

Problems
On Chapter 11

Chapter 12 – Screen Output

Problems
On Chapter 12

Chapter 13 – Arrays

Problems
On Chapter 13

Chapter 14 – Program Structure

Problems
On Chapter 14

Chapter 15 – Procedures And Functions

Problems
On Chapter 15

Chapter 16 – Some Techniques

17 - Answers To Self Tests

Answers
To Self Test On Chapter 1

Answers
To Self Test On Chapter 2

Answers
To Self Test On Chapter 3

Answers
To Self Test On Chapter 4

Answers
To Self Test On Chapter 5

Answers
To Self Test On Chapter 6

Answers
To Self Test On Chapter 7

[bookmark: _CHAPTER_1_-]CHAPTER 1 - STARTING COMPUTING

THE
SCREEN

Your QL
should be connected to a monitor screen or TV set and switched on. Press a few
keys, say abc, and the screen should appear as shown below. The small flashing
light is called the cursor.

If your
screen does not look like this read the section entitled Introduction. This
should enable you to solve any difficulties.

THE
KEYBOARD

The QL
is a versatile and powerful computer so there are features of the keyboard
which you do not need yet. For the present we will explain just those items
which you need for this and the next six chapters.

BREAK

This
enables you to 'break' out of situations you do not like. For example:

a line which you have
decided to abandon

something wrong which
you do not understand

a running program
which has ceased to be of interest

any other problem

Because
BREAK is so powerful it has been made difficult to type accidentally.

Hold down CTRL and then press SPACE

If
nothing was added or removed from a program while it was halted with BREAK then
it can be restarted by typing:

CONTINUE

RESET

This is
not a key but a small push button on the right hand side of the QL. It is
placed here deliberately, out of the way, because its effects are more dramatic
than the break keys. If you cannot achieve what you need with the break keys
then press the RESET Button. This is almost the same as switching the computer
off and on again. You get a clean re-start.

SHIFT

There
are two SHIFT keys because they are used frequently and need to be
available to either hand.

Hold down one SHIFT
key and type some letter keys. You will get upper case (capital) letters.

Hold down one SHIFT
key and type some other key not a letter. You will get a symbol in an upper
position on the key.

Without a SHIFT
key you get lower case (small) letters or a symbol in a lower position on a
key.

CAPITALS
LOCK

This
key works like a switch Just press it once and only the letter keys will be
'locked' into a particular mode - upper case or lower case.

Type some letter keys.

Type the CAPS LOCK
key once.

Type some letter
keys.

You
will see that the mode changes and remains until you type the CAPS LOCK
key again.

SPACE
BAR

The
long key at the bottom of the keyboard gives spaces. This is a very important
key in SuperBASIC as you will see in chapter two.

RUBBING
OUT

The
left cursor together with the CTRL key acts like a rubber (eraser). You
must hold down the CTRL key while you press the cursor key. Each time
you then press both together the previous character is deleted.

ENTER

The
system needs to know when you have typed a complete message or instruction. When
you have typed something complete such as RUN you type the ENTER
key to enter it into the system for action.

Because
this key is needed so often we have used a special symbol for it:

Ã

We
shall use this for convenience, better presentation, and to save space. Test
the Ã (ENTER) key by
typing

PRINT "Correct" Ã

If you
made no mistakes the system will respond with

Correct

OTHER
KEYBOARD SYMBOLS OF IMMEDIATE USE

 	
 *

 	
 multiply

 	
 +

 	
 Add

 	
 _

 	
 underscore

 	
 =

 	
 becomes
 equal to (used in LET)

 	
 “

 	
 quotes

 	
 ‘

 	
 Apostrophe

 	
 ,

 	
 comma

 	
 !

 	
 Exclamation

 	
 ;

 	
 semi
 colon

 	
 &

 	
 Ampersand

 	
 :

 	
 colon

 	
 .

 	
 decimal
 point or full stop

 	
 \

 	
 backslash

 	
 $

 	
 Dollar

 	
 (

 	
 left
 bracket

 	
)

 	
 right
 bracket

UPPER
AND LOWER CASE

CLS Ã

Cls Ã

clS Ã

These
are all correct and have the same effect. Some keywords are displayed partly,
in upper case to show allowed abbreviations. Where a keyword cannot be abbreviated
it is displayed completely in upper case.

USE
OF QUOTES

The
usual use of quotes is to define a word or sentence – a string of characters.
Try:

PRINT “This works” Ã

The
computer will respond with:

This works

The
quotes are not printed but they indicate that some text is to be printed and
they define exactly what it is - everything between the opening and closing
quote marks. If you wish to use the quote symbol itself in a string of
characters then the apostrophe symbol can be used instead. For example:

PRINT 'The quote symbol is
"'

will
work and will print

The quote symbol is "

COMMON
TYPING ERRORS

The
zero key is with the other numeric digits at the top of the keyboard, and is
slightly

thinner.

The
letter 'O' key is amongst the other letters. Be careful to use the right
symbol.

Similarly
avoid confusion between one, amongst the digits, and the letter 'I' amongst the

letters
between one, amongst the digits, and the letter 'I' amongst the letters.

KEEP
SHIFT DOWN

When
using a SHIFT key hold it down while you type the other key so that the SHIFT
key makes contact before the other key and also remains in contact until after
the other key has lifted.

The
same rule applies to the control CTRL and alternate ALT keys which are used in conjunction
with others but you do not need those at present.

Type
the two simple instructions:

CLS Ã

PRINT 'Hello' Ã

Strictly
speaking these constitute a computer program, however it is the stored program that
is important in computing. The above instructions are executed instantly as you
type Ã (ENTER)

Now
type the program with line numbers:

10 CLS Ã

20 PRINT 'HELLO' Ã

This
time nothing happens externally except that the program appears in the upper
part of the screen This means that it is accepted as correct grammar or syntax.
It conforms to the rules of SuperBASIC, but it has not yet been executed,
merely stored. To make it work, type:

RUN Ã

The
distinction between direct commands for immediate action and a stored sequence of
instructions is discussed in the next chapter. For the present you can
experiment with the above ideas and two more:

LIST Ã

causes
an internally stored program to be displayed (listed) on the screen or
elsewhere.

NEW Ã

causes
an internally stored program to be deleted so that you can type in a NEW one.

[bookmark: _SELF_TEST_ON]SELF TEST ON CHAPTER 1

You can
score a maximum of 16 points from the following test. Check your score with the
answers page at the end of this Beginner's Guide.

1. In
what circumstances might you use the BREAK sequence?

2.
Where is the RESET button?

3. What
is the effect of the RESET button?

4. Name
two differences between a SHIFT key and the CAPS LOCK key.

5. How
can you delete a wrong character which you have just typed?

6. What
is the purpose of the ENTER key?

7. What
symbol do we use for the ENTER key?

What is
the effect of the commands in questions 8 to 11

8. CLS Ã

9. RUN Ã

10. LIST Ã

11. NEW Ã

12. Do
keywords have the proper effect if you type them in lower case?

13. What
is the significance of the parts of keywords which the QL displays in upper
case?

[bookmark: _CHAPTER_2_-]CHAPTER 2 - INSTRUCTING THE COMPUTER

Computers
need to store data such as numbers. The storage can be imagined as pigeon holes.

 	

 	

 	

 	

 	

 	

 	

 	

 	

Though
you cannot see them, you do need to give names to particular pigeon holes.
Suppose you want to do the following simple calculation.

A dog
breeder has 9 dogs to feed for 28 days, each at the rate of one tin of 'Beefo'
per day. Make the computer print (display on the screen) the required number of
tins.

One way
of solving this problem would require three pigeon holes for

number of dogs

number of days

total number of tins

SuperBASiC
allows you to choose sensible names for pigeon holes and you may choose as shown:

 	

 	
 dogs

 	

 	

 	
 days

 	

 	

 	
 tins

 	

You can
make the computer set up a pigeon hole name it, and store a number in it with a
single instruction or statement such as:

LET dogs = 9 Ã

This
will set up an internal pigeon hole named dogs, and place in it the number 9
thus:

 	

 	
 dogs

 	
 9

The
word LET has a special meaning to SuperBASIC. It is called a keyword.
SuperBASIC has many

other
keywords which you will see later. You must be careful about the space after LET
and other keywords. Because SuperBASIC allows you to choose pigeon hole names
with great freedom LETdogs would be a valid pigeon hole name.

The LET
keyword is optional In SuperBASIC and because of this statements like

LETdogs = 9 Ã

are
valid. This would refer to a pigeon hole called LETdogs

Just as
in English, names, numbers and keywords should be separated from each other by spaces
If they are not separated by special characters.

Even if
it were not necessary, a program line without proper spacing is bad style.
Machines with small memory size may force programmers into it, but that is not
a problem with the QL You can check that a pigeon hole exists internally by
typing:

PRINT dogs Ã

The
screen should display what is in the pigeon hole:

9

Again
be careful to put a space after PRINT.

To
solve the problem we can write a program which is a sequence of instructions or
statements. You can now understand the first two:

LET dogs = 9 Ã

LET days = 28 Ã

These
cause two pigeon holes to be set up, named, and given numbers or values. The
next instruction must perform a multiplication, for which the computer's symbol
is *, and place the result in a new pigeon hole called tins thus:

LET tins = dogs * days Ã

1. The
computer gets the values, 9 and 28, from the two pigeon holes named dogs and days

2. The
number 9 is multiplied by 28.

3. A
new pigeon hole is set up and named tins.

4. The
result of the multiplication becomes the value in the pigeon hole named tins.

All
this may seem elaborate but you need to understand the ideas, which are very important.

The
only remaining task is to make the computer print the result which can be done
by typing

PRINT tinsÃ

which
will cause the output:

252

to be
displayed on the screen.

In
summary the program:

LET dogs = 9

LET days = 28

LET tins = dogs * days

PRINT tins

causes
the internal effects best imagined as three named pigeon holes containing
numbers:

 	

 	
 dogs

 	
 9

 	
 x

 	
 days

 	
 28

 	
 =

 	
 tins

 	
 252

and the
output on the screen:

252

Of
course, you could achieve this result more easily with a calculator or a pencil
and paper You could do it quickly with the QL by typing:

PRINT 9 * 28 Ã

which
would give the answer on the screen. However the ideas we have discussed are the
essential starting points of programming in SuperBASIC. They are so essential
that they occur in many computer languages and have been given special names.

1.
Names
such as dogs, days and tins are called identifiers.

2.
A
single instruction such as:

LET dogs = 9 Ã

is
called a statement.

3.
The
arrangement of name and associated pigeon hole is called a variable. The
execution of the above statement stores the value 9 in the pigeon hole
'identified' by the Identifier dogs.

A
statement such as:

LET dogs = 9 Ã

is an
instruction for a highly dynamic internal process but the printed text is static
and it uses the = sign borrowed from mathematics. It is better to think or say
(but not type):

LET dogs become 9 Ã

and to
think of the process having a right to left direction (do not type this):

dogs ß 9

The use
of = in a LET statement is not the same as the use of = in mathematics. For
example, if another dog turns up you may wish to write:

LET dogs = dogs + 1 Ã

Mathematically
this is not very sensible but in terms of computer operations it is simple. If
the value of dogs before the operation was 9 then the value after the operation
would be 10. Test this by typing:

LET dogs = 9 Ã

PRINT dogs Ã

LET dogs = dogs + 1 Ã

PRINT dogs Ã

The
output should be:

9

10

proving
that the final value in the pigeon hole is as shown:

 	

 	
 dogs

 	
 9

A good
way to understand what is happening to the pigeon holes, or variables, is to do
what is called a "dry run". You simply examine each instruction in
turn and write down the values which result from each instruction to show how
the pigeon holes are set up and given values, and how they retain their values
as the program is executed.

LET dogs = 9 Ã

LET days = 28 Ã

LET tins = dogs * days Ã

PRINT tinsÃ

The
output should be

252

You may
notice that so far a variable name has always been used first on the left hand
side of a LET statement. Once the pigeon hole is set up and has a value, the
corresponding variable name can be used on the right hand side of a LET
statement.

Now
suppose you wish to encourage a small child to save money. You might give two
bars of chocolate for every pound saved. Suppose you try to compute this as
follows:

LET bars = pounds * 2 Ã

PRINT bars Ã

You
cannot do a dry run as the program stands because you do not know how many
pounds

have
been saved.

We have
made a deliberate error here in using pounds on the right of a LET statement without
it having been set up and give n some value. Your QL will search internally for
the variable "pounds". It will not find it, so it concludes that
there is an error in the program and gives an error message. If we had tried to
print out the value of "pounds", the QL would have printed a * to
indicate that "pounds" was undefined. We say that the variable pounds
has not been initialised (given an initial value). The program works properly
if you do this first.

 	

 	
 bars

 	

 	
 pounds

 	
 LET pounds =
 7 Ã

 	
 7

 	

 	

 	
 LET bars =
 pounds * 2 Ã

 	
 7

 	

 	
 14

The
program works properly and gives the output:

14

A
STORED PROGRAM

Typing
statements without line numbers may produce the desired result but there are two
reasons why this method, as used so far, is not satisfactory except as a first introduction.

1. The program can only
execute as fast as you can type. This is not very impressive for a machine that
can do millions of operations per second.

2. The individual
instructions are not stored after execution so you cannot run the program again
or correct an error without re-typing the whole thing.

Charles
Babbage, a nineteenth century computer pioneer knew that a successful computer
needed to store instructions as well as data in internal pigeon holes. These instructions
would then be executed rapidly in sequence without further human intervention.

The
program instructions will be stored but not executed if you use line numbers. Try
this:

10 LET price = 15 Ã

20 LET pens = 7 Ã

30 LET cost = price * pens Ã

40 PRINT cost Ã

Nothing
happens externally yet, but the whole program is stored internally. You make it
work by typing:

RUN Ã

and the
output:

105

should
appear.

The
advantage of this arrangement is that you can edit or add to the program with

minimal
extra typing.

EDITING
A PROGRAM

Later
you will see the full editing features of SuperBASIC but even at this early
stage you can do three things easily:

replace a line

insert a new line

delete a line

Replace
a line

Suppose
you wish to alter the previous program because the price has changed to 20p for
a pen. Simply re-type line 10.

10 LET price = 20 Ã

This
line will replace the previous line 10. Assuming the other lines are still
stored, test

the
program by typing:

RUN Ã

and the
new answer, 140, should appear.

Insert
a new line

Suppose
you wish to insert a line just before the last one, to print the words 'Total
Cost.' This situation often arises so we usually choose line numbers 10, 20, 30
... to allow space to insert extra lines.

To put
in the extra line type

35 PRINT "Total Cost" Ã

and it
will be inserted just before line 40. The system allows line numbers in the
range 1 to 32768 to allow plenty of flexibility in choosing them. It is
difficult to be quite sure in advance what changes may be needed.

Now
type:

RUN Ã

and the
new output should be:

Total cost

140

Delete
Line

You can
delete line 35 by typing:

35 Ã

It is
as though an empty line has replaced the previous one.

OUTPUT-
PRINT

Note
how useful the PRINT statement is. You can PRINT text by using quotes or apostrophes:

PRINT "Chocolate bars" Ã

You can
print the values of variables (contents of pigeon holes) by typing statements such
as:

PRINT bars Ã

without
using quotes.

You
will see later how very versatile the PRINT statement can be in SuperBASIC. It
will enable you to place text or other output on the screen exactly where you
want it. But for the present these two facilities are useful enough:

printing of text

printing values of
variables (contents of pigeon holes).

INPUT-
INPUT, READ AND DATA

A
carpet-making machine needs wool as input. It then makes carpets according to
the current design.

If the
wool is changed you may get a different carpet.

The
same sort of relations exist in a computer.

However,
if the data is input into pigeon holes by means of LET there are two
disadvantages when you get beyond very trivial programs:

writing LET
statements is laborious

changing such input
is also laborious

You can
arrange for data to be given to a program as it runs. The INPUT statement will cause
the program to pause and wait for you to type in something at the keyboard. First
type:

NEW Ã

so that
the previous stored program (if it is still there) will be erased ready for
this new one. Now type:

10 LET price = 15 Ã

20 PRINT "How many pens?" Ã

30 INPUT pens Ã

40 LET cost = price * pens Ã

50 PRINT cost Ã

RUN Ã

The
program pauses at line 30 and you should type the number of pens you want, say:

4 Ã

Do not
forget the ENTER key. The output will be:

60

The INPUT
statement needs a variable name so that the system knows where to put the data
which comes in from your typing at the keyboard. The effect of line 30 with
your typing is the same as a LET statement's effect. It is more
convenient for some purposes when interaction between computer and user is
desirable. However, the LET statement and the INPUT statement are
useful only for modest amounts of data. We need something else to handle larger
amounts of data without pauses in the execution of the program.

SuperBASIC,
like most BASICs, provides another method of input known as READing from
DATA statements. We can retype the above program in a new form to give
the same effects without any pauses. Try this:

NEW Ã

10 READ price, pens Ã

20 LET cost = price * pens Ã

30 PRINT cost Ã

40 DATA 15, 4 Ã

RUN Ã

The
output should be:

60

as
before.

Each
time the program is run, SuperBASIC needs to be told where to start reading DATA
from. This can either be done by typing RESTORE followed by the DATA
line number or by typing CLEAR. Both these commands can also be inserted
at the start of the programs.

When
line 10 is executed the system searches the program for a DATA
statement. It then uses the values in the DATA statement for the
variables in the READ statement in exactly the same order. We usually
place DATA statements at the end of a program. They are used by the
program but they are not executed in the sense that every other line is
executed in turn. DATA statements can go anywhere in a program but they
are best at the end, out of the way. Think of them as necessary to, but not
really part of, the active program. The rules about READ and DATA
are as follows:

1. All DATA
statements are considered to be a single long sequence of items. So far these
items have been numbers but they could be words or letters.

2. Every time a READ
statement is executed the necessary items are copied from the DATA
statement into the variables named in the READ statement.

3. The system keeps
track of which items have been READ by means of an internal record. If a
program attempts to READ more items than exist in all the DATA
statements an error will be signalled.

IDENTIFIERS
(NAMES)

You
have used names for 'pigeon holes' such as "dogs", "bars".
You may choose words like these according to certain rules:

A name cannot include
spaces.

A name must start
with a letter.

A name must be made
up from letters, digits, $, %, _ (underscore)

The symbols $,
% have special purposes, to be explained later, but you can use the underscore
to make names such as:

dog_food

month_wage_total

more readable.

SuperBASIC does not
distinguish between upper and lower case letters, so names like TINS and
tins are the same.

The maximum number of
characters in a name is 255.

Names
which are constructed according to these rules are called identifiers.
Identifiers are used for other purposes in SuperBASIC and you need to
understand them. The rules allow great freedom in choice of names so you can
make your programs easier to understand. Names like total, count, pens
are more helpful than names like Z, P, Q.

[bookmark: _SELF_TEST_ON_1]SELF TEST ON CHAPTER 2

You can
score a maximum of 21 points from this test Check your score with the answers
in "Answers To Self Test" section at the end of this Beginner's
Guide.

1. How should you imagine
an internal number store?

2. State two ways of
storing a value in an internal 'pigeon hole' to be created (two points)

3. How can you find out
the value of an internal 'pigeon hole'?

4. What is the usual
technical name for a 'pigeon hole'?

5. When does a pigeon
hole get its first value?

6. A variable is so
called because its value can vary as a program is executed. What is the usual
way of causing such a change?

7. The = sign in a LET
statement does not mean 'equals' as in mathematics. What does it mean?

8. What happens when you
ENTER an unnumbered statement?

9. What happens when you
ENTER a numbered statement?

10. What is the purpose
of quotes in a PRINT statement?

11. What happens when you
do not use quotes in a PRINT statement?

12. What does an INPUT
statement do which a LET statement does not?

13. What type of program
statement is never executed?

14. What is the purpose
of a DATA statement?

15. What is another word
for the name of a pigeon hole (or variable)?

16. Write down three
valid identifiers which use letters, letters and digits, letters and underscore
(three points)

17. Why is the space bar
especially important in SuperBASlC?

18. Why are freely chosen
identifiers important in programming?

[bookmark: _PROBLEMS_ON_CHAPTER]PROBLEMS ON CHAPTER 2

1. Carry out a dry run
to show the values of all variables as each line of the following program is
executed:

10 LET hours = 40 Ã

20 LET rate = 31 Ã

30 LET wage = hours * rate Ã

40 PRINT hours, rate, wage Ã

2. Write and test a
program, similar to that of problem 1, which compute s the area of a carpet is
3 metres in width and 4 metres in length. Use the variable names: width,
length, area.

3. Re-write the program
of problem 1 so that it uses two INPUT statements instead of LET
statements.

4. Re write the program
of problem 1 so that the input data (40 and 3) appears in a DATA statement
instead of a LET statement.

5. Re write the program
of problem 2 using a different method of data input. Use READ and DATA
if you originally used LET and vice-versa.

6. Bill and Ben agree to
have a gamble. Each will take out of his wallet all the pound notes and give
them to the other. Write a program to simulate this entirely with LET
and PRINT statements. Use a third person, Sue, to hold Bill's money
while he accepts Ben's.

7. Re-write the program
of problem 6 so that a DATA statement holds the two numbers to be exchanged.

[bookmark: _CHAPTER_3_-]CHAPTER 3 - DRAWING ON THE SCREEN

In
order to use either a television set or monitor with the QL, two different
screen modes are available. MODE 8 permits eight colour displays with a
graphics resolution of 256 by 256 pixels and large characters for display on a
television set. MODE 4 allows four colours with a resolution of 512 by 256
pixels and a maximum of eighty character lines for which a monitor must be used
for successful display. However, it would be unfortunate if a program was
written to draw circles or squares in one mode and produced ellipses or rectangles
in another mode (as some systems do). We therefore provide a system of scale graphics
which avoids these problems. You simply choose a vertical scale and work to it.
The other type of graphics (pixel oriented) is also available and is described
fully in a later chapter.

Suppose,
for example, that we choose a vertical scale of 100 and we wish to draw a line from
position (50,60) to position (70,80).

A
COLOURED LINE

We need
to specify three things:

PAPER (background colour)

INK (drawing colour)

LINE (start and end
points)

The
followingprogram will draw a line as shown in the above figure in red (colour
code 2) on a white (colour code 7) background.

NEW Ã

10 PAPER 7 : CLS Ã

20 INK 2 Ã

30 LINE 50,60 TO 70,80 Ã

RUN Ã

In line
10 the paper colour is selected first but it only comes into effect with a
further command, such as CLS, meaning clear the screen to the current
paper colour.

MODES
AND COLOURS

So far
it does not matter which screen mode you are using but the range of colours is
affected by the choice of mode.

MODE 8 allows eight
basic colours

MODE 4 allows four
basic colours

Colours
have codes as described below.

 	
 Code

 	
 Effect

 	

 	
 8 colour

 	
 4 colour

 	
 0

 	
 black

 	
 black

 	
 1

 	
 blue

 	
 black

 	
 2

 	
 red

 	
 red

 	
 3

 	
 magenta

 	
 red

 	
 4

 	
 green

 	
 green

 	
 5

 	
 cyan

 	
 green

 	
 6

 	
 yellow

 	
 white

 	
 7

 	
 white

 	
 white

For
example, INK 3 would give magenta in MODE 8 and red in MODE 4.

We will
explain in a later chapter how the basic colours can be 'mixed' in various ways
to produce a startling range of colours, shades and textures.

RANDOM
EFFECTS

You can
get some interesting effects with random numbers which can be generated with
the RND function. For example:

PRINT RND (1 TO 6)
Ã

will
print a whole number in the range 1 to 6, like throwing an ordinary six-sided
dice. The following program will illustrate this:

NEW Ã

10 LET die = RND(1 TO 6) Ã

20 PRINT die Ã

RUN Ã

If you
run the program several times you will get different numbers.

You can
get random whole numbers in any range you like. For example:

RND(0 TO 100)

will
produce a number which can be used in scale graphics. You can re-write the line
program so that it produces a random colour. Where the range of random numbers starts
from zero you can omit the first number and write:

RND(100)

NEW Ã

10 PAPER 7 : CLS Ã

20 INK RND(5) Ã

30 LINE 50,60 TO RND(100),RND(100) Ã

RUN Ã

This
produces a line starting somewhere near the centre of the screen and finishing at
some random point. The range of possible colours depends on which mode is
selected. You will find that a range of numbers ‘something TO something’ occurs
often in SuperBASIC.

BORDERS

The
part of the screen in which you have drawn lines and create other output is
called a window. Later you will see how you can change the size and position of
a window or create other windows. For the present we shall be content to draw a
border round the current window. The smallest area of light or colour you can
plot on the screen is called a pixel. In mode 8, called low resolution mode,
there are 256 possible pixel positions across the screen and 256 down. In mode
4, called high resolution mode, there are 512 pixels across the screen and 256
down. Thus the size of a pixel depends on the mode.

You can
make a border round the inside edge of a window by typing for example:

BORDER 4,2 Ã

This
will create a border 4 pixels wide in colour red (code 2). The effective size
of the window is reduced by the border. This means that any subsequent printing
or graphics will automatically fit within the new window size. The only
exception to this is a further border which will overwrite the existing one.

A
SIMPLE LOOP

Computers
can do things very quickly but it would not be possible to exploit this great power
if every action had to be written as an instruction. A building foreman has a
similar problem. If he wants a workman to lay a hundred paving stones that is
roughly what he says. He does not give a hundred separate instructions.

A
traditional way of achieving looping or repetition in BASIC is to use a GO
TO (or GOTO, they are the same) statement as follows.

NEW Ã

10 PAPER 6 : CLS Ã

20 BORDER 1,2 Ã

30 INK RND(5) Ã

40 LINE 50,60 TO RND(100),RND(100) Ã

50 GOTO 30 Ã

RUN Ã

You may
prefer not to type in this program because SuperBASIC allows a better way of doing
repetition. Note certain things about each line.

 	
 10

 	
 Fixed
 part – not repeatd

 	
 20

 	
 30

 	
 Changeable
 part – repeated

 	
 40

 	
 50

 	
 Controls
 program

You can
re-write the above program by omitting the GOTO statement and, instead,
putting REPeat and END REPeat around the part to be repeated.

NEW Ã

10 PAPER 6 : CLS Ã

20 BORDER 1,2 Ã

30 REPEAT star Ã

40 INK RND(5) Ã

50 LINE 50,60 TO RND(100),RND(100) Ã

60 END REPEAT star Ã

RUN Ã

We have
given the repeat structure a name, star. The structure consists
of the two lines:

REPeat star

END REPeat star

and
what lies between them is called the content of the structure. The use of upper
case letters indicates that REP is a valid abbreviation of REPeat.

This
program should produce coloured lines indefinitely to make a star as shown in
the figure below.

The STAR program

You can
stop it by pressing the break keys:

Hold down CTRL and
then press SPACE .

SuperBASIC
provides a consistent and versatile method of stopping repetitive processes.

Imagine
running round and round inside the program activating statements. How can

you
escape? The answer is to use an EXIT statement. But there must be some
reason

for
escaping. You might extend the choice of line colours by typing as an amendment

to the
program (do not type NEW):

40 INK RND (0 TO 6) Ã

so that
if RND produces 6 the ink is the same colour as the paper and you will
not see

it.
This could be the reason for terminating the repetition. We can re-arrange the

program
as follows:

NEW Ã

10 PAPER 6 : CLS Ã

20 BORDER 1 ,2 Ã

30 REPeat star Ã

40 LET colour = RND(6) Ã

50 IF colour = 6 THEN EXIT star Ã

60 INK colour Ã

70 LINE 50,60 TO RND(100),RND(100) Ã

80 END REPeat star Ã

The
important thing to note here is that the program continues until
"colour" becomes 6. Control then escapes from the loop to the point
just after line 80. Since there are no program lines after 80 the program
stops.

Another
important concept has been introduced. It is the idea of a decision.

IF colour = 6 THEN EXIT star

This is
another very useful structure because it is a choice of doing something or not;
we call it a simple binary decision. Its general form is:

IF condition THEN statement(s)

You
will see later how the two concepts of repetition (or looping) and
decision-making (or selection) are the main structures for program control. You
can stop the program by pressing the break keys: hold down CTRL and then
press the space bar.

[bookmark: _SELF_TEST_ON_2]SELF TEST ON CHAPTER 3

You can
score a maximum of 13 points from the following test. Check your score with the
answers on Page 107 - in the "Answers to self test" section at the
end of this Beginner's Guide.

1.
What
is a pixel?

2.
How
many pixels fit across the screen in the low resolution mode?

3.
How
many pixels fit from bottom to top in low resolution mode?

4.
What
are the two numbers which determine the 'address' or position of a graphics
point on the screen?

5.
How
many colours are available in the low resolution mode?

6.
Name
the keywords which do the following:

i.
draw
a line

ii.
select
a colour for drawing

iii.
iii
select a background colour

iv.
draw
a border (5 points)

7.
What
are the statements which open and close the REPeat loop?

8.
When
does an executing REPeat loop terminate?

9.
Why
do loops in SuperBASIC have names?

[bookmark: _PROBLEMS_ON_CHAPTER_1]PROBLEMS ON CHAPTER 3

1.
Write
a program to draw straight lines all over the screen. The lines should be of
random length and direction. Each should start where the previous one finished
and each should have a randomly chosen colour.

2.
Write
a program to draw lines randomly with the restriction that each line has a
random start on the left hand edge of the screen.

3.
Write
a program to draw lines randomly with the restriction that the lines start at
the same point on the bottom edge of the screen.

4.
Write
a program to produce lines of random length, starting points and colour. All
lines must be horizontal.

5.
As
problem 4 but make the lines vertical.

6.
Write
a program to produce a square 'spiral' in such a way that each line makes a
random colour

HINT: First find the
co-ordinates of some of the corners, then put them in groups of four. You
should discover a pattern.

[bookmark: _CHAPTER_4_–]CHAPTER 4 – CHARACTERS AND STRINGS

Teachers
sometimes wish to assess the reading ability needed for particular books or classroom
materials. Various tests are used and some of these compute the average lengths
of words and sentences. We will introduce ideas about handling words or character
strings by examining simple approaches to finding average word lengths.

We are
talking about sequences of letters, digits or other symbols which may or may
not be words. That is why the term 'character string' has been invented. It is
usually abbreviated to string. Strings are handled in ways similar to
number handling but, of course, we do not do the same operations on them. We do
not multiply or subtract strings. We join them, separate them, search them and
generally manipulate them as we need.

NAMES AND PIGEON HOLES FOR
STRINGS

You can
create pigeon holes for strings. You can put character strings into pigeon
holes and use the information just as you do with numbers. If you intend to
store (not all at once) words such as:

FIRST SECOND THIRD

and

JANUARY FEBRUARY MARCH

you may
choose to name two pigeon holes:

 	

 	
 weekday$

 	

 	

 	
 month$

 	

Notice
the dollar sign. Pigeon holes for strings are internally different from those
for numbers and SuperBASIC needs to know which is which. All names of string
pigeon holes must end with $. Otherwise the rules for choosing names are
the same as the rules for the names of numeric pigeon holes.

You may
pronounce:

weekday$ as weekdaydollar

month$ as monthdollar

The LET
statement works in the same way as for numbers. If you type:

LET weekday$ = "FIRST" Ã

an
internal pigeon hole, named weekday$ will be set up with the value FIRST
in it thus:

 	

 	
 weekday$

 	
 FIRST

The
quote marks are not stored. They are used in the LET statement to make it absolutely
clear what is to be stored in the pigeon hole. You can check by typing:

PRINT weekday$ Ã

and the
screen should display what is in the pigeon hole:

FIRST

You can
use a pair of apostrophes instead of a pair of quote marks.

LENGTHS
OF STRINGS

SuperBASIC
makes it easy to find the length or number of characters of any string. You simply
write, for example:

PRINT LEN(weekday$) Ã

If the
pigeon hole, weekday$, contains FIRST the number 5 will be displayed. You can
see the effect in a simple program:

NEW Ã

10 LET weekday$ = "FIRST" Ã

20 PRINT LEN(weekday$) Ã

RUN Ã

The
screen should display:

5

LEN is a keyword of
SuperBASIC

An
alternative method of achieving the same result uses both a string pigeon hole
and a numeric pigeon hole.

NEW Ã

10 LET weekday$ = "FIRST" Ã

20 LET length = LEN(weekday$) Ã

30 PRINT length Ã

RUN Ã

The
screen should display:

5

as
before, and two internal pigeon holes contain the values shown:

 	

 	
 weekday$

 	
 FIRST

 	

 	
 length

 	
 5

Let us
return to the problem of average lengths of words.

Write a
program to find the average length of the three words:

FIRST, OF, FEBRUARY

PROGRAM
DESIGN

When
problems get beyond what you regard as very trivial, it is a good idea to
construct a program design before writing the program itself

1. Store the three words
in pigeon holes.

2. Compute the lengths
and store them.

3. Compute the average.

4. Print the result.

NEW Ã

10 LET weekday$ = "FIRST" Ã

20 LET word$ = "OF" Ã

30 LET month$ = "FEBRUARY" Ã

40 LET length1 = LEN (weekday$) Ã

50 LET length2 = LEN (word$) Ã

60 LET length3 = LEN (month$) Ã

70 LET sum = length1 + length2 + length3 Ã

80 LET average = sum/3 Ã

90 PRINT average Ã

RUN Ã

The
symbol / means divided by. The output or result of running the
program is simply:

5

And
there are eight internal pigeon holes involved:

 	
 weekday$

 	
 FIRST

 	

 	
 length1

 	
 5

 	

 	

 	

 	

 	

 	
 word$

 	
 OF

 	

 	
 length2

 	
 2

 	

 	

 	

 	

 	

 	
 month$

 	
 FEBRUARY

 	

 	
 length3

 	
 3

 	

 	

 	

 	

 	

 	

 	

 	

 	
 sum

 	
 15

 	

 	

 	

 	

 	

 	

 	

 	

 	
 average

 	
 5

If you
think that is a lot of fuss for a fairly simple problem you can certainly
shorten it. The shortest version would be a single line but it would be less
easy to read. A reasonable compromise uses the symbol "&" which
stands for the operation:

Join two strings

Now
type:

NEW Ã

10 LET weekday$ = "FIRST" Ã

20 LET word$ = "OF" Ã

30 LET month$ = "FEBRUARY" Ã

40 LET phrase$ = weekday$ & word$ & month$ Ã

50 LET length = LEN(phrase$) Ã

60 PRINT length/3 Ã

RUN Ã

The
output is 5 as before but there are some different internal effects:

 	
 Weekday$

 	
 FIRST

 	
 Length

 	
 15

 	

 	

 	

 	

 	
 Word$

 	
 OF

 	

 	

 	

 	

 	

 	

 	
 Month

 	
 FEBRUARY

 	

 	

 	

 	

 	

 	

 	
 Phrase$

 	
 FIRSTOFFEBRUARY

 	

 	

There
is one more reasonable simplification which is to use READ and DATA instead of
the first three LET statements. Type:

NEW Ã

10 READ weekday$, word$, month$ Ã

20 LET phrase$ = weekday$ & word$ & month$ Ã

30 LET length = LEN(phrase$) Ã

40 PRINT length/3 Ã

50 DATA
"FIRST","OF","FEBRUARY" Ã

RUN Ã

The
internal effects of this version are exactly the same as those of the previous
one. READ causes the setting up of internal pigeon holes with values in
them in a similar way to LET.

IDENTIFIERS
AND STRING VARIABLES

Names
of pigeon holes, such as:

weekday$

word$

month$

phrase$

are
called string identifiers. The dollar signs imply that the pigeon holes
are for character strings. The dollar must always be at the end.

Pigeon
holes of this kind are called string variables because they contain only
character strings which may vary as a program runs.

The
contents of such pigeon holes are called values. Thus words like 'FIRST' and
'OF' may be values of string variables named weekday$ and +word$

RANDOM
CHARACTERS

You can
use character codes (see Concept Reference Guide) to generate random letters. The
upper case letters A to Z have the codes 65 to 90. The function CHR$ converts
these codes into letters. The following program will print a letter B.

NEW Ã

10 LET lettercode = 66 Ã

20 PRINT CHR$ (lettercode) Ã

RUN Ã

The
following program will generate trios of letters A, B, or C until the word CAB
is spelled

accidentally.

NEW Ã

10 REPeat taxi

20 LET first$ = CHR$(RND(65 TO 67))

30 LET second$ = CHR$(RND(65 TO 67))

40 LET third$ = CHR$(RND(65 TO 67))

50 LET word$ = first$ & second$ & third$

60 PRINT ! word$!

70 IF word$ = "CAB" THEN EXIT taxi

80 END REPeat taxi

Random
characters, like random numbers or random points are useful for learning to program.
You can easily get interesting effects for program examples and exercises.

Note
the effect the ! … ! have on the spacing of the output.

[bookmark: _SELF_TEST_ON_3]SELF TEST ON CHAPTER 4

You can
score a maximum of 10 points from the following test. Check your score with the
answers in the "Answers To Self Tests" section at the end of this
Beginner's Guide.

1. What is a character
string?

2. What is the usual
abbreviation of the term, 'character string'?

3. What distinguishes
the name of a string variable?

4. How do some people
pronounce a word such as 'word$'?

5. What keyword is used
to find the number of characters in a string?

6. What symbol is used
to join two strings?

7. Spaces can be part of
a string. How are the limits of a string defined?

8. When a statement such
as:

LET meat$ =
"steak"

is executed, are the
quotes stored?

9. What function will turn
a suitable code number into a letter?

10. How can you generate
random upper case letters?

[bookmark: _PROBLEMS_ON_CHAPTER_2]PROBLEMS ON CHAPTER 4

1. Store the words
'Good' and 'day' in two separate variables. Use a LET statement to join the
values of the two variables in a third variable. Print the result.

2. Store the following
words in four separate pigeon holes:

light let be there

Join the words to
make a sentence adding spaces and a full stop. Store the whole sentence in a
variable, sent$, and print the sentence and the total number of
characters it contains.

3. Write a program which
uses the keywords:

CHR$ RND(65 TO 90))

to generate one
hundred random three letter words. See if you have accidentally generated any
real English words. Test the effects of:

a) ; at the end of a
PRINT statement.

b) ! on either side of
item printed.

[bookmark: _CHAPTER_5_-]CHAPTER 5 - KNOWN GOOD PRACTlCE

You
have already begun to work effectively with short programs. You may have found the
following practices are helpful:

1.
Use
of lower case for identifiers: names of variables (pigeon holes) or repeat
structures, etc.

2.
Indenting
of statements to show the content of a repeat structure.

3.
Well
chosen identifiers reflecting what a variable or repeat structure is used for.

4.
Editing
a program by:

replacing a line

inserting a line

deleting a line

PROGRAMS
AS EXAMPLES

You
have reached the stage where it is helpful to be able to study programs to
learn from them and to try to understand what they do. The mechanics of
actually running them should now be well understood and in the following
chapters we will dispense with the constant repetition of:

NEW before each program

Ã at the
end of each line

RUN to start each program

You
will understand that you should use all these features when you wish to enter
and run a program. But their omission in the text will enable you to see the
other details more clearly as you try to imagine what the program will do when
it runs.

If we
dispense with the above details we may use and understand programs more easily without
the technical clutter. For example, the following program generates random
upper case letters until a Z

appears.
It does not show the words NEW or RUN or the ENTER symbol
but you still need

to use
these.

10 REPeat letters

20 LET lettercode = RND(65 TO 90)

30 cap$ = CHR$(lettercode)

40 PRINT cap$

50 IF cap$ = "Z" THEN EXIT letters

60 END REPeat letters

In this
and subsequent chapters programs will be shown without ENTER symbols.
Direct commands will also be shown without ENTER symbols. But you must
use these keys as usual. You must also remember to use NEW and RUN
as necessary

AUTOMATIC
LINE NUMBERING

It is
tedious to enter line numbers manually. Instead you can type:

AUTO

before
you start programming and the QL will reply with a line number:

100

Continue
typing lines until you have finished your program when the screen will show:

100 PRINT "First"

110 PRINT "Second"

120 PRINT "End"

To
finish the automatic production of line numbers use the BREAK sequence:

Hold down the CTRL
and press the SPACE bar. This will produce the message:

130 not complete

and
line 130 will not be included in your program.

If you
make a mistake which does not cause a break from automatic numbering, you can
continue and EDIT the line later. If you want to start at some
particular line number say 600, and use an increment other than 10 you can
type, for an increment of 5:

AUTO 600,5

Lines
will then be numbered 600, 605, 610, etc.

To
cancel AUTO, press CTRL and the SPACE bar at the same
time.

EDITING
A LINE

To edit
a line simply type EDIT followed by the line number for example:

EDIT 110

The
line will then be displayed with the cursor at the end thus:

110 PRINT "Second"

You can
move the cursor using:

ß one
place left

à one
place right

To
delete a character to the left use:

CTRL with ß

To
delete the character in the cursor position type:

CTRL with à

and the
character to the right of the cursor will move up to close the gap.

USING
MICRODRIVE CARTRIDGES

Before
using a new Microdrive cartridge it must be formatted. Follow the instructions
in the Introduction. The choice of name for the cartridge follows the
same rules as SuperBASIC identifiers, etc. but limited to only 10 characters.
It is a good idea to write the name of the cartridge on the cartridge itself
using one of the supplied sticky labels. You should always keep at least one
back-up copy of any program or data. Follow the instructions in the Information
section of the User Guide.

WARNING

If you
FORMAT a cartridge which holds programs and/or data,

ALL the
programs and/or data will be lost

SAVING
PROGRAMS

The
following program sets borders, 8 pixels wide, in red (code 2), in three
windows designated #0, #1, #2.

100 REMark Border

110 FOR k = 0 TO 2 : BORDER #k,8,2

You can
save it on a microdrive by inserting a cartridge and typing:

SAVE mdv1_bord

The
program will be saved in a Microdrive file called "bord".

CHECKING
A CARTRIDGE

If you
want to know what programs or data files are on a particular cartridge place it
in Microdrive 1 and type:

DIR mdv1_

The
directory will be displayed on the screen. If the cartridge is in Microdrive 2
then type instead:

DIR mdv2_

COPYING
PROGRAMS AND FILES

Once a
program is stored as a file on a Microdrive cartridge it can be copied to other
files. This is one way of making a backup copy of a Microdrive cartridge. You
might copy all the previous programs, and similar commands for other programs,
onto another cartridge in Microdrive 2 by typing:

COPY mdv1_bord TO mdv2_bord

DELETING
A CARTRIDGE FILE

A file
is anything, such as a program or data, stored on a cartridge. To delete a
program called "prog" you type:

DELETE mdv1_prog

LOADING
PROGRAMS

A
program can be loaded from a Microdrive cartridge by typing:

LOAD mdv2_bord

If the
program loads correctly it will prove that both copies are good. You can test
the program by using:

LIST to list it.

RUN to run it.

Instead
of using LOAD followed by RUN you can combine the two operations in one command.

LRUN mdv2_bord

The
program will load and execute immediately.

MERGING
PROGRAMS

Suppose
that you have two programs saved on Microdrive 1 as "prog1" and
"prog2".

100 PRINT "First"

110 PRINT "Second"

If you
type:

LOAD mdv1_prog1

followed
by:

MERGE mdv1_prog2

The two
programs will be merged into one. To verify this, type LIST and you should see:

100 PRINT "First"

110 PRINT "Second"

If you
MERGE a program make sure that all its line numbers are different from the program
already in main memory. Otherwise it will overwrite some of the lines of the first
program. This facility becomes very valuable as you become proficient in
handling procedures. It is then quite natural to build a program up by adding
procedures or functions to it.

GENERAL

Be
careful and methodical with cartridges. Always keep one back-up copy and if you
suspect any problem with a cartridge or microdrive keep a second back-up copy. Computer
professionals very rarely lose data. They know that even with the best machines
or devices there will be occasional faults and they allow for this.

If you
want to call a program by a particular name, say, square, it may be a good idea
to use names like sq1, sq2... for preliminary versions. When the program is in
its final form take at least two copies called square and the others may be
deleted by re-formatting or by some more selective method.

[bookmark: _SELF_TEST_ON_4]SELF TEST ON CHAPTER 5

You can
score a maximum of 14 points from the following test. . Check your score with
the answers in the "Answers To Self Tests" section at the end of this
Beginner's Guide.

1. Why are lower case
letters preferred for program words which you choose?

2. What is the purpose
of indenting?

3. What should normally
guide your choice of identifiers for variables and loops?

4. Name three ways of
editing a program in the computer's main memory (three points).

5. What should you
remember to type at the end of every command or program line when you enter it?

6. What should you
normally type before you enter a program at the keyboard?

7. What must be at the
beginning of every line to be stored as part of a program?

8. What must you
remember to type to make a program execute?

9. What keyword enables
you to put into a program information which has no effect on the execution?

10. Which two keywords
help you to store programs on and retrieve from cartridges? (two points).

[bookmark: _PROBLEMS_ON_CHAPTER_3]PROBLEMS ON CHAPTER 5

1. Re-write the
following program using lower case letters to give a better presentation. Add
the words NEW and RUN. Use line numbers and the ENTER
symbol just as you would to enter and run a program. Use REMark to give
the program a name.

LET TWO$ = "TWO"

LET FOUR$ = "FOUR"

LET SIX$ = TWO$ & FOUR$

PRINT LEN(six$)

Explain how two and
four can produce 7.

2. Use indenting, lower
case letters, NEW, RUN, line numbers and the ENTER symbol to show how you would
actually enter and run the following program:

REPEAT LOOP

LETTER_CODE = RND(65 TO 90)

LET LETTERS$ =
CHR$(LETTER_CODE)

PRINT LETTER$

IF LETTER$ = 'Z' THEN EXIT
LOOP

END REPEAT LOOP

3. Re-write the following
program in better style using meaningful variable names and good presentation.
Write the program as you would enter it:

LET S = O

REPeat TOTAL

LET N = RND(1 TO 6)

PRINT ! N !

LET S = S + N

IF n = 6 THEN EXIT TOTAL

END REPeat TOTAL

PRINT S

 Decide
what the program does and then enter and run it to check your decision.

[bookmark: _CHAPTER_6_–]CHAPTER 6 – ARRAYS AND FOR LOOPS

WHAT
IS AN ARRAY

You
know that numbers or character strings can become values of variables. You can picture
this as numbers or words going into internal pigeon holes or houses. Suppose for
example that four employees of a company are to be sent to a small village,
perhaps because oil has been discovered. The village is one of the few places
where the houses only have names and there are four available for rent. All the
house names end with a dollar symbol.

Westlea$ Lakeside$
Roselawn$ Oaktree$

The
four employees are called:

 	

 	
 VAL

 	

 	
 HAL

 	

 	
 MEL

 	

 	
 DEL

They
can be placed in the houses by one of two methods.

Program
1:

100 LET westlea$ = "VAL"

110 LET lakeside$ = "HAL"

120 LET roselawn$ = "MEL"

130 LET oaktree$ = "DEL"

140 PRINT ! westlea$! lakeside$! roselawn$!
oaktree$

Program
2:

100 READ westlea$, lakeside$, roselawn$, oaktree$

110 PRINT ! westlea$! lakeside$! roselawn$!
oaktree$

120 DATA "VAL", "HAL",
"MEL", "DEL"

 	

 	
 Westlea$

 ↓

 VAL

 	

 	
 Lakeside$

 ↓

 HAL

 	

 	
 Roselawn$

 ↓

 MEL

 	

 	
 Oaktree$

 ↓

 DEL

As the
amount of data gets larger the advantages of READ and DATA over LET
become greater. But when the data gets really numerous the problem of finding names
for houses gets as difficult as finding vacant houses in a small village.

The
solution to this and many other problems of handling data lies in a new type of
pigeon hole or variable in which many may share a single name. However, they
must be distinct so each variable also has a number like numbered houses in the
same street. Suppose that you need four vacant houses in High Street numbered 1
to 4. In SuperBASIC we say there is an array of four houses. The name of
the array is high_st$ and the four houses are to be numbered 1 to 4.

But you
cannot just use these array variables as you can ordinary (simple)variables.
You have to declare the dimensions (or size) of the array first. The computer
allocates space internally and it needs to know how many string variables
there are in the array and also the maximum length of each string variable.
You use a DIM statement thus:

DIM high_st$(4, 3)

 | |

 | ------ maximum length of string

 |

 --------- number of string variables

After
the DIM statement has been executed the variables are available for use. It is
as though the houses have been built but are still empty. The four 'houses'
share a common name, high_st$, but each has its own number and each can hold
up to three characters.

There
are five programs below which all do the same thing: they cause the four
'houses' to be 'occupied' and they PRINT to show that the 'occupation'
has really worked. The final method uses only four lines but the other four
lead up to it in a way which moves all the time from known ideas to new ones or
new uses of old ones. The movement is also towards greater economy.

If you
understand the first two or three methods perfectly well you may prefer to move
straight onto methods 4 and 5. But if you are in any doubt, methods 1, 2 and 3
will help to clarify things.

Program
1

100 DIM high_st$(4,3)

110 LET high_st$(l) = "VAL"

120 LET high_st$(2) = "HAL"

130 LET high_st$(3) = "MEL"

140 LET high st$(4) = "DEL"

150 PRINT ! high_st$(1) ! high st$(2) !

160 PRINT ! high_st$(3) ! high-st$(4) !

Program
2

100 DIM high st$(4,3)

110 READ
high_st$(1),high_st$(2),high_st$(3),high_st$(4)

120 PRINT ! high_st$(1) ! high_st$(2) !

130 PRINT ! high_st$(3) ! high_st(4) !

140 DATA "VAL","HAL","MEL","DEL"

This
shows how to economise on variable names but the constant repeating of high_st$
is both tedious and the cause of the cluttered appearance of the programs. We
can, again, use a known technique - the REPeat loop to improve things
further. We set up a counter, number, which increases by one as the REPeat
loop proceeds.

Program
3

100 RESTORE 190

110 DIM high_st$(4,3)

120 LET number = 0

130 REPeat houses

140 LET number = number + 1

150 READ high_st$(number)

160 IF num = 4 THEN EXIT houses

170 END REPeat houses

180 PRINT high_st$(1) ! high_st$(2) ! high_st$(3) !
high_st$(4)

190 DATA
"VAL","HAL","MEL","DEL"

:

This
special type of loop, in which something has to be done a certain number of
times, is well known. A special structure, called a FOR loop, has been
invented for it. In such a loop the count from 1 to 4 is handled automatically.
So is the exit when all four items have been handled.

Program
4

100 RESTORE 160

110 DIM high_st$(4,3)

120 FOR number = 1 TO 4

130 READ high_st$(number)

140 PRINT ! high_st$(number) !

150 END FOR number

160 DATA
"VAL","HAL","MEL","DEL"

The
output from all four programs is the same:

VAL HAL MEL DEL

Which
proves that the data is properly stored internally in the four array variables:

 	
 high_st$

 	
 VAL

 	

 	
 HAL

 	

 	
 MEL

 	

 	
 DEL

Method
4 is clearly the best so far because it can deal equally well with 4 or 40 or 400
items by just changing the number 4 and adding more DATA items. You can
use as many DATA statements as you need.

In its
simplest form the FOR loop is rather like the simplest form of REPeat
loop. The two can be compared:

 	
 100 REPeat greeting

 110 PRINT 'Hello"

 120 END REPeat greeting

 	
 100 FOR greeting = 1 TO 40

 110 PRINT 'Hello"

 120 END FOR greeting

Both
these loops would work. The REPeat loop would print 'Hello' endlessly
(stop it with the BREAK sequence) and the FOR loop would print
'Hello' just forty times.

Notice
that the name of the FOR loop is also a variable, greeting, whose
value varies from 1 to 40 in the course of running the program. This variable
is sometimes called the loop variable or the control variable of
the loop.

Note
the structure of both loops takes the form:

Opening statement

 Content

Closing statement

However
certain structures have allowable short forms for use when there are only one or
a few statements in the content of the loop. Short forms of the FOR loop
are allowed so we could write the program in the most economical form of all:

Program
5:

100 RESTORE 140 : CLS

110 DIM high st$(4,3)

120 FOR number = 1 TO 4 : READ high_st$(number)

130 FOR number = 1 TO 4 : PRINT ! high_st$(number) !

140 DATA "VAL", "HAL",
"MEL", "DEL"

Colons
serve as end of statement symbols instead of ENTER and the ENTER
symbols of lines 120 and 130 serve as END FOR statements.

There
is an even shorter way of writing the above program. To print out the contents of
the array high_st$ we can replace line 130 by:

130 PRINT ! high_st$!

This
uses an array slicer which we will discuss later in chapter 13.

We have
introduced the concept of an array of string variables so that the only numbers
involved would be the subscripts in each variable name. Arrays may be string or
numeric and the following examples illustrate the numeric array.

Program
1:

Simulate
the throwing of a pair of dice four hundred times. Keep a record of the number of
occurrences of each possible score from 2 to 12.

100 REMark DICE1

110 LET two = 0 :three = 0:four = 0:five = 0:six = 0

120 LET seven = 0:eight = 0:nine = 0:ten = 0 :eleven
= 0:twelve = 0

130 FOR throw = 1 TO 400

140 LET die1 = RND(1 TO 6)

150 LET die2 = RND(1 TO 6)

160 LET score = die1 + die2

170 IF score = 2 THEN LET two = two + 1

180 IF score = 3 THEN LET three = three + 1

190 IF score = 4 THEN LET four = four + 1

200 IF score = 5 THEN LET five = five + 1

21O IF score = 6 THEN LET six = six + 1

220 IF score = 7 THEN LET seven = seven + 1

230 IF score = 8 THEN LET eight = eight + 1

240 IF score = 9 THEN LET nine = nine + 1

250 IF score = 10 THEN LET ten = ten + 1

26O IF score = 11 THEN LET eleven = eleven + 1

270 IF score = 12 THEN LET twelve = twelve + 1

280 END FOR throw

290 PRINT ! two ! three ! four ! five ! six

300 PRINT ! seven ! eight ! nine ! ten ! eleven !
twelve

In the above program we establish eleven simple variables
to store the tally of the scores. If you plot the tallies printed at the end
you find that the bar chart is roughly triangular. The higher tallies are for
scores six, seven, eight and the lower tallies are for 2 and 12. As every dice
player knows, the reflects the frequency of the middle range of scores (six,seven,eight)
and the rarity of twos or twelves.

100 REMark Dice2

110 DIM tally(12)

120 FOR throw = 1 TO 400

130 LET die_1 = RND(1 TO 6)

140 LET die_2 = RND(1 TO 6)

150 LET score = die_1 + die_2

160 LET tally(score) = tally(score) + 1

170 END FOR throw

180 FOR number = 2 TO 12 : PRINT tally(number)

In the first FOR loop, using throw, the subscript
of the array variable is score. This means that the correct array
subscript is automatically chosen for an increase in the tally after each
throw. You can think of the array, tally, as a set of pigeon-holes numbered
2 to 12. Each time a particular score occurs the tally of that score is increased
by throwing a stone into the corresponding pigeon hole.

In the second (short form) FOR loop, the subscript
is number. As the value of number changes from 2 to 12 all the
values of the tallies are printed.

Notice that in the DIM statement for a numeric
array you need only declare the number of variables required. There is no
question of maximum length as there is in a string array.

If you have used other versions of BASIC you may wonder
what has happened to the NEXT statement. All SuperBASIC structures end
with END something. That is consistent and sensible but the NEXT
statement has a part to play as you will see in later chapters.

[bookmark: _SELF_TEST_ON_5]SELF TEST ON CHAPTER 6

You can score a maximum of 16 points from the following
test. Check your score with the answers in the "Answers To Self
Tests" section at the end of this Beginner's Guide.

1.
Mention two
difficulties which arise when the data needed for a program becomes numerous
and you try to handle it without arrays (two points).

2.
If, in an array,
ten variables have the same name then how do you know which is which?

3.
What must you do
normally in a program, before you can use an array variable?

4.
What is another
word for the number which distinguishes a particular variable of an array from
the other variables which share its name?

5.
Can you think of
two ideas in ordinary life which correspond to the concept of an array in
programming?(two points)

6.
In a REPeat loop,
the process ends when some condition causes an EXIT statement to be executed.
What causes the process in a FOR loop to terminate?

7.
A REPeat loop
needs a name so that you can EXIT to its END properly. A FOR loop also has a
name, but what other function does a FOR loop name have?

8.
What are the two
phrases which are used to describe the variable which is also the name of a FOR
loop?(two points)

9.
The values of a
loop variable change automatically as a FOR loop is executed. Name one possible
important use of these values.

10.
Which of the
following do the long form of REPeat loops and the long form of FOR loops have
in common? For each of the four items either say that both have it or which
type of loop has it.

1.
An opening keyword
or statement.

2.
A closing keyword
or statement.

3.
A loop name.

4.
A loop variable or
control variable. (four points)

[bookmark: _PROBLEMS_ON_CHAPTER_4]PROBLEMS ON CHAPTER 6

1.
Use a FOR
loop to place one of four numbers 1,2,3,4 randomly in five array variables:

card(1),
card(2), card(3), card(4), card(5)

It does not matter if some of the four numbers are
repeated. Use a second FOR loop to output the values of the five card
variables.

2.
Imagine that the
four numbers 1,2,3,4 represent 'Hearts', 'Clubs', 'Diamonds', 'Spades'. What
extra program lines would need to be inserted to get output in the form of
these words instead of numbers?

3.
Use a FOR
loop to place five random numbers in the range 1 to 13 in an array of five variables:

card(1),
card(2) card(3), card(4) and
card(5)

Use a second FOR loop to output the values of the
five card variables.

4.
Imagine that the
random numbers generated in problem 1 represent cards. Write down the extra
statements that would cause the following output:

 	
 Number

 	
 Output

 	
 1

 	
 the word ‘Ace’

 	
 2 to 10

 	
 the actual number

 	
 11

 	
 the word ‘Jack’

 	
 12

 	
 the word ‘Queen’

 	
 13

 	
 the word ‘King’

[bookmark: _CHAPTER_7_–]CHAPTER 7 – SIMPLE PROCEDURES

If you were to try to write computer programs to solve
complex problems you might find it difficult to keep track of things. A
methodical problem solver therefore divides a large or complex job into smaller
sections or tasks, and then divides these tasks again into smaller
tasks, and so on until each can be be easily tackled.

This is similar to the arrangement of complex human
affairs. Successful government depends on a delegation of responsibility. The
Prime Minister divides the work amongst ministers, who divide it further
through the Civil Service until tasks can be done by individuals without
further division. There are complicating features such as common services and
interplay between the same and different levels, but the hierarchical structure
is the dominant one.

A good programmer will also work in this way and a modern
language like SuperBASIC which allows properly named, well defined procedures
will be much more helpful than older versions which do not have such features.

The idea is that a separately named block of code should
be written for a particular task. It doesn't matter where the block of code is
in the program. If it is there somewhere,the use of its name will:

activate
the code

return
control to the point in the program immediately after that use.

If a procedure, square, draws a square the scheme
is as shown below:

In practice the separate tasks within a job can be
identified and named before the definition code is written. The name is all
that is needed in calling the procedure so the main outline of the program can
be written before all the tasks are defined.

Alternatively if it is preferred, the tasks can be
written first and tested. If it works you can then forget the details and just
remember the name and what the procedure does.

Example

The following example could quite easily be written
without procedures but it shows they can be used in a reasonably simple
context. Almost any task can be broken down in a similar fashion which means
that you never have to worry about more than, say five to thirty lines at any
one time. If you can write thirty-line programs well and handle procedures,
then you have the capability to write three-hundred-line programs.

You can produce ready made buzz phrases for politicians
or others who wish to give an impression of technological fluency without
actually knowing anything. Store the following words in three arrays and then
produce ten random buzz phrases.

 	
 adjec1$

 	
 adjec2$

 	
 noun$

 	
 Full

 	
 fifth-generation

 	
 systems

 	
 Systematic

 	
 knowledge-based

 	
 machines

 	
 Intelligent

 	
 compatible

 	
 computers

 	
 Controlled

 	
 cybernetic

 	
 feedback

 	
 Automated

 	
 user-friendly

 	
 transputers

 	
 Synchronised

 	
 parallel

 	
 micro-chips

 	
 Functional

 	
 learning

 	
 capability

 	
 Optional

 	
 adaptable

 	
 programming

 	
 Positive

 	
 modular

 	
 packages

 	
 Balanced

 	
 structured

 	
 databases

 	
 Integrated

 	
 logic-oriented

 	
 spreadsheets

 	
 Coordinated

 	
 file-oriented

 	
 word-processors

 	
 Sophisticated

 	
 Standardised

 	
 objectives

ANALYSIS

We will write a program to produce ten buzzword phrases.
The stages of the program are:

1
Store the words in
three string arrays.

2
Choose three
random numbers which will be the subscripts of the array variables.

3
Print the phrase.

4
Repeat 2 and 3 ten
times.

DESIGN - VARIABLES

We identify three arrays of which the first two will
contain adjectives or words used as adjectives - describing words. The third
array will hold the nouns. There are 13 words in each section and the longest
word has 16 characters including a hyphen.

 	
 Array

 	
 Purpose

 	
 adjec1$(13,12)

 	
 first adjectives

 	
 adjec2$(13,16)

 	
 second adjectives

 	
 noun$(13,15)

 	
 nouns

DESIGN – PROCEDURES

We use three procedures to match the jobs identified.

store_data - stores the three sets of thirteen
words.

get_random - gets three random numbers in range
1 to 13.

make_phrase - prints a phrase.

DESIGN - MAIN PROGRAM

This is very simple because the main work is done by the
procedures.

Declare
(DIM) the arrays

Store_data

FOR ten phrases

get_random

make_phrase

END

DESIGN - PROGRAM

100 REMark ************

110 REMark * Buzzword *

120 REMark ************

130 DIM adjec1$(13,12),
adjec2$(13,16), noun$(13,15)

140 store_data

150 FOR phrase = 1 TO 10

160 get_random

170 make_phrase

180 END FOR phrase

190 REMark

200 REMark * Procedure
Definitions *

210 REMark

220 DEFine PROCedure
store_data

230 REMark *** procedure to
store the buzzword data ***

240 RESTORE 420

250 FOR item = 1 TO 13

260READ adjec1$(item),
adjec2$(item), noun$(item)

270 END FOR item

280 END DEFine

290 DEFine PROCedure
get_random

300 REMark *** procedure to
select the phrase ***

310 LET ad1 = RND(1 TO 13)

320 LET ad2 = RND(1 TO 13)

330 LET n = RND(1 TO 13)

340 END DEFine

350 DEFine PROCedure
make_phrase

360 REMark *** procedure to
print out the phrase ***

370 PRINT ! adjec!$(ad1) !
adjec2$(ad2) ! noun$(n)

380 END DEFine

390 REMark ****************

400 REMark * Program Data *

410 REMark ****************

420 DATA "Full",
"fifth-generation", "systems"

430 DATA
"Systematic", "knowledge-based", "machines"

440 DATA
'Intelligent","compatible", "computers"

450 DATA
"Controlled", "cybernetic", "feedback"

460 DATA
"Automated", "user-friendly", "transputers"

470 DATA
"Synchronised", "parallel", "micro-chips"

480 DATA
"Functional", "Learning", "capability'

490 DATA
"Optional", "adaptable", "programming"

500 DATA "Positive"
, "modular" , "packages"

510 DATA "Balanced"
, "structured", "databases"

520 DATA
"Integrated", "logic-oriented", "spreadsheets"

530 DATA
"Coordinated", "file-oriented", "word-processors"

540 DATA
"Sophisticated", "standardised", "objectives"

Automated fifth-generation
capability

Functional learning packages

Full parallel objectives

Positive user-friendly
spreadsheets

Intelligent file-oriented
capability

Synchronised cybernetic
transputers

Functional logic-oriented
micro-chips

Positive parallel feedback

Balanced learning databases

Controlled cybernetic
objectives

PASSING INFORMATION TO PROCEDURES

Suppose we wish to draw squares of various sizes and
various colours in various positions on the scale graphics screen.

If we define a procedure, "square", to do this
it will require four items of information:

length of one side

colour (colour code)

position (across and up)

The square's position is determined by giving two values,
across and up, which fix the bottom left hand corner of the square as shown
below.

The colour of the square is easily fixed but the square itself
uses the values of side and ac and up as follows.

200 DEFine PROCedure square(side,ac,up)

210 LINE ac,up TO ac+side,up

220 LINE TO ac+side,up+side

230 LINE TO ac,up+side TO ac,up

240 END DEFine

In order to make this procedure work values of side,
ac and up must be provided. These values are provided when the
procedure is called. For example you could add the following main program to
get one green square of side 20.

100 PAPER 7:CLS

110 INK 4

120 square 20,50,50

The numbers 20,50,50 are called parameters and they are
passed to the variables named in the procedure definition thus:

The numbers 20,50,50 are called actual parameters.
They are numbers in this case but they could be variables or expressions. The
variables side, ac, up are called formal parameters. They must be
variables because they 'receive' values.

A more interesting main program uses the same procedure
to create a random pattern of coloured pairs of squares. Each pair of squares
is obtained by offsetting the second one across and up by one-fifth of the side
length thus:

Assuming that the procedure square is still
present at line 200 then the following program

will have the classical effect.

100 REMark Squares Pattern

110 PAPER 7 : CLS

120 FOR pair = 1 TO 20

130 INK RND(5)

140 LET side = RND(10 TO 20)

150 LET ac = RND(50) : up = RND(70)

160 square side,ac,up

170 LET ac=ac+side/5 : up = up+side/5

180 square side,ac,up

190 END FOR pair

The advantages of procedures are:

1.
You can use the
same code more than once in the same program or in others.

2.
You can break down
a task into sub-tasks and write procedures for each sub-task. This helps the
analysis and design.

3.
Procedures can be
tested separately. This helps the testing and debugging.

4.
Meaningful
procedure names and clearly defined beginnings and ends help to make a program
readable.

When you get used to properly named procedures with good
parameter facilities, you should find that your problem-solving and programming
powers are greatly enhanced.

[bookmark: _SELF_TEST_ON_6]SELF TEST ON CHAPTER 7

You can
score a maximum of 14 points from the following test. Check your score with the
"Answers To Self Tests" section at the back of this Beginner's Guide.

1. How do we normally
tackle the problem of great size and complexity in human affairs?

2. How can this
principle be applied in programming?

3. What are the two most
obvious features of a simple procedure definition? (two points)

4. What are the two main
effects of using a procedure name to 'call' the procedure? (two points)

5. What is the advantage
of using procedure names in a main program before the procedure definitions are
written?

6. What is the advantage
of writing a procedure definition before using its name in a main program?

7. How can the use of
procedures help a 'thirty-line-programmer' to write much bigger programs?

8. Some programs use
more memory in defining procedures, but in what circumstances do procedures
save memory space?

9. Name two ways by
which information can be passed from main program to a procedure. (two points)

10. What is an actual
parameter?

11. What is a formal
parameter?

[bookmark: _PROBLEMS_ON_CHAPTER_5]PROBLEMS ON CHAPTER 7

1. Write a procedure
which outputs one of the four suits: 'Hearts', 'Clubs: 'Diamonds' or 'Spades'.
Call the procedure five times to get five random suits.

2. Write another program
for problem 1 using a number in the range 1 to 4 as a parameter to determine
the output word. If you have already done this, then try writing the program
without parameters.

3. Write a procedure
which will output the value of a card that is a number in the range 2 to 10 or
one of the words 'Ace', 'Jack' 'Queen', 'King'.

4. Write a program which
calls this procedure five times so that five random values are output.

5. Write the program of
problem 3 again using a number in the range 1 to 13 as a parameter to be passed
to the procedure. If this was the method you used first time, then try writing
the program without parameters.

6. Write the most
elegant program you can, using procedures, to output four hands of five cards
each. Do not worry about duplicate cards. You can take elegance to mean an
appropriate mixture of readability shortness and efficiency. Different people
and/or different circumstances will place different importance on these three
qualities which sometimes work against each other.

[bookmark: _CHAPTER_8_–]CHAPTER 8 – FROM BASIC TO SUPERBASIC

If
you are familiar with one of the earlier versions of BASIC you may find it
possible to omit the first seven chapters and use this chapter instead as a
bridge between what you know already and the remaining chapters. If you do this
and still find areas of difficulty. it may be helpful to backtrack a little
into some of the earlier chapters.

If
you have worked through the earlier chapters this one should be easy reading.
You may find that, as well as introducing some new ideas, it gives an
interesting slant on the way BASIC is developing. Apart from its program
structuring facilities SuperBASIC also pushes forward the frontiers of good
screen presentation, editing, operating facilities and graphics. In short it is
a combination of user-friendliness and computing power which has not existed
before.

So,
when you make the transition from BASIC to SuperBASIC you are moving not only
to a more powerful, more helpful language, you are also moving into a
remarkably advanced computing environment.

We
will now discuss some of the main features of SuperBASIC and some of the
features which distinguish it from other BASICs.

ALPHABETIC
COMPARISONS

The
usual simple arithmetic comparisons are possible. You can write:

LET pet1$ = "CAT"

LET pet2$ = "DOG"

IF pet1$ < pet2$ THEN PRINT "Meow"

The
output will be Meow because in this context the symbol < means:

earlier
(nearer to A in the alphabet)

SuperBASIC
makes comparisons sensible. For example you would expect:

'cat'
to come before 'DOG'

and

'ERD98L'
to come before 'ERD746L'

A
simplistic approach, blindly using internal character coding, would give the
'wrong' result in both the above cases but try the following program which
finds the 'earliest' of two character strings.

100 INPUT item1$, item2$

110 IF item1$ < item2$ THEN PRINT item1$

120 IF item1$ = item2$ THEN PRINT "Equal"

130 IF item1$ > item2$ THEN PRINT item2$

 	
 INPUT

 	
 OUTPUT

 	
 cat

 	
 dog

 	
 cat

 	
 cat

 	
 DOG

 	
 cat

 	
 ERD98L

 	
 ERD746L

 	
 ERD98L

 	
 ABC

 	
 abc

 	
 ABC

The
Concept Reference Guide section will give full details about the way
comparisons of strings are made in SuperBASIC.

VARIABLES
AND NAMES - IDENTIFIERS

Most
BASICs have numeric and string variables. As in other BASICs the distinguishing
feature of a string variable name in SuperBASIC is the dollar sign on the end.
Thus:

 	
 numeric:

 	
 count

 	

 	
 string:

 	
 word$

 	

 	
 sum

 	

 	

 	
 high_st$

 	

 	
 total

 	

 	

 	
 day_of_week$

You
may not have met such meaningful variable names before though some of the more recent
BASICs do allow them. The rules for identifiers in SuperBASIC are given in the Concept
Reference Guide. The maximum length of an identifier is 255 characters. Your
choice of identifiers is a personal one. Sometimes the longer ones are more
helpful in conveying to the human reader what a program should do. But they
have to be typed and, as in ordinary English, spade is more sensible
than horticultural earth-turning implement. Shorter words are preferred
if they convey the meaning but very short words or single letters should be
used sparingly. Variable names like X, Z, P3, Q2 introduce a level of
abstraction which most people find unhelpful.

INTEGER
VARIABLES

SuperBASIC
allows integer variables which take only whole-number values. We
distinguish these with a percentage sign thus:

count%

number%

nearest_pound%

There
are now two kinds of numeric variable. We call the other type, which can take whole
or fractional values, floating point. Thus you can write:

LET price = 9

LET cost = 7.31

LET count% = 13

But
if you write:

LET count% = 5.43

the
value of count% will become 5. On the other hand:

LET count% = 5.73

will
cause the value of count% to be 6. You can see that SuperBASIC does the
best it can, rounding off to the nearest whole number.

COERCION

The
principle of always trying to be intelligently helpful,rather than give an
error message or do something obviously unwanted, is carried further. For
example, if a string variable mark$ has the value

'64'

then:

LET score = mark$

will
produce a numeric value of 64 for score. Other versions of BASIC would be
likely to halt and say something like:

'Type mis-match'

or 'Nonsense in BASIC'

If
the string cannot be converted then an error is reported.

LOGICAL
VARIABLES AND SIMPLE PROCEDURES

There
is one other type of variable in SuperBASIC, or rather the SuperBASIC system
makes it seem so. Consider the SuperBASIC statement:

IF windy THEN fly_kite

In
other BASICs you might write:

IF w=1 THEN GOSUB 300

In
this case w=1 is a condition or logical expression which is either true
or false. If it is true then a subroutine starting at line 300 would be
executed. This subroutine may deal with kite flying but you cannot tell from
the above line. A careful programmer would write:

IF w=1 THEN GOSUB 300 : REM fly_kite

to
make it more readable. But the SuperBASIC statement is readable as it stands.
The identifier windy is interpreted as true or false though it is
actually a floating point variable. A value of 1 or any non-zero value is taken
as true. Zero is taken as false. Thus the single word, windy, has
the same effect as a condition of logical expression.

The
other word, fly_kite, is a procedure. It does a job similar to, but
rather better than, GOSUB 300.

The
following program will convey the idea of logical variables and the simplest
type of named procedure.

100 INPUT windy

110 IF windy THEN fly_kite

120 IF NOT windy THEN tidy_shed

130 DEFine PROCedure fly_kite

140 PRINT "See it in the air."

150 END DEFine

160 DEFine PROCedure tidy_shed

170 PRINT "Sort out rubbish."

180 END DEFine

 	
 INPUT

 	
 OUTPUT

 	
 0

 	
 Sort
 out rubbish

 	
 1

 	
 See
 it in the air

 	
 2

 	
 See
 it in the air

 	
 -2

 	
 See
 it in the air

You
can see that only zero is taken as meaning false. You would not normally write procedures
with only one action statement, but the program illustrates the idea and syntax
in a very simple context. More is said about procedures later in this chapter.

LET
STATEMENTS

In
SuperBASIC LET is optional but we use it in this manual so that there
will be less chance of confusion caused by the two possible uses of =.
The meanings of = in:

LET count = 3

and
in

IF count = 3 THEN EXIT

are
different and the LET helps to emphasise this. However if there are two
or a few LET statements doing some simple job such as setting initial
values, an exception may be made.

For
example:

100 LET first = 0

110 LET second = 0

120 LET third = 0

may
be re-written as

100 LET first = 0 : second = 0 : third = 0

without
loss of clarity or style. It is also consistent with the general concept of allowing
short forms of other constructions where they are used in simple ways.

The
colon : is a valid statement terminator and may be used with other statements besides
LET.

THE
BASIC SCREEN

In
a later chapter we will explain how other graphics facilities, such as drawing
circles, can be handled but here we outline the pixel-oriented features. There
are two modes which may be activated by any of the following:

 	
 Low
 resolution

 	

 	
 MODE
 256

 MODE
 8

 	
 8
 Colour Mode

 	

 	
 256
 pixels across, 256 down

 	

 	

 	

 	

 	
 High
 resolution

 	

 	
 MODE
 512

 MODE
 4

 	
 4
 Colour Mode

 	

 	
 512
 pixels across, 256 down

 	

In
both modes pixels are addressed by the range of numbers:

0 - 511 across

and
0 - 255 down

Since
mode 8 has only half the number of pixels across the screen as mode 4, mode 8 pixels
are twice as wide as mode 4 pixels and so in mode 8 each pixel can be specified
by two coordinates. For example:

0
or 1 2 or 3 510 or 511

It
also means that you use the same range of numbers for addressing pixels
irrespective of the mode. Always think 0-511 across and 0-255 down.

If
you are using a television then not all the pixels may be visible.

The
colours available are:

 	
 MODE
 256

 	
 Code

 	
 MODE
 512

 	
 Black

 	
 0

 	
 Black

 	
 Blue

 	
 1

 	

 	
 Red

 	
 2

 	
 Red

 	
 Magenta

 	
 3

 	

 	
 Green

 	
 4

 	
 Green

 	
 Cyan

 	
 5

 	

 	
 Yellow

 	
 6

 	
 white

 	
 white

 	
 7

 	

You
may find the following mnemonic helpful in remembering the codes:

Bonny Babies Really Make Good Children, You Wonder

In
the high resolution mode each colour can be selected by one of two
codes. You will see later how a startling range of colour and stipple (texture)
effects can be produced if you have a good quality colour monitor.

Some
of the screen presentation keywords are as follows:

 	
 INK colour

 	
 foreground
 colour

 	

 	

 	
 BORDER width, colour

 	
 draw
 border at edge of screen or window

 	

 	

 	
 PAPER colour

 	
 background
 colour

 	

 	

 	
 BLOCK width, height,
 across, down, colour

 	
 colour
 a rectangle which has its top left hand corner at position across, down

SCREEN
ORGANISATION

When
you switch on your QL the screen display is split into three areas called windows
as shown below. Note that in order to fit these windows into the area covered
by a television screen, some pixels around the border are not used in Television
mode.

The
windows are identified by #0, #1 and #2 so that you can relate various effects
to particular windows. For example:

CLS

will
clear window #1 (the system chooses) so if you want the left hand area cleared
you must type:

CLS #2

If you
want a different paper (background colour) type for green:

PAPER 4 : CLS

or

PAPER #2,4 : CLS #2

If you
want to clear window #2 to the background colour green.

The
numbers #0, #1 and #2 are called channel numbers. In this particular
case they enable you to direct certain effects to the window of your choice.
You will discover later that channel numbers have many other uses but for the
moment note that all of the following statements may have a channel number. The
third column shows the default channel - the one chosen by the system if you do
not specify one.

Note
that windows may overlap. If you use a TV screen the system automatically
overlaps windows #1 and #2 so that more character positions per line are
available for program listings.

 	
 KEYWORD

 	
 EFFECT

 	
 DEFAULT

 	

 	

 	

 	
 AT

 	
 Character
 position

 	
 #1

 	
 BLOCK

 	
 Draws
 block

 	
 #1

 	
 BORDER

 	
 Draw
 border

 	
 #1

 	
 CLS

 	
 Clear
 screen

 	
 #1

 	
 CSIZE

 	
 Character
 size

 	
 #1

 	
 CURSOR

 	
 Position
 cursor

 	
 #1

 	
 FLASH

 	
 Causes/cancels
 flashing

 	
 #1

 	
 INK

 	
 Foreground
 colour

 	
 #1

 	
 OVER

 	
 Effect
 of printing and graphics

 	
 #1

 	
 PAN

 	
 Moves
 screen sideways

 	
 #1

 	
 PAPER

 	
 Background
 colour

 	
 #1

 	
 RECOL

 	
 Changes
 colour

 	
 #1

 	
 SCROLL

 	
 Moves
 screen vertically

 	
 #1

 	
 STRIP

 	
 Background
 for printing

 	
 #1

 	
 UNDER

 	
 Underlines

 	
 #1

 	
 WINDOW

 	
 Changes
 existing window

 	
 #1

 	
 LIST

 	
 Lists
 program

 	
 #2

 	
 DIR

 	
 Lists
 directory

 	
 #1

 	
 PRINT

 	
 Prints
 characters

 	
 #1

 	
 INPUT

 	
 Takes
 keyboard input

 	
 #1

 	

 	

 	

Statements
or direct commands appear in window #0.

For
more details about the syntax or use of these keywords see other parts of the manual.

RECTANGLES
AND LINES

The
program below draws a green rectangle in 256 mode on red paper with a yellow border
one pixel wide. The rectangle has its top left corner at pixel co-ordinates
100,100 (see QL Concepts). Its width is 80 units across (40 pixels) and
its height is 20 units down (20 pixels).

100 REMark Rectangle

110 MODE 256

120 BORDER 1,6

130 PAPER 2 : CLS

140 BLOCK 80,20,100,100,4

You
have to be a bit careful in mode 256 because across values range from 0 to 511
even though there are only 256 pixels. We cannot say that the block produced by
the above program is 80 pixels wide so we say 80 units.

INPUT
AND OUTPUT

SuperBASIC
has the usual LET, INPUT, READ and DATA statements
for input. The PRINT statement handles most text output in the usual way
with the separators:

 	
 ,

 	
 tabulates
 output

 	
 ;

 	
 just
 separates - no formatting effect

 	
 \

 	
 forces
 new line

 	
 !

 	
 normally
 provides a space but not at the start of line. If an item will not fit at the
 end of a line it performs a new line operation.

 	
 TO

 	
 Allows
 tabulation to a designated column position.

You
will be familiar with two types of repetitive loop exemplified as follows:

(a) Simulate 6 throws of
an ordinary six-sided die

100 FOR throw = 1 TO 6

110 PRINT RND(1 TO 6)

120 NEXT throw

(b) Simulate throws of a
die until a six appears.

100 die = RND(1 TO 6)

110 PRINT die

120 IF die <> 6 THEN GOTO 10

Both of
these programs will work in SuperBASIC but we recommend the following instead. They
do exactly the same jobs. Although program (b) is a little more complex there
are good reasons for preferring it.

Program
(a)

100 FOR throw = 1 TO 6

110 PRINT RND(1 TO 6)

120 END FOR throw

Program
(b)

100 REPeat throws

110 die = RND(1 TO 6)

120 PRINT die

130 IF die = 6 THEN EXIT throws

140 END REPeat throws

It is
logical to provide a structure for a loop which terminates on a condition (REPeat
loops) as well as those which are controlled by a count.

The
fundamental REPeat structure is:

REPeat identifier

 statements

END REPeat identifier

The
EXIT statement can be placed anywhere in the structure but it must be followed by
an identifier to tell SuperBASIC which loop to exit; for example:

EXIT throws

would
transfer control to the statement after

END REPeat throws.

This
may seem like a using a sledgehammer to crack the nut of the simple problem illustrated.
However the REPeat structure is very powerful. It will take you a long
way.

If you
know other languages you may see that it will do the jobs of both REPEAT
and WHILE structures and also cope with other more awkward, situations.

The SuperBASIC
REPeat loop is named so that a correct clear exit is made. The FOR
loop, like all SuperBASIC structures, ends with END, and its name is
given for reasons which will become clear later.

You
will also see later how these loop structures can be used in simple or complex situations
to match exactly what you need to do. We will mention only three more features
of loops at this stage. They will be familiar if you are an experienced user of
BASIC.

The
increment of the control variable of a FOR loop is normally 1 but you
can make it other values by using the STEP keyword. As the examples show.

Example
(i).

100 FOR even = 2 TO 10 STEP 2

110 PRINT ! even !

120 END FOR even

output
is 2
4 6 8 10

Example
(ii).

100 FOR backwards = 9 TO 1 STEP -1

110 PRINT ! backwards !

120 END FOR backwards

output
is 9 8
7 6 5 4 3 2 1

The
second feature is that loops can be nested. You may be familiar with nested FOR
loops. For example the following program outputs four rows of ten crosses.

100 REMark Crosses

110 FOR row = 1 TO 4

120 PRINT 'Row number' ! row

130 FOR cross = 1 TO 10

140 PRINT ! 'X' !

150 END FOR cross

160 PRINT

170 PRINT \ 'End of row number' ! row

180 END FOR row

output is:

Row number 1

X X X X X X X X X X

End of row number 1

Row number 2

X X X X X X X X X X

End of row number 2

Row number 3

X X X X X X X X X X

End of row number 3

Row number 4

X X X X X X X X X X

End of row number 3

A big
advantage of SuperBASIC is that it has structures for all purposes, not just
FOR loops, and they can all be nested one inside the other reflecting the
needs of a task. We can put a REPeat loop in a FOR loop. The
program below produces scores of two dice in each row until a seven occurs,
instead of crosses.

100 REMark Dice rows

110 FOR row = 1 TO 4

120 PRINT 'Row number '! row

130 REPeat throws

140 LET die1 = RND(1 TO 6)

150 LET die2 = RND(1 TO 6)

160 LET score = die1 + die2

170 PRINT ! score !

180 IF score = 7 THEN EXIT throws

190 END REPeat throws

200 PRINT \'End of row '! row

210 END FOR row

sample
output:

Row number 1

8 11 6 3 7

End of row number 1

Row number 2

4 6 2 9 4 5 12 7

End of row number 2

Row number 3

7

End of row number 3

Row number 4

6 2 4 9 9 7

End of row number 4

The third feature of loops in SuperBASIC allows more flexibility
in providing the range of values in a FOR loop. The following program
illustrates this by printing all the divisible numbers from 1 to 20. (A
divisible number is divisible evenly by a number other than itself or 1.)

100 REMark Divisible numbers

110 FOR num = 4,6,8, TO 10,12,14 TO 16,18, 20

120 PRINT ! num !

130 END FOR num

More will be said about handling repetition in a later
chapter but the features described above will handle all but a few uncommon or
advanced situations.

DECISION MAKING

You will have noticed the simple type of decision:

IF die = 6 THEN EXIT throws

This is available in most BASICs but SuperBASIC offers
extensions of this structure and a completely new one for handling situations
with more than two alternative courses of action.

However, you may find the following long forms of IF..THEN
useful. They should explain themselves.

(i)

100 REMark Long form IF. ..END IF

110 LET sunny = RND(0 TO 1)

120 IF sunny THEN

130 PRINT 'Wear sunglasses'

140 PRINT 'Go for walk'

150 END IF

(ii)

100 REMark Long form IF...ELSE...END IF

110 LET sunny = RND(0 TO 1)

120 IF sunny THEN

130 PRINT 'Wear sunglasses'

140 PRINT 'Go for walk'

150 ELSE

160 PRINT 'Wear coat'

170 PRINT 'Go to cinema'

180 END IF

The separator THEN, is optional in long forms or
it can be replaced by a colon in short forms. The long decision structures have
the same status as loops. You can nest them or put other structures into them.
When a single variable appears where you expect a condition the value zero will
be taken as false and other values as true.

SUBROUTINES AND PROCEDURES

Most BASICs have a GOSUB statement which may be
used to activate particular blocks of code called subroutines. The GOSUB
statement is unsatisfactory in a number of ways and SuperBASIC offers properly
named procedures with some very useful features.

Consider the following programs both of which draw a
green 'square' of side length 50 pixel screen units at a position 200 across
100 down on a red background.

 (a) Using GOSUB

100 LET colour = 4 : background = 2

110 LET across = 20

120 LET down = 100

130 LET side = 50

140 GOSUB 170

150 PRINT 'END'

160 STOP

170 REMark Subroutine to draw square

180 PAPER background : CLS

190 BLOCK side, side, across, down, colour

200 RETurn

(b) Using a procedure with parameters

100 square 4, 50, 20, 100, 2

110 PRINT 'END'

120 DEFine PROCedure
square(colour,side,across,down,background)

130 PAPER background : CLS

140 BLOCK side, side, across, down, colour

150 END DEFine

In the firs t program the values of colour, across,
down, side are fixed by LET statements before the GOSUB
statement activates lines 180 and 190 Control is then sent back by the RETURN
statement.

In the second program the values are given in the first
line as parameters in the procedure call, square, which activates the
procedure and at the same time provides the values it needs.

In its simplest form a procedure has no parameters. It
merely separates a particular piece of code, though even in this simpler use
the procedure has the advantage over GOSUB because it is properly named
and properly isolated into a self contained unit.

The power and simplifying effects of procedures are more
obvious as programs get larger. What procedures do as programs get larger is
not so much make programming easier as prevent it from getting harder with
increasing program size. The above example just illustrates the way they work
in a simple context.

Examples

The following examples indicate the range of vocabulary
and syntax of SuperBASIC which has been covered in this and earlier chapters,
and will form a foundation on which the second part of this manual will build.

The letters of a palindrome are given as single items in
DATA statements. The terminating item is an asterisk and you assume no knowledge
of the number of letters in the palindrome. READ the letters into an array and
print them backwards. Some palindromes such as "MADAM I'M ADAM" only
work if spaces and punctuation are ignored. The one used here works properly.

100 REMark Palindromes

110 DIM text$(30)

120 LET text$ = FILL$ (' ',30)

130 LET count = 30

140 REPeat get_letters

150 READ character$

160 IF character$ = '*' THEN EXIT get_letters

170 LET count = count-1

180 LET text$(count) = character$

190 END REPeat get_letters

200 PRINT text$

210 DATA 'A','B','L','E','W','A','S','I','E','R'

220 DATA 'E','I','S','A','W','E','L','B','A','*'

The following program accepts as input numbers in the
range 1 to 3999 and converts them into the equivalent In Roman numerals It does
not generate the most elegant form. It produces IIII rather than IV.

100 REMark Roman numbers

110 INPUT number

120 RESTORE 210

130 FOR type = 1 TO 7

140 READ letter$, value

150 REPeat output

160 IF number < value : EXIT output

170 PRINT letter$;

180 LET number = number - value

190 END REPeat output

200 END FOR type

210 DATA
'M',1000,'D',500,'C',100,'L',50,'X',10,'V',5,'I',1

You should study the above examples carefully using dry runs
if necessary until you are sure that you understand them.

CONCLUSION

In SuperBASIC full structuring features are provided so
that program elements either follow in sequence or fit into one another neatly.
All structures must be identified to the system and named. There are many
unifying and simplifying features and many extra facilities.

Most of these are explained and illustrated in the
remaining chapters of this manual, which should be easier to read than the
Keyword and Concept Reference sections. However, it is easier to read because
it does not give every technical detail and exhaust every topic which it
treats. There may, therefore, be a few occasions when you need to consult the
reference sections. On the other hand some major advances are discussed in the
following chapters. Few readers will need to use all of them and you may find
it helpful to omit certain parts, at least on first reading.

[bookmark: _CHAPTER_9_-]CHAPTER 9 - DATA TYPES VARIABLES AND IDENTIFIERS

You will have noticed that a program (a sequence of
statements) usually gets some data to work on (input) and produces some kind of
results (output). You will also have understood that there are internal
arrangements for storing this data. In order to avoid unnecessary technical
explanations we have suggested that you imagine pigeon holes and that you
choose meaningful names for the pigeon holes. For example, if it is necessary
to store a number which represents the score from simulated dice-throws you
imagine a pigeon hole named score which might contain a number such as 8.

Internally the pigeon holes are numbered and the system
maintains a dictionary which connects particular names with particular numbered
pigeon holes. We say that the name, score, points to its particular pigeon-hole
(by means of the internal dictionary).

The whole arrangement is called a variable.

What you see is the word score. We say that this word, score
is an identifier It is what we see and it identifies the concept we need, in
this case the result, 8, of throwing a pair of dice. Because the identifier is
what we see it becomes the thing we talk or write or think about. We write
about score and its value at any particular moment.

There are four simple data types called floating point,
integer string and logical and these are explained below We talk about data
types rather than variable types because data can occur on its own, for example
3.4 or 'Blue hat' as the value of a variable. But if you understand the
different types of variables, you must also understand the different types of
data.

IDENTIFIERS AND VARIABLES

1.
A SuperBASIC
identifier must begin with a letter and is a sequence of:

upper
or lower case letters

digits
or underscore

2.
An identifier may
be up to 255 characters in length so there is no effective limit in practice.

3.
An identifier
cannot be the same as a keyword of SuperBASIC.

4.
An integer
variable name is an identifier with % on the end.

5.
A string variable
name is an identifier with $ on the end.

6.
No other
identifiers must use the symbols % and $.

7.
An identifier
should usually be chosen so that it means something to a human reader but for
SuperBASIC it does not have any particular meaning other than that it
identifies certain things.

FLOATING POINT VARIABLES

Examples of the use of floating point variables are:

100 LET days = 24

110 LET sales = 3649.84

120 LET sales_per_day = sales/days

130 PRINT sales_per_day

The value of a floating point variable may be anything in
the range:

± 10-615
to ± 10+615 with 8 significant figures.

Suppose in the above program sales were, exceptionally
only 3p. Change line 110 to:

110 LET sales = 0.03

This system will change this to:

110 LET sales = 3E-2

To interpret this, start with 3 or 3.0 and move the
decimal point -2 places, i.e. two places left. This shows that:

3E-2
is the same as 0.03

After running the program, the average daily sales are:

1.25E-3
which is the same as 0.00125

Numbers with an E are said to be in exponent form:

(mantissa)
E (exponent) = (mantissa) x 10 to the power (exponent)

INTEGER VARIABLES

Integer variables can have only whole number values in
the range -32678 to 32768. The following are examples of valid integer variable
names which must end with %.

LET count% = 10

LET six_tally% = RND(10)

LET number_3% = 3

The only disadvantage of integer variables, when whole
numbers are required, is the slightly misleading % symbol on the end of the
identifier. It has nothing to do with the concept of percentage. It is just a
convenient symbol tagged on to show that the variable is an integer.

NUMERIC FUNCTIONS

Using a function is a bit like making an omelette. You
put in an egg which is processed according to certain rules (the recipe) and
get out an omelette. For example the function INT takes any number as
input and outputs the whole number part. Anything which is input to a function
is called a parameter or argument. INT is a function which gives the
integer part of an expression. You may write:

PRINT INT(5.6)

and 5 would be the output. We say that 5.6 is the parameter
and the function returns the value 5. A function may have more than one parameter.
You have already met:

RND(1 TO 6)

which is a function with two parameters. But functions always
return exactly one value. This must be so because you can put functions into
expressions. For example:

PRINT 2 * INT(5.6)

would produce the output 10. It is an important property
of functions that you can use them in expressions. It follows that they must
return a single value which is then used in the expression. INT and RND
are system functions: they come with the system, but later you will see how to
write your own.

The following examples show common uses of the INT
function.

100 REMark Rounding

110 INPUT decimal

120 PRINT INT(decimal + 0.5)

In the example you input a decimal fraction and the
output is rounded. Thus 4.7 would become 5 but 4.3 would become 4.

You can achieve the same result using an integer variable
and coercion.

Trigonometrical functions will be dealt with in a later
section but other common numeric functions are given in the list below.

 	
 Function

 	
 Effect

 	
 Examples

 	
 Returned values

 	

 ABS

 	

 Absolute or unsigned value

 	

 ABS(7)

 ABS(-4.3)

 	

 7

 4.3

 	
 INT

 	
 Integer part of a floating point number

 	
 INT(2.4)

 INT(0.4)

 INT(-2.7)

 	
 2

 0

 -3

 	
 SQRT

 	
 Square root

 	
 SQRT(2)

 SQRT(16)

 SQRT(2.6)

 	
 1.414214

 4

 1.612452

There is a way of computing square roots which is easy to
understand. To compute the square root of 8 first make a guess. It doesn't
matter how bad the guess maybe. Suppose you simply take half of 8 as the first
guess which is 4.

Because 4 is greater than the square root of 8 then 8/4
must be less than it. The reverse is also true. If you had guessed 2 which is
less than the square root then 8/2 must be greater than it.

It follows that if we take any guess and computer
number/guess we have two numbers, one too small and one too big. We take the average
of these numbers as our next approximation and thus get closer to the correct
answer.

We repeat this process until successive approximations
are so close as to make little difference:

100 REMark Square Roots

110 LET number = 8

120 LET approx = number/2

130 REPeat root

140 LET newval = (approx + number/approx)/2

150 IF newval == approx THE EXIT root

160 LET approx = newval

170 END REPeat root

180 PRINT 'Square root of' ! number ! 'is' ! newval

sample output:

Square root of 8 is 2.828427

Notice that the conditional EXIT from the loop
must be in the middle. The traditional structures do not cope with this
situation as well as SuperBASIC does. The == sign in line 150 means
"approximately equal to", that is, equal to within .0000001 of the values
being compared.

NUMERIC OPERATIONS

SuperBASIC allows the usual mathematical operations. You
may notice that they are like functions with exactly two operands each. It is
also conventional in these cases to put an operand on each side of the symbol. Sometimes
the operation is denoted by a familiar symbol such as + or *. Sometimes the
operation is denoted by a keyword like DIV or MOD but there is no
real difference. Numeric operations have an order of priority. For example, the
result of:

PRINT 7 + 3*2

is 13 because the multiplication has a higher priority.
However:

PRINT (7+3)*2

will output 20, because brackets over-ride the usual
priority. As you will see later so many things can be done with SuperBASIC
expressions that a full statement about priority cannot be made at this stage
(see the Concept Reference Guide if you wish) but the operations we now
deal with have the following order of priority:

highest
- raising to a power

multiplication and division (including DIV, MOD)

lowest
- add and subtract

The symbols + and - are also used with only one operand
which simply denotes positive or negative. Symbols used in this way have the
highest priority of all and can only be over-ridden by the use of brackets.

Finally if two symbols have equal priority the leftmost
operation is performed first so that:

PRINT 7-2 + 5

will cause the subtraction before the addition. This
might be important if you should ever deal with very large or very small
numbers.

 	
 Operation

 	
 Symbol

 	
 Examples

 	
 Results

 	
 Note

 	

 Add

 	

 +

 	

 7+6.6

 	

 13.6

 	

 	
 Subtract

 	
 -

 	
 7-6.6

 	
 0.4

 	

 	
 Multiply

 	
 *

 	
 3*2.1

 2.1*(-3)

 	
 6.3

 -6.3

 	

 	
 Divide

 	
 /

 	
 7/2

 -17/5

 	
 3.5

 -3.4

 	
 Do not divide by zero

 	
 Raise to power

 	
 ^

 	
 4^1.5

 	
 8

 	

 	
 Integer divide

 	
 DIV

 	
 -8 DIV 2

 7 DIV 2

 	
 -4

 3

 	
 Integers only

 Do not divide by zero

 	
 Modulus

 	
 MOD

 	
 13 MOD 5

 21 MOD 7

 -17 MOD 8

 	
 3

 0

 7

 	

Modulus returns the remainder part of a division. Any
attempt to divide by zero will generate an error and terminate program
execution.

NUMERIC EXPRESSIONS

Strictly speaking, a numeric expression is an expression
which evaluates to a number and there are more possibilities than we need to
discuss here. SuperBASIC allows you to do complex things if you want to but it
also allows you to do simple things in simple ways. In this section we
concentrate on those usual straightforward uses of mathematical features.

Basically numeric expressions in SuperBASIC are the same
as those of mathematics but you must put the whole expression in the form of a
sequence.

5+3

6-4

becomes in SuperBASIC (or other BASIC):

(5 +
3)/(6 - 4)

In secondary school algebra there is an expression for
one solution of a quadratic equation:

ax2
+ bx + c = 0

One solution in mathematical notation is:

If we start with the equation:

2x2
- 3x + 1 = 0

Example 1

The following program will find one solution.

100 READ a,b,c

110 PRINT 'Root is' ! (-b+SQRT(b^2 - 4*a*c))/(2*a)

120 DATA 2,-3,1

Example 2

In problems which need to simulate the dealing of cards
you can make cards correspond to the numbers 1 to 52 as follows:

1 to 13

14 to 26

27 to 39

40 to 52

Ace, two........king of hearts

Ace, two........king of clubs

Ace, two........king of diamonds

Ace, two........king of spades

A particular card can be identified as follows:

100 REM Card identification

110 LET card = 23

120 LET suit = (card-1) DIV 13

130 LET value = card MOD 13

140 IF value = 0 THEN LET value = 13

150 IF value = 1 THEN PRINT "Ace of ";

160 IF value >= 2 AND value <= 10 THEN PRINT
value ! "of ";

170 IF value = 11 THEN PRINT "Jack of ";

180 IF value = 12 THEN PRINT "Queen of ";

190 IF value = 13 THEN PRINT "King of ";

200 IF suit = 0 THEN PRINT "hearts"

210 IF suit = 1 THEN PRINT "clubs"

220 IF suit = 2 THEN PRINT "diamonds"

230 IF suit = 3 THEN PRINT "spades"

There are new ideas in this program. They are in line
160. The meaning is clearly that the number is actually printed only if two
logical statements are true. These are:

value
is greater than or equal to 2 AND value is less than or equal to 10

Cards outside this range are either aces or 'court cards'
and must be treated differently

Note also the use of ! in the PRINT statement to provide
a space and ; to ensure that output continues on the same line.

There are two groups of mathematical functions which we
have not discussed here. They are the trigonometric and logarithmic. You may
need the former in organising screen displays. Types of functions are also
fully defined in the reference section.

LOGICAL VARIABLES

Strictly speaking, SuperBASIC does not allow logical
variables but it allows you to use other variables as logical ones. For example
you can run the following program:

100 REMark Logical Variable

110 LET hungry = 1

120 IF hungry THEN PRINT "Have a bun"

You expect a logical expression in line 120 but the
numeric variable, hungry is there on its own. The system interprets the value,
1, of hungry as true and the output is:

Have a bun

If line 110 read:

LET hungry = 0

there would be no output. The system interprets zero as
false and all other values as true. That is useful but you can disguise the
numeric quality of hungry by writing:

100 REMark Logical Variable

110 LET true = 1 : false = 0

120 LET hungry = true

130 IF hungry THEN PRINT "Have a bun"

STRING VARIABLES

There is much to be said about handling strings and
string variables and this is left to a separate chapter.

[bookmark: _PROBLEMS_ON_CHAPTER_6]PROBLEMS ON CHAPTER 9

1.
A rich oil dealer
gambles by tossing a coin in the following way. If it comes down heads he gets
1. If it comes down tails he throws again but the possible reward is doubled.
This is repeated so that the rewards are as shown.

 	
 THROW

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 6

 	
 7

 	
 REWARDS

 	
 1

 	
 2

 	
 4

 	
 8

 	
 16

 	
 32

 	
 64

By simulating the game try to decide what would be a fair
initial payment for each such game:

(a)
if the player is
limited to a maximum of seven throws per game.

(b)
if there is no
maximum number of throws

2.
Bill and Ben agree
to gamble as follows. At a given signal each divides his money into two halves
and passes one half to the other player. Each then divides his new total and
passes half to the other. Show what happens as the game proceeds if Bill starts
with 16p and Ben starts with 64p.

3.
What happens if
the game is changed so that each hands over an amount equal to half of what the
other possesses?

4.
Write a program
which forms random three letter words chosen from A,B,C,D and prints them until
' BAD ' appears.

5.
Modify the last
program so that it terminates when any real three letter word appears.

[bookmark: _CHAPTER_10_–]CHAPTER 10 – LOGIC

If you have read previous chapters you will probably
agree that repetition, decision making and breaking tasks into sub-tasks are major
concepts in problem analysis, program design and encoding programs. Two of
these concepts, repetition and decision making, need logical expressions such
as those in the following program lines:

IF score = 7 THEN EXIT throws

IF suit = 3 THEN PRINT "spades"

The first enables EXIT from a REPeat loop.
The second is simply a decision to do something or not. A mathematical
expression evaluates to one of millions of possible numeric values. Similarly a
string expression can evaluate to millions of possible strings of characters.
You may find it strange that logical expressions, for which great importance is
claimed, can evaluate to one of only two possible values: true or false.

In the case of

score = 7

this is obviously correct. Either score equals 7 or it
doesn't! The expression must be true or false - assuming that it's not
meaningless. It may be that you do not know the value at some time, but that
will be put right in due course.

You have to be a bit more careful of expressions
involving words such as OR, AND, NOT but they are well worth
investigating - indeed, they are essential to good programming. They will
become even more important with the trend towards other kinds of languages based
more on precise descriptions of what you require rather than what the computer must
do.

AND

The word AND in SuperBASIC is like the word 'and'
in ordinary English. Consider the following program.

100 REMark AND

110 PRINT "Enter two values" \ "1 for
TRUE or 0 for FALSE"

120 INPUT raining, hole_in_roof

130 IF raining AND hole_in_roof THEN PRINT "Get
wet"

As in real life, you will only get wet if it is raining
and there is a hole in the roof. If one (or both) of the simple logical
variables

raining

hole_in_roof

is false then the compound logical expression

raining AND hole_in_roof

is also false. It takes two true values to make the whole
expression true. This can be seen from the rules below. Only when the compound
expression is true do you get wet.

 	
 raining

 	
 hole_in_roof

 	
 raining and
 hole_in_roof

 	
 effect

 	

 FALSE

 FALSE

 TRUE

 TRUE

 	

 FALSE

 TRUE

 FALSE

 TRUE

 	

 FALSE

 FALSE

 FALSE

 TRUE

 	

 DRY

 DRY

 DRY

 WET

Rules for AND

OR

In everyday life the word 'or' is used in two ways. We
can illustrate the inclusive use of OR by thinking of a cricket captain
looking for players. He might ask "Can you bat or bowl?" He would be
pleased if a player could do just one thing well but he would also be pleased
if someone could do both. So it is in programming: a compound expression using OR
is true if either or both of the simple statements or variables are true. Try
the following program.

100 REMark OR test

110 PRINT "Enter two values" \ "1 for
TRUE or 0 for FALSE"

120 INPUT "Can you bat?", batsman

130 INPUT "Can you bowl?", bowler

140 IF batsman OR bowler THEN PRINT "In the
team"

You can see the effects of different combinations of
answers in the rules below:

 	
 batsman

 	
 bowler

 	
 batsman OR bowler

 	
 effect

 	

 FALSE

 FALSE

 TRUE

 TRUE

 	

 FALSE

 TRUE

 FALSE

 TRUE

 	

 FALSE

 TRUE

 TRUE

 TRUE

 	

 not in team

 in the team

 in the team

 in the team

Rules for OR

When the inclusive OR is used a true value
in either of the simple statements will produce a true value in the compound
expression. If Ian Botham, the England all rounder were to answer the questions
both as a bowler and as a batsman, both simple statements would be true and so
would the compound expression. He would be in the team.

If you write 0 for false and 1 for true you will get all
the possible combinations by counting in binary numbers:

00

01

10

11

NOT

The word NOT has the obvious meaning.

NOT true is the same as false

NOT false is the same as true

However you need to be careful. Suppose you hold a red
triangle and say that it is:

NOT red AND square

In English this may be ambiguous.

If you mean:

(NOT
red) AND square

then for a red triangle the expression is false.

If you mean:

NOT (red AND square)

then for a red triangle the whole expression is true.
There must be a rule in programming to make it clear what is meant. The rule is
that NOT takes precedence over AND so the interpretation:

(NOT
red) AND square

is the correct one This is the same as:

NOT red AND square

To get the other interpretation you must use brackets. If
you need to use a complex logical expression it is best to use brackets and NOT
if their usage naturally reflects what you want. But you can if you wish always
remove brackets by using the following laws (attributed to Augustus De Morgan)

 	
 NOT
 (a AND b)

 	
 is the same as

 	
 NOT
 a OR NOT b

 	
 NOT
 (a OR b)

 	
 is the same as

 	
 NOT
 a AND NOT b

For example:

NOT (tall AND fair) is the same as

NOT tall OR NOT fair

NOT (hungry OR thirsty) is the same as

NOT hungry AND NOT thirsty

Test this by entering

100 REMark NOT and brackets

110 PRINT "Enter two values"\"1 for
TRUE or 0 for FALSE"

120 INPUT "tall "; tall

130 INPUT "fair "; fair

140 IF NOT (tall AND fair) THEN PRINT
"FIRST"

150 IF NOT tall OR NOT fair THEN PRINT
"SECOND"

Whatever combination of numbers you give as input, the
output will always be either two words or none, never one. This will suggest
that the two compound logical expressions are equivalent.

XOR-Exclusive OR

Suppose a golf professional wanted an assistant who could
either run the shop or give golf lessons. If an applicant turned up with both
abilities he might not get the job because the golf professional might fear
that such an able assistant would try to take over. He would accept a good
golfer who could not run the shop. He would also accept a poor golfer who could
run the shop. This is an exclusive OR situation: either is acceptable but not
both. The following program would test applicants:

100 REMark XOR test

110 PRINT "Enter 1 for yes or 0 for no."

120 INPUT "Can you run a shop?", shop

130 INPUT "Can you teach golf?", golf

140 IF shop XOR golf THEN PRINT "Suitable"

The only combinations of answers that will cause the
output "Suitable" are (0 and 1) or

(1 and 0). The rules for XOR are given below.

 	
 Able to run shop

 	
 Able to teach

 	
 Shop XOR teach

 	
 effect

 	

 FALSE

 FALSE

 TRUE

 TRUE

 	

 FALSE

 TRUE

 FALSE

 TRUE

 	

 FALSE

 TRUE

 TRUE

 FALSE

 	

 No job

 Gets the job

 Gets the job

 No job

rules for XOR

PRIORITIES

The order of priority for the logical operators is
(highest first):

NOT

AND

OR,XOR

For example the expression

rich OR tall AND fair

means the same as:

rich OR (tall AND fair)

The AND operation is performed first. To prove
that the two logical expressions have identical effects run the following
program:

100 REMark Priorities

110 PRINT "Enter three values"\"Type 1
for Yes and 0 for No"!

120 INPUT rich,tall,fair

130 IF rich OR tall AND fair THEN PRINT
"YES"

140 IF rich OR (tall AND fair) THEN PRINT
"AYE"

Whatever combination of three zeroes or ones you input at
line 120 the output will be either nothing or:

YES

AYE

You can make sure that you test all possibilities by
entering data which forms eight three digit binary numbers 000 to 111

000 001 010 011 100 101 110 111

[bookmark: _PROBLEMS_ON_CHAPTER_7]PROBLEMS ON CHAPTER 10

1.
Place ten numbers
in a DATA statement. READ each number and if it is greater than
20 then print it.

2.
Test all the numbers
from 1 to 100 and print only those which are perfect squares or divisible by 7

3.
Toys are described
as Safe (S), or Unsafe (U), Expensive (E) or Cheap (C), and either for Girls
(G),Boys (B) or Anyone (A). A trio of letters encodes the qualities of each
toy. Place five such trios in a DATA statement and then search it printing only
those which are safe and suitable for girls.

4.
Modify program 3
to print those which are expensive and not safe.

5.
Modify program 3
to print those which are safe, not expensive and suitable for anyone.

[bookmark: _CHAPTER_11_–]CHAPTER 11 – HANDLING TEXT – STRINGS

You have used string variables to store character strings
and you know that the rules for manipulating string variables or string
constants are not the same as those for numeric variables or numeric constants.
SuperBASIC offers a full range of facilities for manipulating character strings
effectively. In particular the concept of string-slicing both extends and simplifies
the business of handling substrings or slices of a string.

ASSIGNING STRINGS

Storage for string variables is allocated as it is
required by a program. For example, the lines:

100 LET words$ = "LONG"

110 LET words$ = "LONGER"

120 PRINT words$

would cause the six letter word, LONGER, to be printed.
The first line would cause space for four letters to be allocated but this
allocation would be overruled by the second line which requires space for six
characters.

It is, however, possible to dimension (i.e. reserve space
for) a string variable, in which case the maximum length becomes defined, and
the variable behaves as an array.

JOINING STRINGS

You may wish to construct records in data processing from
a number of sources. Suppose, for example, that you are a teacher and you want
to store a set of three marks for each student in Literature, History and
Geography. The marks are held in variables as shown:

 	
 Lit$

 	
 62

 	

 	
 Hist$

 	
 56

 	

 	
 Geog$

 	
 71

As part of student record keeping you may wish to combine
the three string values into one six-character string called mark$. You
simply write:

LET mark$ = lit$ & hist$ & geog$

You have created a further variable as shown:

 	
 mark$

 	
 625671

But remember that you are dealing with a character string
which happens to contain number characters rather than an actual number. Note
that in SuperBASIC the & symbol is used to join strings together whereas in
some other BASICs, the + symbol is used for that purpose.

COPY A STRING SLICE

A string slice is part of a string. It may be anything
from a single character to the whole string. In order to identify the string
slice you need to know the positions of the required characters.

Suppose you are constructing a children's game in which
they have to recognise a word hidden in a jumble of letters. Each letter has an
internal number - an index - corresponding to its position in the string.
Suppose the whole string is stored in the variable jumble$ and the clue is Big
cat.

You can see that the answer is defined by the numbers 6
to 9 which indicate where it is. You can abstract the answer as shown :

100 jumble$ = "APQOLLIONATSUZ"

110 LET an$ = jumble$(6 TO 9)

120 PRINT an$

REPLACE A STRING SLICE

Now suppose that you wish to change the hidden animal
into a bull. You can write two extra lines:

130 LET jumble$(6 TO 9) = "BULL"

140 PRINT jumble$

The output from the whole five-line program is:

LION

APQOLBULLATSUZ

All string variables are initially empty, they have
length zero. If you attempt to copy a string into a string-slice which has
insufficient length then the assignment may not be recognised by SuperBASIC.

If you wish to copy a string into a string-slice then it
is best to ensure the destination string is long enough by padding it first
with spaces.

100 LET subject$ = "ENGLISH MATHS COMPUTING"

110 LET student$ = ""

120 LET student$(9 TO 13) = subject$(9 TO 13)

We say that "BULL" is a slice of the string
"APQOLBULLATSUZ". The defining phrase:

(6 TO 9)

is called a slicer. It has other uses. Notice how
the same notation may be used on both sides

of the LET statement. If you want to refer to a
single character it would be clumsy to write:

jumble$(6 TO 6)

just to pick out the "B" (possibly as a clue)
so you can write instead:

jumble$(6)

to refer to a single character

COERCION

Suppose you have a variable, mark$ holding a record of
examination marks. The slice

giving the history mark may be extracted and scaled up,
perhaps because the history

teacher has been too strict in the marking. The following
lines will extract the history

mark:

100 LET mark$ = "625671"

110 LET hist$ = mark$(3 TO 4)

The problem now is that the value "56" of the
variable, hist$ is a string of characters not numeric data. If you want
to scale it up by multiplying by say 1.125, the value of hist$ must be
converted to numeric data first, SuperBASIC will do this conversion automatically
when we type:

120 LET num = 1 .125 * hist$

Line 120 converts the string "56" to the number
56 and multiplies it by 1.125 giving 63.

Now we should replace the old mark by the new mark but
now the new mark is still the number 63 and before it can be inserted back into
the original string it must be converted back to the string '63'. Again
SuperBASIC will convert the number automatically when we type:

130 LET mark$(3 TO 4) = num

140 PRINT mark$

The output from the whole program is:

626371

which shows the history mark increased to 63.

Strictly speaking it is illegal to mix data types in a LET
statement. It would be silly to write:

LET num = "LION"

and you would get an error message if you tried, but if
you write:

LET num = "65"

the system will conclude that you want the number 65 to
become the value of num and do

that. The complete program is:

100 LET mark$ = "625671"

110 LET hist$ = mark$(3 TO 4)

120 LET num = 1.125 * hist$

130 LET mark$(3 TO 4) = num

140 PRINT mark$

Again the output is the same!

In line 120 a string value was converted into numeric
form so that it could be multiplied; In line 130 a number was converted into
string form. This converting of data types is known as type coercion.

You can write the program more economically if you
understand both string-slicing and coercion now:

100 LET mark$ = "625671"

110 LET mark$(3 TO 4) = 1 .125 * mark$(3 TO 4)

120 PRINT mark$

If you have worked with other BASICs you will appreciate
the simplicity and power of string-slicing and coercion.

SEARCHING A STRING

You can search a string for a given substring. The following
program displays a jumble of letters and invites you to spot the animal.

100 REM Animal Spotting

110 LET jumble$ = "SYNDICATE"

120 PRINT jumble$

130 INPUT "What is the animal?" ! an$

140 IF an$ INSTR jumble$ AND an$(1) = "C"

150 PRINT "Correct"

160 ELSE

170 PRINT "Not correct"

180 END IF

The operator INSTR, returns zero if the guess is
incorrect. If the guess is correct INSTR returns the number which is the
starting position of the string-slice, in this case 6.

Because the expression:

an$ INSTR jumble$

can be treated as a logical expression the position of
the string in a successful search can

be regarded as true, while in an unsuccessful search it
can be regarded as false.

OTHER STRING FUNCTIONS

You have already met LEN which returns the length
(number of characters) of a string. You may wish to repeat a particular string
or character several times. For example, if you wish to output a row of
asterisks, rather than actually enter forty asterisks in a PRINT statement or
organise a loop you can simply write:

PRINT FILL$ ("*",40)

Finally it is possible to use the function CHR$ to
convert internal codes into string characters. For example:

PRINT CHR$(65)

would output A.

COMPARING STRINGS

A great deal of computing is concerned with organising
data so that it can be searched quickly. Sometimes it is necessary to sort it
in to alphabetical order. The basis of various sorting processes is the
facility for comparing two strings to see which comes first. Because the
letters A,B,C ... are internally oded as 65,66,67 it is natural to regard
as correct the following statements:

A is
less than B

B is
less than C

and because internal character by character comparison is
automatically provided:

CAT is
less than DOG

CAN is
less than CAT

You can write, for example:

IF "CAT" < "DOG" THEN PRINT
"MEOW"

and the output would be:

MEOW

Similarly:

IF "DOG" > "CAT" THEN PRINT
"WOOF"

would give the output:

WOOF

We use the comparison symbols of mathematics for string
comparisons. All the following logical statements expressions are both
permissible and true.

"ALF" < "BEN"

"KIT" > "BEN"

"KIT" <= "LEN"

"KIT" >= "KIT"

"PAT" >= "LEN"

"LEN" <= "LEN"

"PAT" <> "PET"

So far comparisons based simply on internal codes make
sense, but data is not always conveniently restricted to upper case letters. We
would like, for example:

Cat to
be less than COT

and
K2N to be less than K27N

A simple character by character comparison based on
internal codes would not give these results, so SuperBASIC behaves in a more
intelligent way. The following program, with suggested input and the output
that will result, illustrates the rules for comparison of strings.

100 REMark comparisons

110 REPeat comp

120 INPUT "input a string" ! first$

130 INPUT "input another string" !
second$

140 IF first$ < second$ THEN PRINT
"Less"

150 IF first$ > second$ THEN PRINT
"Greater"

160 IF first$ = second$ THEN PRINT
"Equal"

170 END REPeat comp

 	

 Input

 	

 Output

 	

 CAT

 CAT

 PET

 K6

 K66

 K12N

 	

 COT

 CAT

 PETE

 K7

 K7

 K6N

 	

 Greater

 Equal

 Less

 Less

 Greater

 Greater

 	
 	
 	

> Greater than - Case dependent
comparision, numbers compared in numerical order

< Less than - Case dependent,
numbers compared in numerical order

= Equals - Case dependent, strings
must be the same

== Equivalent - String must be
'almost' the same, Case independent, numbers compared in numerical order

>= Greater than or equal to - Case
dependent, numbers compared in numerical order

<= Less than or equal to Case
dependent, numbers compared in numerical order.

[bookmark: _PROBLEMS_ON_CHAPTER_8]PROBLEMS ON CHAPTER 11

1.
Place 12 letters,
all different, in a string variable and another six letters in a second string
variable. Search the first string for each of the six letters in turn saying in
each case whether it is found or not found.

2.
Repeat using
single character arrays instead of strings. Place twenty random upper case letters
in a string and list those which are repeated.

3.
Write a program to
read a sample of text all in upper case letters. Count the frequency of each
letter and print the results.

"GOVERNMENT
IS A TRUST, AND THE OFFICERS OF THE GOVERNMENT ARE TRUSTEES; AND BOTH THE TRUST
AND THE TRUSTEES ARE CREATED FOR THE BENEFIT OF THE PEOPLE. HENRY CLAY
1829."

4.
Write a program to
count the number of words in the following text. A word is recognised because
it starts with a letter and is followed by a space, full stop or other
punctuation character.

"THE
REPORTS OF MY DEATH ARE GREATLY EXAGGERATED. CABLE FROM MARK TWAIN TO THE
ASSOCIATED PRESS, LONDON 1896."

5.
Rewrite the last
program illustrating the use of logical variables and procedures.

[bookmark: _CHAPTER_12_–]CHAPTER 12 – SCREEN OUTPUT

SuperBASIC has so extended the scope and variety of
facilities for screen presentation that we describe the features in two
sections: Simple Printing and Screen.

The first section describes the output of ordinary text.
Here we explain the minimal well established methods of displaying messages,
text, or numerical output. Even in this mundane section there is innovation in
the concept of the 'intelligent' space an example of combining ease of use with
very useful effects.

The second section is much bigger because it has a great
deal to say. The wide range of features actually makes things easier For
example, you can draw a circle by simply writing the word CIRCLE
followed by a few details to define such things as its position and size. Many
other systems require you to understand some geometry and trigonometry in order
to do what is, in concept, simple.

Each keyword has been carefully chosen to reflect the
effect it causes. WINDOW defines an area of the screen: BORDER
puts a border round it; PAPER defines the background colour; INK
determines the colour of what you put on the paper.

If you work through this chapter and get a little
practice you will easily remember which keyword causes which effect. You will
add that extra quality to your programming fairly easily. With experience you
may see why computer graphics is becoming a new art form.

SIMPLE PRINTING

The keyword PRINT can be followed by a sequence of
print items. A print item may be any of:

text such as: "This is text"

variables
such as : num, word$

expressions
such as : 3 * num, day$ & week$

Print items may be mixed in any print statement but there
must be one or more print separators between each pair. Print separators may be
any of:

; No effect - it just separates print items.

! Normally inserts a space between
output items. If an item will not fit on the current line it behaves as a new
line symbol. If the item is at the start of line a space is not generated.

, A tabulator causes the output to be tabulated in
columns of 8 characters

\ A new line symbol will force a new line.

TO Allows tabbing.

The numbers 1,2,3 are legitimate print items and are
convenient for illustrating the effects

of print separators

 	

 Statement

 	

 Effect

 	

 100 PRINT 1,2,3

 100 print 1 ! 2 ! 3 !

 100 PRINT 1 \ 2 \ 3

 100 PRINT 1 ; 2 ; 3

 100 PRINT “This is text”

 100 LET word$ = “ “

 110 PRINT word$

 100 LET num = 13

 110 PRINT num

 100 LET an$ = “yes”

 110 PRINT “I say“ ! an$

 110 PRINT”Sum is” ! 4+2

 	

 1 2 3

 1 2 3

 1

 2

 3

 123

 This is text

 Moves print position

 13

 I say yes

 Sum is 6

You can position print output anywhere on the screen with
the AT command.

For example:

AT 10,15 : PRINT "This is on row 10 at column
15"

The CURSOR command can be used to position the
print output anywhere on the screen's scale system. For example:

CURSOR 100,150 : PRINT "this is 100 pixel grid
units across and 150 down"

If you read the Keyword Reference Guide you may
find it difficult to reconcile the section on PRINT with the above
description. Two of the difficulties disappear if you understand that:

Text
in quotes, variables and numbers are all strictly speaking, expressions: they are
the simplest (degenerate) forms of expressions.

Print
separators are strictly classified as print items.

SCREEN

This section introduces general effects which apply whether
you wish to output text or graphics. The statement:

MODE 8 or MODE 256

will select MODE 8 in which there are:

256
pixels across numbered 0 511 (two numbers per pixel)

256
pixels down numbered 0-255

8
colours

A pixel is the smallest area of colour which can be
displayed. We use the term, solid colour because these start with
ordinary solid-looking colours of which there are only eight. However, by using
various effects a variety of shades and textures can be achieved. If you are
using your QL with an ordinary television set then the television set will not be
able to reproduce any of these extra effects.

The statement:

MODE 4 or MODE 512

will select MODE 4 in which there are:

512
pixels across numbered 0 to 511

256
pixels down numbered 0 to 255

4
colours

COLOUR

You can select a colour by using the following code in
combination with suitable keywords such as PAPER, INK etc. Note
that the numbers by themselves mean nothing. The numbers are only interpreted
as colours when they are used with PAPER and INK, etc.

 	

 8 Colour Mode

 	

 Code

 	

 4 Colour Mode

 	

 Black

 Blue

 Red

 Magenta

 Green

 Cyan

 Yellow

 white

 	

 0

 1

 2

 3

 4

 5

 6

 7

 	

 Black

 Black

 Red

 Red

 Green

 Green

 White

 white

For example INK 3 would give magenta in MODE 8.

STIPPLES

You can if you wish specify two colours in a suitable
statement. For example 2,4 would give a chequerboard stipple as shown. In each
group of four pixels two would be red (code 2) corresponding to the colour
selected first. The other two pixels would be a contrast It is not really
possible to display this effect on a domestic television set.

If you write:

INK 2,4

the mix colour is formed from the two codes 2 and 4. We
will call these choices colour and contrast!

INK colour, contrast

You can find out what the stipple effects are by trying them
but we give more technical details below.

100 REMark Colour/Contrast

110 FOR colour = 0 TO 7 STEP 2

120 PAPER colour : CLS

140 FOR contrast = 0 TO 7 STEP 2

150 BLOCK 100,50,40,50,colour,contrast

160 PAUSE 50

170 END FOR contrast

180 END FOR colour

If you wish to try different stipples you can add a third
code number to the colour specification. For example:

INK 2,4,1

would specify a red and green horizontal stripe effect. A
block of four pixels would be:

COLOUR PARAMETERS

You can specify a colour/stipple effect as described
above by using three numbers. For example:

INK colour, contrast, stipple

could be used with :

colour in range 0 to 7

contrast in range 0 to 7

stipple in range 0 to 3

You could achieve the same effect with a single number if
you wish though it is not so

easy to construct. See the Concept Reference Guide -
colour.

The following program will display all the possible
colour effects:

100 REMark Colour Effects

110 FOR num = 0 TO 255

120 BLOCK 100,50,40,50,num

130 PAUSE 50

140 END FOR num

PAPER

PAPER
followed by one, two or three numbers specifies the background. For example:

 	
 PAPER 2

 	
 {red}

 	
 PAPER 2,4

 	
 {red/green chequerboard}

 	
 PAPER 2,4,1

 	
 {red/green horizontal stripes}

The colour will not be visible until something else is
done, for example, the screen is cleared by typing CLS.

INK

INK
followed by one, two or three numbers specifies the colour for printing
characters, lines or other graphics. The colour and stipple effects are the
same as for PAPER. For example:

 	
 INK 2

 	
 {red ink}

 	
 INK 2,4

 	
 {red/green chequerboard ink 3}

 	
 INK 2,4,1

 	
 {red/green horizontal striped ink}

The ink will be changed for all subsequent output.

CLS

CLS
means clear the window to the current paper colour - like a teacher cleaning a
blackboard, except that it is electronic and multi-coloured.

FLASHING

You can make the ink colour flash in mode 8 only. To turn
flash on you might type:

FLASH
1

and to turn it off:

FLASH
0

Allowing flashing characters to overlap can produce
alarming results.

FILES

You will have used Microdrives for storing programs and
you will have used the commands LOAD and SAVE. Cartridges can be
used for storing data as well as programs. The word file usually means a
sequence of data records, a record being some set of related information such
as name, address and telephone number.

Two of the most widely used types of file are serial and
direct access files. Items in a serial file are usually read in sequence
starting with the first. If you want the fiftieth record you have to read the
first forty-nine in order to find it. On the other hand the fiftieth record in
a direct access file can be found quickly because the system does not need to
work through the earlier records to get it. Pop music on a cassette is like a
serial file but eight pieces on a long playing record form a direct access
file. You

can move the pick up arm directly onto any of the eight
tracks.

The simplest possible type of file is just a sequence of
numbers. To illustrate the idea we will place the numbers 1 to 100 in a file
called numbers. However the complete file name is made up of two parts:

device
name

appended
information

Suppose that we wish to create the file, numbers,
on a cartridge in Microdrive 1. The device name is:

mdv1_

and the appended information is just the name of the file:

numbers

So the complete file name is:

mdv1_numbers

CHANNELS

It is possible for a program to use several files at
once, but it is more convenient to refer to a file by an associated channel
number This can be any integer in the range 0 to 15. A file is associated with
a channel number by using the OPEN statement or, if it is a new file, OPEN_NEW.
For example you may choose channel 7 for the numbers file and write:

You can now refer to the file just by quoting the number
#7. The complete program is:

100 REMark simple file

110 OPEN_NEW #7,mdv1_numbers

120 FOR number = 1 TO 100

130 PRINT #7,number

140 END FOR number

150 CLOSE #7

The PRINT statement causes the numbers to be 'printed' on
the cartridge file because #7 has been associated with it. The CLOSE #7
statement is necessary because the system has some internal work to do when the
file has been used. It also releases channel 7 for other possible uses. After
the program has executed type

DIR mdv1_

and the directory should show that the file numbers
exists on the cartridge in Microdrive mdv1_ .

You also need to know that the file is correct and you
can only be certain of this if the file is read and checked. The necessary
keyword is OPEN_IN, otherwise the program for reading data from a file is
similar to the previous one.

100 REMark Reading a file

110 OPEN IN #6, mdv1_numbers

120 FOR item = 1 TO 100

130 INPUT #6, number

140 PRINT ! number !

150 END FOR item

160 CLOSE #6

The program should output the numbers 1 to 100, but only
if the cartridge containing the file "numbers" is still in
Microdrive mdv1_.

DEVICES AND CHANNELS

You have seen one example of a device, a file of data on
a Microdrive. We may say loosely that a file has been opened but strictly we
mean that a device has been associated with a particular channel. Any further
necessary information has also been provided. Certain devices have channels
permanently associated with them by the system:

 	

 Channel

 	

 Use

 	

 #0

 #1

 #2

 	

 OUTPUT – command window

 INPUT – keyboard

 OUTPUT – print window

 LIST – list output

You can create a window of any size anywhere on the
screen. The device name for a window is:

scr

and the appended information is, for example:

The following program creates a window with the channel
number 5 and fills it with green (code 4) and then closes it:

100 REMark Create a window

110 OPEN #5, scr_400x200a20x50

120 PAPER #5,4 : CLS #5

130 CLOSE #5

Notice that each window can have its own features such as
paper ink, etc. The fact that a window has been opened does not mean that it is
the current default window.

You can change the position or shape of an opened window
without closing it and reopening it. Try adding two lines to the previous
program:

124 WINDOW #5,300,100,110,65

126 PAPER #5,2 : CLS #5

Re-run the program and you will find a red window within
the original green one. This red window is now the one associated with channel
5, see figure.

BORDER

You can place a border round the edge of the screen or a
window. For example:

BORDER #5,6

would create a border round the channel #5 window. It
would be 6 units thick and the size of the window would be correspondingly
reduced. The border would be transparent, protecting anything that was under
it. You can specify a coloured border by the usual method.

BORDER #5,6,2

would produce a red border. You can make a border of
other colours and textures by the usual methods. For example,

BORDER 10

Will add a 10 pixel thick transparent border to the
current window (transparent because no colour was specified) and

BORDER 2,0,7,0

Will add a 2 pixel thick black and white stipple border.

BLOCK

You can specify a block's size, position and colour with
a single statement. It is placed in the pixel co-ordinate system relative to
the current window or screen. For example:

BLOCK #5,10,20,50,100,2

would create a block in the # 5 window at a position 50
units across and 100 units down. It would be 10 units wide and 20 units high.
Its colour would be red.

It is worth noting that WINDOW and BLOCK
statements work without alteration in 4 and 8 colour mode (though the colours
may vary) because the across values are always on a 0 to 511 scale and there
are always 256 pixel positions down.

SPECIAL PRINTING CSIZE

You can alter the size of characters. For example:

CSIZE 3,1

will give the largest possible characters and:

CSIZE 0,0

will give the smallest. The first number must be 0, 1, 2
or 3 and determines the width. The second must be 0 or 1 and determines the
height. The normal sizes are:

MODE 4 CSIZE 0,0

MODE 8 CSIZE 2,0

The number of lines and columns available for each
character size is dependent on whether the output is viewed on a monitor or on
a television set: the row and column sizes given are for a monitor; those for a
television set will be smaller and also will vary between different
televisions.

If you are using low resolution mode the QL will not
allow you to select a character size smaller than default size.

STRIP

You can provide a special background for characters to
make them stand out. For example:

STRIP 7

will give a white strip while

STRIP 2,4,2

will give a red/green vertical striped strip. All the
normal colour combinations are possible.

OVER

Normally printing occurs on the current paper colour. You
can alter this by using strip. You can make further effects by using:

OVER 1 1
prints in ink on a transparent strip

OVER -1 -1
prints in ink over existing display on screen

To revert to normal printing on current strip use:

 OVER 0

UNDER

You can underline characters.

UNDER 1 underlines
all subsequent output in the current ink

UNDER 0 switches
off underling.

SCALE GRAPHICS

If you wish to draw reasonably true geometric figures on
a TV or video screen you cannot easily use a pixel-based system. If you use scale
graphics then the system will do the necessary work to ensure that you can
fairly easily draw reasonable circles, squares and other shapes.

The default scale of the graphics coordinate system is
100 in the vertical direction and whatever is needed in the across direction to
ensure that shapes drawn with the special graphics keywords (PLOT, DRAW,
CIRCLE) are true.

The graphics origin is not the same as the pixel
origin which is used to define the position of windows and blocks. The graphics
origin is at the bottom left hand corner of the current screen or window.

POINTS AND LINES

It is easy to draw points and lines using scale graphics.
Using a vertical scale of 100 a point near the centre of the window can be
plotted with:

POINT 60,50

The point (60 units across and 50 units up) will be
plotted in the current ink colour. Similarly a line may be drawn with the
statement:

LINE 60,50 TO 80,90

Further elements can be added. For example, the following
will draw a square:

LINE 60,50 TO 70,50 TO 70,60 TO 60,60 TO 60,50

RELATIVE MODE

Pair of coordinates such as:

across,
up

normally define a point relative to the origin 0,0 in the
bottom left hand corner of a window (or elsewhere if you choose). It is sometimes
more convenient to define points relative to the current cursor position. For
example the square above may be plotted in another way using the LINE_R
statement which means:

"Make
all pairs of coordinates relative to the current cursor position."

POINT 60,50

LINE_R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

First the point 60,50 becomes the origin, then, as lines
are drawn, the end of a line becomes the origin for the next one.

The following program will plot a pattern of randomly
placed coloured squares.

100 REMark Coloured Squares

110 PAPER 7 : CLS

120 FOR sq = 1 TO 100

130 INK RND(1 TO 6)

140 POINT RND(90),RND(90)

150 LINE R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

160 END FOR sq

The same result could be achieved entirely with absolute
graphics but it would require a little more effort.

CIRCLES AND ELLIPSES

If you want to draw a circle you need to specify:

position
say 50,50

radius
say 40

The statement

CIRCLE 50,50,40

will draw a circle with the centre at position 50,50 and
radius (or height) 40 units, see figure:

If you add two more parameters:

e.g.
CIRCLE 50,50,40,.5

You will get an ellipse. The keywords CIRCLE and ELLIPSE
are interchangeable.

The height of the ellipse is 40 as before but the
horizontal 'radius' is now only 0.5 of the height. The number 0.5 is called the
eccentricity. If the eccentricity is 1 you get a circle if it is less than 1
and greater than zero you get an ellipse. If you want to tilt an ellipse you
can change the fifth parameter, for example:

CIRCLE 50,50,40,.5,1

This will tilt the ellipse anti-clockwise by one radian,
about 57 degrees, as shown in figure

below

A straight angle is 180 degrees or PI radians, so you can
make a pattern of ellipses with the program:

100 FOR rot = 0 TO 2*PI STEP PI/6

110 CIRCLE 50,50,40,0.5,rot

120 END FOR rot

The order of the parameters for a circle or ellipse is:

centre
_across, centre_up, height [eccentricity, angle]

The last two parameters are optional and this is
indicated by putting them inside square brackets ([]).

Write a program which does the following:

1.
Open a window
100x100 at (100,50)

2.
Scale 100 in mode
8

3.
Select black paper
and clear window

4.
Make green border
2 units wide

5.
Draw a pattern of
six coloured circles.

6.
Close the window

100 REMark pattern

110 MODE 8

120 OPEN #7,scr_100x100a100x50

130 SCALE #7,100,0,0

140 PAPER #7,0 : CLS #7

150 BORDER #7,2,4

160 FOR colour = 1 TO 6

170 INK #7,colour

180 LET rot = 2*PI/colour

190 CIRCLE #7,50,50,30,0.5,rot

200 END FOR colour

210 CLOSE #7

You can get some interesting effects by altering the
program. For example try the amendments:

160 FOR colour = 1 TO 100

180 LET rot = colour*PI/50

ARCS

If you want to draw an arc you need to decide:

starting
point

end
point

amount
of curvature

The first two items are straightforward but the amount of
curvature is not so easy. You can do it by drawing accurately or by trial and
error but you must decide what angle the arc subtends and then specify the
angle in radians. An angle of 1.5 radians would give a sharp bend and a small
angle would give a very gentle curvature. Try for example:

ARC 10,50 TO 50,90,1

which gives a moderate curvature in the current INK
colour.

FILL

You can fill a closed shape with the current INK
colour by simply writing:

FILL 1

before the shape is drawn. The following program produces
a green circle.

INK 4

FILL 1

CIRCLE 50,50,30

The FILL command works by drawing touching
horizontal lines between suitable points. The statement:

FILL 0

Will turn off the FILL effect.

SCROLLING AND PANNING

You can scroll or pan the display in a window like a film
cameraman. You arrange scrolling In terms of pixels. A positive number of
pixels indicates upwards scrolling, thus

SCROLL 10

Moves the display in the current window or screen 10
pixels downwards.

SCROLL -8

Moves the display 8 pixels up. You can add a second
parameter to induce part-scrolling.

SCROLL -8, 1

Will scroll the part above (not including) the cursor
line and:

SCROLL -8, 2

Will scroll the part below (not including) the cursor line.

As scrolling occurs, the space left by movement of the
display is filled with the current Paper
colour. A second parameter 0 has no effect.

You can PAN the display in the current window left
or right. The PAN statement works In a similar manner to scroll but

Pan 40 moves
display right

Pan -40
moves display left

A second parameter gives a partial PAN

0 - whole screen

3 - the whole of the line occupied by the cursor

4 - the right hand side of the line occupied by the
cursor. The area of the cursor is
also included.

If you are using stipples or are in 8 colour mode then
windows must be panned or Scrolled in multiples of 2 pixels.

[bookmark: _PROBLEMS_ON_CHAPTER_9]PROBLEMS ON CHAPTER 12

1. Write a program which draws a 'Snakes
and Ladders' grid of ten rows of ten rows of ten squares.

2. Place the numbers 1 to 100 in the
squares starting at the bottom left and place F for finish in the last square.

3. Draw a dartboard on the screen. It
should consist of an outer ring which could hold numbers. A 'doubles' ring and
'triples' ring as shown and a centre consisting of a 'bull's eye' and a ring
around it.

[bookmark: _CHAPTER_13_–]CHAPTER 13 – ARRAYS

Suppose you are a prison governor and you have a new
prison block which is called the West Block. It is ready to receive 50 new
prisoners. You need to know which prisoner (known by his number) is in which
cell. You could give each cell a name but it is simpler to give them numbers 1
to 50.

In a computing simulation we will imagine just 5
prisoners with numbers which we can put in a DATA statement:

Data 50, 37, 86, 41, 32

We set up an array of variables which share the name,
west, and are distinguished by a number
appended in brackets.

It is
necessary to declare an array and give its dimensions with a DIM
statement:

DIM west(5)

This
enables SuperBASIC to allocate space, which might be a large amount. After the DIM
statement has been executed the five variables can be used.

The
convicts can be READ from the DATA statement into the five array
variables:

FOR cell = 1 TO 5 : READ west (cell)

We can
add another FOR loop with a PRINT statement to prove that the
convicts are in the cells.

The
complete program is shown below:

100 REMark Prisoners

110 DIM west(5)

120 FOR cell 1 = 1 TO 5 : READ west(cell)

130 FOR cell = 1 TO 5 : PRINT cell ! west(cell)

140 DATA 50, 37, 86, 41, 32

The
output from the program is:

1 50

2 37

3 86

4 41

5 32

The numbers 1 to 5 are called subscripts if the
array name, west. The array west, is a numeric array consisting
of five numeric array elements.

You can replace line 130 by:

130 PRINT west

This will output the values only:

0

50

37

86

41

32

The zero at the top of the list appears because
subscripts range from zero to the declared number. We will show later how
useful the zero elements in arrays can be. Note also that when a numeric array
is DIMensioned its elements are all given the value zero.

STRING ARRAYS

String arrays are similar to numeric arrays but an extra
dimension in the DIM statement specifies the length of each string
variable in the array. Suppose that ten of the top players at Royal Birkdale
for the 1982 British Golf Championship were denoted by their first names and
placed in DATA statements.

DATA
"Tom","Graham","Sevvy","Jack","Lee"

DATA
"Nick","Bernard","Ben","Gregg","Hal"

You would need ten different variable names, but if there
were a hundred or a thousand players the job would become impossibly tedious.
An array is a set of variables designed to cope with problems of this kind.
Each variable name consists of two parts:

a name
according to the usual rules

a
numeric part called a subscript

Write the variable names as:

flat$(1),flat$(2),flat$(3)...etc

Before you can use the array variables you must tell the
system about the array and its dimensions:

DIM flat$(10,8)

This causes eleven (0 to 10) variables to be reserved for
use in the program. Each string variable in the array may have up to eight
characters. DIM statements should usually be placed all together near
the beginning of the program. Once the array has been declared in a DIM
statement all the elements of the array can be used. One important advantage is
that you can give the numeric part (the subscript) as a numeric variable. You
can write:

FOR number = 1 TO 10 : READ flat$(number)

This would place the golfers in their 'flats':

You can refer to the variables in the usual way but
remember to use the right subscript. Suppose that Tom and Sevvy wished to
exchange flats. In computing terms one of them, Tom say, would have to move
into a temporary flat to allow Sevvy time to move. You can write:

LET temp$ = flat$(1) : REMark Tom into temporary

LET flat$(1) = flat$(3) : REMark Sevvy into flat$(1)

LET flat$(3) = temp$: REMark Tom into flat$(3)

The following program places the ten golfers in an array
named flat$ and prints the names of the occupants with their 'flat numbers'
(array subscripts) to prove that they are in residence. The occupants of flats
1 and 3 then change places. The list of occupants is then printed again to show
that the exchange has occurred.

100 REMark Golfers' Flats

110 DIM flat$(10,8)

120 FOR number = 1 TO 10 : READ flat$(number)

130 printlist

140 exchange

150 printlist

160 REMark End of main program

170 DEFine PROCedure printlist

180 FOR num = 1 TO 10 : PRINT num,flat$(num)

190 END DEFine

200 DEFine PROCedure exchange

210 LET temp$ = f1at$(1)

220 LET flat$(1) = f1at$(3)

230 LET flat$(3) = temp$

240 END DEFine

250 DATA
"Tom","Graham","Sevvy","Jack","Lee"

260 DATA
"Nick","Bernard","Ben","Greg","Hal"

 	

 output (line 130)

 	

 output (line 150)

 	

 1 Tom

 2 Graham

 3 Sevvy

 4 Jack

 5 Lee

 6 Nick

 7 Bernard

 8 Ben

 9 Gregg

 10 Hal

 	

 1 Sevvy

 2 Graham

 3 Tom

 4 Jack

 5 Lee

 6 Nick

 7 Bernard

 8 Ben

 9 Gregg

 10 Hal

TWO DIMENSIONAL ARRAYS

Sometimes the nature of a problem suggests two dimensions
such as 3 floors of 10 flats rather than just a single row of 30.

Suppose that 20 or more golfers need flats and there is a
block of 30 flats divided into three floors of ten f lats each. A realistic
method of representing the block would be with a two-dimensional array, You can
think of the thirty variables as shown below:

Assuming DATA statements with 30 names, a suitable
way to place the names in the flats is:

120 FOR floor = 0 TO 2

130 FOR num = 0 TO 9

140 READ flats$(floor,num)

150 END FOR num

160 END FOR floor

You also need a DIM statement:

20 DIM flat$(2,9,8)

which shows that the first subscript can be from 0 to 2
(floor number) and the second subscript can be from 0 to 9 (room number). The
third number states the maximum number of characters in each array element.

We add a print routine to show that the golfers are in
the flats and we use letters to save space.

100 REMark 30 Golfers

110 DIM flat$(2,9,8)

120 FOR floor = 0 TO 2

130 FOR num = 0 TO 9

140 READ flat$(floor,num) : REMark Golfer goes in

150 END FOR num

160 END FOR floor

170 REMark End of input

180 FOR floor = 0 TO 2

190 PRINT "Floor number" ! Floor

200 FOR num = 0 TO 9

210 PRINT 'Flat' ! num ! flat$(floor,num)

220 END FOR num

230 END FOR floor

240 DATA
"A","B","C","D","E","F","G","H","I","J"

250 DATA
"K","L","M","N","O","P","Q","R","S","T"

260 DATA
"U","V","W","X","Y","Z","@","£","$","%"

The output starts:

Floor number 0

Flat 0 A

Flat 1 B

Flat 2 C

And continues giving the thirty occupants.

ARRAY SLICING

You may find this section hard to read though it is essentially
the same concept as string slicing. You will probably need string-slicing if
you get beyond the learning stage of programming. The need for array-slicing is
much rarer and you may wish to omit this section particularly on a first
reading.

We now use the golfers' flats to illustrate the concept
of array slicing. The flats will be numbered 0 to 9 to keep to single digits
and names will be single characters for space reasons.

Given the above values the following are array slices:

 	
 flat$(1,3)

 	
 Means a single array element with value N

 	
 flat$(1,1 TO 6)

 	
 Means six elements with values L M N 0 P Q

 	
 Array Element

 	
 Value

 	
 flat$(1,1)

 	
 L

 	
 flat$(1,2)

 	
 M

 	
 flat$(1,3)

 	
 N

 	
 flat$(1,4)

 	
 O

 	
 flat$(1,5)

 	
 P

 	
 flat$(1,6)

 	
 Q

 	
 flat$(1)

 	
 means flat$(1,0 TO 9)

 Ten elements with values K L M N O P Q R S T

In these examples a range of values of a subscript can be
given instead of a single value. If a subscript is missing completely the
complete range is assumed. In the third example the second subscript is missing
and it is assumed by the system to be 0 TO 9.

The techniques of array slicing and string slicing are
similar though the latter is more widely applicable.

[bookmark: _PROBLEMS_ON_CHAPTER_10]PROBLEMS ON CHAPTER 13

1.
SORTING

Place ten numbers in an array by reading from a DATA
statement. Search the array to find the lowest number. Make this lowest number
the value of the first element of a new array. Replace it in the first array
with a very large number. Repeat this process making the second lowest number
the second value in the new array and so on until you have a sorted array of
numbers which should then be printed.

2.
SNAKES AND
LADDERS

Represent a snakes and ladders game with a 100 element
numeric array. Each element should contain either

zero

or:

a
number in the range 10 to 90 meaning that a player should transfer to that

number
by going 'up a ladder' or 'down a snake'

or:

the
digits 1, 2, 3, etc. to denote a particular player's position.

Set up six snakes and six ladders by placing numbers in
the array and simulate one 'solo' run by a single player to test the game.

3.
CROSSWORD
BLANKS

 	

 	

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 columns

 	

 	
 1

 	

 	

 	

 	

 	

 	

 	

 	
 2

 	

 	

 	

 	

 	

 	

 	
 row

 	
 3

 	

 	

 	

 	

 	

 	

 	

 	
 4

 	

 	

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	

Crosswords usually have an odd number of rows or columns
in which the black squares have a symmetrical pattern. The pattern is said to
have rotational symmetry because rotation through 180 degrees would not change
it.

Note that after rotation through 180 degrees the square
in row 4, column1 could become the square in row 2, column 5. That is row 4,
column 1 becomes row 2, column 5 in a 5 x 5 grid.

Write a program to generate and display a symmetrical
pattern of this kind.

4.
Modify the
crossword pattern so that there are no sequences, across or down, of less than
four white squares.

5.
CARD
SHUFFLE

Cards are denoted by the numbers 1-52 stored in an array.
They can be converted easily to actual card values when necessary. The cards
should be 'shuffled' as follows.

Choose
any position in range 1-51 e.g. 17

Place
the card in this position in a temporary store.

Shunt
all the cards in positions 52 to 18 down to positions 51 to 17

Place
the chosen card from the temporary store to position 52.

Deal
similarly with the ranges 1-50, 1-49 .. down to 1-2 so that the pack is well
shuffled.

Output
the result of the shuffle

6.
Set up six DATA
statements each containing a surname, initials and a telephone number
(dialling code and local number). Decide on a suitable structure of arrays to store
this information and READ it into the arrays.

PRINT
the data using a separate FOR loop and explain how the input format (DATA),
the internal format (arrays) and output format are not necessarily all the
same.

[bookmark: _CHAPTER_14_–]CHAPTER 14 – PROGRAM STRUCTURE

In this chapter we go again over the ground of program
structure : loops and decisions or selection. We have tried to present things
in as simple a way as possible but SuperBASIC is designed to cope properly with
the simple and the complex and all levels in between. Some parts of this
chapter are difficult and if you are new to programming you may wish to omit
parts. The topics covered are:

Loops

Nested
loops

Binary
decisions

Multiple
decisions

The latter parts of the first section, Loops, get
difficult as we show how SuperBASIC copes with problems that other languages
simply ignore. Skip these parts if you feel so inclined but the other sections
are more straightforward.

LOOPS

In this section we attempt to illustrate the well known
problems of handling repetition with simulations of some Wild West scenes. The
context may be contrived and trivial but it offers a simple basis for
discussion and it illustrates difficulties which arise across the whole range
of programming applications.

EXAMPLE 1

A bandit is holed up in the Old School House. The sheriff
has six bullets in his gun. Simulate the firing of the six shots.

Program 1

100 REMark Western FOR

110 FOR bullets = 1 TO 6

120 PRINT "Take aim"

130 PRINT "Fire shot"

140 END FOR bullets

Program 2

100 REMark Western REPeat

110 LET bullets = 6

120 REPeat bandit

130 PRINT "Take aim"

140 PRINT "Fire shot"

150 LET bullets = bullets - 1

160 IF bullets = 0 THEN EXIT bandit

170 END REPeat bandit

Both these programs produce the same output:

Take aim

Fire a shot

Is printed six times

If in each program the 6 is changed to any number down to
1 both programs still work as you would expect. But what if the gun is empty
before any shots have been fired?

EXAMPLE 2

Suppose that someone has secretly taken all the bullets
out of the sheriff's gun. What happens if you simply change the 6 to 0 in each
program?

Program 1

100 REMark Western FOR Zero Case

110 FOR bullets = 1 to 0

120 PRINT"Take aim"

130 PRINT "Fire a shot"

140 END FOR bullets

This works correctly. There is no output. The 'zero case'
behaves properly in SuperBASIC

Program 2

100 REMark Western REPeat Fails

110 LET bullets = 0

120 REPeat bandit

130 PRINT "Take aim"

140 PRINT "Fire shot"

150 LET bullets = bullets - 1

160 IF bullets = 0 THEN EXIT bandit

170 END REPeat bandit

The program fails in two ways:

1. Take aim

Fire a shot

Is printed though there were never any bullets

2.
By the time the
variable, bullets, is tested in line 160 it has the value -1 and it
never becomes zero afterwards. The program loops indefinitely. You can cure the
infinite looping by re-writing line 160:

160 IF bullets < 1 THEN EXIT bandit

There is an inherent fault in the programming which does
not allow for the possible zero case. This can be corrected by placing the
conditional EXIT before the print statements.

Program 3

100 REMark Western REPeat Zero Case

110 LET bullets = 0

120 REPeat Bandit

130 IF bullets = 0 THEN EXIT Bandit

140 PRINT "Take aim"

150 PRINT "Fire shot"

160 LET bullets = bullets - 1

170 END REPeat Bandit

This program now works properly whatever the initial
value of bullets as long as it is a positive whole number or zero. Method 2
corresponds to the REPEAT.. UNTIL loop of some languages. Method 3
corresponds to the WHILE....ENDWHILE loop of some languages. However the
REPeat.....END REPeat with EXIT is more flexible than either or
the combination of both.

If you have used other BASICs you may wonder what has
happened to the NEXT statement. We will re-introduce it soon but you
will see that both loops have a similar structure and both are named.

 	
 FOR name =

 (statements)

 END FOR name

 	
 (opening keyword)

 (content)

 (closing keyword)

 	
 REPeat name

 (statements)

 END REPeat name

In addition the REPeat loop must normally have an EXIT
amongst the statements or it will never end.

Note also that the EXIT statement causes control
to go to the statement which is immediately after the END of the loop.

A NEXT statement may be placed in a loop. It
causes control to go to the statement which is just after the opening keyword FOR
or REPeat. It should be considered as a kind of opposite to the EXIT statement.
By a curious coincidence the two words, NEXT and EXIT, both
contain EXT. Think of an EXTension to loops and:

N means "Now start again"

I means "It's ended"

EXAMPLE 3

The situation is the same as in example 1. The sheriff
has a gun loaded with six bullets and he is to fire at the bandit but two more
conditions apply:

1. If he hits the bandit he stops firing and returns to
Dodge City

2. If he runs out of bullets before he hits the bandit,
he tells his partner to watch the bandit while he (sheriff) returns to Dodge
City

Program 1

In this case, the content between NEXT and END FOR
is a kind of epilogue which is only executed if the FOR loop runs its full
course. If there is a premature EXIT the epilogue is not executed.

The same effect can be achieved with a REPeat loop
though it is not necessarily the best way to do it. However it is worth looking
at (perhaps at a second reading) if you want to understand structures which are
simple enough to use in simple ways and powerful enough to cope with awkward
situations when they arise.

Program 2

100 REMark Western REPeat with Epilogue

110 LET bullets = 6

120 REPeat Bandit

130 PRINT "Take aim"

140 PRINT "Fire shot"

150 LET hit = RND(9)

160 IF hit = 7 THEN EXIT Bandit

170 LET bullets = bullets - 1

180 IF bullets <> 0 THEN NEXT Bandit

190 PRINT "Watch Bandit"

200 END REPeat Bandit

210 PRINT "Return to Dodge City"

The program works properly as long as the sheriff has at
least one bullet at the start. It fails if line 20 reads:

110 LET bullets = 0

You might think that the sheriff would be a fool to start
an enterprise of this kind if he had no bullets at all, and you would be right.
We are now discussing how to preserve good structure in the most complex type
of situation. We have at least kept the problem context simple: we know what we
are trying to do. Complex structural problems usually arise in contexts more
difficult than Wild West simulations. But if you really want a solution to the
problem which caters for a possible hit, running out of bullets and an
epilogue, and also the zero case then add the following line to the above
program:

125 IF bullets = 0 THEN PRINT "Watch Bandit" :
EXIT bandit

We can conceive of no more complex type of problem than
this with a single loop. SuperBASIC can easily handle it if you want it to.

NESTED LOOPS

Consider the following FOR loop which PLOTS a row of
points of various randomly chosen colours (not black).

100 REMark Row of pixels

110 PAPER 0 : CLS

120 LET up = 50

130 FOR across = 20 TO 60

140 INK RND(2 TO 7)

150 POINT across,up

160 END FOR across

This program plots a row of points thus:

...

If you want to get say 51 rows of points you must plot a
row for values up from 30 to 80. But you must always observe the rule that a
structure can go completely within another or it can go properly around it. It
can also follow in sequence, but it cannot 'mesh' with another structure. Books
about programming often show how FOR loops can be related with a diagram
like:

In SuperBASIC the rule applies to all structures. You can
solve all problems using them properly. We therefore treat the FOR loop as an
entity and design a new program:

 	
 FOR up = 30 TO 80

 	
 FOR across = 20 TO 60

 	
 INK RND(2 TO 7)

 	
 POINT across,up

 	
 END FOR across

 	
 END FOR up

When we translate this into a program we are entitled not
only to expect it to work but to know what it will do. It will plot a rectangle
made up of rows of pixels.

100 REMark Rows of pixels

110 PAPER 0 : CLS

120 FOR up = 30 TO 80

130 FOR across = 20 TO 60

140 INK RND(2 TO 7)

150 POINT across,up

160 END FOR across

170 END FOR up

Different structures may be nested. Suppose we replace
the inner FOR loop of the above program by a REPeat loop. We will terminate the
REPeat loop when the zero colour code appears for a selection in the range 0 to
7.

100 REMark REPeat in FOR

110 PAPER 0 : CLS

120 FOR up = 30 TO 80

130 LET across = 19

140 REPeat dots

150 LET colour = RND(7)

160 INK colour

170 LET across = across + 1

180 POINT across,up

190 IF colour = 0 THEN EXIT dots

200 END REPeat dots

210 END FOR up

Much of the wisdom about program control and structure
can be expressed in two rules:

1.
Construct your
program using only the legitimate structures for loops and decision making.

2.
Each structure
should be properly related in sequence or wholly within another.

BINARY DECISIONS

The three types of binary decision can be illustrated
easily in terms of what to do when when it rains.

Example 1:

100 REMark Short form IF

110 LET rain = RND(0 TO 1)

120 IF rain THEN PRINT "Open brolly"

Example 2:

100 REMark Long form IF. ..END IF

110 LET rain = RND(0 TO 1)

120 IF rain THEN

130 PRINT "Wear coat"

140 PRINT "Open brolly"

150 PRINT "Walk fast"

160 END IF

Example 3:

100 REMark Long form IF ...ELSE...END IF

110 LET rain = RND(0 TO 1)

120 IF rain THEN

130 PRINT "Take a bus"

140 ELSE

150 PRINT "Walk"

160 END IF

AII these are binary decisions. The first two examples
are simple : either something happens or it does not. The third is a general
binary decision with two distinct possible courses of action, both of which
must be defined.

You can omit THEN in the long forms if you wish.
In the short form you can substitute : for THEN.

EXAMPLE

Consider a more complex example in which it seems natural
to nest binary decisions. This type of nesting can be confusing and you should
only do it if it seems the most natural thing to do. Careful attention to
layout, particularly indenting, is especially important.

Analyse a piece of text to count the number of vowels,
consonants and other characters. Ignore spaces. For simplicity the text is all
upper case.

Data:

"COMPUTER
HISTORY WAS MADE IN 1984"

Design:

Read in the data

FOR
each character:

 IF letter THEN

 IF vowel

 increase vowel count

 ELSE

 increase consonant count

 END IF

 ELSE

 IF not space THEN increase other count

 END IF

END FOR

PRINT
results

100 REMark Character Counts

110 RESTORE 290

120 READ text$

130 LET vowels = 0 : cons = 0 : others = 0

140 FOR num = 1 TO LEN(text$)

150 LET ch$ = text$(num)

160 IF ch$ >= "A" AND ch$ <= 'Z'

170 IF ch$ INSTR "AEIOU"

180 LET vowels = vowels + 1

190 ELSE

200 LET cons = cons + 1

210 END IF

220 ELSE

230 IF ch$ <> " " THEN others =
others + 1

240 END IF

250 END FOR num

260 PRINT "Vowel count is" ! vowels

270 PRINT "Consonant count is" ! cons

280 PRINT "Other count is" ! others

290 DATA "COMPUTER HISTORY WAS MADE IN
1984"

Output

Vowel count is 9

Consonant count is 15

Other count is 4

MULTIPLE DECISIONS - SELect

Where there are three or more possible actions and none
is dependant on a previous choice the natural structure to use is SELect which
enables selection from any number of possibilities.

EXAMPLE

A magic snake grows without limit by adding a section to
its front. Each section may be up to twenty units long and may be a new colour
or it may remain the same. Each new section must grow in one of the directions
North, South, East, or West. The snake starts from the centre of the window.

Method

At any time while the snake is still on the screen you
choose a random length and ink colour easily. The direction may be selected by
a number 1,2,3 or 4 as shown:

Design:

Select
PAPER

Set
snake to centre of window

REPeat

 Choose
direction, colour length of growth

 FOR
unit = 1 to growth

 Make
snake grow north, south, east or west

 IF
snake is off window THEN EXIT

 END
FOR

END
REpeat

PRINT
end message

Program:

100 REMark Magic Snake

110 PAPER 0 : CLS

120 LET across = 50 : up = 50

130 REPeat snake

140 LET direction = RND(l TO 4) : colour = RND(2 TO
7)

150 LET growth = RND(2 TO 20)

160 INK colour

170 FOR unit = 1 TO growth

180 SELect ON direction

190 ON direction = 1

200 LET up = up + 1

210 ON direction = 2

220 LET across = across + 1

230 ON direction = 3

240 LET up = up - 1

250 ON direction = 4

260 LET across = across - 1

270 END SELect

280 IF across < 1 OR across > 99 OR up <
1 OR up > 99 : EXIT snake

290 POINT across,up

300 END FOR unit

310 END REPeat snake

320 PRINT "Snake off edge"

The syntax of the SELect ON structure also allows
for the possibility of selecting on a list of values such as

5,6,8,10 TO 13

It is also possible to allow for an action to be executed
if none of the stated values is found. The full structure is of the form given
below.

LONG FORM

SELect ON num

ON
num = list of values

 statements

ON num
= list of values

 Statements

 -

 -

 -

 -

ON num
= REMAINDER

 statements

END SELect

where num is any numeric variable and the REMAINDER
clause is optional.

SHORT FORM

There is a short form of the SELect structure. For
example:

100 INPUT num

110 SELect ON num = 0 TO 9 : PRINT "digit"

will perform as you would expect.

[bookmark: _PROBLEMS_ON_CHAPTER_11]PROBLEMS ON CHAPTER 14

1.
Store 10 numbers
in an array and perform a 'bubble-sort'. This is done by comparing the first
pair and exchanging, if necessary the second pair (second and third numbers), up
to the ninth pair (ninth and tenth numbers). The first run of nine comparisons and
possible exchanges guarantees that the highest number will reach its correct position.
Another eight runs will guarantee eight more correct positions leaving only the
lowest number which must be in the only (correct) position left. The simplest form
of 'bubble sort' of ten numbers requires nine runs of nine comparisons.

2.
Consider ways of
speeding up bubblesort, but do not expect that it will ever be very efficient.

3.
An auctioneer
wishes to sell an old clock and he has instructions to invite a first bid of £50.
If no-one bids he can come down to £40, £30, £20, but no lower, in an effort to
start the bidding. If no-one bids, the clock is withdrawn from the sale. When
the bidding starts, he takes only £5 increases until the final bid is made. If
the final bid is £35 (the 'reserve price') or more, the clock is sold. Otherwise
it is withdrawn.

Simulate the auction using the equivalent of a six-sided
die throw to start the bidding. A 'six' at any of the starting prices will
start it off.

When the bidding has started there should be a three out
of four chance of a higher

bid at each invitation.

4.
In a wild west
shoot-out the Sheriff has no ammunition and wishes to arrest a gunman camped in
a forest. He rides amongst the trees tempting the gunman to fire. He hopes that
when six shots have been fired he can rush in and overpower the gunman as he
tries to re-load. Simulate the encounter giving the gunman a one-twentieth
chance of hitting the Sheriff with each shot. If the Sheriff has not been hit
after six shots he will arrest the gunman.

5.
The Sheriff's
instructions to his Deputy are:

"If the gun is empty then re-load it and if it ain't
then keep on firing until you hit the bandit or he surrenders. If Mexico Pete
turns up, get out fast."

Write
a program which caters properly for all these situations:

Whatever happens, return to Dodge City

If Mexico Pete turns up, return immediately

If the gun is empty reload it

If the gun is not empty ask the bandit to surrender.

If the bandit surrenders, arrest him.

If he doesn't surrender fire a shot.

If the bandit is hit, arrest him and fix his wound.

Assume
an unlimited supply of ammunition Use a simulated 'twenty-sided die' and let a seven
mean 'surrender' and a 'thirteen' mean the bandit is hit.

[bookmark: _CHAPTER_15_–]CHAPTER 15 – PROCEDURES AND FUNCTIONS

In the first part of this chapter we explain the more
straightforward features of SuperBASIC's procedures and functions. We do this
with very simple examples so that you can understand the working of each
feature as it is described. Though the examples are simple and contrived you
will appreciate that, once understood, the ideas can be applied in more complex
situations where they really matter.

After the first part there is a discussion which attempts
to explain 'Why procedures' . If you understand, more or less, up to that point
you will be doing well and you should be able to use procedures and functions
with increasing effectiveness.

SuperBASIC first allows you to do the simpler things in
simple ways and then offers you more if you want it. Extra facilities and some
technical matters are explained in the second part of this chapter but you
could omit these, certainly at a first reading, and still be in a stronger position
than most users of older types of BASIC.

VALUE PARAMETERS

You have seen in previous chapters how a value can be
passed to a procedure. Here is another example.

EXAMPLE

In "Chan's Chinese Take-Away" there are just
six items on the menu.

 	
 Rice Dishes

 	
 Sweets

 	
 1 prawns

 	
 4 ice

 	
 2 chicken

 	
 5 fritter

 	
 3 special

 	
 6 lychees

Chan has a simple way of computing prices. He works in
pence and the prices are:

 	
 for a rice dish

 	
 300 + 10 times menu number

 	
 for a sweet

 	
 12 times menu number

Thus a customer who ate special rice and an ice would
pay:

300 +
10 * 3 + 12 * 4 = 378 pence

A procedure, item, accepts a menu number as a value
parameter and prints the cost.

Program

100 REMark Cost of Dish

110 item 3

120 item 4

130 DEFine PROCedure item(num)

140 IF num <= 3 THEN LET price = 300 + 10*num

150 IF num >= 4 THEN LET price = 12*num

160 PRINT ! price !

170 END DEFine

Output

330 48

In the main program actual parameters 3 and 4 are used.
The procedure definition has a formal parameter num, which takes the value
passed to it from the main program. Note that the formal parameters must be in
brackets, but that actual parameters need not be.

EXAMPLE

Now suppose the working variable, "price", was
also used in the main program, meaning something else, say the price of a glass
of lager 70p. The following program fails to give the desired result.

100 REMark Global price

110 LET price = 70

120 item 3

130 item 4

140 PRINT ! price !

150 DEFine PROCedure item(num)

160 IF num <= 3 THEN LET price = 300 + 10*num

170 IF num >= 4 THEN LET price = 12*num

180 PRINT ! price !

190 END DEFine

Output

330 48 48

The price of the lager has been altered by the procedure.
We say that the variable, price, is global because it can be used
anywhere in the program.

Make the procedure variable, price, LOCAL
to the procedure. This means that SuperBASIC will treat it as a special
variable accessible only within the procedure. The variable, "price",
in the main program will be a different thing even though it has the same name.

100 REMark LOCAL price

110 LET price = 70

120 item 3

130 item 4

140 PRINT ! price !

150 DEFine PROCedure item(num)

160 LOCaL price

170 IF num <= 3 THEN LET price = 300 + 10*num

180 IF num >= 4 THEN LET price = 12*num

190 PRINT ! price !

200 END DEFine

Output

330 48 70

This time everything works properly. Line 70 causes the
procedure variable, price to be internally marked as 'belonging' only to
the procedure, item. The other variable, price is not affected.
You can see that local variables are useful things.

EXAMPLE

Local variables are so useful that we automatically make
procedure formal parameters local. Though we have not mentioned it before
parameters such as num in the above programs cannot interfere with main
program variables. To prove this we drop the LOCAL statement from the
above program and use num for the price of lager. Because num in
the procedure is local everything works.

Program

100 REMark LOCAL parameter

110 LET num = 70

120 item 3

130 item 4

140 PRINT ! num !

150 DEFine PROCedure item(num)

160 IF num <= 3 THEN LET price = 300 + 10*num

170 IF num >= 4 THEN LET price = 12*num

180 PRINT ! price !

190 END DEFine

Output

330 48 70

VARIABLE PARAMETERS

So far we have only used procedure parameters for passing
values to the procedure. But suppose the main program wants the cost of an item
to be passed back so that it can compute the total bill. We can do this easily
by providing another parameter in the procedure call. This must be a variable
because it has to receive a value from the procedure. We therefore call it a
variable parameter and it must be matched by a corresponding variable parameter
in the procedure definition.

EXAMPLE

Use actual variable parameters, cost_1 and cost_2 to
receive the values of the variable price from the procedure. Make the main
program compute and print the total bill.

Program

100 REMark Variable parameter

110 LET num = 70

120 item 3,cost_1

130 item 4,cost_2

140 LET bill = num + cost_1 + cost_2

150 PRINT bill

160 DEFine PROCedure item(num,price)

170 IF num <= 3 THEN LET price = 300 + 10*num

180 IF num >= 4 THEN LET price = 12*num

190 END DEFine

Output

448

The parameters num and price are both automatically local
so there can be no problems. The diagrams show how information passes from main
program to procedure and back.

That is enough about procedures and parameters for the
present.

FUNCTIONS

You already know how a system function works. For example
the function:

SQRT(9)

computes the value, 3, which is the square root of 9. We
say the function returns the value 3. A function, like a procedure, can have
one or more parameters, but the distinguishing feature of a function is that it
returns exactly one value. This means that you can use it in expressions that
you already have. You can type:

PRINT 2*SQRT(9)

and get the output 6. Thus a function behaves like a
procedure with one or more value parameters and exactly one variable parameter
holding the returned value: that variable parameter is the function name
itself.

The parameters need not be numeric.

LEN("string")

has a string argument but it returns the numeric value 6.

EXAMPLE

Re write the program of the last section which used price
as a variable parameter. Let price be the name of the function.

The value to be returned is defined by the RETurn
statement as shown.

Program

100 REMark FuNction with RETurn

110 LET num = 70

120 LET bill = num + price(3) + price(4)

130 PRINT bill

140 DEFine FuNction price(num)

150 IF num <= 3 THEN RETurn 300 + 10*num

160 IF num >= 4 THEN RETurn 12*num

170 END DEFine

Output

 448

Notice the simplification in the calling of functions as
compared with procedure calls.

WHY PROCEDURES?

The ultimate concept of a procedure is that it should be
a 'black box' which receives specific information from 'outside' and performs
certain operations which may include sending specific information back to the
'outside: The 'outside' may be the main program or another procedure.

The term 'black box' implies that its internal workings
are not important: you only think about what goes in and what comes out. If for
example, a procedure uses a variable, count and changes its value, that might
affect a variable of the same name in the main program. Think of a mail order
company You send them an order and cash: they send you goods. Information is sent
to a procedure and it sends back action and/or new information.

You do not want the mail order company to use your name
and address or other information for other purposes. That would be an unwanted
side-effect. Similarly you do not want a procedure to cause unplanned changes
to values of variables used in the main program.

Of course you could make sure that there are no double
uses of variable names in a program. That will work up to a point but we have
shown in this chapter how to avoid trouble even if you forget what variables
have been used in any particular procedure.

A second aim in using procedures is to make a program
modular Rather than have one long main program you can break the job down into
what Seymour Papert, the inventor of LOGO, calls 'Mind-sized bites'.
These are the procedures, each one small enough to understand and control
easily. They are linked together by the procedure calls in a sequence or
hierarchy.

A third aim is to avoid writing the same code twice.
Write it once as a procedure and call it twice if necessary. Functions and
procedures written for one program can often be directly used, without change,
by other programs, and one might create a library of commonly used procedures
and functions.

We give below another example which shows how procedures
make a program modular.

EXAMPLE

An order is placed for six dishes at Chan's Take Away
where the menu is:

 	
 Item Number

 	
 Dish

 	
 Price

 	
 1

 	
 Prawns

 	
 3.50

 	
 2

 	
 Chicken

 	
 2.80

 	
 3

 	
 Special

 	
 3.30

Write procedures for the following tasks.

1.
Set up two
three-element arrays showing menu, dishes and prices. Use a DATA
statement.

2.
Simulate an order
for six randomly chosen dishes using a procedure, choose, and make a tally of
the number of times each dish is chosen.

3.
Pass the three
numbers to a procedure, waiter, which passes back the cost of the order
to the main program using a parameter cost. Procedure waiter calls two
other procedures, compute and cook, which compute the cost and
simulate "cooking"

4.
The procedure, cook,
simply prints the number required and the name of each dish.

The main program should call procedures as necessary, get
the total cost from procedure, waiter add 10% for a tip, and print the amount
of the total bill.

DESIGN

This program illustrates parameter passing in a fairly
complex way and we will explain the program step by step before putting it
together.

100 REMark Procedures

110 RESTORE 490

120 DIM item$(3,7),price(3),dish(3)

130 REMark *** PROGRAM ***

140 LET tip = 0.1

150 set_up

 -

 -

210 DEFine PROCedure set_up

220 FOR k = 1 TO 3

230 READ item$(k)

240 READ price(k)

250 END FOR k

260 END DEFine

 -

 -

 -

490 DATA "Prawns", 3.5,
"Chicken", 2.8, "Special" ,3.3

The names of menu items and their prices are placed in
the arrays item$ and price.

The next step is to choose a menu number for each of the
six customers. The tally of the number of each dish required will be kept in
the array dish.

160 choose dish

 -

 -

 -

270 DEFine PROCedure choose(dish)

280 FOR pick = 1 TO 6

290 LET number = RND(1 TO 3)

300 LET dish(number) = dish(number) + 1

310 END FOR pick

320 END DEFine

Note that the formal parameter dish is both:

local
to procedure choose

an
array in main program

The three values are passed back to the global array also
called dish. These values are then passed to the procedure waiter.

170 waiter dish, bill

 -

 -

330 DEFine PROCedure waiter (dish, cost)

340 compute dish,cost

350 cook dish

360 END DEFine

The waiter passes the information about the number of
each dish required to the procedure, compute, which computes the cost
and returns it.

370 DEFine PROCedure compute(dish, total)

380 LET total = 0

390 FOR k = 1 to 3

400 LET total = total + dish(k)*price(k)

410 END FOR k

420 END DEFine

The waiter also passes information to the cook who simply
prints the number required for each menu item.

430 DEFine PROCedure cook(dish)

440 FOR c = 1 TO 3

450 PRINT ! dish(c) ! item$(c) !

460 END FOR c

470 END DEFine

Again, the array dish in the procedure cook is local. It
receives the information which the procedure uses in its PRINT
statement.

The complete program is listed below.

100 REMark Procedures

110 RESTORE 490

120 DIM item$(3,7),price(3),dish(3)

130 REMark *** PROGRAM ***

140 LET tip = 0.1

150 set_up

160 choose dish

170 waiter dish,bill

180 LET bill = bill + tip*bill

190 PRINT "Total cost is £" ; bill

200 REMark *** PROCEDURE DEFINITIONS ***

210 DEFine PROCedure set_up

220 FOR k = 1 TO 3

230 READ item$(k)

240 READ price(k)

250 END FOR k

260 END DEFine

270 DEFine PROCedure choose(dish)

280 FOR pick = 1 TO 6

290 LET number = RND(1 TO 3)

300 LET dish(number) = dish(number) + 1

310 END FOR pick

320 END DEFine

330 DEFine PROCedure waiter(dish,cost)

340 compute dish,cost

350 cook dish

360 END DEFine

370 DEFine PROCedure compute(dish,total)

380 LET total = 0

390 FOR k = 1 TO 3

400 LET total = total + dish(k)*price(k)

410 END FOR k

420 END DEFine

430 DEFine PROCedure cook(dish)

440 FOR c = 1 TO 3

450 PRINT ! dish(c) ! item$(c)

460 END FOR c

470 END DEFine

480 REMark *** PROGRAM DATA ***

490 DATA
"Prawns",3.5,"Chicken",2.8,"Special",3.3

The output depends on the random choice of dishes but the
following choice illustrates the pattern, and gives a sample of output.

3 Prawns

1 Chicken

2 Special

Total cost is £20.40

COMMENT

Obviously the use of procedures and parameters in such a
simple program is necessary but imagine that each sub-task might be much more
complex. In such a situation the use of procedures would allow a modular
build-up of the program with testing at each stage. The above example merely
illustrates the main notations and relationships of procedures.

Similarly the next example illustrates the use of functions.

Note that in the previous example the procedures
"waiter" and "compute" both return exactly one value.
Rewrite the procedures as functions and show any other changes necessary as a consequence.

DEFine FuNction
waiter(dish)

 cook dish

 RETurn compute(dish)

END DEFine

DEFine FuNction
compute(dish)

 LET total = 0

 FOR k = 1 TO 3

 LET total = total + dish(k) * price(k)

 END FOR k

RETurn
total

END DEFine

The function call to waiter also takes a different
form

LET bill = waiter(dish)

This program works as before. Notice that there are fewer
parameters though the program structure is similar. That is because the
function names are also serving as parameters retuning information to the
source of the function call.

EXAMPLE

All the variables used as formal parameters in procedures
or functions are 'safe' because they are automatically local. Which variables
used in the procedures or functions are not local? What additional statements
would be needed to make them local?

Program Changes

The variables k, pick and num are not
local. The necessary changes to make them so are:

LOCAL k

LOCAL pick,num

TYPELESS PARAMETERS

Formal parameters do not have any type. You may prefer
that a variable which handles numbers has the appearance of a numeric variable and
which handles strings looks like a string variable, but however you write your
parameters they are typeless. To prove it, try the following program.

Program

100 REMark Number or word

110 waiter 2

120 waiter "Chicken"

130 DEFine PROCedure waiter(item)

140 PRINT ! item !

150 END DEFine

Output

2 Chicken

The type of the parameter is determined only when the
procedure is called and an actual parameter 'arrives'.

SCOPE OF VARIABLES

Consider the following program and try to consider what
two numbers will be output.

100 REMark scope

110 LET number = 1

120 test

130 DEFine PROCedure test

140 LOCal number

150 LET number = 2

160 PRINT number

170 try

180 END DEFine

190 DEFine PROCedure try

200 PRINT number

210 END DEFine

Obviously the first number to be printed will be 2 but is
the variable number in line 200 global?

The answer is that the value of number in line 160
will be carried into the procedure try. A variable which is local to a
procedure will be the same variable in a second procedure called by the first.

Equally if the procedure try is called by the main
program, the variable number will be the same number in both the main
program and procedure, try. The implications may seem strange at first
but they are logical.

1.
The variable
number in line 110 is global.

2.
The variable
number in procedure "test" is definitely local to the procedure.

3.
The variable
number in procedure "try" 'belongs' to the part of the program which was
the last call to it.

We have covered many concepts in this chapter because
SuperBASIC functions and procedures are very powerful. However you should not
expect to use all these features immediately. Use procedures and functions in
simple ways at first. They can be very effective and the power is there if you
need it.

[bookmark: _PROBLEMS_ON_CHAPTER_12]PROBLEMS ON CHAPTER 15

1.
Six employees are
identified by their surnames only. Each employee has a particular pension fund
rate expressed as a percentage. The following data represent the total salaries
and pension fund rates of the six employees.

 	
 Benson

 	
 13,800

 	
 6.25

 	
 Hanson

 	
 8,700

 	
 6.00

 	
 Johnson

 	
 10,300

 	
 6.25

 	
 Robson

 	
 15,000

 	
 7.00

 	
 Thomson

 	
 6,200

 	
 6.00

 	
 Watson

 	
 5,100

 	
 5.75

Write procedures to:

input
the data into arrays.

compute
the actual pension fund contributions.

output
the lists of names and computed contributions.

Link the procedures with a main
program calling them in sequence.

2.
Write a function select
with two arguments range and miss. The function should return a
random whole number in the given range but it should not be the value of miss.

Use the function in a program which chooses a random PAPER
colour and then draws random circles in random INK colours so that none
is in the colour of PAPER.

3.
Re-write the
solution to exercise 1 so that a function pension takes salary and contribution
rate as arguments and returns the computed pension contribution. Use two
procedures, one to input the data and one to output the required information
using the function pension.

4.
Write the
following:

a
procedure which sets up a 'pack of cards'.

a procedure
which shuffles the cards.

a
function which takes a number as an argument and returns a string value describing
the card.

a
procedure which 'deals' and displays four poker hands of five cards each.

a main
program which calls the above procedures.

(see
chapter 16 for discussion of a similar problem)

[bookmark: _CHAPTER_16_–]CHAPTER 16 – SOME TECHNIQUES

In this final chapter we present some applications of
concepts and facilities already discussed and we show how some further ideas
may be applied.

SIMULATION OF CARD PLAYING

It is easy to store and manipulate "playing
cards" by representing them with the numbers 1 to 52. This is how you
might convert such a number to the equivalent card. Suppose, for example, that
the number 29 appears. You may decide that:

cards 1-13
are hearts

cards 14-26
are clubs

cards 27-39
are diamonds

cards 40
52 are spades

and you will know that 29 means that you have a
"diamond". You can program the QL to do this with:

LET suit = (card-1) DIV 13

This will produce a value in the range 0 to 3 which you
can use to cause the appropriate suit to be printed. The value can be reduced
to the range 1 to 13 by writing:

LET value = card MOD 13

IF value = 0 THEN LET value = 13

Program

The numbers 1 to 13 can be made to print Ace, 2, 3...
Jack, Queen, King, or if you prefer it, such phrases as "two of
hearts" can be printed. The following program will print the name of the
card corresponding to your input number.

100 REMark Cards

110 DIM suitname$(4,8),cardval$(13,5)

120 LET f$ = " of"

130 set_up

140 REPeat cards

150 INPUT "Enter a card number 1-52:" !
card

160 IF card <1 OR card> 52 THEN EXIT cards

170 LET suit = (card-1) DIV 13

180 LET value = card MOD 13

190 IF value = 0 THEN LET value = 13

200 PRINT cardval$(value) ! f$! suitname$(suit)

210 END REPeat cards

220 DEFine PROCedure set_up

230 FOR s = 1 TO 4 : READ suitname$(s)

240 FOR v = 1 TO 13 : READ cardval$(v)

250 END DEFine

260 DATA
"hearts","clubs","diamonds","spades"

270 DATA
"Ace","Two","Three","Four","Five","Six","Seven"

280 DATA
"Eight","Nine","Ten","Jack","Queen","King"

Input and Output

13

King of hearts

49

Ten of spades

27

Ace of diamonds

0

COMMENT

Notice the use of DATA statements to hold a
permanent file of data which the program always uses. The other data which changes
each time the program runs is entered through an INPUT statement. If the
input data was known before running the program it would be equally correct to
use another READ and more DATA statements. This would give better
control.

SEQUENTIAL DATA FILES

The following program will establish a file of one
hundred numbers.

100 REMark Number File

110 OPEN NEW #6,mdv1_numbers

120 FOR num = 1 TO 100

130 PRINT #6,num

140 END FOR num

150 CLOSE #6

Numeric File

After running the program check that the filename
'numbers' is in the directory by typing:

DIR mdv1_numbers

You can get a view of the file without any special
formatting by copying from Microdrive to screen:

COPY mdv1_numbers to scr

You can also use the following program to read the file
and display its records on the screen.

100 REMark Read File

110 OPEN_IN #6,mdv1_numbers

120 FOR num = 1 TO 100

130 INPUT #6,item

140 PRINT ! item !

150 END FOR num

160 CLOSE #6

If you wish you can alter the program to get the output
in a different form.

Character File

In a similar fashion the following programs will set up a
file of one hundred randomly selected letters and read them back.

100 REMark Letter File

110 OPEN NEW #6,mdv1_chfile

120 FOR num = 1 TO 100

130 LET ch$ = CHR$(RND(65 TO 90))

140 PRINT #6,ch$

150 END FOR num

160 CLOSE #6

100 REMark Get Letters

110 OPEN IN #6,mdv1_chfile

120 FOR num = 1 TO 100

130 INPUT #6,item$

140 PRINT ! item$!

150 END FOR num

160 CLOSE #6

Suppose that you wish to set up a simple file of names
and telephone numbers.

 	
 RON

 	
 678462

 	
 GEOFF

 	
 896487

 	
 ZOE

 	
 249386

 	
 BEN

 	
 584621

 	
 MEG

 	
 482349

 	
 CATH

 	
 438975

 	
 WENDY

 	
 982387

The following program will do it.

100 REMark Phone numbers

110 OPEN NEW #6,mdv1_phone

120 FOR record = 1 TO 7

130 INPUT name$,num$

140 PRINT #6;name$;num$

150 END FOR record

160 CLOSE #6

Type RUN and enter a name followed by the ENTER key and a
number followed by the ENTER key. Repeat this seven times.

Notice that the data is 'buffered'. It is stored
internally until the system is ready to transfer a batch to the Microdrive. The
Microdrive is only accessed once, as you can tell from looking and listening.

COPY A FILE

Once a file is established, it should be copied
immediately as a back-up. To do this type:

COPY mdv1_phone TO mdv2_phone

READ A FILE

You need to be certain that the file exists in a correct
form so you should read it back from a Microdrive and display it on the screen.
You can do this easily using:

COPY mdv2_phone TO scr

The output to the screen will not provide spaces automatically
between the name and the number but it will provide a 'newline' at the end of
each record. The output will be:

RON678462

GEOFF896487

ZOE249386

BEN584621

MEG482349

CATH438975

WENDY982387

You can get a more controlled presentation of the data with
the following program.

100 REMark Read Phone Numbers

110 OPEN_IN #5,mdv1_phone

120 FOR record = 1 TO 7

130 INPUT #5,rec$

140 PRINT,rec$

150 END FOR record

160 CLOSE #5

The data is printed, as before, but this time each pair
of fields is held in the variable rec$ before being printed on the
screen. You have the opportunity to manipulate it into any desired form.

Note that more than one string variable may be used at
the file creation stage with INPUT and PRINT but the whole record
so created may be retrieved from the Microdrive file with a single string
variable (rec$ in the above example).

AN INSERTION SORT

The following colours are available in the low resolution
screen mode (in code number order 0-7).

black
blue red magenta green cyan yellow white

EXAMPLE

Write a program to sort the colours into alphabetical
order using an "insertion" sort.

Method

We place the eight colours in an array colour$
which we divide into two parts:

We take the leftmost item of the unsorted part and
compare it with each item, from right to left, in the sorted part until we find
its right place. As we compare we shuffle the sorted items to the right so that
when we find the right place to insert we can do so immediately without further
shuffling.

Suppose we have reached the point where four items are
sorted and we now focus on green, the leftmost item in the unsorted part.

1.
We place green in
the variable, comp$, and set a variable, p, to 5.

2.
The variable, p,
will eventually indicate where we think green should go. When w know that green
should move left, then we decrease the value of p.

3. We
compare green with red. If green is greater than (nearer to Z) or equal to red
we exit and green stays where it is.

Otherwise we copy red in to
position 5 thus and decrease the value of p thus:

4.
We now repeat the
process but this time we are comparing green with magenta and we get:

5.
Finally we move
left again comparing green with blue. This time there is no need to move or
change anything. We exit from the loop and place green in position 3. We are
then ready to focus on the sixth item, cyan.

PROBLEM ANALYSIS

1.
We will first
store the colour$ in an array colour$(8) and use:

comp$ the
current colour being compared

p to
point at the position where we think the colour in comp$ might go.

2.
A FOR loop
will focus attention on positions 2 to 8 in turn (a single item is already sorted).

3.
A REPeat
loop will allow comparisons until we find where the comp$ value actually

goes.

REPeat compare

 IF
comp$ need go no further left EXIT

 copy
a colour into the position on its right

 and
decrease p

END
REPeat compare

4.
After EXIT
from the REPeat loop the colour in comp$ is placed in position p
and the FOR loop continues.

Program Design

1 Declare array colour$

2 Read colours into the array

3 FOR item = 2 TO
8

 LET p = item

 LET comp$ =
colour$(p)

 REPEAT compare

 IF comp$ >
= colour$(p-1) : EXIT compare

 LET colour$(p)
= colour$(p-1)

 LET p = p - 1

 END REPeat
compare

 LET colour$(p) =
comp$

 END FOR item

4 PRINT sorted array
colour$

5 DATA

Further testing reveals a fault. It arises very easily if
we have data in which the first item is not in its correct position at the
start. A simple change of initial data to:

red
black blue magenta green cyan yellow white

reveals the problem. We compare black with red and
decrease p to the value, 1. We come round again and try to compare black
with a variable colour$(p-1) which is colour$(0) which does not exist.

This is a well-known problem in computing and the
solution is to "post a sentinel" on the end of the array. Just before
entering the REPeat loop we need:

LET colour$(0) = comp$

Fortunately SuperBASIC allows zero subscripts, otherwise
the problem would have to be solved at the expense of readability.

MODIFIED PROGRAM

100 REM Insertion Sort

110 DIM colour$(8,7)

120 FOR item = 1 TO 8 : READ colour$(item)

130 FOR item = 2 TO 8

140 LET p=item

150 LET comp$ = colour$(p)

160 LET colour$(0) = comp$

170 REPeat compare

180 IF comp$ >= colour$(p-1) : EXIT compare

190 LET colour$(p) = colour$(p-1)

200 LET p = p-1

210 END REPeat compare

220 LET colour$(p) = comp$

230 END FOR item

240 PRINT"Sorted..." ! colour$

250 DATA "black","blue","magenta","red"

260 DATA
"green","cyan","yellow","white"

COMMENT

1.
The program works
well. It has been tested with awkward data:

A A A A
A A A

B A B A
B A B

A B A B
A B A

B C D E
F G H

G F E D
C B A

2.
An insertion sort
is not particularly fast, but it can be useful for adding a few items to an
already sorted list. It is sometimes convenient to allow modest amounts of time
frequently to keep items in order rather than a substantial amount of time less
frequently to do a complete re-sorting.

You now have enough background knowledge to follow a
development of the handling of the file of seven names and telephone numbers.

SORTING A MICRODRIVE FILE

In order to sort the file 'phone' into alphabetical order
of names we must read it into an internal array, sort it, and then create a new
file which will be in alphabetical order of names.

It is never good practice to delete a file before its
replacement is clearly established and proven correct. You should therefore
copy the file first, as security using a different name. The required processes
are as follows:

1.
Copy the file
'phone' to 'phone_temp'

2.
Read the file
'phone' into an array

3.
Sort the array.

4.
Pause to check
that everything is in order

5.
Delete file
'phone'.

6.
Create new file
'phone'.

This is all the program needs to do but the new file
should be immediately checked using:

COPY mdv1_phone TO scr

Any further necessary checks should be carried out then:

DELETE mdv2 phone

COPY mdv1_phone TO mdv2_phone

COPY mdv1_phone TO scr

DELETE mdv1_phone_temp

The above operations complete the process of substituting
a sorted file for the original unsorted one in both master and back-up files.

ARRAY PARAMETERS

In the following program we illustrate the passing of
complete arrays between main program and procedure. The data passes in both
directions.

In line 40 the array row holding the numbers 1, 2,
3 is passed to the procedure, addsix. The parameter come, receives the
incoming data and the procedure adds six to each element. The array parameter, send,
at this point holds the numbers 7,8,9.

These numbers are passed back to the main program to
become the values of array, black. The values are printed to prove that
the data has moved as required.

Program

100 REMark Pass Arrays

110 DIM row(3),back(3)

120 FOR k = 1 TO 3 : LET row(k) = k

130 addsix row,back

140 FOR k = 1 TO 3 : PRINT ! back(k) !

150 DEFine PROCedure addsix(come,send)

160 FOR k = 1 TO 3 : LET send(k) = come(k) + 6

170 END DEFine

789

Output

The following procedure receives an array containing data
to be sorted. The zero element will contain the number of items. Note that it
does not matter whether the array is numeric or string. The principle of
coercion will change string to numeric data if necessary.

A second point of interest is that the array element, come(0),
is used for two purposes:

it
carries the number of items to be sorted

it is
used to hold the item currently being placed.

100 DEFine PROCedure sort(come,send)

110 LET num = come(0)

120 FOR item = 2 TO num

130 LET p = item

140 LET come(0) = come(p)

150 REPeat compare

160 IF come(0) >= come(p-1) : EXIT compare

170 LET come(p) = come(p-1)

180 LET p = p - 1

190 END REPeat compare

200 LET come(p) = come(0)

210 END FOR item

220 FOR k = 1 TO 7 : send(k) = come(k)

230 END DEFine

The following additional lines will test the sort
procedure. First type AUTO 10 to start the

line numbers from 10 onwards.

10 REMark Test Sort

20 DIM row$(7,3),back$(7,3)

30 LET row$(0) = 7

40 FOR k = 1 TO 7 : READ row$(k)

50 sort row$,back$

60 PRINT ! back$!

70 DATA
"EEL","DOG","ANT","GNU","CAT","BUG","FOX"

Output

ANT BUG CAT DOG EEL FOX GNU

COMMENT

This program illustrates how easily you can handle arrays
in SuperBASIC. All you have to do is use the array names for passing them as
parameters or for printing the whole array. Once the procedure is saved you can
use MERGE mdv1_sort to add it to a program in main memory.

You now have enough understanding of techniques and
syntax to handle a more complex screen layout. Suppose you wish to represent
the hands of four card players. A hand can be represented by something like:

H: A 3 7 Q

C: 5 9 J

D: 6 10 K

S: 2 4 Q

To help the presentation the Hearts and Diamonds will be
printed in red and the Clubs and Spades in black. A suitable STRIP
colour might be white. The general background could be green and a table may be
a colour obtained by mixing two colours.

METHOD

Since a substantial amount of character printing is
involved it is best to start planning in terms of the pixel screen. You can see
that you need to provide for twelve lines of characters with some space between
lines and a total screen height of 256 pixels.

It is useful to recall that the possible character
heights are 10 pixels or 20 pixels. It is obvious that the 10 pixel height must
be used to allow space for a proper layout.

The number of character positions across the screen must
be estimated. If we adopt the convention of "T" for ten instead of
"10" all card values can be represented as a single character.
Suppose that we also allow a maximum of eight cards of the same suit as a first
approach. We can reconsider the problem again if necessary That would require a
total of 10 characters for each hand. The across requirement is therefore:

west
hand + table width + east hand

Allowing a space between characters that would be:

20 +
table width + 20

The decision now depends on which screen mode you choose.
The 256 mode will cope with the problem, as you will see later, but first we
will work in 512 pixel mode. The smallest character width is six pixels which
would give a total of 240 pixels + table width. The diagram will have some
balance if we have a table width of about half of 240.

We should therefore experiment with a table width of
about 120 pixels which may be adjusted. A little testing produced the layout
shown.

 	
 WINDOW

 	
 440 x 220 at 35,15

 	

 	
 Green with black border of 10 units

 	

 	

 	
 TABLE

 	
 100 x 60 at 150,60

 	

 	
 Chequerboard stipple of red and green

 	

 	

 	
 HANDS

 	
 Room for at least eight card symbols

 	

 	
 Initial cursor positions are:

 	

 	

 	

 	
 north

 	
 150,10

 	

 	
 east

 	
 260,60

 	

 	
 south

 	
 150,130

 	

 	
 west

 	
 30,60

 	

 	

 	
 CHARACTER SIZE

 	
 Standard for 512 mode

 	
 NUMBER OF PIXELS

 	
 between lines is 12

 	

 	

 	
 CHARACTER COLOUR

 	
 White

 	

 	

 	
 CHARACTER STRIP

 	
 Red for Hearts and Diamonds

 	

 	
 Black for Clubs and Spades

VARIABLES

 	
 card(52)

 	
 stores card numbers

 	
 sort(13)

 	
 used to sort each hand

 	
 tok$(4,2)

 	
 stores tokens H:, C:, D:, S:

 	
 kmcmh

 	
 working loop variables

 	
 ran

 	
 random position for card exchange

 	
 temp

 	
 used in card exchange

 	
 item

 	
 card to be inserted in sort

 	
 dart

 	
 pointer to find position in sort

 	
 comp

 	
 hold card number in sort

 	
 inc

 	
 pixel increment in card rows

 	
 seat

 	
 current 'deal' position

 	
 ac,dn

 	
 cursor position for characters

 	
 row

 	
 current row for characters

 	
 lin$

 	
 builds up row of characters

 	
 max

 	
 highest card number

 	
 p

 	
 points to card position

 	
 n

 	
 current number of card

PROCEDURES

 	
 Shuffle

 	
 shuffles 52 cards

 	
 Split

 	
 splits cards into four hands and calls sortem to sort
 each hand

 	
 Sortem

 	
 sorts 13 cards in ascending order

 	
 Layout

 	
 provides background colour border and table

 	
 Printem

 	
 prints each line of card symbols

 	
 Getline

 	
 gets one row of cards and converts numbers into the
 symbols A,2,3,4,5,6,7,8,9,T,J,Q,K

PROGRAM DESIGN OUTLINE

1.
Declare arrays,
pick up 'tokens' and place 52 numbers in array card.

2.
Shuffle cards.

3.
Split into 4 hands
and sort each.

4.
OPEN screen
window.

5.
Fix the screen
layout.

6.
Print the four
hands.

7.
CLOSE the screen
window.

100 DIM card(52),sort(13),tok$(4,2)

110 FOR k = 1 TO 4 : READ tok$(k)

120 FOR k = 1 TO 52 : LET card(k) = k

130 shuffle

140 split

150 OPEN #6,scr_440x220a35x15

160 layout

170 printem

180 CLOSE #6

190 DEFine PROCedure shuffle

200 FOR c = 52 TO 3 STEP -1

210 LET ran = RND(1 to c-1)

220 LET temp = card(c)

230 LET card(c) = card(ran)

240 LET card(ran) = temp

250 END FOR c

260 END DEFine

270 DEFine PROCedure split

280 FOR h = 1 TO 4

290 FOR c = 1 TO 13

300 LET sort(c) = card((h-1)*13+c)

310 END FOR c

320 sortem

330 FOR c = 1 TO 13

340 LET card((h-1)*13+c) = sort(c)

350 END FOR c

360 END FOR h

370 END DEFine

380 DEFine PROCedure sortem

390 FOR item = 2 TO 13

400 LET dart = item

410 LET comp = sort(dart)

420 LET sort(0) = comp

430 REPeat compare

440 IF comp >= sort(dart-1) : EXIT compare

450 LET sort(dart) = sort(dart-1)

460 LET dart = dart - 1

470 END REPeat compare

480 LET sort(dart) = comp

490 END FOR item

500 END DEFine

510 DEFine PROCedure layout

520 PAPER #6,4 : CLS #6

530 BORDER #6,10,0

540 BLOCK #6,100,60,150,60,2,4

550 END DEFine

560 DEFine PROCedure printem

570 LET inc = 12 : INK #6,7

580 LET p = 0

590 FOR seat = 1 TO 4

600 READ ac,dn

610 FOR row = 1 TO 4

620 getline

630 CURSOR #6,ac,dn

640 PRINT #6,1in$

650 LET dn = dn + inc

660 END FOR row

670 END FOR seat

680 END DEFine

690 DEFine PROCedure getline

700 IF row MOD 2 = 0 THEN STRIP #6,0

710 IF row MOD 2 = 1 THEN STRIP #6,2

720 LET lin$ = tok$(row)

730 LET max = row*13

740 REPeat one_suit

750 LET p = p + 1

760 LET n = card(p)

770 IF n >max THEN p = p-1 : EXIT one_suit

780 LET n = n MOD 13

790 IF n = 0 THEN n = 13

800 IF n = 1 : LET ch$ = "A"

810 IF n >= 2 AND n <= 9 : LET ch$ = n

820 IF n = 10 : LET ch$ = "T"

830 IF n = 11 : LET ch$ = "J"

840 IF n = 12 : LET ch$ = "Q"

850 IF n = 13 : LET ch$ = "K"

860 LET lin$ = lin$ & " " & ch$

870 IF p = 52 : EXIT one_suit

880 IF card(p)>card(p+1) : EXIT one_suit

890 END REPeat one_suit

900 END DEFine

910 DATA
"H:","C:","D:","S:"

920 DATA 150,10,260,60,150,130,30,60

COMMENT

The program works in the 256 mode. But the various lines
of card symbols may overlap the "table" or overflow at the edge of
the window. A simple change in procedure "getline" from:

860 LET lin$ = lin$ & " " & ch$

to

860 LET lin$ = lin$ & ch$

will correct this. The spaces between characters
disappear but the larger sized characters enable the rows to be easily
readable. The program thus works well in either graphics mode.

CONCLUSION

We have tried to show how you can use SuperBASIC to solve
problems. We have shown how simple tasks can be performed in simple ways. When
the task is inherently complex, like manipulating arrays or designing screen
graphics, SuperBASIC enables it to be handled efficiently with maximum possible
clarity.

If you were a beginner and you have worked through a fair
proportion of this guide you will have started well on the road to good
programming. If you were already experienced, we hope that you will appreciate
and exploit the extra features offered by SuperBASIC.

So enormous is the range of tasks which can be done with
SuperBASIC that we have only been able to touch a fraction of them in this
guide. We cannot guess at which of the thousands of possibilities you will
attempt, but we hope that you will find them fruitful, stimulating and fun.

[bookmark: _17_-_ANSWERS]17 - ANSWERS TO SELF TESTS

[bookmark: _ANSWERS_TO_SELF]ANSWERS TO SELF TEST ON CHAPTER 1

1.
Use the BREAK
sequence to abandon a running program because:

a)
something is wrong
and you do not understand it

b)
it is longer of
interest

c)
any other problem (three
points)

2.
The RESET button
is on the right hand side of the computer.

3.
The effect of the
RESET button is rather like switching the computer off and on again.

4.
The SHIFT
key:

a)
is only effective
while you hold it down whereas the CAPS LOCK key stays effective after
you have pressed it. (one
point)

b)
The SHIFT
key affects all the letter digit and symbol keys, but the CAPS LOCK key
affects only letters. (one
point)

5.
The CTRL ß
(CTRL left arrow) keys delete the previous character just left of the cursor.

6.
The Ã
(ENTER) key causes a message or instruction to be entered for action by the
computer.

7. We use Ã for the ENTER key.

8.
CLS Ã
causes part of the screen to be cleared.

9.
RUN Ã
causes a stored program to be executed.

10.
LIST Ã
causes a stored program to be displayed on the screen.

11.
NEW Ã
clears the main memory ready for a new program.

12. Keywords of SuperBASIC are recognised in upper or
lower case.

13. The part of a keyword displayed in upper case is the
allowed abbreviation.

CHECK YOUR SCORE

14 to 16 is very good. Carry on reading.

12 or 13 is good, but re-read some parts of chapter one.

10 or 11 is fair, but re-read some parts of chapter one
and do the test again.

Under 10. You should work carefully through chapter one
again and repeat the test.

[bookmark: _ANSWERS_TO_SELF_1]ANSWERS TO SELF TEST ON CHAPTER 2

1.
An internal number
store is like a pigeon hole which you can name and put numbers into.

2.
A LET
statement which uses a particular name for the first time will cause a pigeon
hole to be created and named, for example

LET count = 1 (1
point)

A READ statement which uses a
name for the first time will have the same effect, for example:

READ count (1
point)

3.
You can find the
value of a pigeon hole with a PRINT statement.

4.
The technical name
for a pigeon hole is 'variable' because its values can vary as a program runs.

5.
A variable gets
its first value when it is first used in a LET statement, INPUT statement
or READ statement.

6.
A change in the
value of a variable is usually caused by the execution of a LET
statement.

7.
The = sign in a LET
statement represents an operation:

'Evaluate
whatever is on the right hand side and place it in the pigeon hole named on the
left hand side: that is 'Let the left hand side become equal to the right hand
side'.

8.
An unnumbered
statement is executed immediately.

9.
A numbered
statement is not executed immediately. It is stored.

10.
The quotes in a PRINT
statement enclose text which is to be printed.

11.
When quotes are
not used you are printing out the value of a variable.

12.
An INPUT
statement makes the program pause so that you can type data at the keyboard.

13.
DATA statements are never executed.

14.
They are used to
provide values for the variables in READ statements.

15.
The technical word
for the name of a pigeon hole is 'identifier'.

16.
Example answers:

i.
day

ii.
day_23

iii.
day_of_week (3
points)

17.
The space bar is
especially important for putting spaces after or before keywords so that they
cannot be taken as identifiers (names) chosen by the user.

18.
Freely chosen
identifiers are important because they help you to make programs easier to
understand. Such programs are less prone to errors and more adaptable.

CHECK YOUR SCORE

18 to 21 is very good. Carry on reading.

16 or 17 good but re-read some parts of chapter two.

14 or 15 fair, but re-read some parts of chapter two and
do the test again.

Under 14 you should work carefuly through chapter two
again and repeat the test.

[bookmark: _ANSWERS_TO_SELF_2]ANSWERS TO SELF TEST ON CHAPTER 3

1. A pixel is the
smallest area of light that can be displayed on the screen.

2. There are 256 pixel
positions across the low resolution mode.

3. There are 256 pixel
positions from top to bottom in the low resolution mode.

4. An address is
determined by.

the up value, 0 to
100

the across value, 0
to a number computed by the system

5. There are eight
colours available in the low resolution mode including black and white.

6.

1.
LINE draws a line, e.g. LINE
a,b TO x,y

2.
INK selects a colour for
drawing, e.g. INK 5

3.
PAPER selects a background
colour e.g. PAPER 7

4.
BORDER draws a border, e.g.
BORDER 1,5

7. REPeat name....END
REPeat name.

8. A REPeat loop
terminates when an 'EXIT name' statement is executed.

9. Loops in SuperBASIC
have names so that it is possible to EXIT from them in a straightforward
way. It is not necessary to work out line numbers in advance.

CHECK
YOUR SCORE

11 to
13 is very good. Carry on reading.

8 to 10
is good but re-read some parts of chapter three.

6 or 7 is
fair but re-read some parts of chapter three and do the test again.

Under
6. You should work carefully through chapter three again and repeat the test.

[bookmark: _ANSWERS_TO_SELF_3]ANSWERS TO SELF TEST ON CHAPTER 4

1. A character string is
a sequence of characters such as letters, digits or other symbols.

2. The term, 'character
string', is often abbreviated to 'string'.

3. A string variable
name always ends with $.

4. Names such as word$
are sometimes pronounced 'worddollar'

5. The keyword LEN
will find the length or number of characters in a string. For example, if the
variable meat$ has the value 'steak' then the statement:

PRINT LEN(meat$)

will
output 5.

6. The symbol for
joining two strings is &.

7. The limits of a
string may be defined by quotes or apostrophes.

8. The quotes are not
part of the actual string and are not stored.

9. The function is CHR$.
You must use it with brackets as in CHR$(66) or with brackets as in CHR$(RND(65
TO 67)).

10. You generate random
letters with statements like:

lettercode = RND(65 TO 90)

PRINT CHR$(lettercode)

CHECK
YOUR SCORE

9 or 10
is very good. Carry on reading.

7 or 8 is
good but re-read some parts of chapter four

5 or 6 is
fair but re-read some parts of chapter four and do the test again.

Under 5
You should work carefully through chapter four again and repeat the test.

[bookmark: _ANSWERS_TO_SELF_4]ANSWERS TO SELF TEST ON CHAPTER 5

1. Lower case letters
for variable names or loop names contrast with the keywords which are at least
partly displayed in upper case.

2. Indenting reveals clearly
what is the extent and content of loops (and other structures).

3. Identifiers (names)
should normally be chosen so that they mean something, for example, count
or word$ rather than C or W$

4. You can edit a stored
program by:

replacing a line

inserting a line

deleting a line
(three points)

5. The ENTER key
must be used to enter a command or program line.

6. The word NEW
will wipe out the previous SuperBASIC program in the QL and will ensure that a
new program which you enter will not be merged with an old one.

7. If you wish a line to
be stored as part of a program then you must use a line number.

8. The word RUN
followed by Ã will cause a program
to execute.

9. The word REMark
enables you to put into a program information which is ignored at execution
time.

10. The keywords SAVE
and LOAD enable programs to be stored on and retrieved from cartridges.(two
points).

CHECK
YOUR SCORE

12 to
14 is very good. Carry on reading.

10 or
11 is good but re-read some parts of chapter five.

8 or 9 is
fair but re-read some parts of chapter five and do the test again.

Under 8
You should re-read chapter five carefully and do the test again.

[bookmark: _ANSWERS_TO_SELF_5]ANSWERS TO SELF TEST ON CHAPTER 6

1. It is not easy to
think of many different variable names for storing the data. If you can think
of enough names, every one has to be written in a LET statement or a READ
statement if you do not use arrays.

2. A number called the
subscript, is part of an array variable name. All the variables in an array
share one name but each has a different subscript.

3. You must 'declare' an
array giving its size (dimension) in a DIM statement usually placed near
the beginning of a program before the declared array is used.

4. The distinguishing
number of an array variable is called the subscript.

5. Houses in a street
share the same street name but each has its own number.

Beds in a hospital
ward may share the name of the ward but each bed may be

numbered.

Cells in a prison block
may have a common block name but a different number.

Holes on a golf
course, e.g. the fifth hole at Royal Birkdale.

6. A FOR loop
terminates when the process corresponding to the last value of the loop
variable has been completed.

7. A FOR loop's
name is also the name of the variable which controls the loop.

8. The two phrases for
this variable are 'loop variable' or 'control variable'.

9. The values of a loop
variable may be used as subscripts for array variable names. Thus, as the loop
proceeds, each array variable is 'visited' once.

10. Both FOR loops
and REPeat loops:

a.
have
an opening keyword:

REPeat , FOR

b.
have
a closing statement:

END REPeat name, END
FOR name

c.
have
a loop name.

Only the FOR
loop has

d.
a
loop variable or control variable. (four points)

CHECK
YOUR SCORE

This
test is more searching than the previous ones.

15 or
16 is excellent. Carry on reading.

13 or
14 is very good but think a bit more about some of the ideas. Look at programs
to see how they work.

11 or
12 is good but re-read some parts of chapter six.

8 to 10
is fair but re-read some parts of chapter six and do the test again.

Under 8
You should re-read chapter six carefully and do the test again.

[bookmark: _ANSWERS_TO_SELF_6]ANSWERS TO SELF TEST ON CHAPTER 7

1. We normally break
down large or complex jobs into smaller tasks until they are small enough to be
completed.

2. This principle can be
applied in programming by breaking the total job down and writing a procedure
for each task.

3. A simple procedure
is:

a separate block of
code

properly named. (two
points)

4. A procedure call
ensures that:

the procedure is
activated

control returns to
just after the calling point. (two points)

5. Procedure names can
be used in a main program before the procedures have been written. This enables
you to think about the whole job and get an overview without worrying about the
detail.

6. If you write a
procedure definition before using its name you can test it and then when it
works properly forget the details. You need only remember its name and roughly
what it does.

7. A programmer who can
write up to thirty line programs can break down a complex task into procedures
in such a way that none is more than thirty lines and most are much less. In
this way he need only worry about one bit of the job at a time.

8. The use of a
procedure would save memory space if it is necessary to call it more than once
from different parts of a program. The definition of a procedure only occurs
once but it can be called as often as necessary.

9. A main program can
place information in 'pigeon-holes' by means of LET or READ statements. These
'pigeon holes' can be accessed by the procedure. Thus the procedure uses
information originally set up by the main program.

A second method is to
use parameters in the procedure call. These values are passed to variables in
the procedure definition which then uses them as necessary.

10. An actual parameter
is the actual value passed from a procedure all in a main program to a
procedure.

11. A formal parameter is
a variable in a procedure definition which receives the value passed to the
procedure by the main program.

CHECK
YOUR SCORE

This is
a searching test. You may need more experience of using procedures before the
ideas can be fully appreciated. But they are very powerful and, when understood,
extremely helpful ideas. They are worth whatever effort is necessary.

12 to
14 excellent. Read on with confidence.

10 or
11 very good. Just check again on certain points.

8 or 9 good
but re-read some parts of chapter seven.

6 or 7 fair
but re-read some parts of chapter seven. Work carefully through the programs
writing down all changes in variable values. Then do the test again.

Under 6
read chapter seven again. Take it slowly working all the programs. These ideas
may not be easy but they are worth the effort. When you are ready, take the test
again.

image007.png

image008.png
ot Gt

image005.png

image006.png

image003.png

image004.png

image002.png
abcll

Television

image009.png
100

/ 70 across, 80 up)
(

(50 across, 60 up)

Scale Graphics

image010.png

cover.jpeg
QL

User Guide

image046.png

image045.png

image001.png
sirci=ir

image011.png

image022.png
OPEN_NEW #7,mdv1_numbers
L e
device

channel number

keyword

image021.png
The po

sible effects are shown using red

and contrast

Code Name Effect
0 Single pixel of contrast
1 Horizontal Stripes.
2 Vertical Stripes
3 Chequerboard

Sipple Patierns

image013.png
ac

ac,up+side

up

ac+side,uptside

aceside,up

image012.png
procedure definition

DEFine PROCedure square
REMark Code 10 draw square
END DEFine

!

draws a square

procedure call

« square

image015.png

image014.png
square 205050
DEFine PROCedure square(side.ac.dp)

image017.png
SCOre |

image016.png
Ot

Olo 511 —

#1

#2

#18& #2

Monitor

image019.png
jumples [A |P|QlofL|L|1|o|N|A|T|S|U|Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14

image018.png

image020.png
red contrast

image031.png
flat$(1)

flat$(2)

flat$(3)

Tom

Graham

Sewy

flat$(10)

Hal

image033.png
20 21 22 22 34 25 26 27 28 29

ﬂaA.SUVWXV‘Z@ES%

fas | K || L || NiO}P

01 02 03 04 05

flat$.

image032.png
flat$(2.0)

flat$(2.0) flat$(2,1) fat$(2.2)

flat$(1.0) flat$(1,1) flat$(1,2)

[l =

flat$(0,0) flat$(0,1)]\a‘s(n,z) 7,1\35(0,9)
L | i o

image024.png
60 atross

image023.png
scr_360__50a80_40

L cownvawe
across value
height

width

image026.png
Ao lipse

image025.png
A circe

image028.png

image027.png
5050)

Elipse al angle one raden

image030.png
3

57 8[6

west(1) west(2) west(3) west(1) wesl(5)

image029.png
west(1) west(2) “west(3) ‘west(4) ‘west(5)

image042.png
1 2 3 4 5 I 3 7 8
back blue magena mag red oan yelow whie

image041.png
1 2 3 4 I 5 6 7 8
back blue magenta red red cyan yellow whie

image044.png
MAIN
PROGRAM

PROCEDURE
addsix

row back

come ——— +6——» send

Screen
— Output

image043.png
1 2 3 4 5 I 6 @ 8

black ble green magena red can yelow white

image035.png
Right
(nested)

Right
(sequence)

Wrong
(Meshed)

image034.png
100 REMark Western FOR with Epilogue
110 FOR bullets =170 §

120 PRINT "Take aim"

130 PRINT “FIRE A SHOT"

140 LET hit = RND(9)

150 IF hit = 7 THEN EXIT bullets —
160 NEXT bullets

170 PRINT "Watch Bandit"

180 END FOR bullets

150 PRINT "Return to Dodge City" «—I

image037.png
Main
Program

Menu numbers

-—

prices

Procedure
ltem

image036.png
North 1

West 4 East2

South 3

image039.png
SORTED PART UNSORTED PART

image038.png
Order by cash
——

Goods
e

Information
—
Action andior
new information

——

Mail
Order
Company

Procedure

image040.png
1 2 3 4 5 6 7 8
black ble magena red geen cyan yelow whie

sorted part unsorted part

