

THE SINCLAIR QL MANUAL

In no circumstances will either Sinclair Research Limited or Psion Limited be

liable for any direct, indirect, incidental or consequential damage or loss

including but not limited to loss of use, stored data, profit or contracts

which may arise from any error, defect or failure of the QL hardware or the

software supplied with it.

Sinclair Research has a policy of constant development and improvement of

their products. Therefore, the right is reserved to change manuals, hardware,

software and firmware at any time and without notice.

QL User Guide First Edition

Published by Sinclair Research Limited 1984

25 Willis Road, Cambridge.

Edited by Stephen Berry (Sinclair Research Limited)

(C) Sinclair Research Limited

(C) Psion Limited

No part of this User Guide may be reproduced in any form whatsoever without

the written permission of Sinclair Research Limited.

QL, QLUB, QLNet, Qdos and QL Microdrive are trade marks of Sinclair Research

Limited.

Quill, Archive, Easel and Abacus are trade marks of Psion Limited

PLEASE READ THIS, BEFORE UNPACKING THESE PAGES

__

Your QL user Guide is supplied unbound, to avoid damage in transit and to make

rapid updating easy. In addition to this packet containing the pages of the

Guide itself, you should also find a ring binder and then divider cards packed

with your QL.

Insert the dividers into the binder first. The recommended order is as follows:

 Position Tab Label

 -------- ---------

 Front Introduction

 Beginniner's Guide

 Keywords

 Concepts

 QL Quill

 QL Abacus

 QL Archive

 QL Easel

 Back Information

This will put the divider tabs in a logical order. If you wish, you may put

the sections in a different order, perhaps to put often used sections

near the front; or even miss out sections you do not expect to use.

Now look through the pages to identify the various sections; each begins with

a title page with the Sinclair logo at the top. The pages within each section

will be packed in the correct order, so be careful not to mix them up; the

individual sections, however, may be in a different order to that shown above

if a section or sections have recently been reprinted.

Once each section is placed in the binder as you like it, this sheet may be

discarded: it does not form part of the Guide.

SINCLAIR QL USER GUIDE

INTRODUCTION

BEGINNER'S GUIDE

REFERENCE GUIDE

 KEYWORDS

 CONCEPTS

APPLICATIONS SOFTWARE

 QL QUILL

 QL ABACUS

 QL ARCHIVE

 QL EASEL

INFORMATION

Sinclair Research has a policy of constant development and improvement of their

products. Therefore, the right is reserved to change manuals hardware, software

and firmware at any time and without notice.

 OL User Guide Second Edition

 Published by Sinclair Research Limited 1984

 25 Willis Road, Cambridge

 Edited by Stephen Berry (Sinclair Research Limited)

 (C) Sinclair Research Limited

 (C) Psion Limited

 Printed and bound in Great Britain by

 William Clowes Limited,Beccles and London

 Designed and typeset by

 Keywords, Manchester

No part of this User Guide may be reproduced in any form whatsoever without the

written permission of Sinclair Research Limited.

QL, QLUB, QL Net, Qdos and QL Microdrive are trade marks of Sinclair Research

Limited.

Quill, Archive, Easel and Abacus are trade marks of Psion Limited

INTRODUCTION

An Introduction To The QL

When you unpack your QL computer, you will find:

 The QL computer

 The QL User Guide

 A Power Supply

 Two Wallets

 One of which contains:

 QL Abacus

 QL Archive

 QL Easel

 QL Quill

 And the other contains:

 4 Blank QL Microdrive Cartridges

 Three Plastic Feet

 These can be fitted under the QL to tilt the keyboard for more comfortable

 typing. The pips in the top of the legs should be fitted into the holes in

 the rubber feet, twisting them to make them fit securely.

 An Aerial Lead

 About two metres long with different connectors at either end. It is used

 for connecting your QL to your television's aerial socket.

 A Network Lead

 Also about two metres long, with identical connectors at either end. It is

 used to connect your QL to other QLs so that data and messages can be sent

 between them.

A GUIDED TOUR

On the back and sides of the computer there are a series of connectors.

There are two slots on the right hand side of the computer - the two QL

Microdrlves. The cartridges for these Microdrives are used for storing

programs and data on the QL. Next to each slot there is a small light. When

the light is on the Microdrive is in use and the cartridge should not be

removed. The yellow light on the front lefthand side indicates whether the

QL is switched on.

On the right hand end of the QL there is a slot covered by a plastic strip.

This slot is for attaching up to six more QL microdrives. ZX microdrives

are not suitable for use with the QL, but blank microdrive cartridges can

be used on either machine.

The connectors at the back of the computer are for attaching the following:

 NET - connector for the QL Network

 NET - connector for the QL Network

 POWER - power supply for the computer

 RGB - connection to a monochrome or colour monitor

 UHF - connection to the aerial socket of a television set

 SERl - RS232C serial port

 SER2 - RS232C serial port

 CTLl - control port for joystick

 CTL2 - control port for joystick

 ROM - QL ROM cartridge software (use reversed one to 10)

N.B. ZX ROM cartridges are not compatible with QL ROM cartridges and cannot

be used with the QL.

The slot on the left-hand side of the QL is used for adding peripherals

(equipment to expand the computer's capabilities) to the QL. One peripheral

can be plugged directly into the expansion slot.

The reset button is on the right hand end of the computer near the Microdrive

expansion slot. It is used to 'reset' the QL to its original 'switch on' state.

Any programs in the machine will be lost if reset is pressed and sometimes

data already recorded on Microdrive cartridges can be corrupted. Use reset

with caution and always remove Microdrive cartridges before doing so.

SETTING UP

THE POWER SUPPLY

To make the computer operate, various connections have to be made:

Your QL power supply has two leads. One is fitted with a small rectangular

connector with three holes in it. The other is the mains lead and is supplied

with bare ends to which a suitable mains plug must be fitted.

Please do not connect the power supply lead to the computer until all other

leads and peripherals have been connected. Always connect the power supply

lead to the computer last of all.

Connect the mains plug as follows:

 * The blue wire goes to the terminal marked N or neutral, or coloured

 blue or black.

 * The brown wire goes to the terminal marked L or live and coloured brown

 or red

 * The power supply is double insulated and does not need an earth

 connection.

 * If you are using a fused plug, it must be fitted with a three amp fuse

 * Make sure all connections are sound.

If necessary, get someone with electrical experience to help you.

THE DISPLAY

Although the QL will work once the power supply is connected, you will not

be able to see what it is doing until you add a television set or a monitor.

A monitor has a screen like a television, but it cannot receive television

signals. It usually has better resolution than a television set and so can

display more text and is therefore more expensive.

A colour television or monitor will of course be required to make use of the

QL's colour display but the computer will work perfectly well in black and

white, representing colours as shades of grey.

Most television sets in current use will be suitable for the QL provided they

are able to receive 625 line UHF transmissions, i.e. BBC2 and Channel 4.

Locate the aerial socket at the back of your TV and remove the aerial cable

that may be plugged into it. If your set has more than one socket, use the

one labelled UHF or 625. Plug in the QL's aerial lead. Use the end that looks

similar to the original aerial plug, and plug the other end into the socket

marked UHF on the back of the computer.

Plug the power supply into a mains socket and switch on. Remove any cartridges

from the Microdrive slots and push the small power supply connector into the

three pin plug marked POWER on the back of the QL. The yellow power light

below the F5 key should now be glowing and your set up should look like this:

---/ TV \------

 | SET | \ ---[POWER]--

 +------+ | / [SUPPLY] \

 UHF| | |

 | |

 | QL |

 | |

When the computer has been on for a while, the case above the Microdrives will

feel warm: this is quite normal. The QL has no on/off switch but can be turned

off by unplugging the power supply connector. Remember that any program or

data in the machine will be lost when it is turned off and should first be

saved on a Microdrive cartridge (for details of how to do this see the

Beginner's Guide and Concept sections).

If the QL is not going to be used for a while you should also switch the

power supply off at the mains.

TUNING IN

The display signal to the television set is near channel 36. If your set

has continuous tuning, tune to channel 36. If your television has push buttons,

choose an unused button and tune this to the computer's signal. You may need

to consult your dealer or the TV instruction manual to find out how to do this.

Once you are correctly tuned in you should see the copyright screen

 +-------------------------------+

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | F1...MONITOR |

 | F2...TV |

 | |

 | (C)1983 Sinclair Research Ltd |

 | |

 +-------------------------------+

The QL doesn't use television sound because it has its own internal

loudspeaker. You can turn the television volume down if you wish.

A coloured pattern will appear after you switch on or reset the computer;

this is the QL testing its memory. The pattern will disappear after a few

seconds to be replaced by the copyright screen.

If you cannot get a picture at all, first check that your television can

receive the normal broadcast stations. If it can then try the computer with

another television set.

If you get a fuzzy or indistinct picture check that you are tuned in

correctly, it may be possible to pick up the computer's signal in more

than one place in the tuning range. Also check that the aerial lead is firmly

plugged in, and that you are using the correct socket on your television

set (if it has more than one).

If you wish to use a monitor instead of a television set, the connections

will depend on whether it is colour or monochrome: details can be found in the

Concepts section under the heading Monitor. A monitor lead with a plug

to fit the QL's RGB socket is available from Sinclair Research. The order

form is in the Information section of this guide.

The QL needs to know if you are using a monitor or a television set. Press

 [F1] for a monitor

 or

 [F2] for a television

Microdrive 1 will run briefly and the red Microdrive light will glow: the QL

is looking for programs to load and run (this can be ignored for now).

The computer will start up and display its cursor, a flashing coloured square,

and the computer is now ready to accept commands.

USING THE QL

KEYBOARD

Unlike previous Sinclair computers there is no single keyword entry on the QL.

However, various keys and groups of keys have special meanings:

ENTER

The ENTER key is used to indicate to the computer that you want it to do

something. Perhaps you have typed in a command and want the computer to execute

it, or you may want to tell the computer that you have finished typing in data.

SHIFT

The keyboard has two SHIFT keys which perform the same function. Pressing

SHIFT and an alphabetic key together will generate capital letters (upper

case characters). On non-alphabetic keys SHIFT will cause the upper engraved

character to be generated. For example:

 [SHIFT] & [5] will give %

CAPS LOCK

Pressing the CAPS LOCK key once will force alphabetic keys to generate

capital letters regardless of whether the SHIFT key is pressed. This will

remain in effect until CAPS LOCK is pressed again

DELETE

Hold down the CTRL key and then press the <- (left arrow) key. The character

to the left of the cursor will disappear and the cursor will move to the left.

Hold down CTRL and press the -> (right arrow) key. The cursor will not move:

the character it was on will disappear and text to the right will move to fill

the gap.

THE SCREEN

The QL screen may be divided into different areas, or windows, at will. Once

you have switched on (or reset) and pressd Fl or F2, the screen will look

like this:

--------0 to 511------> -------0 to 511------->

+----------+----------+ | +---------------------+

| | | | | |

| | | | | |

| 2 | 1 | 0 - | 1 & 2 |

| | | 256 | |

| | | | | |

+----------+----------+ | +---------------------+

| 0 | | | 0 |

+---------------------+ v +---------------------+

The long thin window at the bottom is used to display commands typed into the

computer and initially will display the flashing cursor. When the cursor is

visible the QL is ready to accept commands or data: it disappears when the

computer is busy. As you type, the cursor will move along the line showing

where the next character to be typed will appear.

If the machine ever fails to respond correctly or you want to force a

SuperBASIC program to stop, hold down the CTRL key and press the space bar.

The computer should then display its cursor. If this doesn't work remove any

Microdrive cartridges and then press reset.

The message "Bad Line" appearing in the command window means that the computer

doesn't understand a command that you have typed in. Delete or correct the

line using the cursor keys.

MICRODRIVES

The two QL Microdrives are called mdvl_ on the left and mdv2_ on the right.

Cartridges must be placed correctly into the Microdrives. Hold the cartridge

by the ribbed plastic handle and remove it from its protective cover. The

cartridge's name label, or the recess for its stick-on label, should face

upwards.

Cartridges should always be treated with care. You should never turn the QL

on or off with a cartridge in the Microdrives. Take care when inserting or

removing cartridges: wait until the Microdrive lights have gone out before

removing the cartridge, be gentle but firm. Never touch the tape in the

cartridge and always return the cartridge to its protective cover.

Before a blank cartridge can be used it must go through a process called

formatting. This process erases any data or programs on a cartridge so always

be sure that all cartridges are clearly labelled with their contents and check

that cartridges to be formatted contain no useful data. Instructions for

formatting cartridges are contained in the Information section.

All magnetic storage media including Microdrive cartridges eventually suffer

from wear. Hence it is strongly recommended that all important programs

and data should be stored on at least two cartridges, that is 'backed up'.

This means that if a cartridge is damaged and the data lost, then at least

part of the data can be recovered from the relevant back up cartridge. If you

are continually adding data to a cartridge it must be backed up often:

unless you do so, you will lose everything that was added since the

last backup if the main cartridge is damaged. Instructions for backing up

cartridges are contained in the Information section.

STARTING WORK

There are several ways of using your computer and the User Guide. You can use

ready made programs such as those supplied with the QL, or you can write

your own programs in SuperBASIC.

To use the QL programs, first read the Introduction To The QL Programs later

in this introduction and then the relevant section for each program concerned.

If you are a newcomer to computing and wish to write your own programs, you

should read the Beginner's Guide. If you are familiar with BASIC programming,

you may prefer to read from Chapter 8 in the Beginner's Guide - From BASIC

to SuperBASIC. This chapter describes the major differences between BASICs

you may already be familiar with and QL SuperBASIC. Alternatively, if you are

feeling confident, the Keywords and Concepts sections should be useful.

IF YOU HAVE A PROBLEM

If you have a problem using your QL or QL programs, then:

 1. Refer to the appropriate sections in the QL User Guide.

 2. Consider joining the QL Users' Bureau for assistance on the QL programs.

 Full details of the services offered by QLUB and instructions for joining

 are contained in the Information section of the QL User Guide under the

 heading QLUB.

 3. Refer to books published about the QL.

If your problems persist and you think they may be caused by a fault in either

your QL or in the QL program cartridges then refer to the Guarantee details

in the Information section of the QL User Guide.

INTRODUCTION TO THE QL PROGRAMS

This introduction outlines the four programs supplied wIth the OL and

describes their common features.

The four programs are:

 QL Ouill - a wordprocessor

 QL Abacus - a spreadsheet

 QL Archive - a database

 QL Easel - a graphics program

Individual sections in this guide describe each of the four programs in

detail. Don't just read them - try out the examples and experiment with

each new idea.

MICRODRIVES

Before you use any of the OL programs you should make at least one backup on

a blank cartridge and use this copy only. Keep the original program cartridge

in a safe place, and use it only for making copies. Any accidents will not

then cause permanent loss of your programs.

Each QL program has a built in duplicating routine which is used as follows.

 * Place the master cartridge in Microdrive 2

 * Place the blank cartridge, or one containing nothing that you wish to

 keep, in Microdrive 1. Type

 lrun mdv2_clone

 * Press the ENTER key and the screen will display the message

 FORMAT mdvl_ type space to continue

 * Press the space bar only when you are sure that the cartridge contains

 nothing that you wish to keep, as everything on it will be erased. The

 computer will format the cartridge and will then copy the program in

 sections, displaying the name of each one as it does so.

 * Wait until the Microdrive lights go out before removIng the master cartridge

 from Mlcrodrlve 1

LOADING

You should never use any of the original program cartridges, except when

making a copy onto a blank cartridge.

All the programs are loaded similarly. There are two ways of doing this:

Without cartridges in the Microdrives, press reset. Place your copy of

the program cartridge in Microdrive 1 and then press either Fl or F2 as

prompted. Microdrive 1 will automatically run and after a short pause

a title display will appear on the screen to confirm that the program

is being loaded. Once the program is loaded into the computer, the program

will start up by itself.

When you become more familiar wIth the programs and when using a printer

or the network, you will sometimes find that commands need to be given

to the computer before the programs start. You cannot switch off or

reset the computer in this instance because your commands would be lost.

Instead place the program cartridge in Microdrive 1 and type

 lrun mdvl_boot

press ENTER and loading will proceed as before.

In both cases the program wIll occasionally need to load extra information

from the Microdrive so keep the program cartridge in the microdrive slot

until the program has finished.

SCREEN LAYOUT

The control area at the top of the screen will guide you through each program

by displaying the options that you will need most often and prompting you

further if necessary. In many cases the program will suggest a suitable answer

when it asks for information. Press ENTER to accept this suggestion or simply

type in your own answer and the computer's suggestion will disappear.

Pressing F2 will remove this area and will make the central area larger.

Pressing F2 again will restore the control area.

The central area of the screen shows the information that you are working on,

for example, the text of a document, the contents of a card index, a graph,

or financial forecast. It is shown in the style most suitable for the

particular application.

The bottom of the screen shows the input line where, for example, commands

that you type in are displayed.

Below this is the status area which reports on the current state of work.

It displays things like the name of the data or document on which you are

working, how much unused memory remains, etc.

FUNCTION KEYS

Three of the five function keys have the same meaning in all the QL programs.

These are:

 --

 Key Function

 --

 F1 request help

 F2 remove or restore the control area

 F3 call up the commands for selection

 --

The remaining two function keys are used for actions particular to each

program.

HELP

The first option, displayed at the top left of the control area, indicates

that help is available by pressing F1.

When you ask for HELP there will be a short pause before the display changes

to show the Help information.

Help will suggest other topics for which help is available. Type the name of

the topic and press ENTER. You do not need to type in the whole name, just

enough characters for it to be distinguished from the other topics. You can

repeat this as many times as necessary.

Pressing ENTER without selecting a topic will take you out to the previous

level. ESC will take you right out of HELP and back into the program.

Help is always available, provided that the program cartridge is in

Microdrive 1. Press F1 and the most appropriate Help information will be

displayed.

THE LINE EDITOR

You can use the line editor to change or correct a line of text that you have

typed in.

All the QL programs use the same line editor but each program uses it in a

way most suitable for that application. In QL Quill you use the line editor

for example, for editing the text in commands and QL Archive uses the editor

extensively for editing database programs.

The line editor uses the four cursor keys, together with the CTRL and SHIFT

keys. In the table below, <- and -> mean the cursor left and right arrow

keys respectively, while the cursor up and down arrow keys are represented by

<cursor up> and <cursor down> respectively.

 Keys Action

 <- Move the cursor one character to the left

 -> Move the cursor one character to the right

 SHIFT & <- Move the cursor one word to the left

 SHIFT & -> Move the cursor one word to the right

 CTRL & <- Delete the character to the left of the cursor

 CTRL & -> Delete the character under the cursor

 CTRL & <cursor up> Delete the line to the left of the cursor

 CTRL & <cursor down> Delete the line to the right of the cursor

 SHIFT & CTRL & <- Delete the word to the left of the cursor

 SHIFT & CTRL & -> Delete the word to the right of the cursor

--

The & symbol indicates that the first key should be held down while the

second is pressed. When SHIFT and CTRL are used together then hold them both

down before pressing the cursor key.

MICRODRIVE USE

The program is loaded from the cartridge in Microdrive. You must always make

sure that before using Help or using a print command that this cartridge

is in Microdrive 1. Otherwise you can remove the cartridge at any time.

Use a cartridge in Microdrive 2 - and in additional Microdrives - for storing

information, for example, Ouill documents, Archive data files, etc

FILE NAMES

Information can be stored on a cartridge in a 'file'. The file must be given

a file name to distinguish it from others on the cartridge. Use a file name

of not more than eight characters long, without spaces. It is a good idea to

use a name which describes the contents of a file: for instance, 'sales' is

obviously a better name for a file of sales figures than 'fred'!

File saving and loading will use a data cartridge which is assumed to be in

Microdrive 2 unless a different drive number is given. The simplest way of

replying to a file name request is just to type in the name by itself: for

example:

 sales

which automatically accesses Microdrive 2. If you wanted to access Microdrive

1, you would type:

 mdvl_sales

There is a third component of a file name which you do not usually see because

it is automatically added by the program. This is an extension, three letters

long which identifies which program saved the file. The extensions used are:

 QL Quill _doc

 QL Abacus _aba

 QL Easel _grf

 QL Archive (data file) _dbf

 QL Archive (program file) _prg or _pro

 QL Archive (screen layout) _scn

If you want to transfer information between programs, a special file is

generated with the extension _exp (for export). All the programs will

recognise this extension. More information on this process is contained in

the _Information_ section under the heading _QL Program Import and Export_.

You can direct printer output to a file instead of to a printer so that you

can print the text later. This file has the extension _lis.

LISTING FILES

In all the programs except Archive you can request a list of the file names

on a cartridge whenever a command needs a file name. This is useful if you

cannot remember the exact name that you gave to the file when you first saved

it.

Every time the program is waiting for you to type in a file name, you have the

following options:

 Press ENTER to accept the name the program suggests

 Type in the file name followed by ENTER

 Press ? followed by ENTER for a list of the files on Microdrive 2

If you type in a question mark (and ENTER) instead of the file name, the

program displays

 mdv2_

suggesting that it should list the files on Microdrive 2. You can accept this

suggestion or you can edit the drive specifier to refer to a different

Microdrive (mdv1_) and then press ENTER to list the files When the list

is complete the program asks you to type in the file name.

Archive does not use this method. Instead there is a command (dir) which

lists the files. It allows you to type in mdvl_, mdv2_ and so on, to

specify the drive for which the list of files is needed.

ESCAPE

In general, ESC cancels the current action and will restore you to a

sensible point in the program. You can also use ESC to cancel any

numbers or text that you have typed into the input line or abort a

partially completed command.

OTHER DEVICES

Data can be loaded and saved on other devices besides a Microdrive. The device

is specified in the standard SuperBASIC way except that the device name

is preceded by an underscore (_). See the devices entry in the Concept

Reference Guide.

For example, to load and save via the network:

Before loading a QL program, each computer on the network must be given a

station number. Switch the computer on, but do not insert a program cartridge;

press Fl or F2 when prompted.

To set the station number type the command NET followed by the station number

of your choice. For example, to set the QL to station 5 type the command

 NET 5 [ENTER]

Place the program cartrIdge In Microdrive 1 and load the program by typing

 lrun mdvl_boot [ENTER]

Once the program is running, you can receive data sent along the network by

typing the LOAD command in the normal way. If the data was being sent

by station 12, you would enter

 LOAD _neti_12

This must be done before station 12 starts sending

To send data, type in the SAVE command. Assuming you were sending to station

23, you would enter

 SAVE _neto_23

Station 23 must be ready to receive before you press ENTER.

THE QL BEGINNER'S GUIDE

=======================

CHAPTER 1

STARTING COMPUTING

THE SCREEN

Your QL should be connected to a monitor screen or TV set and switched on.

Press a few keys, say abc, and the screen should appear as shown below The

small flashing light is called the cursor.

+----------+----------+ +---------------------+

| | | | +-----------------+ |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

+----------+----------+ | +-----------------+ |

|abc | | abc |

| | | |

+---------------------+ +---------------------+

(Monitor) (Television)

If your screen does not look like this read the section entitled

Introduction. This should enable you to solve any difficulties

THE KEYBOARD

The QL is a versatile and powerful computer so there are features of the

keyboard which you do not need yet. For the present we will explain just

those items which you need for this and the next six chapters.

BREAK

This enables you to 'break' out of situations you do not like. For example:

 a line which you have decided to abandon

 something wrong which you do not understand

 a running program which has ceased to be of interest

 any other problem

Because BREAK is so powerful it has been made difficult to type

accidentally

 Hold down [CTRL] and then press [SPACE]

If nothing was added or removed from a program while it was halted with

BREAK then it can be restarted by typing:

 CONTINUE

RESET

This is not a key but a small push button on the right hand side of the QL.

It is placed here deliberately, out of the way, because its effects are

more dramatic than the break keys If you cannot achieve what you need with

the break keys then press the RESET Button. This is almost the same as

switching the computer off and on again. You get a clean re-start

SHIFT

There are two SHIFT keys because they are used frequently and need to be

available to either hand.

 Hold down one SHIFT key and type some letter keys. You will get

 upper case (capital) letters.

 Hold down one SHIFT key and type some other key not a letter You

 will get a symbol in an upper position on the key.

 Without a SHIFT key you get lower case (small) letters or a symbol

 in a lower position on a key.

CAPITALS LOCK

This key works like a switch Just press it once and only the letter keys

will be 'locked' into a particular mode - upper case or lower case.

 Type some letter keys

 Type the CAPS LOCK key once

 Type some letter keys.

You will see that the mode changes and remains until you type the CAPS LOCK

key again.

SPACE BAR

The long key at the bottom of the keyboard gives spaces. This is a very

important key in SuperBASIC as you will see in chapter two.

RUBBING OUT

The left cursor together with the CTRL key acts like a rubber. You must

hold down the CTRL key while you press the cursor key. Each time you then

press both together the previous character is deleted.

ENTER

The system needs to know when you have typed a complete message or

instruction. When you have typed something complete such as RUN you type

the ENTER key to enter it into the system for action.

Because this key is needed so often we have used a special symbol for it:

 [ENTER]

Where we use the [ENTER] symbol to represent a keystroke, we mean press the

key labelled ENTER, not type in the letters e n t e r.

We shall use this for convenience, better presentation, and to save space.

Test the [ENTER] key by typing

 PRINT "Correct" [ENTER]

If you made no mistakes the system will respond with

 Correct

OTHER KEYBOARD SYMBOLS OF IMMEDIATE USE

* multiply + add

_ underscore = becomes equal to (used in LET)

" quotes ' apostrophe

, comma ! exclamation

; semi colon & ampersand

: colon . decimal point or full stop

\ backslash $ dollar

(left bracket } right bracket

UPPER AND LOWER CASE

SuperBASIC recognises commands (keywords) whether they are in upper or

lower case. For example the SuperBASIC command to clear the screen is CLS

and can be typed in as

 CLS [ENTER]

 cls [ENTER]

 clS [ENTER]

These are all correct and have the same effect. Some keywords are displayed

partly. In upper case to show allowed abbreviations Where a keyword cannot

be abbreviated it is displayed completely in upper case.

USE OF QUOTES

The usual use of quotes is to define a word or sentence - a string of

characters. Try:

 PRINT "This works" [ENTER]

The computer will respond with:

 This works

The quotes are not printed but they indicate that some text is to be

printed and they define exactly what it is - everything between the opening

and closing quote marks. If you wish to use the quote symbol itself in a

string of characters then the apostrophe symbol can be used instead. For

example:

 PRINT 'The quote symbol is "'

will work and will print

 The quote symbol is "

COMMON TYPING ERRORS

The zero key is with the other numeric digits at the top of the keyboard,

and is slightly thinner.

The letter 'O' key is amongst the other letters. Be careful to use the

right symbol.

Similarly avoid confusion between one, amongst the digits, and the letter

'I' amongst the letters.

When using a SHIFT key hold it down while you type the other key so that

the SHIFT key makes contact before the other key and also remains in

contact until after the other key has lifted.

The same rule applies to the control CTRL and alternate ALT keys which are

used in conjunction with others but you do not need those at present.

Type the two simple instructions

 CLS [ENTER]

 PRINT 'Hello' [ENTER]

Strictly speaking these constitute a computer program, however it is the

"stored program" that is important in computing. The above instructions are

executed instantly as you type [ENTER]

Now type the program with line numbers:

 10 CLS [ENTER]

 20 PRINT 'HELLO' [ENTER]

This time nothing happens externally except that the program appears in the

upper part of the screen This means that it is accepted as correct grammar

or syntax. It conforms to the rules of SuperBASIC, but it has not yet been

executed, merely stored. To make it work, type:

 RUN [ENTER]

The distinction between direct commands for immediate action and a stored

sequence of instructions is discussed in the next chapter. For the present

you can experiment with the above ideas and two more:

 LIST [ENTER]

causes an internally stored program to be displayed (listed) on the screen

or elsewhere.

 NEW [ENTER]

causes an internally stored program to be deleted so that you can type in a

NEW one.

SELF TEST ON CHAPTER 1

You can score a maximum of 16 points from the following test. Check your

score with the answers in the ANSWERS pages at the end of this Beginner's

Guide.

1. In what circumstances might you use the BREAK sequence?

2. Where is the RESET button?

3. What is the effect of the RESET button?

4. Name two differences between a SHIFT key and the CAPS LOCK key.

5. How can you delete a wrong character which you have just typed?

6. What is the purpose of the ENTER key?

7. What symbol do we use for the ENTER key?

What is the effect of the commands in questions 8 to 11

8. CLS [ENTER]

9. RUN [ENTER]

10. LIST [ENTER]

11. NEW [ENTER]

12. Do keywords have the proper effect if you type them in lower case?

13. What is the significance of the parts of keywords which the QL

 displays in upper case?

CHAPTER 2

INSTRUCTING THE COMPUTER

Computers need to store data such as numbers. The storage can be imagined

as pigeon holes.

 +----+ +----+ +----+

 | | | | | |

 | | | | | |

 | | | | | |

 +----+ +----+ +----+

Though you cannot see them, you do need to give names to particular pigeon

holes. Suppose you want to do the following simple calculation.

A dog breeder has 9 dogs to feed for 28 days, each at the rate of one tin

of 'Beefo' per day Make the computer print (display on the screen) the

required number of tins.

One way of solving this problem would require three pigeon holes for:

 number of dogs

 number of days

 total number of tins

SuperBASIC allows you to choose sensible names for pigeon holes and you may

choose as shown:

 +----+ +----+ +----+

 | | | | | |

 dogs | | days | | tins | |

 | | | | | |

 +----+ +----+ +----+

You can make the computer set up a pigeon hole, name it, and store a number

in it with a single instruction or statement such as:

 LET dogs = 9 [ENTER]

This will set up an internal pigeon hole, named dogs, and place in it the

number 9 thus:

 +----+

 | |

 Dogs | 9 |

 | |

 +----+

The word LET has a special meaning to SuperBASIC. It is called a keyword.

SuperBASIC has many other keywords which you will see later. You must be

careful about the space after LET and other keywords. Because SuperBASIC

allows you to choose pigeon hole names with great freedom LETdogs would be

a valid pigeon hole name.

The LET keyword is optional In SuperBASIC and because of this statements

like

 LETdogs = 9 [ENTER]

are valid. This would refer to a pigeon hole called LETdogs

Just as in English, names, numbers and keywords should be separated from

each other by spaces If they are not separated by special characters.

Even if it were not necessary, a program line without proper spacing is bad

style. Machines with small memory size may force programmers into it, but

that is not a problem with the QL

You can check that a pigeon hole exists internally by typing

 PRINT dogs [ENTER]

The screen should displav what is in the pigeon hole:

 9

Again be careful to put a space after PRINT.

To solve the problem we can write a program which is a sequence of

instructions or statements. You can now understand the first two:

 LET dogs = 9 [ENTER]

 LET days = 28 [ENTER]

These cause two pigeon holes to be set up, named, and given numbers or

values.

The next instruction must perform a multiplication, for which the

computer's symbol is *, and place the result in a new pigeon hole called

"tins" thus:

 LET tins = dogs * days [ENTER]

1 The computer gets the values, 9 and 28, from the two pigeon holes

 named "dogs" and "days"

2 The number 9 is multiplied by 28.

3 A new pigeon hole is set up and named "tins".

4 The result of the multiplication becomes the value in the pigeon

 hole named tins.

All this may seem elaborate but you need to understand the ideas, which are

very Important.

The only remaining task is to make the computer print the result which can

be done by typing

 PRINT tins [ENTER

which will cause the output:

 252

to be displayed on the screen.

In summary the program:

 LET dogs = 9 [ENTER]

 LET days = 28 [ENTER]

 LET tins = dogs * days [ENTER]

 PRINT tins [ENTER]

causes the internal effects best imagined as three named pigeon holes

containing numbers:

 +----+ +----+ +----+

 | | | | | |

 dogs | 9 | x days | 28 | = tins | 252|

 | | | | | |

 +----+ +----+ +----+

and the output on the screen:

 252

Of course, you could achieve this result more easily with a calculator or a

pencil and paper You could do it quickly with the QL by typing:

 PRINT 9 * 28 [ENTER]

which would give the answer on the screen. However the ideas we have

discussed are the essential starting points of programming in SuperBASIC.

They are so essential that they occur in many computer languages and have

been given special names.

1. Names such as "dogs", "days" and "tins" are called identifiers.

2. A single instruction such as:

 LET dogs = 9[ENTER

 is called a "statement".

3. The arrangement of name and associated pigeon hole is called a

 "variable". The execution of the above statement stores the value

 9 in the pigeon hole 'identified' by the Identifier "dogs".

A statement such as:

 LET dogs = 9 [ENTER]

is an instruction for a highly dynamic internal process but the printed

text is static and it uses the = sign borrowed from mathematics. It is

better to think or say (but not type):

 LET dogs become 9

and to think of the process having a right to left direction (do not type

this):

 dogs <-- 9

The use of = in a LET statement is not the same as the use of = in

mathematics. For example, if another dog turns up you may wish to write:

 LET dogs = dogs + 1[ENTER

Mathematically this is not very sensible but in terms of computer

operations it is simple. If the value of dogs before the operation was 9

then the value after the operation would be 10. Test this by typing:

 LET dogs = 9 [ENTER]

 PRINT dogs [ENTER]

 LET dogs = dogs + 1 [ENTER]

 PRINT dogs [ENTER]

The output should be:

 9

 10

proving that the final value in the pigeon hole is as shown:

 +----+

 | |

 dogs | 10 |

 | |

 +----+

A good way to understand what is happening to the pigeon holes, or

variables, is to do what is called a "dry run". You simply examine each

instruction in turn and write down the values which result from each

instruction to show how the pigeon holes are set up and given values, and

how they retain their values as the program is executed.

 LET dogs = 9 [ENTER]

 LET days = 28 [ENTER]

 LET tins = dogs * days [ENTER]

 PRINT tins [ENTER]

The output should be

 252

You may notice that so far a variable name has always been used first on

the left hand side of a LET statement. Once the pigeon hole is set up and

has a value, the corresponding variable name can be used on the right hand

side of a LET statement.

Now suppose you wish to encourage a small child to save money. You might

give two bars of chocolate for every pound saved. Suppose you try to

compute this as follows:

 LET bars = pounds * 2 [ENTER]

 PRINT bars [ENTER]

You cannot do a dry run as the program stands because you do not know how

many pounds have been saved.

We have made a deliberate error here in using pounds on the right of a LET

statement without it having been set up and given some value. Your QL will

search internally for the variable "pounds". It will not find it, so it

concludes that there is an error in the program and gives an error message.

If we had tried to print out the value of "pounds", the QL would have

printed a * to indicate that "pounds" was undefined. We say that the

variable pounds has not been initialised (given an initial value). The

program works properly if you do this first.

 +--------+--------+

 | bars | pounds |

 +--------+--------+

 LET pounds = 7 [ENTER] | 7 | |

 LET bars = pounds * 2 [ENTER] | 7 | 14 |

 +--------+--------+

The program works properly and gives the output:

 14

A STORED PROGRAM

Typing statements without line numbers may produce the desired result but

there are two reasons why this method, as used so far, is not satisfactory

except as a first introduction

1. The program can only execute as fast as you can type. This is not

 very impressive for a machine that can do millions of operations

 per second.

2. The individual instructions are not stored after execution so you

 cannot run the program again or correct an error without re-typing

 the whole thing.

Charles Babbage, a nineteenth century computer pioneer knew that a

successful computer needed to store instructions as well as data in

internal pigeon holes. These instructions would then be executed rapidly in

sequence without further human intervention.

The program instructions will be stored but not executed if you use line

numbers. Try this:

 10 LET price = 15 [ENTER]

 20 LET pens = 7 [ENTER]

 30 LET cost = price * pens [ENTER]

 40 PRINT cost [ENTER]

Nothing happens externally yet, but the whole program is stored internally.

You make it work by typing:

 RUN [ENTER]

and the output:

 105

should appear.

The advantage of this arrangement is that you can edit or add to the

program with minimal extra typing.

EDITING A PROGRAM

Later you will see the full editing features of SuperBASIC but even at this

early stage you can do three things easily:

 replace a line

 insert a new line

 delete a line

REPLACE A LINE

Suppose you wish to alter the previous program because the price has

changed to 20p for a pen. Simply re-type line 10.

 10 LET price = 20 [ENTER]

This line will replace the previous line 10. Assuming the other lines are

still stored, test the program by typing:

 RUN [ENTER]

and the new answer, 140, should appear.

INSERT A NEW LINE

Suppose you wish to insert a line just before the last one, to print the

words 'Total Cost:' This situation often arises so we usually choose line

numbers 10, 20, 30 ... to allow space to insert extra lines.

To put in the extra line type

 35 PRINT "Total Cost" [ENTER]

and it will be inserted just before line 40. The system allows line numbers

in the range 1 to 32768 to allow plenty of flexibility in choosing them. It

is difficult to be quite sure in advance what changes may be needed.

Now type:

 RUN [ENTER]

and the new output should be:

 Total cost 140

DELETE LINE

You can delete line 35 by typing:

 35 [ENTER]

It is as though an empty line has replaced the previous one.

OUTPUT- PRINT

Note how useful the PRINT statement is. You can PRINT text by using quotes

or apostrophes:

 PRINT "Chocolate bars" [ENTER]

You can print the values of variables (contents of pigeon holes) by typing

statements such as:

 PRINT bars [ENTER]

without using quotes.

You will see later how very versatile the PRINT statement can be in

SuperBASIC. It will enable you to place text or other output on the screen

exactly where you want it. But for the present these two facilities are

useful enough:

 printing of text

 printing values of variables (contents of pigeon holes).

INPUT- INPUT, READ AND DATA

A carpet-making machine needs wool as input. It then makes carpets

according to the current design.

-------------- ------------------

design | program |

 v v

 +-------------+ +------------+

 | Carpet | | |

------>| Machine |--------> ----------->| Computer |------------>

wool | |carpets input data | | output data

 +-------------+ +------------+

If the wool is changed you may get a different carpet.

The same sort of relations exist in a computer.

However, if the data is input into pigeon holes by means of LET there are

two disadvantages when you get beyond very trivial programs:

 writing LET statements is laborious

 changing such input is also laborious

You can arrange for data to be given to a program as it runs. The INPUT

statement will cause the program to pause and wait for you to type in

something at the keyboard. First type:

 NEW [ENTER]

so that the previous stored program (if it is still there) will be erased

ready for this new one. Now type:

 10 LET price = 15 [ENTER]

 20 PRINT "How many pens?" [ENTER]

 30 INPUT pens [ENTER]

 40 LET cost = price * pens [ENTER]

 50 PRINT cost [ENTER]

 RUN [ENTER]

The program pauses at line 30 and you should type the number of pens you

want, say:

 4 [ENTER]

Do not forget the ENTER key. The output will be:

 60

The INPUT statement needs a variable name so that the system knows where to

put the data which comes in from your typing at the keyboard. The effect of

line 30 with your typing is the same as a LET statement's effect. It is

more convenient for some purposes when interaction between computer and

user is desirable. However, the LET statement and the INPUT statement are

useful only for modest amounts of data. We need something else to handle

larger amounts of data without pauses in the execution of the program.

SuperBASIC, like most BASICs, provides another method of input known as

READing from DATA statements. We can retype the above program in a new form

to give the same effects without any pauses. Try this:

 NEW [ENTER]

 10 READ price, pens

 20 LET cost = price * pens [ENTER]

 30 PRINT cost [ENTER]

 40 DATA 15, 4 [ENTER]

 RUN [ENTER]

The output should be:

 60

as before.

Each time the program is run, SuperBASIC needs to be told where to start

reading DATA from. This can either be done by typing RESTORE followed by

the DATA line number or by typing CLEAR. Both these commands can also be

inserted at the start of the programs.

When line 10 is executed the system searches the program for a DATA

statement. It then uses the values in the DATA statement for the variables

in the READ statement in exactly the same order. We usually place DATA

statements at the end of a program. They are used by the program but they

are not executed in the sense that every other line is executed in turn.

DATA statements can go anywhere in a program but they are best at the end,

out of the way. Think of them as necessary to, but not really part of, the

active program. The rules about READ and DATA are as follows:

1. All DATA statements are considered to be a single long sequence

 of items. So far these items have been numbers but they could be

 words or letters.

2. Every time a READ statement is executed the necessary items are

 copied from the DATA statement into the variables named in the

 READ statement.

The system keeps track of which items have been READ by means of an

internal record. If a program attempts to READ more items than exist in all

the DATA statements an error will be signalled.

IDENTIFIERS (NAMES)

You have used names for 'pigeon holes' such as "dogs", "bars". You may

choose words like these according to certain rules:

 A name cannot include spaces.

 A name must start with a letter.

 A name must be made up from letters, digits, $, %, _ (underscore)

 The symbols $, % have special purposes, to be explained later, but

 you can use the underscore to make names such as:

 dog_food

 month_wage_total

 more readable.

 SuperBASIC does not distinguish between upper and lower case

 letters, so names like TINS and tins are the same.

 The maximum number of characters in a name is 255.

Names which are constructed according to these rules are called

identifiers. Identifiers are used for other purposes in SuperBASIC and you

need to understand them. The rules allow great freedom in choice of names

so you can make your programs easier to understand. Names like "total",

"count", "pens" are more helpful than names like Z, P, Q.

SELF TEST ON CHAPTER 2

You can score a maximum of 21 points from this test Check your score with

the answers in "Answers To Self Test" section at the end of this Beginner's

Guide.

1. How should you imagine an internal number store?

2. State two ways of storing a value in an internal 'pigeon hole'

 to be created (two points)

3. How can you find out the value of an internal 'pigeon hole'?

4. What is the usual technical name for a 'pigeon hole'?

5. When does a pigeon hole get its first value?

6. A variable is so called because its value can vary as a program

 is executed What is the usual way of causing such a change?

7. The = sign in a LET statement does not mean 'equals' as in

 mathematics. What does it mean?

8. What happens when you ENTER an un-numbered statement?

9. What happens when you ENTER a numbered statement?

10. What is the purpose of quotes in a PRINT statement?

11. What happens when you do not use quotes in a PRINT statement?

12. What does an INPUT statement do which a LET statement does not?

13. What type of program statement is never executed?

14. What is the purpose of a DATA statement?

15. What is another word for the name of a pigeon hole (or variable)?

16. Write down three valid identifiers which use letters, letters

 and digits, letters and underscore (three points)

17. Why is the space bar especially important in SuperBASlC?

18. Why are freely chosen identifiers important in programming?

PROBLEMS ON CHAPTER 2

1. Carry out a dry run to show the values of all variables as each line

 of the following program is executed

 10 LET hours = 40 [ENTER]

 20 LET rate = 31 [ENTER]

 30 LET wage = hours * rate [ENTER]

 40 PRINT hours, rate, wage [ENTER]

2. Write and test a program, similar to that of problem 1, which

 computes the area of a carpet which is 3 metres in width and 4

 metres in length. Use the variable names: "width", "length", "area".

3. Re-write the program of problem 1 so that it uses two INPUT

 statements instead of LET statements.

4. Re write the program of problem 1 so that the input data (40 and

 3) appears in a DATA statement instead of a LET statement.

5. Re write the program of problem 2 using a different method of data

 input. Use READ and DATA if you originally used LET and vice-versa.

6. Bill and Ben agree to have a gamble. Each will take out of his

 wallet all the pound notes and give them to the other. Write a

 program to simulate this entirely with LET and PRINT statements.

 Use a third person, Sue, to hold Bill's money while he accepts Ben's.

7. Re-write the program of problem 6 so that a DATA statement holds

 the two numbers to be exchanged.

CHAPTER 3

DRAWING ON THE SCREEN

In order to use either a television set or monitor with the QL, two

different screen modes are available. MODE 8 permits eight colour displays

with a graphics resolution of 256 by 256 pixels and large characters for

display on a television set. MODE 4 allows four colours with a resolution

of 512 by 256 pixels and a maximum of eighty character lines for which a

monitor must be used for successful display. However, it would be

unfortunate if a program was written to draw circles or squares in one mode

and produced ellipses or rectangles in another mode (as some systems do).

We therefore provide a system of scale graphics which avoids these

problems. You simply choose a vertical scale and work to it. The other type

of graphics (pixel oriented) is also available and is described fully in a

later chapter

Suppose, for example, that we choose a vertical scale of 100 and we wish to

draw a line from position (50,60) to position (70,80).

(This diagram is Chapt3A_pic in the file compilations)

 100 |

 |

 | / (70 across, 80 up)

 | /

 | /

 | / (50 across, 60 up)

 |

 |

 |

 |

 0 +-------------------------------------

 Scale Graphics

A COLOURED LINE

We need to specify three things:

 PAPER (background colour)

 INK (drawing colour)

 LINE (start and end points)

The following program will draw a line as shown in the above figure in red

(colour code 2) on a white (colour code 7) background.

 NEW [ENTER]

 10 PAPER 7 : CLS [ENTER]

 20 INK 2 [ENTER]

 30 LINE 50,60 TO 70,80 [ENTER]

 RUN [ENTER]

In line 10 the paper colour is selected first but it only comes into effect

with a further command, such as CLS, meaning clear the screen to the

current paper colour.

MODES AND COLOURS

So far it does not matter which screen mode you are using but the range of

colours is affected by the choice of mode.

 MODE 8 allows eight basic colours

 MODE 4 allows four basic colours

Colours have codes as described below.

Code Effect

 8 colour 4 colour

0 black black

1 blue black

2 red red

3 magenta red

4 green green

5 cyan green

6 yellow white

7 white white

RANDOM EFFECTS

For example, INK 3 would give magenta in MODE 8 and red in MODE 4.

We will explain in a later chapter how the basic colours can be 'mixed' in

various ways to produce a startling range of colours, shades and textures.

RANDOM EFFECTS

You can get some interesting effects with random numbers which can be

generated with the RND function. For example:

PRINT RND (1 TO 6) [ENTER]

will print a whole number in the range 1 to 6, like throwing an ordinary

six-sided dice. The following program will illustrate this:

NEW [ENTER]

10 LET die = RND(l TO 6) [ENTER]

20 PRINT die [ENTER]

RUN [ENTER]

If you run the program several times you will get different numbers.

You can get random whole numbers in any range you like. For example:

RND(0 TO 100)

will produce a number which can be used in scale graphics. You can re-write

the line program so that it produces a random colour. Where the range of

random numbers starts from zero you can omit the first number and write:

RND(100)

NEW [ENTER]

10 PAPER 7 : CLS [ENTER]

20 INK RND(5) [ENTER]

30 LINE 50,60 TO RND(100),RND(100) [ENTER]

RUN [ENTER]

This produces a line starting somewhere near the centre of the screen and

finishing at some random point. The range of possible colours depends on

which mode is selected. You will find that a range of numbers 'something TO

something' occurs often in SuperBASIC.

BORDERS

The part of the screen in which you have drawn lines and create other

output is called a window. Later you will see how you can change the size

and position of a window or create other windows. For the present we shall

be content to draw a border round the current window. The smallest area of

light or colour you can plot on the screen is called a pixel. In mode 8,

called low resolution mode, there are 256 possible pixel positions across

the screen and 256 down. In mode 4, called high resolution mode, there are

512 pixels across the screen and 256 down. Thus the size of a pixel depends

on the mode.

You can make a border round the inside edge of a window by typing for

example:

BORDER 4,2 [ENTER]

This will create a border 4 pixels wide in colour red (code 2). The

effective size of the window is reduced by the border. This means that any

subsequent printing or graphics will automatically fit within the new

window size. The only exception to this is a further border which will

overwrite the existing one.

A SIMPLE LOOP

Computers can do things very quickly but it would not be possible to

exploit this great power if every action had to be written as an

instruction. A building foreman has a similar problem. If he wants a

workman to lay a hundred paving stones that is roughly what he says. He

does not give a hundred separate instructions.

A traditional way of achieving looping or repetition in BASIC is to use a

GO TO (or GOTO, they are the same) statement as follows.

NEW [ENTER]

10 PAPER 6 : CLS [ENTER]

20 BORDER 1,2 [ENTER]

30 INK RND(5) [ENTER]

40 LINE 50,60 TO RND(100),RND(100) [ENTER]

50 GOTO 0 [ENTER]

RUN [ENTER]

You may prefer not to type in this program because SuperBASIC allows a

better way of doing repetition. Note certain things about each line.

10 Fixed part - not repeated

20

30 Changeable part - repeated

40

50 Controls program

You can re-write the above program by omitting the GOTO statement and,

instead, putting REPeat and END REPeat around the part to be repeated.

NEW [ENTER]

10 PAPER 6 : CLS [ENTER]

20 BORDER 1,2 [ENTER]

30 REPEAT star [ENTER]

40 INK RND(5) [ENTER]

50 LINE 50,60 TO RND(100),RND(100) [ENTER]

60 END REPEAT star [ENTER]

RUN [ENTER]

We have give the repeat structure a name, star The structure consists of

the two lines:

REPeat star

END REPeat star

and what lies between them is called the content of the structure. The use

of upper case letters indicates that REP is a valid abbreviation of REPeat.

This program should produce coloured lines indefinitely to make a star.

(diagram of random length lines emanating from a central point like a

broken pane of glass - Chapt3B_pic - caption: "The STAR program")

You can stop it by pressing the break keys:

Hold down [CTRL] and then press [SPACE]

SuperBASIC provides a consistent and versatile method of stopping

repetitive processes. Imagine running round and round inside the program

activating statements. How can you escape? The answer is to use an EXIT

statement. But there must be some reason for escaping. You might extend the

choice of line colours by typing as an amendment to the program (do not

type NEW):

40 INK RND (0 TO 6) [ENTER]

so that if RND produces 6 the ink is the same colour as the paper and you

will not see it. This could be the reason for terminating the repetition.

We can re-arrange the program as follows:

NEW [ENTER]

10 PAPER 6 : CLS [ENTER]

20 BORDER 1 ,2 [ENTER]

30 REPeat star [ENTER]

40 LET colour = RND(6) [ENTER]

50 IF colour = 6 THEN EXIT star [ENTER]

60 INK colour [ENTER]

70 LINE 50,60 TO RND(100),RND(100) [ENTER]

80 END REPeat star [ENTER]

The important thing to note here is that the program continues until

"colour" becomes 6. Control then escapes from the loop to the point just

after line 80. Since there are no program lines after 80 the program stops.

Another important concept has been introduced. It is the idea of a

decision.

IF colour = 6 THEN EXIT star

This is another very useful structure because it is a choice of doing

something or not; we call it a simple binary decision. Its general form is:

IF condition THEN statement(s)

You will see later how the two concepts of repetition (or looping) and

decision-making (or selection) are the main structures for program control.

You can stop the program by pressing the break keys: hold down CTRL and

then press the space bar.

SELF TEST ON CHAPTER 3

You can score a maximum of 13 points from the following test. Check your

score with the answers in the "Answers to self test" section at the end of

this Beginner's Guide.

1. What is a pixel?

2. How many pixels fit across the screen in the low resolution mode?

3. How many pixels fit from bottom to top in low resolution mode?

4. What are the two numbers which determine the 'address' or position of

 a graphics point on the screen?

5. How many colours are available in the low resolution mode?

6. Name the keywords which do the following:

 i draw a line

 ii select a colour for drawing

 iii select a background colour

 iv draw a border (5 points)

7. What are the statements which open and close the REPeat loop?

8. When does an executing REPeat loop terminate?

9. Why do loops in SuperBASIC have names?

PROBLEMS ON CHAPTER 3

1. Write a program to draw straight lines all over the screen. The

 lines should be of random length and direction. Each should start

 where the previous one finished and each should have a randomly

 chosen colour.

2. Write a program to draw lines randomly with the restriction that

 each line has a random start on the left hand edge of the screen.

3. Write a program to draw lines randomly with the restriction that

 the lines start at the same point on the bottom edge of the screen.

4. Write a program to produce lines of random length, starting points

 and colour. All lines must be horizontal.

5. As problem 4 but make the lines vertical.

6. Write a program to produce a square 'spiral' in such a way that

 each line makes a random colour

HINT: First find the co-ordinates of some of the corners, then put them in

groups of four. You should discover a pattern.

CHAPTER 4

CHARACTERS AND STRlNGS

Teachers sometimes wish to assess the reading ability needed for particular

books or classroom materials. Various tests are used and some of these

compute the average lengths of words and sentences. We will introduce ideas

about handling words or character strings by examining simple approaches to

finding average word lengths.

We are talking about sequences of letters, digits or other symbols which

may or may not be words. That is why the term 'character string' has been

invented. It is usually abbreviated to string. Strings are handled in ways

similar to number handling but, of course, we do not do the same operations

on them. We do not multiply or subtract strings. We join them, separate

them, search them and generally manipulate them as we need.

NAMES AND PIGEON HOLES FOR STRINGS

You can create pigeon holes for strings. You can put character strings into

pigeon holes and use the information just as you do with numbers. If you

intend to store (not all at once) words such as:

 FIRST SECOND THIRD

 and

 JANUARY FEBRUARY MARCH

you may choose to name two pigeon holes:

 +-----+ +-----+

 | | | |

 weekday$ | | month$ | |

 | | | |

 +-----+ +-----+

Notice the dollar sign. Pigeon holes for strings are internally different

from those for numbers and SuperBASIC needs to know which is which. All

names of string pigeon holes must end with $. Otherwise the rules for

choosing names are the same as the rules for the names of numeric pigeon

holes.

You may pronounce:

 "weekday$" as weekdaydollar

 "month$" as monthdollar

The LET statement works in the same way as for numbers. If you type:

 LET weekday$ = "FIRST" [ENTER]

an internal pigeon hole, named weekday$ will be set up with the value FIRST

in it thus:

 +-----+

 | |

 weekday$ |FIRST|

 | |

 +-----+

The quote marks are not stored. They are used in the LET statement to make

it absolutely clear what is to be stored in the pigeon hole. You can check

by typing:

 PRINT weekday$ [ENTER]

and the screen should display what is in the pigeon hole:

 FIRST

You can use a pair of apostrophes instead of a pair of quote marks.

LENGTHS OF STRINGS

SuperBASIC makes it easy to find the length or number of characters of any

string. You simply write, for example:

 PRINT LEN(weekday$) [ENTER]

If the pigeon hole, weekday$, contains FIRST the number 5 will be

displayed. You can see the effect in a simple program:

NEW [ENTER]

10 LET weekday$ = "FIRST" [ENTER]

20 PRINT LEN(weekday$) [ENTER]

RUN [ENTER]

The screen should display:

 5

LEN is a keyword of SuperBASIC

An alternative method of achieving the same result uses both a string

pigeon hole and a numeric pigeon hole.

NEW [ENTER]

10 LET weekday$ = "FIRST" [ENTER]

20 LET length = LEN(weekday$) [ENTER]

30 PRINT length [ENTER]

RUN [ENTER]

The screen should display:

 5

as before, and two internal pigeon holes contain the values shown:

 +-----+ +-----+

 | | | |

 weekday$ |FIRST| length | 5 |

 | | | |

 +-----+ +-----+

Let us return to the problem of average lengths of words.

Write a program to find the average length of the three words:

 FIRST, OF, FEBRUARY

PROGRAM DESIGN

When problems get beyond what you regard as very trivial, it is a good idea

to construct a program design before writing the program itself

 1. Store the three words in pigeon holes.

 2. Compute the lengths and store them.

 3. Compute the average.

 4. Print the result.

NEW [ENTER]

10 LET weekday$ = "FIRST" [ENTER]

20 LET word$ = "OF" [ENTER]

30 LET month$ = "FEBRUARY" [ENTER]

40 LET length1 = LEN (weekday$) [ENTER]

50 LET length2 = LEN (word$) [ENTER]

60 LET length3 = LEN (month$) [ENTER]

70 LET sum = lengthl + length2 + length3 [ENTER]

80 LET average = sum/3 [ENTER]

90 PRINT average [ENTER]

RUN [ENTER]

The symbol / means "divided by". The output or result of running the

program is simply:

 5

and there are eight internal pigeon holes involved:

 +--------+ +-----+

 | | | |

 weekday$ | FIRST | length1 | 5 |

 | | | |

 +--------+ +-----+

 +--------+ +-----+

 | | | |

 word$ | OF | length2 | 2 |

 | | | |

 +--------+ +-----+

 +--------+ +-----+

 | | | |

 month$ |FEBRUARY| length3 | 8 |

 | | | |

 +--------+ +-----+

 +-----+

 | |

 sum | 15 |

 | |

 +-----+

 +-----+

 | |

 average | 5 |

 | |

 +-----+

If you think that is a lot of fuss for a fairly simple problem you can

certainly shorten it. The shortest version would be a single line but it

would be less easy to read. A reasonable compromise uses the symbol "&"

which stands for the operation:

 Join two strings

Now type:

NEW [ENTER]

10 LET weekday$ = "FIRST" [ENTER]

20 LET word$ = "OF" [ENTER]

30 LET month$ = "FEBRUARY" [ENTER]

40 LET phrase$ = weekday$ & word$ & month$ [ENTER]

50 LET length = LEN(phrase$) [ENTER]

60 PRINT length/3 [ENTER]

RUN [ENTER]

The output is 5 as before but there are some different internal effects:

 +-------------------+ +----+

 | | | |

 weekday$ | FIRST | length | 15 |

 | | | |

 +-------------------+ +----+

 +-------------------+

 | |

 word$ | OF |

 | |

 +-------------------+

 +-------------------+

 | |

 month | FEBRUARY |

 | |

 +-------------------+

 +-------------------+

 | |

 phrase$ | FIRSTOFFEBRUARY |

 | |

 +-------------------+

There is one more reasonable simplification which is to use READ and DATA

instead of the first three LET statements. Type:

NEW [ENTER]

10 READ weekday$, word$, month$ [ENTER]

20 LET phrase$ = weekday$ & word$ & month$ [ENTER]

30 LET length = LEN(phrase$) [ENTER]

40 PRINT length/3 [ENTER]

50 DATA "FIRST","OF","FEBRUARY" [ENTER]

RUN [ENTER]

The internal effects of this version are exactly the same as those of the

previous one. READ causes the setting up of internal pigeon holes with

values in them in a similar way to LET.

IDENTIFIERS AND STRING VARIABLES

Names of pigeon holes, such as:

 weekday$

 word$

 month$

 phrase$

are called string identifiers. The dollar signs imply that the pigeon holes

are for character strings. The dollar must always be at the end.

Pigeon holes of this kind are called "string variables" because they

contain only character strings which may vary as a program runs.

The contents of such pigeon holes are called values. Thus words like

'FIRST' and 'OF' may be values of string variables named weekday$ and

+word$

RANDOM CHARACTERS

You can use character codes (see Concept Reference Guide) to generate

random letters. The upper case letters A to Z have the codes 65 to 90. The

function CHR$ converts these codes into letters. The following program will

print a letter B

NEW [ENTER]

10 LET lettercode = 66 [ENTER]

20 PRINT CHR$ (lettercode) [ENTER]

RUN [ENTER]

The following program will generate trios of letters A, B, or C until the

word CAB is spelled accidentally

NEW [ENTER]

10 REPeat taxi [ENTER]

20 LET first$ = CHR$(RND(65 TO 67)) [ENTER]

30 LET second$ = CHR$(RND(65 TO 67)) [ENTER]

40 LET third$ = CHR$(RND(65 TO 67)) [ENTER]

50 LET word$ = first$ & second$ & third$ [ENTER]

60 PRINT ! word$! [ENTER]

70 IF word$ = "CAB" THEN EXIT taxi [ENTER]

80 END REPeat taxi [ENTER]

Random characters, like random numbers or random points are useful for

learning to program. You can easily get interesting effects for program

examples and exercises.

Note the effect the ! ... ! have on the spacing of the output.

(From now on, we shall omit the [ENTER] key symbol at the end of each line

of a program to be entered, on the assumption that you are by now familiar

with the use of the ENTER key)

SELF TEST ON CHAPTER 4

You can score a maximum of 10 points from the following test. Check your

score with the answers in the "Answers To Self Tests" section at the end of

this Beginner's Guide.

1. What is a character string?

2. What is the usual abbreviation of the term, 'character string'?

3. What distinguishes the name of a string variable?

4. How do some people pronounce a word such as 'word$'?

5. What keyword is used to find the number of characters in a string?

6. What symbol is used to join two strings?

7. Spaces can be part of a string. How are the limits of a string defined?

8. When a statement such as:

 LET meat$ = "steak"

 is executed, are the quotes stored?

9. What function will turn a suitable code number into a letter?

10. How can you generate random upper case letters?

PROBLEMS ON CHAPTER 4

1. Store the words 'Good' and 'day' in two separate variables. Use a

 LET statement to join the values of the two variables in a third

 variable. Print the result.

2. Store the following words in four separate pigeon holes:

 light let be there

 Join the words to make a sentence adding spaces and a full stop.

 Store the whole sentence in a variable, sent$, and print the sentence

 and the total number of characters it contains.

3. Write a program which uses the keywords:

 CHR$ RND(65 TO 90))

 to generate one hundred random three letter words. See if you have

 accidentally generated any real English words. Test the effects of:

 a) ; at the end of a PRINT statement.

 b) ! on either side of item printed.

CHAPTER 5

KNOWN GOOD PRACTlCE

You have already begun to work effectively with short programs. You may

have found the following practices are helpful:

1. Use of lower case for identifiers: names of variables (pigeon

 holes) or repeat structures, etc.

2. Indenting of statements to show the content of a repeat structure.

3. Well chosen identifiers reflecting what a variable or repeat

 structure is used for.

4. Editing a program by:

 replacing a line

 inserting a line

 deleting a line

PROGRAMS AS EXAMPLES

You have reached the stage where it is helpful to be able to study programs

to learn from them and to try to understand what they do. The mechanics of

actually running them should now be well understood and in the following

chapters we will dispense with the constant repetition of:

 NEW before each program

 [ENTER] at the end of each line

 RUN to start each program

You will understand that you should use all these features when you wish to

enter and run a program. But their omission in the text will enable you to

see the other details more clearly as you try to imagine what the program

will do when it runs.

If we dispense with the above details we may use and understand programs

more easily without the technical clutter. For example, the following

program generates random upper case letters until a Z appears. It does not

show the words NEW or RUN or the ENTER symbol but you still need to use

these.

10 REPeat letters

20 LET lettercode = RND(65 TO 90)

30 cap$ = CHR$(lettercode)

40 PRINT cap$

50 IF cap$ = "Z" THEN EXIT letters

60 END REPeat letters

In this and subsequent chapters programs will be shown without ENTER

symbols. Direct commands will also be shown without ENTER symbols. But you

must use these keys as usual. You must also remember to use NEW and RUN as

necessary

AUTOMATIC LINE NUMBERING

It is tedious to enter line numbers manually. Instead you can type:

 AUTO

before you start programming and the QL will reply with a line number:

 100

Continue typing lines until you have finished your program when the screen

will show:

100 PRINT "First"

110 PRINT "Second"

120 PRINT "End"

To finish the automatic production of line numbers use the BREAK sequence:

 Hold down the CTRL and press the SPACE bar. This will produce the

 message:

 130 not compLete

and line 130 will not be included in your program.

If you make a mistake which does not cause a break from automatic

numbering, you can continue and EDIT the line later. If you want to start

at some particular line number say 600, and use an increment other than 10

you can type, for an increment of 5:

 AUTO 600,5

Lines will then be numbered 600, 605, 610, etc.

To cancel AUTO, press CTRL and the SPACE bar at the same time.

EDITING A LINE

To edit a line simply type EDIT followed by the line number for example:

 EDIT 110

The line will then be displayed with the cursor at the end thus:

 110 PRINT "Second"

You can move the cursor using:

 <-- (left arrow key) one place left

 --> (right arrow key) one place right

To delete a character to the left use:

 CTRL with <-- (CTRL and left arrow keys)

To delete the character in the cursor position type:

 CTRL with --> (CTRL and right arrow keys)

and the character to the right of the cursor will move up to close the gap.

USING MICRODRIVE CARTRIDGES

Before using a new Microdrive cartridge it must be formatted. Follow the

instructions in the "Introduction". The choice of name for the cartridge

follows the same rules as SuperBASIC identifers, etc. but limited to only

10 characters. It is a good idea to write the name of the cartridge on the

cartridge itself using one of the supplied sticky labels.

You should always keep at least one back-up copy of any program or data.

Follow the instructions in the Information section of the User Guide.

 * *

 * ** WARNING ** *

 * *

 * If you FORMAT a cartridge which holds programs and/or data, *

 * ALL the programs and/or data will be lost. *

 * *

SAVING PROGRAMS

The following program sets borders, 8 pixels wide, in red (code 2), in

three windows designated #0, #1, #2.

100 REMark Border

110 FOR k = 0 TO 2 : BORDER #k,8,2

You can save it on a microdrive by inserting a cartridge and typing:

 SAVE mdv1_bord

The program will be saved in a Microdrive file called "bord".

CHECKING A CARTRIDGE

If you want to know what programs or data files are on a particular

cartridge place it in Microdrive 1 and type:

 DIR mdv1_

The directory will be displayed on the screen. If the cartridge is in

Microdrive 2 then type instead:

 DIR mdv2_

COPYING PROGRAMS AND FILES

Once a program is stored as a file on a Microdrive cartridge it can be

copied to other files. This is one way of making a backup copy of a

Microdrive cartridge. You might copy all the previous programs, and similar

commands for other programs, onto another cartridge in Microdrive 2 by

typing:

 COPY mdv1_bord TO mdv2_bord

DELETING A CARTRIDGE FILE

A file is anything, such as a program or data, stored on a cartridge. To

delete a program called "prog" you type:

 DELETE mdv1_prog

LOADING PROGRAMS

A program can be loaded from a Microdrive cartridge by typing:

 LOAD mdv2_bord

If the program loads correctly it will prove that both copies are good. You

can test the program by using:

 LIST to list it.

 RUN to run it.

Instead of using LOAD followed by RUN you can combine the two operations in

one command.

 LRUN mdv2_bord

The program will load and execute immediately.

MERGING PROGRAMS

Suppose that you have two programs saved on Microdrive 1 as "prog1" and

"prog2".

 100 PRINT "First"

 110 PRINT "Second"

If you type:

 LOAD mdv1_prog1

followed by:

 MERGE mdv1_prog2

The two programs will be merged into one. To verify this, type LIST and you

should see:

 100 PRINT "First"

 110 PRINT "Second"

If you MERGE a program make sure that all its line numbers are different

from the program already in main memory. Otherwise it will overwrite some

of the lines of the first program. This facility becomes very valuable as

you become proficient in handling procedures. It is then quite natural to

build a program up by adding procedures or functions to it.

GENERAL

Be careful and methodical with cartridges. Always keep one back-up copy and

if you suspect any problem with a cartridge or microdrive keep a second

back-up copy. Computer professionals very rarely lose data. They know that

even with the best machines or devices there will be occasional faults and

they allow for this.

If you want to call a program by a particular name, say, "square", it may

be a good idea to use names like "sq1", "sq2"... for preliminary versions.

When the program is in its final form take at least two copies called

square and the others may be deleted by re-formatting or by some more

selective method.

SELF TEST ON CHAPTER 5

You can score a maximum of 14 points from the following test. Check your

score with the answers in the "Answers To Self Tests" section at the back

of this Beginner's Guide.

1. Why are lower case letters preferred for program words which you

 choose?

2. What is the purpose of indenting?

3. What should normally guide your choice of identifiers for variables

 and loops?

4. Name three ways of editing a program in the computer's main memory

 (three points).

5. What should you remember to type at the end of every command or

 program line when you enter it?

6. What should you normally type before you enter a program at

 the keyboard?

7 What must be at the beginning of every line to be stored as part

 of a program?

8. What must you remember to type to make a program execute?

9. What keyword enables you to put into a program information which

 has no effect on the execution?

10.Which two keywords help you to store programs on and retrieve

 from cartridges? (two points).

PROBLEMS ON CHAPTER 5

1. Re-write the following program using lower case letters to give a

 better presentation. Add the words NEW and RUN. Use line numbers and

 the ENTER symbol just as you would to enter and run a program. Use

 REMark to give the program a name.

 LET TWO$ = "TWO"

 LET FOUR$ = "FOUR"

 LET SIX$ = TWO$ & FOUR$

 PRINT LEN(six$)

 Explain how two and four can produce 7.

2. Use indenting, lower case letters, NEW, RUN, line numbers and the

 ENTER symbol to show how you would actually enter and run the

 following program:

 REPEAT LOOP

 LETTER_CODE = RND(65 TO 90)

 LET LETTERS$ = CHR$(LETTER_CODE)

 PRINT LETTER$

 IF LETTER$ = 'Z' THEN EXIT LOOP

 END REPEAT LOOP

3. Re-write the following program in better style using meaningful

 variable names and good presentation. Write the program as you

 would enter it:

 LET S = O

 REPeat TOTAL

 LET N = RND(1 TO 6)

 PRINT ! N !

 LET S = S + N

 IF n = 6 THEN EXIT TOTAL

 END REPeat TOTAL

 PRINT S

 Decide what the program does and then enter and run it to check

 your decision.

CHAPTER 6

ARRAYS AND FOR LOOPS

WHAT IS AN ARRAY

You know that numbers or character strings can become values of variables.

You can picture this as numbers or words going into internal pigeon holes

or houses. Suppose for example that four employees of a company are to be

sent to a small village, perhaps because oil has been discovered. The

village is one of the few places where the houses only have names and there

are four available for rent. All the house names end with a dollar symbol.

 Westlea$ Lakeside$ Roselawn$ Oaktree$

The four employees are called

 +-----+ +-----+ +-----+ +-----+

 | VAL | | HAL | | MEL | | DEL |

 +-----+ +-----+ +-----+ +-----+

They can be placed in the houses by one of two methods.

Program 1:

100 LET westlea$ = "VAL"

110 LET lakeside$ = "HAL"

120 LET roselawn$ = "MEL"

130 LET oaktree$ = "DEL"

140 PRINT ! westlea$! lakeside$! roselawn$! oaktree$

Program 2:

100 READ westlea$, lakeside$, roselawn$, oaktree$

110 PRINT ! westlea$! lakeside$! roselawn$! oaktree$

120 DATA "VAL", "HAL", "MEL", "DEL"

 westlea$ lakeside$ roselawn$ oaktree$

 | | | |

 | | | |

 v v v v

 VAL HAL MEL DEL

As the amount of data gets larger the advantages of READ and DATA over LET

become greater. But when the data gets really numerous the problem of

finding names for houses gets as difficult as finding vacant houses in a

small village.

The solution to this and many other problems of handling data lies in a new

type of pigeon hole or variable in which many may share a single name.

However, they must be distinct so each variable also has a number like

numbered houses in the same street. Suppose that you need four vacant

houses in High Street numbered 1 to 4. In SuperBASIC we say there is an

array of four houses. The name of the array is high_st$ and the four houses

are to be numbered 1 to 4.

But you cannot just use these array variables as you can ordinary (simple)

variables. You have to declare the dimensions (or size) of the array first.

The computer allocates space internally and it needs to know how many

string variables there are in the array and also the maximum length of each

string variable. You use a DIM statement thus:

DIM high_st$(4, 3)

 | |

 | +------ maximum length of string

 |

 +--------- number of string variables

After the DIM statement has been executed the variables are available for

use. It is as though the houses have been built but are still empty. The

four 'houses' share a common name, high_st$, but each has its own number

and each can hold up to three characters.

 +--+ ------- ------- ------- -------

 | | / 1 \ / 2 \ / 3 \ / 4 \

+----------+ +-----------+ +-----------+ +-----------+ +-----------+

| high_st$ > | ++ ++ | | ++ ++ | | ++ ++ | | ++ ++ |

+----------+ | ++ +-+ ++ | | ++ +-+ ++ | | ++ +-+ ++ | | ++ +-+ ++ |

 | | | | | | | | | | | | | | | | | |

 | | +----+-+----+ +----+-+----+ +----+-+----+ +----+-+----+

 | |

 | |

There are five programs below which all do the same thing: they cause the

four 'houses' to be 'occupied' and they PRINT to show that the 'occupation'

has really worked. The final method uses only four lines but the other four

lead up to it in a way which moves all the time from known ideas to new

ones or new uses of old ones. The movement is also towards greater economy.

If you understand the first two or three methods perfectly well you may

prefer to move straight onto methods 4 and 5. But if you are in any doubt,

methods 1, 2 and 3 will help to clarify things.

Program 1:

100 DIM high_st$(4,3)

110 LET high_st$(l) = "VAL"

120 LET high_st$(2) = "HAL"

130 LET high_st$(3) = "MEL"

140 LET high st$(4) = "DEL"

150 PRINT ! high_st$(1) ! high st$(2) !

160 PRINT ! high_st$(3) ! high-st$(4) !

Program 2:

100 DIM high st$(4,3)

110 READ high_st$(1),high_st$(2),high_st$(3),high_st$(4)

120 PRINT ! high_st$(1) ! high_st$(2) !

130 PRINT ! high_st$(3) ! high_st(4) !

140 DATA "VAL","HAL","MEL","DEL"

This shows how to economise on variable names but the constant repeating of

high_st$ is both tedious and the cause of the cluttered appearance of the

programs. We can, again, use a known technique - the REPeat loop to improve

things further. We set up a counter, "number", which increases by one as

the REPeat loop proceeds.

Program 3:

100 RESTORE 190

110 DIM high_st$(4,3)

120 LET number = 0

130 REPeat houses

140 LET number = number + 1

150 READ high_st$(number)

160 IF num = 4 THEN EXIT houses

170 END REPeat houses

180 PRINT high_st$(1) ! high_st$(2) ! high_st$(3) ! high_st$(4)

190 DATA "VAL","HAL","MEL","DEL"

This special type of loop, in which something has to be done a certain

number of times, is well known. A special structure, called a FOR loop, has

been invented for it. In such a loop the count from 1 to 4 is handled

automatically. So is the exit when all four items have been handled

Program 4:

100 RESTORE 160

110 DIM high_st$(4,3)

120 FOR number = 1 TO 4

130 READ high_st$(number)

140 PRINT ! high_st$(number) !

150 END FOR number

160 DATA "VAL","HAL","MEL","DEL"

The output from all four programs is the same:

 VAL HAL MEL DEL

Which proves that the data is properly stored internally in the four array

variables:

 +-----+ +-----+ +-----+ +-----+

 high_st$ | 1 | | 2 | | 3 | | 4 |

 +-----+ +-----+ +-----+ +-----+

Method 4 is clearly the best so far because it can deal equally well with 4

or 40 or 400 items by just changing the number 4 and adding more DATA

items. You can use as many DATA statements as you need.

In its simplest form the FOR loop is rather like the simplest form of

REPeat loop. The two can be compared:

100 REPeat greeting 100 FOR greeting = 1 TO 40

110 PRINT 'Hello" 110 PRINT 'Hello"

120 END REPeat greeting 120 END FOR greeting

Both these loops would work. The REPeat loop would print 'Hello' endlessly

(stop it with the BREAK sequence) and the FOR loop would print 'Hello' just

forty times.

Notice that the name of the FOR loop is also a variable, "greeting", whose

value varies from 1 to 40 in the course of running the program. This

variable is sometimes called the loop variable or the control variable of

the loop.

Note the structure of both loops takes the form:

 Opening statement

 Content

 Closing statement

However certain structures have allowable short forms for use when there

are only one or a few statements in the content of the loop. Short forms of

the FOR loop are allowed so we could write the program in the most

economical form of all:

Program 5:

100 RESTORE 140 : CLS

110 DIM high st$(4,3)

120 FOR number = 1 TO 4 : READ high_st$(number)

130 FOR number = 1 TO 4 : PRINT ! high_st$(number) !

140 DATA "VAL", "HAL", "MEL", "DEL"

Colons serve as end of statement symbols instead of ENTER and the ENTER

symbols of lines 120 and 130 serve as END FOR statements.

There is an even shorter way of writing the above program. To print out the

contents of the array high_st$ we can replace line 130 by:

130 PRINT ! high_st$!

This uses an array slicer which we will discuss later in chapter 13.

We have introduced the concept of an array of string variables so that the

only numbers involved would be the subscripts in each variable name. Arrays

may be string or numeric, and the following examples illustrate the numeric

array.

Program 1:

Simulate the throwing of a pair of dice four hundred times. Keep a record

of the number of occurrences of each possible score from 2 to 12.

100 REMark DICE1

110 LET two = 0: three = 0: four = 0: five = 0: six = 0

120 LET seven = 0: eight = 0: nine = 0: ten = 0: eleven = 0: twelve = 0

130 FOR throw = 1 TO 400

140 LET die1 = RND(l TO 6)

150 LET die2 = RND(l TO 6)

160 LET score = diel + die2

170 IF score = 2 THEN LET two = two + 1

180 IF score = 3 THEN LET three = three + 1

190 IF score = 4 THEN LET four = four + 1

200 IF score = 5 THEN LET five = five + 1

21O IF score = 6 THEN LET six = six + 1

220 IF score = 7 THEN LET seven = seven + 1

230 IF score = 8 THEN LET eight = eight + 1

240 IF score = 9 THEN LET nine = nine + 1

250 IF score = 10 THEN LET ten = ten + 1

26O IF score = 11 THEN LET eleven = eleven + 1

270 IF score = 12 THEN LET twelve = twelve + 1

280 END FOR throw

290 PRINT ! two ! three ! four ! five ! six

300 PRINT ! seven ! eight ! nine ! ten ! eleven ! twelve

In the above program we establish eleven simple variables to store the

tally of the scores. If you plot the tallies printed at the end you find

that the bar chart is roughly triangular. The higher tallies are for scores

six, seven, eight and the lower tallies are for 2 and 12. As every dice

player knows, the reflects the frequency of the middle range of scores

(six,seven,eight) and the rarity of twos or twelves.

100 REMark Dice2

110 DIM tally(12)

120 FOR throw = 1 TO 400

130 LET die_1 = RND(1 TO 6)

140 LET die_2 = RND(1 TO 6)

150 LET score = die_1 + die_2

160 LET tally(score) = tally(score) + 1

170 END FOR throw

180 FOR number = 2 TO 12 : PRINT tally(number)

In the first FOR loop, using "throw", the subscript of the array variable

is "score". This means that the correct array subscript is automatically

chosen for an increase in the tally after each throw. You can think of the

array, "tally", as a set of pigeon-holes numbered 2 to 12. Each time a

particular score occurs the tally of that score is increased by throwing a

stone into the corresponding pigeon hole.

In the second (short form) FOR loop, the subscript is "number". As the

value of "number" changes from 2 to 12 all the values of the tallies are

printed.

Notice that in the DIM statement for a numeric array you need only declare

the number of variables required. There is no question of maximum length as

there is in a string array.

If you have used other versions of BASIC you may wonder what has happened

to the NEXT statement. All SuperBASIC structures end with END something.

That is consistent and sensible but the NEXT statement has a part to play

as you will see in later chapters.

SELF TEST ON CHAPTER 6

You can score a maximum of 16 points from the following test. Check your

score with the answers on page 109.

1. Mention two difficulties which arise when the data needed for a

 program becomes numerous and you try to handle it without arrays

 (two points).

2. If, in an array, ten variables have the same name then how do you

 know which is which?

3. What must you do normally in a program, before you can use an

 array variable?

4. What is another word for the number which distinguishes a

 particular variable of an array from the other variables which

 share its name?

5. Can you think of two ideas in ordinary life which correspond to

 the concept of an array in programming? (two points)

6. In a REPeat loop, the process ends when some condition causes an

 EXIT statement to be executed. What causes the process in a FOR

 loop to terminate?

7. A REPeat loop needs a name so that you can EXIT to its END properly.

 A FOR loop also has a name, but what other function does a FOR loop

 name have?

8. What are the two phrases which are used to describe the variable

 which is also the name of a FOR loop? (two points)

9. The values of a loop variable change automatically as a FOR loop

 is executed. Name one possible important use of these values.

10. Which of the following do the long form of REPeat loops and the

 long form of FOR loops have in common? For each of the four

 items either say that both have it or which type of loop has it.

 a. An opening keyword or statement.

 b. A closing keyword or statement.

 c. A loop name.

 d. A loop variable or control variable.

PROBLEMS ON CHAPTER 6

1. Use a FOR loop to place one of four numbers 1,2,3,4 randomly in

 five array variables:

 card(1), card(2), card(3), card(4), card(5)

 It does not matter if some of the four numbers are repeated. Use

 a second FOR loop to output the values of the five card variables.

2. Imagine that the four numbers 1,2,3,4 represent 'Hearts', 'Clubs',

 'Diamonds', 'Spades'. What extra program lines would need to be

 inserted to get output in the form of these words instead of numbers?

3. Use a FOR loop to place five random numbers in the range 1 to 13

 in an array of five variables:

 card(1), card(2) card(3), card(4) and card(5)

 Use a second FOR loop to output the values of the five card variables.

4. Imagine that the random numbers generated in problem 1 represent

 cards. Write down the extra statements that would cause the

 following output:

 Number Output

 1 the word 'Ace'

 2 to 10 the actual number

 11 the word 'Jack'

 12 the word 'Queen'

 13 the word 'King'

CHAPTER 7

SIMPLE PROCEDURES

If you were to try to write computer programs to solve complex problems you

might find it difficult to keep track of things. A methodical problem

solver therefore divides a large or complex job into smaller sections or

tasks, and then divides these tasks again into smaller tasks, and so on

until each can be be easily tackled.

This is similar to the arrangement of complex human affairs. Successful

government depends on a delegation of responsibility. The Prime Minister

divides the work amongst ministers, who divide it further through the Civil

Service until tasks can be done by individuals without further division.

There are complicating features such as common services and interplay

between the same and different levels, but the hierarchical structure is

the dominant one.

A good programmer will also work in this way and a modern language like

SuperBASIC which allows properly named, well defined procedures will be

much more helpful than older versions which do not have such features.

The idea is that a separately named block of code should be written for a

particular task. It doesn't matter where the block of code is in the

program. If it is there somewhere, the use of its name will:

 activate the code

 return control to the point in the program immediately after that use.

If a procedure, "square", draws a square the scheme is as shown below:

 procedure definition procedure call

 +---------------------------------+

 | DEFine PROCedure square |

 | REMark code to draw square | <--------------- square

 | END DEFine |

 +---------------------------------+

 |

 |

 v

 draws a square

In practice the separate tasks within a job can be identified and named

before the definition code is written. The name is all that is needed in

calling the procedure so the main outline of the program can be written

before all the tasks are defined.

Alternatively if it is preferred, the tasks can be written first and

tested. If it works you can then forget the details and just remember the

name and what the procedure does.

Example

The following example could quite easily be written without procedures but

it shows how they can be used in a reasonably simple context. Almost any

task can be broken down in a similar fashion which means that you never

have to worry about more than, say five to thirty lines at any one time. If

you can write thirty-line programs well and handle procedures, then you

have the capability to write three-hundred-line programs.

You can produce ready made buzz phrases for politicians or others who wish

to give an impression of technological fluency without actually knowing

anything. Store the following words in three arrays and then produce ten

random buzz phrases.

 adjec1$ adjec2$ noun$

 Full fifth-generation systems

 Systematic knowledge-based machines

 Intelligent compatible computers

 Controlled cybernetic feedback

 Automated user-friendly transputers

 Synchronised parallel micro-chips

 Functional learning capability

 Optional adaptable programming

 Positive modular packages

 Balanced structured databases

 Integrated logic-oriented spreadsheets

 Coordinated file-oriented word-processors

 Sophisticated standardised objectives

ANALYSIS

We will write a program to produce ten buzzword phrases. The stages of the

program are:

1. Store the words in three string arrays.

2. Choose three random numbers which will be the subscripts of

 the array variables.

3. Print the phrase.

4. Repeat 2 and 3 ten times.

DESIGN

VARIABLES

We identify three arrays of which the first two will contain adjectives or

words used as adjectives - describing words. The third array will hold the

nouns. There are 13 words in each section and the longest word has 16

characters including a hyphen.

--

 Array Purpose

--

 adjec1$(13,12) first adjectives

 adjec2$(13,16) second adjectives

 noun$(13,15) nouns

PROCEDURES

We use three procedures to match the jobs identified.

 store_data stores the three sets of thirteen words.

 get_random gets three random numbers in range 1 to 13.

 make_phrase prints a phrase.

MAIN PROGRAM

This is very simple because the main work is done by the procedures.

 Declare (DIM) the arrays

 Store_data

 FOR ten phrases

 get_random

 make_phrase

 END

Program

100 REMark ************

110 REMark * Buzzword *

120 REMark ************

130 DIM adjec1$(13,12), adjec2$(13,16), noun$(13,15)

140 store_data

150 FOR phrase = 1 TO 10

160 get_random

170 make_phrase

180 END FOR phrase

190 REMark **************************

200 REMark * Procedure Definitions *

210 REMark **************************

220 DEFine PROCedure store_data

230 REMark *** procedureto store the buzzword data ***

240 RESTORE 420

250 FOR item = 1 TO 13

260 READ adjec1$(item), adjec2$(item), noun$(item)

270 END FOR item

280 END DEFine

290 DEFine PROCedure get_random

300 REMark *** procedure to seLect the phrase ***

310 LET ad1 = RND(1 TO 13)

320 LET ad2 = RND(1 TO 13)

330 LET n = RND(1 TO 13)

340 END DEFine

350 DEFine PROCedure make_phrase

360 REMark *** procedure to print out the phrase ***

370 PRINT ! adjec!$(ad1) ! adjec2$(ad2) ! noun$(n)

380 END DEFine

390 REMark ****************

400 REMark * Program Data *

410 REMark ****************

420 DATA "Full", "fifth-generation", "systems"

430 DATA "Systematic", "knowledge-based", "machines"

440 DATA 'Intelligent","compatible", "computers"

450 DATA "Controlled", "cybernetic", "feedback"

460 DATA "Automated", "user-friendly", "transputers"

470 DATA "Synchronised", "parallel", "micro-chips"

480 DATA "Functional", "Learning", "capability'

490 DATA "Optional", "adaptable", "programming"

500 DATA "Positive" , "modular" , "packages"

510 DATA "Balanced" , "structured", "databases"

520 DATA "Integrated", "logic-oriented", "spreadsheets"

530 DATA "Coordinated", "file-oriented", "word-processors"

540 DATA "Sophisticated", "standardised", "objectives"

Automated fifth-generation capability

FunctionaL learning packages

Full parallel objectives

Positive user-friendly spreadsheets

Intelligent file-oriented capability

Synchronised cybernetic transputers

FunctionaL logic-oriented micro-chips

Positive parallel feedback

Balanced learning databases

Controlled cybernetic objectives

PASSING INFORMATION TO PROCEDURES

Suppose we wish to draw squares of various sizes and various colours in

various positions on the scale graphics screen.

If we define a procedure, "square", to do this it will require four items

of information:

 length of one side

 colour (colour code)

 position (across and up)

The square's position is determined by giving two values, across and up,

which fix the bottom left hand corner of the square as shown below

 ac,up+side +--------+ ac+side,up+side

 | |

 | |

 | |

 | |

 +--------+ ac+side,up

 ^

 up |

 |

 |

ac |

-------------------------->|

 |

 |

The colour of the square is easily fixed but the square itself uses the

values of "side" and "ac" and "up" as follows.

200 DEFine PROCedure square(side,ac,up)

210 LINE ac,up TO ac+side,up

220 LINE TO ac+side,up+side

230 LINE TO ac,up+side TO ac,up

240 END DEFine

In order to make this procedure work values of "side","ac" and "up" must be

provided. These values are provided when the procedure is called. For

example you could add the following main program to get one green square of

side 20.

100 PAPER 7:CLS

110 INK 4

120 square 20,50,50

The numbers 20,50,50 are called parameters and they are passed to the

variables named in the procedure definition thus:

 square 20, 50, 50

 | | |

 | | |

 v v v

 DEFine PROCedure square(side,ac,up)

The numbers 20,50,50 are called actual parameters. They are numbers in this

case but they could be variables or expressions. The variables side,ac,up

are called formal parameters. They must be variables because they 'receive'

values.

A more interesting main program uses the same procedure to create a random

pattern of coloured pairs of squares. Each pair of squares is obtained by

offsetting the second one across and up by one-fifth of the side length

thus:

 +--------+

 +-|------+ |

 | | | |

 | | | |

 | +--------+

 +--------+

Assuming that the procedure square is still present at line 200 then the

following program will have the classical effect.

100 REMark Squares Pattern

110 PAPER 7 : CLS

120 FOR pair = 1 TO 20

130 INK RND(5)

140 LET side = RND(10 TO 20)

150 LET ac = RND(50) : up = RND(70)

160 square side,ac,up

170 LET ac=ac+side/5 : up = up+side/5

180 square side,ac,up

190 END FOR pair

The advantages of procedures are:

1. You can use the same code more than once in the same program

 or in others.

2. You can break down a task into sub-tasks and write procedures

 for each sub-task. This helps the analysis and design.

3. Procedures can be tested separately. This helps the testing

 and debugging.

4. Meaningful procedure names and clearly defined beginnings and ends

 help to make a program readable.

When you get used to properly named procedures with good parameter

facilities, you should find that your problem-solving and programming

powers are greatly enhanced.

SELF TESTON CHAPTER 7

You can score a maximum of 14 points from the following test. Check your

score with the "Answers To Self Tests" section at the back of this

Beginner's Guide.

1. How do we normally tackle the problem of great size and complexity

 in human affairs?

2. How can this principle be applied in programming?

3. What are the two most obvious features of a simple procedure

 definition? (two points)

4. What are the two main effects of using a procedure name to 'call'

 the procedure? (two points)

5. What is the advantage of using procedure names in a main program

 before the procedure definitions are written?

6. What is the advantage of writing a procedure definition before using

 its name in a main program?

7 How can the use of procedures help a 'thirty-line-programmer' to

 write much bigger programs?

8. Some programs use more memory in defining procedures, but in

 what circumstances do procedures save memory space?

9. Name two ways by which information can be passed from a main program

 to a procedure. (two points)

10. What is an actual parameter?

11. What is a formal parameter?

PROBLEMS ON CHAPTER 7

1. Write a procedure which outputs one of the four suits : 'Hearts'

 'Clubs: 'Diamonds' or 'Spades'. Call the procedure five times

 to get five random suits.

2. Write another program for problem 1 using a number in the range

 1 to 4 as a parameter to determine the output word. If you have

 already done this, then try writing the program without parameters.

3. Write a procedure which will output the value of a card that is a number

 in the range 2 to 10 or one of the words 'Ace', 'Jack' 'Queen', 'King'.

4. Write a program which calls this procedure five times so that

 five random values are output.

5. Write the program of problem 3 again using a number in the range 1

 to 13 as a parameter to be passed to the procedure. If this was

 the method you used first time, then try writing the program

 without parameters.

6. Write the most elegant program you can, using procedures, to output

 four hands of five cards each. Do not worry about duplicate cards.

 You can take elegance to mean an appropriate mixture of readability

 shortness and efficiency Different people andlor different circumstances

 will place different importance on these three qualities which

 sometimes work against each other

CHAPTER 8

FROM BASIC TO SUPERBASIC

If you are familiar with one of the earlier versions of BASIC you may find

it possible to omit the first seven chapters and use this chapter instead

as a bridge between what you know already and the remaining chapters. If

you do this and still find areas of difficulty it may be helpful to

backtrack a little into some of the earlier chapters.

If you have worked through the earlier chapters this one should be easy

reading. You may find that, as well as introducing some new ideas, it gives

an interesting slant on the way BASIC is developing. Apart from its program

structuring facilities SuperBASIC also pushes forward the frontiers of good

screen presentation, editing, operating facilities and graphics. In short

it is a combination of user-friendliness and computing power which has not

existed before.

So, when you make the transition from BASIC to SuperBASIC you are moving

not only to a more powerful, more helpful language, you are also moving

into a remarkably advanced computing environment.

We will now discuss some of the main features of SuperBASIC and some of the

features which distinguish it from other BASICs.

ALPHABETIC COMPARISONS

The usual simple arithmetic comparisons are possible. You can write:

 LET pet1$ = "CAT"

 LET pet2$ = "DOG"

 IF pet1$ < pet2$ THEN PRINT "Meow"

The output will be Meow because in this context the symbol < means:

 earlier (nearer to A in the alphabet)

SuperBASIC makes comparisons sensible. For example you would expect:

 'cat' to come before 'DOG'

and

 'ERD98L' to come before 'ERD746L'

A simplistic approach, blindly using internal character coding, would give

the 'wrong' result in both the above cases but try the following program

which finds the 'earliest' of two character strings.

100 INPUT item1$, item2$

110 IF item1$ < item2$ THEN PRINT item1$

120 IF item1$ = item2$ THEN PRINT "Equal"

130 IF item1$ > item2$ THEN PRINT item2$

 INPUT OUTPUT

cat dog cat

cat DOG cat

ERD98L ERD746L ERD98L

ABC abc ABC

The Concept Reference Guide section will give full details about the way

comparisons of strings are made in SuperBASIC.

VARIABLES AND NAMES - IDENTIFIERS

Most BASICs have numeric and string variables. As in other BASICs the

distinguishing feature of a string variable name in SuperBASIC is the

dollar sign on the end. Thus:

 numeric: count string: word$

 sum high_st$

 total day_of_week$

You may not have met such meaningful variable names before though some of

the more recent BASICs do allow them. The rules for identifiers in

SuperBASIC are given in the Concept Reference Guide. The maximum length of

an identifier is 255 characters. Your choice of identifiers is a personal

one. Sometimes the longer ones are more helpful in conveying to the human

reader what a program should do. But they have to be typed and, as in

ordinary English, "spade" is more sensible than "horticultural

earth-turning implement". Shorter words are preferred if they convey the

meaning but very short words or single letters should be used sparingly

Variable names like X, Z, P3, Q2 introduce a level of abstraction which

most people find unhelpful.

INTEGER VARIABLES

SuperBASIC allows integer variables which take only whole-number values. We

distinguish these with a percentage sign thus:

 count%

 number%

 nearest_pound%

There are now two kinds of numeric variable. We call the other type, which

can take whole or fractional values, floating point. Thus you can write:

 LET price = 9

 LET cost = 7.31

 LET count% = 13

But if you write:

 LET count% = 5.43

the value of count% will become 5. On the other hand:

 LET count% = 5.73

will cause the value of count% to be 6. You can see that SuperBASIC does

the best it can, rounding off to the nearest whole number.

COERCION

The principle of always trying to be intelligently helpful, rather than

give an error message or do something obviously unwanted, is carried

further. For example, if a string variable mark$ has the value

 '64'

then:

 LET score = mark$

will produce a numeric value of 64 for score. Other versions of BASIC would

be likely to halt and say something like:

 'Type mis-match'

 or 'Nonsense in BASIC'

If the string cannot be converted then an error is reported.

LOGICAL VARIABLES AND SIMPLE PROCEDURES

There is one other type of variable in SuperBASIC, or rather the SuperBASIC

system makes it seem so. Consider the SuperBASIC statement:

 IF windy THEN fly_kite

In other BASICs you might write:

 IF w=1 THEN GOSUB 300

In this case w=1 is a condition or logical expression which is either true

or false. If it is true then a subroutine starting at line 300 would be

executed. This subroutine may deal with kite flying but you cannot tell

from the above line. A careful programmer would write:

IF w=1 THEN GOSUB 300 : REM fly_kite

to make it more readable. But the SuperBASIC statement is readable as it

stands. The identifier "windy" is interpreted as true or false though it is

actually a floating point variable. A value of 1 or any non-zero value is

taken as true. Zero is taken as false. Thus the single word, windy has the

same effect as a condition of logical expression.

The other word, "fly_kite", is a procedure. It does a job similar to, but

rather better than, GOSUB 300.

The following program will convey the idea of logical variables and the

simplest type of named procedure

 100 INPUT windy

 110 IF windy THEN fly_kite

 120 IF NOT windy THEN tidy_shed

 130 DEFine PROCedure fly_kite

 140 PRINT "See it in the air."

 150 END DEFine

 160 DEFine PROCedure tidy_shed

 170 PRINT "Sort out rubbish."

 180 END DEFine

INPUT OUTPUT

 0 Sort out rubbish.

 1 See it in the air

 2 See it in the air

-2 See it in the air

You can see that only zero is taken as meaning false. You would not

normally write procedures with only one action statement, but the program

illustrates the idea and syntax in a very simple context More is said about

procedures later in this chapter.

LET STATEMENTS

In SuperBASIC LET is optional but we use it in this manual so that there

will be less chance of confusion caused by the two possible uses of =. The

meanings of = in:

 LET count = 3

and in

 IF count = 3 THEN EXIT

are different and the LET helps to emphasise this. However if there are two

or a few LET statements doing some simple job such as setting initial

values, an exception may be made

For example:

 100 LET first = 0

 110 LET second = 0

 120 LET third = 0

may be re-written as

 100 LET first = 0 : second = 0 : third = 0

without loss of clarity or style. It is also consistent with the general

concept of allowing short forms of other constructions where they are used

in simple ways.

The colon : is a valid statement terminator and may be used with other

statements besides LET.

THE BASIC SCREEN

In a later chapter we will explain how other graphics facilities, such as

drawing circles, can be handled but here we outline the pixel-oriented

features. There are two modes which may be activated by any of the

following:

------------------------------- ------------

 Low resolution MODE 256

 8 Colour Mode MODE 8

 256 pixels across, 256 down

------------------------------- ------------

------------------------------- ------------

 High resolution MODE 512

 4 Colour Mode MODE 4

 512 pixels across, 256 down

------------------------------- ------------

In both modes pixels are addressed by the range of numbers:

 0 - 511 across

 and 0 - 255 down

Since mode 8 has only half the number of pixels across the screen as mode

4, mode 8 pixels are twice as wide as mode 4 pixels and so in mode 8 each

pixel can be specified bv two coordinates. For example:

 0 or 1 2 or 3 510 or 511

It also means that you use the same range of numbers for addressing pixels

irrespective of the mode. Always think 0-511 across and 0-255 down.

If you are using a television then not all the pixels may be visible.

COLOURS

The colours available are:

--

 MODE 256 Code MODE 512

--

 black 0 black

 blue 1

 red 2 red

 magenta 3

 green 4 green

 cyan 5

 yellow 6 white

 white 7

--

You may find the following mnemonic helpful in remembering the codes:

Bonny Babies Really Make Good Children, You Wonder

In the "high resolution" mode each colour can be selected by one of two

codes. You will see later how a startling range of colour and stipple

(texture) effects can be produced if you have a good quality colour

monitor.

Some of the screen presentation keywords are as follows:

 INK colour foreground colour

 BORDER width, colour draw border at edge of

 screen or window

 PAPER colour background colour

 BLOCK width, height, across, down, colour colour a rectangle which

 has its top left hand

 corner at position

 across, down

SCREEN ORGANISATION

When you switch on your QL the screen display is split into three areas

called "windows" as shown below. Note that in order to fit these windows

into the area covered by a television screen, some pixels around the border

are not used in Television mode.

 ---------- 0 to 511 ----------> ------------ 0 to 511 -------->

 | +-----------------------------+ | +-----------------------------+

 | | | | | | |

 | | | | | | |

 | | | | | | |

 | | #2 | #1 | | | #1 and #2 |

 0 | | | 0 | |

 to | | | to | |

 255 | | | 255 | |

 | | | | | | |

 | | | | | | |

 | +--------------+--------------+ | +-----------------------------+

 | | #0 | | | #0 |

 | | | | | |

 v +-----------------------------+ v +-----------------------------+

 Monitor Television

This windows are indentified by #0, #1 and #2 so that you can relate

various effects to particular windows. For example:

 CLS

will clear window #1 (the system chooses) so if you want the left hand area

cleared you must type:

 CLS #2

If you want a different paper (background colour) type for green:

 PAPER 4 : CLS

or

 PAPER #2,4 : CLS #2

If you want to clear window #2 to the background colour green.

The numbers #0, #1 and #2 are called "channel numbers". In this particular

case they enable you to direct certain effects to the window of your

choice. You will discover later that channel numbers have many other uses

but for the moment note that all of the following statements may have a

channel number. The third column shows the default channel - the one chosen

by the system if you do not specify one.

Note that windows may overlap. If you use a TV screen the system

automatically overlaps windows #1 and #2 so that more character positions

per line are available for program listings.

 KEYWORD EFFECT DEFAULT

 AT Character position #1

 BLOCK Draws block #1

 BORDER Draw border #1

 CLS Clear screen #1

 CSIZE Character size #1

 CURSOR Position cursor #1

 FLASH Causes/cancels flashing #1

 INK Foreground colour #1

 OVER Effect of printing and graphics #1

 PAN Moves screen sideways #1

 PAPER Background colour #1

 RECOL Changes colour #1

 SCROLL Moves screen vertically #1

 STRIP Background for printing #1

 UNDER Underlines #1

 WINDOW Changes existing window #1

 LIST Lists program #2

 DIR Lists directory #1

 PRINT Prints characters #1

 INPUT Takes keyboard input #1

Statements or direct commands appear in window #0.

For more details about the syntax or use of these keywords see other parts

of the manual.

RECTANGLES AND LINES

The program below draws a green rectangle in 256 mode on red paper with a

yellow border one pixel wide. The rectangle has its top left corner at

pixel co-ordinates 100,100 (see QL Concepts). Its width is 80 units across

(40 pixels) and its height is 20 units down (20 pixels).

 100 REMark Rectangle

 110 MODE 256

 120 BORDER 1,6

 130 PAPER 2 : CLS

 140 BLOCK 80,20,100,100,4

You have to be a bit careful in mode 256 because across values range from 0

to 511 even though there are only 256 pixels. We cannot say that the block

produced by the above program is 80 pixels wide so we say 80 units.

INPUT AND OUTPUT

SuperBASIC has the usual LET, INPUT, READ and DATA statements for input.

The PRINT statement handles most text output in the usual way with the

separators:

 , tabulates output

 ; just separates - no formatting effect

 \ forces new line

 ! normally provides a space but not at the start of line. If an item

 will not fit at the end of a line it performs a new line operation.

 TO Allows tabulation to a designated column position.

LOOPS

You will be familiar with two types of repetitive loop exemplified as

follows:

(a) Simulate 6 throws of an ordinary six-sided die

 100 FOR throw = 1 TO 6

 110 PRINT RND(1 TO 6)

 120 NEXT throw

(b) Simulate throws of a die until a six appears.

 100 die = RND(1 TO 6)

 110 PRINT die

 120 IF die <> 6 THEN GOTO 10

Both of these programs will work in SuperBASIC but we recommend the

following instead They do exactly the same jobs. Although program (b) is a

little more complex there are good reasons for preferring it.

(a) 100 FOR throw = 1 TO 6

 110 PRINT RND(1 TO 6)

 120 END FOR throw

(b) 100 REPeat throws

 110 die = RND(1 TO 6)

 120 PRINT die

 130 IF die = 6 THEN EXIT throws

 140 END REPeat throws

It is logical to provide a structure for a loop which terminates on a

condition (REPeat loops) as well as those which are controlled by a count.

The fundamental REPeat structure is:

 REPeat identifier

 statements

 END REPeat identifier

The EXIT statement can be placed anywhere in the structure but it must be

followed by an identifier to tell SuperBASIC which loop to exit; for

example:

 EXIT throws

would transfer control to the statement after

 END REPeat throws.

This may seem like a using a sledgehammer to crack the nut of the simple

problem illustrated. However the REPeat structure is very powerful. It will

take you a long way.

If you know other languages you may see that it will do the jobs of both

REPEAT and WHILE structures and also cope with other more awkward,

situations.

The SuperBASIC REPeat loop is named so that a correct clear exit is made.

The FOR loop, like all SuperBASIC structures, ends with END, and its name

is given for reasons which will become clear later.

You will also see later how these loop structures can be used in simple or

complex situations to match exactly what you need to do. We will mention

only three more features of loops at this stage. They will be familiar if

you are an experienced user of BASIC.

The increment of the control variable of a FOR loop is normally 1 but you

can make it other values by using the STEP keyword. As the examples show.

i. 100 FOR even = 2 TO 10 STEP 2

 110 PRINT ! even !

 120 END FOR even

 output is 2 4 6 8 10

ii. 100 FOR backwards = 9 TO 1 STEP -1

 110 PRINT ! backwards !

 120 END FOR backwards

 output is 9 8 7 6 5 4 3 2 1

The second feature is that loops can be nested. You may be familiar with

nested FOR loops. For example the following program outputs four rows of

ten crosses.

 100 REMark Crosses

 110 FOR row = 1 TO 4

 120 PRINT 'Row number' ! row

 130 FOR cross = 1 TO 10

 140 PRINT ! 'X' !

 150 END FOR cross

 160 PRINT

 170 PRINT \ 'End of row number' ! row

 180 END FOR row

 output is:

 Row number 1

 X X X X X X X X X X

 End of row number 1

 Row number 2

 X X X X X X X X X X

 End of row number 2

 Row number 3

 X X X X X X X X X X

 End of row number 3

 Row number 4

 X X X X X X X X X X

 End of row number 4

A big advantage of SuperBASIC is that it has structures for all purposes,

not just FOR loops, and they can all be nested one inside the other

reflecting the needs of a task. We can put a REPeat loop in a FOR loop. The

program below produces scores of two dice in each row until a seven occurs,

instead of crosses.

 100 REMark Dice rows

 110 FOR row = 1 TO 4

 120 PRINT 'Row number '! row

 130 REPeat throws

 140 LET die1 = RND(1 TO 6)

 150 LET die2 = RND(1 TO 6)

 160 LET score = die1 + die2

 170 PRINT ! score !

 180 IF score = 7 THEN EXIT throws

 190 END REPeat throws

 200 PRINT \'End of row '! row

 210 END FOR row

 sample output:

 Row number 1

 8 11 6 3 7

 End of row number 1

 Row number 2

 4 6 2 9 4 5 12 7

 End of row number 2

 Row number 3

 7

 End of row number 3

 Row number 4

 6 2 4 9 9 7

 End of row number 4

The third feature of loops in SuperBASIC allows more flexibility in

providing the range of values in a FOR loop. The following program

illustrates this by printing all the divisible numbers from 1 to 20. (A

divisible number is divisible evenly by a number other than itself or 1.)

 100 REMark Divisible numbers

 110 FOR num = 4,6,8, TO 10,12,14 TO 16,18, 20

 120 PRINT ! num !

 130 END FOR num

More will be said about handling repetition in a later chapter but the

features described above will handle all but a few uncommon or advanced

situations.

DECISION MAKING

You will have noticed the simple type of decision:

 IF die = 6 THEN EXIT throws

This is available in most BASICs but SuperBASIC offers extensions of this

structure and a completely new one for handling situations with more than

two alternative courses of action.

However, you may find the following long forms of IF ... THEN useful. They

should explain themselves.

i. 100 REMark Long form IF. ..END IF

 110 LET sunny = RND(0 TO 1)

 120 IF sunny THEN

 130 PRINT 'Wear sunglasses'

 140 PRINT 'Go for walk'

 150 END IF

ii. 100 REMark Long form IF...ELSE...END IF

 110 LET sunny = RND(0 TO 1)

 120 IF sunny THEN

 130 PRINT 'Wear sunglasses'

 140 PRINT 'Go for walk'

 150 ELSE

 160 PRINT 'Wear coat'

 170 PRINT 'Go to cinema'

 180 END IF

The separator THEN, is optional in long forms or it can be replaced by a

colon in short forms. The long decision structures have the same status as

loops. You can nest them or put other structures into them. When a single

variable appears where you expect a condition the value zero will be taken

as false and other values as true.

SUBROUTINES AND PROCEDURES

Most BASICs have a GOSUB statement which may be used to activate particular

blocks of code called subroutines. The GOSUB statement is unsatisfactory in

a number of ways and SuperBASIC offers properly named procedures with some

very useful features.

Consider the following programs both of which draw a green 'square' of side

length 50 pixel screen units at a position 200 across 100 down on a red

background.

(a) Using GOSUB

 100 LET colour = 4 : background = 2

 110 LET across = 20

 120 LET down = 100

 130 LET side = 50

 140 GOSUB 170

 150 PRINT 'END'

 160 STOP

 170 REMark Subroutine to draw square

 180 PAPER background : CLS

 190 BLOCK side, side, across, down, colour

 200 RETurn

(b) Using a procedure with parameters

 100 square 4, 50, 20, 100, 2

 110 PRINT 'END'

 120 DEFine PROCedure square(colour,side,across,down,background)

 130 PAPER background : CLS

 140 BLOCK side, side, across, down, colour

 150 END DEFine

In the first program the values of "colour", "across", "down", "side" are

fixed by LET statements before the GOSUB statement activates lines 180 and

190 Control is then sent back by the RETURN statement.

In the second program the values are given in the first line as parameters

in the procedure call, square, which activates the procedure and at the

same time provides the values it needs.

In its simplest form a procedure has no parameters. It merely separates a

particular piece of code, though even in this simpler use the procedure has

the advantage over GOSUB because it is properly named and properly isolated

into a self contained unit.

The power and simplifying effects of procedures are more obvious as

programs get larger What procedures do as programs get larger is not so

much make programming easier as prevent it from getting harder with

increasing program size. The above example just illustrates the way they

work in a simple context

Examples

The following examples indicate the range of vocabulary and syntax of

SuperBASIC which has been covered in this and earlier chapters, and will

form a foundation on which the second part of this manual will build.

The letters of a palindrome are given as single items in DATA statements

The terminating item is an asterisk and you assume no knowledge of the

number of letters in the palindrome. READ the letters into an array and

print them backwards. Some palindromes such as "MADAM I'M ADAM" only work

if spaces and punctuation are ignored. The one used here works properly.

100 REMark Palindromes

110 DIM text$(30)

120 LET text$ = FILL$ (' ',30)

130 LET count = 30

140 REPeat get_letters

150 READ character$

160 IF character$ = '*' THEN EXIT get_letters

170 LET count = count-1

180 LET text$(count) = character$

190 END REPeat get_letters

200 PRINT text$

210 DATA 'A','B','L','E','W','A','S','I','E','R'

220 DATA 'E','I','S','A','W','E','L','B','A','*'

The following program accepts as input numbers in the range 1 to 3999 and

converts them into the equivalent In Roman numerals It does not generate

the most elegant form. It produces IIII rather than

IV.

100 REMark Roman numbers

110 INPUT number

120 RESTORE 210

130 FOR type = 1 TO 7

140 READ letter$, vaLue

150 REPeat output

160 IF number < value : EXIT output

170 PRINT letter$;

180 LET number = number - value

190 END REPeat output

200 END FOR type

210 DATA 'M',1000,'D',500,'C',100,'L',50,'X',10,'V',5,'I',1

You should study the above examples carefully using dry runs if necessary

until you are sure that you understand them.

CONCLUSION

In SuperBASIC full structuring features are provided so that program

elements either follow in sequence or fit into one another neatly. All

structures must be identified to the system and named. There are many

unifying and simplifying features and many extra facilities.

Most of these are explained and illustrated in the remaining chapters of

this manual, which should be easier to read than the Keyword and Concept

Reference sections. However, it is easier to read because it does not give

every technical detail and exhaust every topic which it treats. There may,

therefore, be a few occasions when you need to consult the reference

sections. On the other hand some major advances are discussed in the

following chapters. Few readers will need to use all of them and you may

find it helpful to omit certain parts, at least on first reading.

CHAPTER 9

DATATYPES VARIABLES AND IDENTIFIERS

You will have noticed that a program (a sequence of statements) usually

gets some data to work on (input) and produces some kind of results

(output). You will also have understood that there are internal

arrangements for storing this data. In order to avoid unnecessary

technical explanations we have suggested that you imagine pigeon holes and

that you choose meaningful names for the pigeon holes. For example, if it

is necessary to store a number which represents the score from simulated

dice-throws you imagine a pigeon hole named score which might contain a

number such as 8.

Internally the pigeon holes are numbered and the system maintains a

dictionary which connects particular names with particular numbered pigeon

holes. We say that the name, score, points to its particular pigeon-hole

(by means of the internal dictionary).

 +------------------------------------+

 | +-------+ |

 | | | |

 | score ------------> | 8 | |

 | | | |

 | +-------+ |

 +------------------------------------+

The whole arrangement is called a variable.

What you see is the word score. We say that this word, "score" is an

identifier It is what we see and it identifies the concept we need, in this

case the result, 8, of throwing a pair of dice. Because the identifier is

what we see it becomes the thing we talk or write or think about. We write

about score and its value at any particular moment.

There are four simple data types called floating point, integer string and

logical and these are explained below We talk about data types rather than

variable types because data can occur on its own, for example 3.4 or 'Blue

hat' as the value of a variable. But if you understand the different types

of variables, you must also understand the different types of data.

IDENTIFIERS AND VARIABLES

1. A SuperBASIC identifier must begin with a letter and is a sequence of:

 upper or lower case letters

 digits or underscore

2. An identifier may be up to 255 characters in length so there is no

 effective limit in practice.

3. An identifier cannot be the same as a keyword of SuperBASIC.

4. An integer variable name is an identifier with % on the end.

5. A string variable name is an identifier with $ on the end.

6. No other identifiers must use the symbols % and $.

7. An identifier should usually be chosen so that it means something

 to a human reader but for SuperBASIC it does not have any

 particular meaning other than that it identifies certain things.

FLOATING POINT VARIABLES

Examples of the use of floating point variables are:

 100 LET days = 24

 110 LET sales = 3649.84

 120 LET sales_per_day = sales/days

 130 PRINT sales_per_day

The value of a floating point variable may be anything in the range:

 -615 +615

 + or - 10 to + or - 10 with 8 significant figures.

Suppose in the above program sales were, exceptionally only 3p. Change line

110 to:

 110 LET sales = 0.03

This system will change this to:

 110 LET sales = 3E-2

To interpret this, start with 3 or 3.0 and move the decimal point -2

places, i.e. two places left. This shows that:

 3E-2 is the same as 0.03

After running the program, the average daily sales are:

 1.25E-3 which is the same as 0.00125

Numbers with an E are said to be in exponent form:

 (mantissa) E (exponent) = (mantissa) x 10 to the power (exponent)

INTEGER VARIABLES

Integer variables can have only whole number values in the range -32678 to

32768. The following are examples of valid integer variable names which

must end with %.

 LET count% = 10

 LET six_tally% = RND(10)

 LET number_3% = 3

The only disadvantage of integer variables, when whole numbers are

required, is the slightly misleading % symbol on the end of the identifier.

It has nothing to do with the concept of percentage. It is just a

convenient symbol tagged on to show that the variable is an integer.

NUMERIC FUNCTIONS

Using a function is a bit like making an omelette. You put in an egg which

is processed according to certain rules (the recipe) and get out an

omelette. For example the function INT takes any number as input and

outputs the whole number part. Anything which is input to a function is

called a parameter or argument. INT is a function which gives the integer

part of an expression. You may write:

 PRINT INT(5.6)

and 5 would be the output. We say that 5.6 is the parameter and the

function returns the value 5. A function may have more than one parameter.

You have already met:

 RND(1 TO 6)

which is a function with two parameters. But functions always return

exactly one value. This must be so because you can put functions into

expressions. For example:

 PRINT 2 * INT(5.6)

would produce the output 10. It is an important property of functions that

you can use them in expressions. It follows that they must return a single

value which is then used in the expression. INT and RND are system

functions: they come with the system, but later you will see how to write

your own.

The following examples show common uses of the INT function.

 100 REMark Rounding

 110 INPUT decimal

 120 PRINT INT(decimal + 0.5)

In the example you input a decimal fraction and the output is rounded. Thus

4.7 would become 5 but 4.3 would become 4.

You can achieve the same result using an integer variable and coercion.

Trigonometrical functions will be dealt with in a later section but other

common numeric functions are given in the list below

.

 FUNCTION EFFECT EXAMPLES RETURNED VALUES

 ABS Absolute or ABS(7) 7

 unsigned value ABS(-4.3) 4.3

 Integer part of a INT(2.4) 2

 INT floating point INT(0.4) 0

 number INT(-2.7) -3

 SQRT(2) 1.414214

 SQRT Square root SQRT(16) 4

 SQRT(2.6) 1.612452

There is a way of computing square roots which is easy to understand. To

compute the square root of 8 first make a guess. It doesn't matter how bad

the guess may be. Suppose you simply take half of 8 as the first guess

which is 4.

Because 4 is greater than the square root of 8 then 8/4 must be less than

it. The reverse is also true. If you had guessed 2 which is less thanthe

square root then 8/2 must be greater than it.

It follows that if we take any guess and computer number/guess we have two

numbers, one too small and one too big. We take the average of these

numbers as our next approximation and thus get closer to the correct

answer.

We repeat this process until successive approximations are so close as to

make little difference.

 100 REMark Square Roots

 110 LET number = 8

 120 LET approx = number/2

 130 REPeat root

 140 LET newval = (approx + number/approx)/2

 150 IF newval == approx THE EXIT root

 160 LET approx = newval

 170 END REPeat root

 180 PRINT 'Square root of' ! number ! 'is' ! newval

sample output:

 Square root of 8 is 2.828427

Notice that the conditional EXIT from the loop must be in the middle. The

traditional structures do not cope with this situation as well as

SuperBASIC does.

The == sign in line 150 means "approximately equal to", that is, equal to

within .0000001 of the values being compared.

NUMERIC OPERATIONS

SuperBASIC allows th eusual mathematical operations. You may notice that

they ar elike functions with exactly two operands each. It is also

conventional in these cases to put an operand on each side of the symbol.

Sometimes the operation is denoted by a familiar symbol such as + or *.

Sometimes the operation is denoted by a keyword like DIV or MOD but there

is no real difference. Numeric operations have an order of priority. For

example, the result of:

 PRINT 7 + 3*2

is 13 because the multiplication has a higher priority. However:

 PRINT (7+3)*2

will output 20, because brackets over-ride the usual priority. As you will

see later so many things can be done with SuperBASIC expressions that a

full statement about priority cannot be made at this stage (see the Concept

Reference Guide if you wish) but the operations we now deal with have the

following order of priority:

 highest - raising to a power

 multiplication and division (including DIV, MOD)

 lowest - add and subtract

The symbols + and - are also used with only one operand which simply

denotes positive or negative. Symbols used in this way have the highest

priority of all and can only be over-ridden by the use of brackets.

Finally if two symbols have equal priority the leftmost operation is

performed first so that:

 PRINT 7-2 + 5

will cause the subtraction before the addition. This might be important if

you should ever deal with very large or very small numbers.

 Operation Symbol Examples Results Note

 Add + 7+6.6 13.6

 Subtract - 7-6.6 0.4

 Multiply * 3 * 2.1 6.3

 2.1 * (-3) -6.3

 Divide / 7/2 3.5 Do not divide

 by zero

 -17/5 -3.4

 Raise to power ^ 4^1.5 8

 Integer divide DIV -8 DIV 2 -4 Integers only

 7 DIV 2 3 Do not divide

 by zero

 Modulus MOD 13 MOD 5 3

 21 MOD 7 0

 17 MOD 8 7

Modulus returns the remainder part of a division. Any attempt to divide by

zero will generate an error and terminate program exection

NUMERIC EXPRESSIONS

Strictly speaking, a numeric expression is an expression which evaluates to

a number and there are more possibilities than we need to discuss here.

SuperBASIC allows you to do complex things if you want to but it also

allows you to do simple things in simple ways. In this section we

concentrate on those usual straightforward uses of mathematical features.

Basically numeric expressions in SuperBASIC are the same as those of

mathematics but you must put the whole expression in the form of a

sequence.

(N.B. Some of these mathematical expressions are a little hard to represent

using standard ASCII notation -DJ)

 5 + 3

 6 - 4

becomes in SuperBASIC (or other BASIC):

 (5 + 3)/(6 - 4)

In secondary school algebra there is an expression for one solution of a

quadratic equation:

 2

ax + bx + c = 0

(due to ASCII limitations, the above line reads: a x-squared plus bx + c =

0)

One solution in mathematical notation is:

 / 2

 x = - b + /\/ b - 4ac

 2a

If we start with the equation:

 2

2x - 3x + 1 = 0

Example 1

The following program will find one solution.

100 READ a,b,c

110 PRINT 'Root is' ! (-b+SQRT(b^2 - 4*a*c))/(2*a)

120 DATA 2,-3,1

Example 2

In problems which need to simulate the dealing of cards you can make cards

correspond to the numbers 1 to 52 as follows:

 1 to 13 Ace, two........king of hearts

 14 to 26 Ace, two........king of clubs

 27 to 39 Ace, two........king of diamonds

 40 to 52 Ace, two........king of spades

A particular card can be identified as follows:

 100 REM Card identification

 110 LET card = 23

 120 LET suit = (card-1) DIV 13

 130 LET value = card MOD 13

 140 IF value = 0 THEN LET value = 13

 150 IF value = 1 THEN PRINT "Ace of ";

 160 IF value >= 2 AND value <= 10 THEN PRINT value ! "of ";

 170 IF value = 11 THEN PRINT "Jack of ";

 180 IF value = 12 THEN PRINT "Queen of ";

 190 IF value = 13 THEN PRINT "King of ";

 200 IF suit = 0 THEN PRINT "hearts"

 210 IF suit = 1 THEN PRINT "clubs"

 220 IF suit = 2 THEN PRINT "diamonds"

 230 IF suit = 3 THEN PRINT "spades"

There are new ideas in this program. They are in line 160. The meaning is

clearly that the number is actually printed only if two logical statements

are true. These are:

 value is greater than or equal to 2 AND value is less than or

 equal to 10

Cards outside this range are either aces or 'court cards' and must be

treated differently

Note also the use of ! in the PRINT statement to provide a space and ; to

ensure that output continues on the same line.

There are two groups of mathematical functions which we have not discussed

here. They are the trigonometric and logarithmic. You may need the former

in organising screen displays. Types of functions are also fully defined in

the reference section.

LOGICAL VARIABLES

Strictly speaking, SuperBASIC does not allow logical variables but it

allows you to use other variables as logical ones. For example you can run

the following program:

 100 REMark Logical Variable

 110 LET hungry = 1

 120 IF hungry THEN PRINT "Have a bun"

You expect a logical expression in line 120 but the numeric variable,

hungry is there on its own. The system interprets the value, 1, of hungry

as true and the output is:

 Have a bun

If line 110 read:

 LET hungry = 0

there would be no output. The system interprets zero as false and all other

values as true. That is useful but you can disguise the numeric quality of

hungry by writing:

 100 REMark Logical Variable

 110 LET true = 1 : false = 0

 120 LET hungry = true

 130 IF hungry THEN PRINT "Have a bun"

STRING VARIABLES

There is much to be said about handling strings and string variables and

this is left to a separate chapter.

PROBLEMS ON CHAPTER 9

1. A rich oil dealer gambles by tossing a coin in the following way.

 If it comes down heads he gets 1. If it comes down tails he throws

 again but the possible reward is doubled. This is repeated so that

 the rewards are as shown.

 THROW 1 2 3 4 5 6 7

 REWARDS 1 2 4 8 16 32 64

 By simulating the game try to decide what would be a fair initial

 payment for each such game:

 (a) if the player is limited to a maximum of seven throws per game.

 (b) if there is no maximum number of throws

2. Bill and Ben agree to gamble as follows. At a given signal each

 divides his money into two halves and passes one half to the

 other player. Each then divides his new total and passes half to

 the other. Show what happens as the game proceeds if Bill starts

 with 16p and Ben starts with 64p.

3. What happens if the game is changed so that each hands over an

 amount equal to half of what the other possesses?

4. Write a program which forms random three letter words chosen from

 A,B,C,D and prints them until 'BAD' appears.

5. Modify the last program so that it terminates when any real

 three letter word appears.

CHAPTER 10

LOGIC

If you have read previous chapters you will probably agree that repetition,

decision making and breaking tasks into sub-tasks are major concepts in

problem analysis, program design and encoding programs. Two of these

concepts, repetition and decision making, need logical expressions such as

those in the following program lines

 IF score = 7 THEN EXIT throws

 IF suit = 3 THEN PRINT "spades"

The first enables EXIT from a REPeat loop. The second is simply a decision

to do something or not. A mathematical expression evaluates to one of

millions of possible numeric values. Similarly a string expression can

evaluate to millions of possible strings of characters. You may find it

strange that logical expressions, for which great importance is claimed,

can evaluate to one of only two possible values: true or false.

In the case of

 score = 7

this is obviously correct. Either score equals 7 or it doesn't! The

expression must be true or false - assuming that it's not meaningless. It

may be that you do not know the value at some time, but that will be put

right in due course.

You have to be a bit more careful of expressions involving words such as

OR, AND, NOT but they are well worth investigating indeed, they are

essential to good programming. They will become even more important with

the trend towards other kinds of languages based more on precise

descriptions of what you require rather than what the computer must do.

AND

The word AND in SuperBASIC is like the word 'and' in ordinary English.

Consider the following program.

100 REMark AND

110 PRINT "Enter two values" \ "1 for TRUE or 0 for FALSE"

120 INPUT raining, hole_in_roof

130 IF raining AND hole_in_roof THEN PRINT "Get wet"

 As in real life, you will only get wet if it is raining and there is a

hole in the roof. If one (or both) of the simple logical variables

 raining

 hole_in_roof

is false then the compound logical expression

 raining AND hole in_roof

is also false. It takes two true values to make the whole expression true.

This can be seen from the rules below. Only when the compound expression is

true do you get wet.

 raining hole_in_roof raining AND hole_in_roof effect

 FALSE FALSE FALSE DRY

 FALSE TRUE FALSE DRY

 TRUE FALSE FALSE DRY

 TRUE TRUE TRUE WET

 Rules for AND

OR

In everyday life the word 'or' is used in two ways. We can illustrate the

inclusive use of OR by thinking of a cricket captain looking for players,

He might ask "Can you bat or bowl?" He would be pleased if a player could

do just one thing well but he would also be pleased if someone could do

both. So it is in programming: a compound expression using OR is true if

either or both of the simple statements or variables are true. Try the

following program.

 100 REMark OR test

 110 PRINT "Enter two values" \ "1 for TRUE or 0 for FALSE"

 120 INPUT "Can you bat?", batsman

 130 INPUT "Can you bowl?", bowler

 140 IF batsman OR bowler THEN PRINT "In the team"

You can see the effects of different combinations of answers in the rules

below:

 batsman bowler batsman OR bowler effect

 FALSE FALSE FALSE not in team

 FALSE TRUE TRUE in the team

 TRUE FALSE TRUE in the team

 TRUE TRUE TRUE in the team

 Rules for OR

When the "inclusive OR" is used a true value in either of the simple

statements will produce a true value in the compound expression. If Ian

Botham, the England all rounder were to answer the questions both as a

bowler and as a batsman, both simple statements would be true and so would

the compound expression. He would be in the team.

If you write 0 for false and 1 for true you will get all the possible

combinations by counting in binary numbers:

 00

 01

 10

 11

NOT

The word NOT has the obvious meaning.

 NOT true is the same as false

 NOT false is the same as true

However you need to be careful. Suppose you hold a red triangle and say

that it is:

 NOT red AND square

In English this may be ambiguous.

If you mean:

 (NOT red) AND square

then for a red triangle the expression is false.

If you mean:

 NOT (red AND square)

then for a red triangle the whole expression is true. There must be a rule

in programming to make it clear what is meant. The rule is that NOT takes

precedence over AND so the interpretation:

 (NOT red) AND square

is the correct one This is the same as:

 NOT red AND square

To get the other interpretation you must use brackets. If you need to use a

complex logical expression it is best to use brackets and NOT if their

usage naturally reflects what you want. But you can if you wish always

remove brackets by using the following laws (attributed to Augustus De

Morgan)

 NOT (a AND b) is the same as NOT a OR NOT b

 NOT (a OR b) is the same as NOT a AND NOT b

For example:

 NOT (tall AND fair) is the same as NOT tall OR NOT fair

 NOT (hungry OR thirsty) is the same as NOT hungry AND NOT thirsty

Test this by entering

 100 REMark NOT and brackets

 110 PRINT "Enter two values"\"1 for TRUE or 0 for FALSE"

 120 INPUT "tall "; tall

 130 INPUT "fair "; fair

 140 IF NOT (tall AND fair) THEN PRINT "FIRST"

 150 IF NOT tall OR NOT fair THEN PRINT "SECOND"

Whatever combination of numbers you give as input, the output will always

be either two words or none, never one. This will suggest that the two

compound logical expressions are equivalent.

XOR-Exclusive OR

Suppose a golf professional wanted an assistant who could either run the

shop or give golf lessons. If an applicant turned up with both abilities he

might not get the job because the golf professional might fear that such an

able assistant would try to take over. He would accept a good golfer who

could not run the shop. He would also accept a poor golfer who could run

the shop. This is an exclusive OR situation: either is acceptable but not

both. The following program would test applicants:

 100 REMark XOR test

 110 PRINT "Enter 1 for yes or 0 for no."

 120 INPUT "Can you run a shop?", shop

 130 INPUT "Can you teach golf?", golf

 140 IF shop XOR golf THEN PRINT "Suitable"

The only combinations of answers that will cause the output "Suitable" are

(0 and 1) or (1 and 0). The rules for XOR are given below.

 Able to run shop Able to teach Shop XOR teach effect

 FALSE FALSE FALSE no job

 FALSE TRUE TRUE gets the job

 TRUE FALSE TRUE gets the job

 TRUE TRUE FALSE no job

 rules for XOR

PRIORITIES

The order of priority for the logical operators is (highest first):

 NOT

 AND

 OR,XOR

For example the expression

 rich OR tall AND fair

means the same as:

 rich OR (tall AND fair)

The AND operation is performed first. To prove that the two logical

expressions have identical effects run the following program:

 100 REMark Priorities

 110 PRINT "Enter three values"\"Type 1 for Yes and 0 for No"!

 120 INPUT rich,tall,fair

 130 IF rich OR tall AND fair THEN PRINT "YES"

 140 IF rich OR (tall AND fair) THEN PRINT "AYE"

Whatever combination of three zeroes or ones you input at line 120 the

output will be either nothing or:

 YES

 AYE

You can make sure that you test all possibilities by entering data which

forms eight three digit binary numbers 000 to 111

 000 001 010 011 100 101 110 111

PROBLEMS ON CHAPTER 10

1. Place ten numbers in a DATA statement. READ each number and if

 it is greater than 20 then print it.

2. Test all the numbers from 1 to 100 and print only those which

 are perfect squares or divisible by 7

3. Toys are described as Safe (S), or Unsafe (U), Expensive (E) or

 Cheap (C), and either for Girls (G), Boys (B) or Anyone (A). A

 trio of letters encodes the qualities of each toy. Place five

 such trios in a DATA statement and then search it printing only

 those which are safe and suitable for girls.

4. Modify program 3 to print those which are expensive and not

 safe.

5. Modify program 3 to print those which are safe, not expensive

 and suitable for anyone.

CHAPTER 11

HANDLING TEXT STRINGS

You have used string variables to store character strings and you know that

the rules for manipulating string variables or string constants are not the

same as those for numeric variables or numeric constants. SuperBASIC offers

a full range of facilities for manipulating character strings effectively.

In particular the concept of string-slicing both extends and simplifies the

business of handling substrings or slices of a string.

ASSIGNING STRINGS

Storage for string variables is allocated as it is required by a program.

For example, the lines:

 100 LET words$ = "LONG"

 110 LET words$ = "LONGER"

 120 PRINT words$

would cause the six letter word, LONGER, to be printed. The first line

would cause space for four letters to be allocated but this allocation

would be overruled by the second line which requires space for six

characters.

It is, however, possible to dimension (i.e. reserve space for) a string

variable, in which case the maximum length becomes defined, and the

variable behaves as an array.

JOINING STRINGS

You may wish to construct records in data processing from a number of

sources. Suppose, for example, that you are a teacher and you want to store

a set of three marks for each student in Literature, History and Geography

The marks are held in variables as shown:

 +------+ +------+ +------+

 | | | | | |

 lit$ | 62 | hist$ | 56 | geog$ | 71 |

 | | | | | |

 +------+ +------+ +------+

As part of student record keeping you may wish to combine the three string

values into one six-character string called mark$. You simply write:

 LET mark$ = lit$ & hist$ & geog$

You have created a further variable as shown:

 +--------+

 | |

 mark$ | 625671 |

 | |

 +--------+

But remember that you are dealing with a character string which happens to

contain number characters rather than an actual number. Note that in

SuperBASIC the & symbol is used to join strings together whereas in some

other BASICs, the + symbol is used for that purpose.

COPY A STRING SLICE

A string slice is part of a string. It may be anything from a single

character to the whole string. In order to identify the string slice you

need to know the positions of the required characters.

Suppose you are constructing a children's game in which they have to

recognise a word hidden in a jumble of letters. Each letter has an

internal number - an index - corresponding to its position in the string.

Suppose the whole string is stored in the variable jumble$ and the clue is

Big cat.

 : :

 : string slice :

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 jumble$| A | P | Q | O | L | L | I | O | N | A | T | S | U | Z |

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

You can see that the answer is defined by the numbers 6 to 9 which indicate

where it is. You can abstract the answer as shown :

 100 jumble$ = "APQOLLIONATSUZ"

 110 LET an$ = jumble$(6 TO 9)

 120 PRINT an$

REPLACE A STRING SLICE

Now suppose that you wish to change the hidden animal into a bull. You can

write two extra lines:

 130 LET jumble$(6 TO 9) = "BULL"

 140 PRINT jumble$

The output from the whole five-line program is:

 LION

 APQOLBULLATSUZ

All string variables are initially empty, they have length zero. If you

attempt to copy a string into a string-slice which has insufficient length

then the assignment may not be recognised by SuperBASIC.

If you wish to copy a string into a string-slice then it is best to ensure

the destination string is long enough by padding it first with spaces.

 100 LET subject$ = "ENGLISH MATHS COMPUTING"

 110 LET student$ = " "

 120 LET student$(9 TO 13) = subject$(9 TO 13)

We say that "BULL" is a slice of the string "APQOLBULLATSUZ". The defining

phrase:

 (6 TO 9)

is called a slicer. It has other uses. Notice how the same notation may be

used on both sides of the LET statement. If you want to refer to a single

character it would be clumsy to write:

 jumble$(6 TO 6)

just to pick out the "B" (possibly as a clue) so you can write instead:

 jumble$(6)

to refer to a single character

COERCION

Suppose you have a variable, mark$ holding a record of examination marks.

The slice giving the history mark may be extracted and scaled up, perhaps

because the history teacher has been too strict in the marking. The

following lines will extract the history mark:

 100 LET mark$ = "625671"

 110 LET hist$ = mark$(3 TO 4)

The problem now is that the value "56" of the variable, hist$ is a string

of characters not numeric data. If you want to scale it up by multiplying

by say 1.125, the value of hist$ must be converted to numeric data first,

SuperBASIC will do this conversion automatically when we type:

 120 LET num = 1 .125 * hist$

Line 120 converts the string "56" to the number 56 and multiplies it by

1.125 giving 63.

Now we should replace the old mark by the new mark but now the new mark is

still the number 63 and before it can be inserted back into the original

string it must be converted back to the string '63'. Again SuperBASIC will

convert the number automatically when we type:

 130 LET mark$(3 TO 4) = num

 140 PRINT mark$

The output from the whole program is:

 626371

which shows the history mark increased to 63.

Strictly speaking it is illegal to mix data types in a LET statement. It

would be silly to write:

 LET num = "LION"

and you would get an error message if you tried, but if you write:

 LET num = "65"

the system will conclude that you want the number 65 to become the value of

num and do that. The complete program is:

 100 LET mark$ = "625671"

 110 LET hist$ = mark$(3 TO 4)

 120 LET num = 1.125 * hist$

 130 LET mark$(3 TO 4) = num

 140 PRINT mark$

Again the output is the same!

In line 120 a string value was converted into numeric form so that it could

be multiplied; In line 130 a number was converted into string form. This

converting of data types is known as type coercion.

You can write the program more economically if you understand both

string-slicing and coercion now:

 100 LET mark$ = "625671"

 110 LET mark$(3 TO 4) = 1 .125 * mark$(3 TO 4)

 120 PRINT mark$

If you have worked with other BASICs you will appreciate the simplicity and

power of string-slicing and coercion.

SEARCHING A STRING

You can search a string for a given substring. The following program

displays a jumble of letters and invites you to spot the animal.

 100 REM Animal Spotting

 110 LET jumble$ = "SYNDICATE"

 120 PRINT jumble$

 130 INPUT "What is the animal?" ! an$

 140 IF an$ INSTR jumble$ AND an$(1) = "C"

 150 PRINT "Correct"

 160 ELSE

 170 PRINT "Not correct"

 180 END IF

The operator INSTR, returns zero if the guess is incorrect. If the guess is

correct INSTR returns the number which is the starting position of the

string-slice, in this case 6.

Because the expression:

 an$ INSTR iumble$

can be treated as a logical expression the position of the string in a

successful search can be regarded as true, while in an unsuccessful search

it can be regarded as false.

OTHER STRING FUNCTIONS

You have already met LEN which returns the length (number of characters) of

a string.

You may wish to repeat a particular string or character several times. For

example, if you wish to output a row of asterisks, rather than actually

enter forty asterisks in a PRINT statement or organise a loop you can

simply write:

 PRINT FILL$ ("*",40)

Finally it is possible to use the function CHR$ to convert internal codes

into string characters. For example:

 PRINT CHR$(65)

would output A.

COMPARING STRINGS

A great deal of computing is concerned with organising data so that it can

be searched quickly. Sometimes it is necessary to sort it in to

alphabetical order. The basis of various sorting processes is the facility

for comparing two strings to see which comes first. Because the letters

A,B,C ... are internally coded as 65,66,67 ... it is natural to regard as

correct the following statements:

 A is less than B

 B is less than C

and because internal character by character comparison is automatically

provided:

 CAT is less than DOG

 CAN is less than CAT

You can write, for example:

 IF "CAT" < "DOG" THEN PRINT "MEOW"

and the output would be:

 MEOW

Similarly:

 IF "DOG" > "CAT" THEN PRINT "WOOF"

would give the output:

 WOOF

We use the comparison symbols of mathematics for string comparisons. All

the following logical statements expressions are both permissible and true.

 "ALF" < "BEN"

 "KIT" > "BEN"

 "KIT" <= "LEN"

 "KIT" >= "KIT"

 "PAT" >= "LEN"

 "LEN" <= "LEN"

 "PAT" <> "PET"

So far comparisons based simply on internal codes make sense, but data is

not always conveniently restricted to upper case letters. We would like,

for example:

 Cat to be less than COT

 and K2N to be less than K27N

A simple character by character comparison based on internal codes would

not give these results, so SuperBASIC behaves in a more intelligent way.

The following program, with suggested input and the output that will

result, illustrates the rules for comparison of strings.

 100 REMark comparisons

 110 REPeat comp

 120 INPUT "input a string" ! first$

 130 INPUT "input another string" ! second$

 140 IF first$ < second$ THEN PRINT "Less"

 150 IF first$ > second$ THEN PRINT "Greater"

 160 IF first$ = second$ THEN PRINT "Equal"

 170 END REPeat comp

 input output

 CAT COT Greater

 CAT CAT Equal

 PET PETE Less

 K6 K7 Less

 K66 K7 Greater

 K12N K6N Greater

> Greater than - Case dependent comparision, numbers compared

 in numerical order

< Less than - Case dependent, numbers compared in numerical order

= Equals - Case dependent, strings must be the same

== Equivalent - String must be 'almost' the same, Case independent,

 numbers compared in numerical order

>= Greater than or equal to - Case dependent, numbers compared

 in numerical order

<= Less than or equal to Case dependent, numbers compared in

 numerical order

PROBLEMS ON CHAPTER 11

1. Place 12 letters, all different, in a string variable and another

 six letters in a second string variable. Search the first string

 for each of the six letters in turn saying in each case whether

 it is found or not found.

2. Repeat using single character arrays instead of strings. Place

 twenty random upper case letters in a string and list those which

 are repeated.

3. Write a program to read a sample of text all in upper case

 letters. Count the frequency of each letter and print the results.

 "GOVERNMENT IS A TRUST, AND THE OFFICERS OF THE GOVERNMENT

 ARE TRUSTEES; AND BOTH THE TRUST AND THE TRUSTEES ARE CREATED

 FOR THE BENEFIT OF THE PEOPLE. HENRY CLAY 1829."

4. Write a program to count the number of words in the following text.

 A word is recognised because it starts with a letter and is followed

 by a space, full stop or other punctuation character.

 "THE REPORTS OF MY DEATH ARE GREATLY EXAGGERATED. CABLE FROM

 MARK TWAIN TO THE ASSOCIATED PRESS, LONDON 1896."

5. Rewrite the last program illustrating the use of logical variables

 and procedures.

CHAPTER 12

SCREEN OUTPUT

SuperBASIC has so extended the scope and variety of facilities for screen

presentation that we describe the features in two sections: "Simple

Printing" and "Screen".

The first section describes the output of ordinary text. Here we explain

the minimal well established methods of displaying messages, text, or

numerical output. Even in this mundane section there is innovation in the

concept of the 'intelligent' space an example of combining ease of use with

very useful effects.

The second section is much bigger because it has a great deal to say. The

wide range of features actually makes things easier For example, you can

draw a circle by simply writing the word CIRCLE followed by a few details

to define such things as its position and size. Many other systems require

you to understand some geometry and trigonometry in order to do what is, in

concept, simple.

Each keyword has been carefully chosen to relect the effect it causes.

WINDOW defines an area of the screen: BORDER puts a border round it; PAPER

defines the background colour; INK determines the colour of what you put on

the paper.

If you work through this chapter and get a little practice you will easily

remember which keyword causes which effect. You will add that extra quality

to your programming fairly easily. With experience you may see why computer

graphics is becoming a new art form.

SIMPLE PRINTING

The keyword PRINT can be followed by a sequence of print items. A print

item may be any of:

 text such as : "This is text"

 variables such as : num, word$

 expressions such as : 3 * num, day$ & week$

Print items may be mixed in any print statement but there must be one or

more print separators between each pair. Print separators may be any of:

; No effect - it just separates print items.

! Normally inserts a space between output items. If an item will

 not fit on the current line it behaves as a new line symbol.

 If the item is at the start of line a space is not generated.

, A tabulator causes the output to be tabulated in columns of 8

 characters

\ A new line symbol will force a new line.

TO Allows tabbing.

The numbers 1,2,3 are legitimate print items and are convenient for

illustrating the effects of print separators

--

 Statement Effect

--

 100 PRINT 1, 2, 3 1 2 3

 100 print 1 ! 2 ! 3 ! 1 2 3

 100 PRINT 1 \ 2 \ 3 1

 2

 3

 100 PRINT 1;2;3 123

 100 PRINT "This is text" This is text

 100 LET word$ = " " moves print position

 110 PRINT word$

 100 LET num = 13 13

 110 PRINT num

 100 LET an$ = "yes"

 110 PRINT "I say" ! an$ I say yes

 110 PRINT "Sum is" ! 4 + 2 Sum is 6

--

You can position print output anywhere on the screen with the AT command.

For example:

 AT 10,15 : PRINT "This is on row 10 at column 15"

The CURSOR command can be used to position the print output anywhere on the

screen's scale system. For example:

 CURSOR 100,150 : PRINT "this is 100 pixel grid units across and

 150 down"

If you read the Keyword Reference Guide you may find it difficult to

reconcile the section on PRINT with the above description. Two of the

difficulties disappear if you understand that:

 Text in quotes, variables and numbers are all strictly

 speaking, expressions: they are the simplest (degenerate)

 forms of expressions.

 Print separators are strictly classified as print items.

SCREEN

This section introduces general effects which apply whether you wish to

output text or graphics. The statement:

 MODE 8 or MODE 256

will select MODE 8 in which there are:

 256 pixels across numbered 0 511 (two numbers per pixel)

 256 pixels down numbered 0-255

 8 colours

A pixel is the smallest area of colour which can be displayed. We use the

term, "solid colour" because these start with ordinary solid-looking

colours of which there are only eight. However, by using various effects a

variety of shades and textures can be achieved. If you are using your QL

with an ordinary television set then the television set will not be able

to reproduce any of these extra effects.

The statement:

 MODE 4 or MODE 512

will select MODE 4 in which there are:

 512 pixels across numbered 0 to 511

 256 pixels down numbered 0 to 255

 4 colours

COLOUR

You can select a colour by using the following code in combination with

suitable keywords such as PAPER, INK etc. Note that the numbers by

themselves mean nothing. The numbers are only interpreted as colours when

they are used with PAPER and INK, etc.

--

 8 Colour Mode Code 4 Colour Mode

--

 black 0 black

 blue 1 black

 red 2 red

 magenta 3 red

 green 4 green

 cyan 5 green

 yellow 6 white

 white 7 white

--

 Colour Codes

For example INK 3 would give magenta in MODE 8.

STIPPLES

You can if you wish specify two colours in a suitable statement. For

example 2,4 would give a chequerboard stipple as shown. In each group of

four pixels two would be red (code 2) corresponding to the colour selected

first. The other two pixels would be a contrast It is not really possible

to display this effect on a domestic television set.

 +----+----+

 |CCCC|RRRR|

 |CCCC|RRRR|

 |CCCC|RRRR|

 +----+----+

 |RRRR|CCCC|

 red--> |RRRR|CCCC| <--contrast

 |RRRR|CCCC|

 +----+----+

If you write:

 INK 2,4

the mix colour is formed from the two codes 2 and 4. We will call these

choices colour and contrast!

 INK colour, contrast

You can find out what the stipple effects are by trying them but we give

more technical details below.

 100 REMark Colour/Contrast

 110 FOR colour = 0 TO 7 STEP 2

 120 PAPER colour : CLS

 140 FOR contrast = 0 TO 7 STEP 2

 150 BLOCK 100,50,40,50,colour,contrast

 160 PAUSE 50

 170 END FOR contrast

 180 END FOR colour

If you wish to try different stipples you can add a third code number to

the colour specification. For example:

 INK 2,4,1

would specify a red and green horizontal stripe effect. A block of four

pixels would be:

 +----+----+

 |RRRR|RRRR|

 |RRRR|RRRR|

 |RRRR|RRRR|

 +----+----+

 |CCCC|CCCC|

 |CCCC|CCCC|

 |CCCC|CCCC|

 +----+----+

The possible effects are shown using red [R] and contrast [C]

--

 Code Name Effect

--

 0 Single pixel of contrast RC

 RR

 1 Horizontal Stripes RR

 CC

 2 Vertical Stripes CR

 CR

 3 Chequerboard CC

 RC

--

 Stipple Patterns

COLOUR PARAMETERS

You can specify a colour/stipple effect as described above by using three

numbers. For example:

 INK colour, contrast, stipple

could be used with :

 colour in range 0 to 7

 contrast in range 0 to 7

 stipple in range 0 to 3

You could achieve the same effect with a single number if you wish though

it is not so easy to construct. See the Concept Reference Guide - colour.

The following program will display all the possible colour effects:

 100 REMark Colour Effects

 110 FOR num = 0 TO 255

 120 BLOCK 100,50,40,50,num

 130 PAUSE 50

 140 END FOR num

PAPER

PAPER followed by one, two or three numbers specifies the background. For

example:

 PAPER 2 {red]

 PAPER 2,4 {red/green chequerboard}

 PAPER 2,4,1 {red/green horizontal stripes}

The colour will not be visible until something else is done, for example,

the screen is cleared by typing CLS.

INK

INK followed by one, two or three numbers specifies the colour for printing

characters, lines or other graphics. The colour and stipple effects are the

same as for PAPER. For example:

 INK 2 {red ink}

 INK 2,4 {red/green chequerboard ink 3}

 INK 2,4,1 {red/green horizontal striped ink}

The ink will be changed for all subsequent output.

CLS

CLS means clear the window to the current paper colour - like a teacher

cleaning a blackboard, except that it is electronic and multi-coloured.

FLASHING

You can make the ink colour flash in mode 8 only. To turn flash on you

might type:

 FLASH 1

and to turn it off:

 FLASH 0

Allowing flashing characters to overlap can produce alarming results.

FILES

You will have used Microdrives for storing programs and you will have used

the commands LOAD and SAVE. Cartridges can be used for storing data as well

as programs. The word file usually means a sequence of data records, a

record being some set of related information such as name, address and

telephone number.

Two of the most widely used types of file are serial and direct access

files. Items in a serial file are usually read in sequence starting with

the first. If you want the fiftieth record you have to read the first

forty-nine in order to find it. On the other hand the fiftieth record in a

direct access file can be found quickly because the system does not need to

work through the earlier records to get it. Pop music on a cassette is like

a serial file but eight pieces on a long playing record form a direct

access file. You can move the pick up arm directly onto any of the eight

tracks.

The simplest possible type of file is just a sequence of numbers. To

illustrate the idea we will place the numbers 1 to 100 in a file called

numbers. However the complete file name is made up of two parts:

 device name

 appended information

Suppose that we wish to create the file, "numbers", on a cartridge in

Microdrive 1. The device name is:

 mdv1_

and the appended information is just the name of the file:

 numbers

So the complete file name is:

 mdv1_numbers

CHANNELS

It is possible for a program to use several files at once, but it is more

convenient to refer to a file by an associated channel number This can be

any integer in the range 0 to 15. A file is associated with a channel

number by using the OPEN statement or, if it is a new file, OPEN NEW. For

example you may choose channel 7 for the numbers file and write:

 OPEN_NEW #7,mdv1_numbers

 ^ ^ ^ ^

 | | | |

 | | | +---- file

 | | |

 | | +----------- device

 | |

 | +--------------- channel number

 |

 +--------------------- keyword

You can now refer to the file just by quoting the number #7. The complete

program is:

 100 REMark Simple file

 110 OPEN NEW #7,mdv1_numbers

 120 FOR number = 1 to 100

 130 PRINT #7,number

 140 END FOR number

 150 CLOSE #7

The PRINT statement causes the numbers to be 'printed' on the cartridge

file because #7 has been associated with it. The CLOSE #7 statement is

necessary because the system has some internal work to do when the file has

been used. It also releases channel 7 for other possible uses. After the

program has executed type

 DIR mdv1_

and the directory should show that the file numbers exists on the cartridge

in Microdrive mdv1_

You also need to know that the file is correct and you can only be certain

of this if the file is read and checked. The necessary keyword is OPEN_IN,

otherwise the program for reading data from a file is similar to the

previous one.

 100 REMark Reading a file

 110 OPEN IN #6, mdv1_numbers

 120 FOR item = 1 TO 100

 130 INPUT #6, number

 140 PRINT ! number !

 150 END FOR item

 160 CLOSE #6

The program should output the numbers 1 to 100, but only if the cartridge

containing the file "numbers" is still in Microdrive mdv1_.

DEVICES AND CHANNELS

You have seen one example of a device, a file of data on a Microdrive. We

may say loosely that a file has been opened but strictly we mean that a

device has been associated with a particular channel Any further necessary

information has also been provided. Certain devices have channels

permanently associated with them by the system:

 channel use

 #0 OUTPUT - command window

 INPUT - keyboard

 #1 OUTPUT - print window

 #2 LIST - list output

WINDOWS

You can create a window of any size anywhere on the screen. The device name

for a window is:

 scr

and the appended information is, for example:

 scr_360x50a80x40

 | | | |

 | | | +---- down value

 | | |

 | | +------- across value

 | |

 | +---------- height

 |

 +-------------- width

The following program creates a window with the channel number 5 and fills

it with green (code 4) and then closes it:

 100 REMark Create a window

 110 OPEN #5, scr_400x200a20x50

 120 PAPER #5,4 : CLS #5

 130 CLOSE #5

Notice that each window can have its own features such as paper ink, etc.

The fact that a window has been opened does not mean that it is the current

default window.

You can change the position or shape of an opened window without closing it

and reopening it. Try adding two lines to the previous program:

 124 WINDOW #5,300,100,110,65

 126 PAPER #5,2 : CLS #5

Re-run the program and you will find a red window within the original green

one. This red window is now the one associated with channel 5, see figure.

 +--------------------------------------+

 | |

 | +--------------------------------+ |

 | |GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG| |

 | |GG+--------------------------+GG| |

 | |GG|RRRRRRRRRRRRRRRRRRRRRRRRRR|GG| |

 | |GG|RRRRRRRRRRRRRRRRRRRRRRRRRR|GG| |

 | |GG|RRRRRRRRRRRRRRRRRRRRRRRRRR|GG| |

 | |GG|RRRRRRRRRRRRRRRRRRRRRRRRRR|GG| |

 | |GG+--------------------------+GG| |

 | |GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG| |

 | +--------------------------------+ |

 | |

 +--------------------------------------+

BORDER

You can place a border round the edge of the screen or a window. For

example:

 BORDER #5,6

would create a border round the channel #5 window. It would be 6 units

thick and the size of the window would be correspondingly reduced. The

border would be transparent, protecting anything that was under it. You can

specify a coloured border by the usual method.

 BORDER #5,6,2

would produce a red border. You can make a border of other colours and

textures by the usual methods. For example,

 BORDER 10

will add a 10 pixel thick transparent border to the current window

(transparent because no colour was specified) and

 BORDER 2,0,7,0

will add a 2 pixel thick black and white stipple border.

BLOCK

You can specify a block's size, position and colour with a single

statement. It is placed in the pixel co-ordinate system relative to the

current window or screen. For example:

 BLOCK #5,10,20,50,100,2

would create a block in the # 5 window at a position 50 units across and

100 units down. It would be 10 units wide and 20 units high. Its colour

would be red.

It is worth noting that WINDOW and BLOCK statements work without alteration

in 4 and 8 colour mode (though the colours may vary) because the across

values are always on a 0 to 511 scale and there are always 256 pixel

positions down.

SPECIAL PRINTING

CSIZE

You can alter the size of characters. For example:

 CSIZE 3,1

will give the largest possible characters and:

 CSIZE 0,0

will give the smallest. The first number must be 0,1,2 or 3 and determines

the width. The second must be 0 or 1 and determines the height. The normal

sizes are:

 MODE 4 CSIZE 0,0

 MODE 8 CSIZE 2,0

The number of lines and columns available for each character size is

dependent on whether the output is viewed on a monitor or on a television

set: the row and column sizes given are for a monitor; those for a

television set will be smaller and also will vary between different

televisions.

If you are using low resolution mode the QL will not allow you to select a

character size smaller than default size.

STRIP

You can provide a special background for characters to make them stand out.

For example:

 STRIP 7

will give a white strip while

 STRIP 2,4,2

will give a red/green vertical striped strip. All the normal colour

combinations are possible.

OVER

Normally printing occurs on the current paper colour. You can alter this by

using strip.

You can make further effects by using:

 OVER 1 1 prints in ink on a transparent strip

 OVER -1 -1 prints in ink over existing display on screen

To revert to normal printing on current strip use:

 OVER 0

UNDER

You can underline characters.

 UNDER 1 underlines all subsequent output in the current ink

 UNDER 0 switches off underling.

SCALE GRAPHICS

If you wish to draw reasonably true geometric figures on a TV or video

screen you cannot easily use a pixel-based system. If you use scale

graphics then the system will do the necessary work to ensure that you can

fairly easily draw reasonable circles, squares and other shapes.

The default scale of the graphics coordinate system is 100 in the vertical

direction and whatever is needed in the across direction to ensure that

shapes drawn with the special graphics keywords (PLOT, DRAW, CIRCLE,) are

true.

The "graphics origin" is not the same as the pixel origin which is used to

define the position of windows and blocks. The graphics origin is at the

bottom left hand corner of the current screen or window.

POINTS AND LINES

It is easy to draw points and lines using scale graphics. Using a vertical

scale of 100 a point near the centre of the window can be plotted with:

 POINT 60,50

The point (60 units across and 50 units up) will be plotted in the current

ink colour.

Similarly a line may be drawn with the statement:

 LINE 60,50 TO 80,90

Further elements can be added. For example, the following will draw a

square:

 LINE 60,50 TO 70,50 TO 70,60 TO 60,60 TO 60,50

 |

 |

 | +---+

 | 60 across | |

 | +---+

 | :

 | :

 | : 50 up

 | :

 +-----------------------------

RELATIVE MODE

Pair of coordinates such as:

 across, up

normally define a point relative to the origin 0,0 in the bottom left hand

corner of a window (or elsewhere if you choose). It is sometimes more

convenient to define points relative to the current cursor position. For

example the square above may be plotted in another way using the LINE_R

statement which means:

 "Make all pairs of coordinates relative to the current

 cursor position."

 POINT 60,50

 LINE_R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

First the point 60,50 becomes the origin, then, as lines are drawn, the end

of a line becomes the origin for the next one.

The following program will plot a pattern of randomly placed coloured

squares.

 100 REMark Coloured Squares

 110 PAPER 7 : CLS

 120 FOR sq = 1 TO 100

 130 INK RND(1 TO 6)

 140 POINT RND(90),RND(90)

 150 LINE R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

 160 END FOR sq

The same result could be achieved entirely with absolute graphics but it

would require a little more effort.

CIRCLES AND ELLIPSES

If you want to draw a circle you need to specify:

 position say 50,50

 radius say 40

The statement

 CIRCLE 50,50,40

will draw a circle with the centre at position 50,50 and radius (or height)

40 units, see figure (due to the limitations of ASCII characters, this is

the best possible representation, or see Chapt11e_PIC):

|

|

| -------

| / | \

| | |40 |

|.....|.....| | <--(50,50)

| | : |

| \ : /

| -------

| : A circle

+---------------------------

If you add two more parameters:

 e.g. CIRCLE 50,50,40,.5

You will get an ellipse. The keywords CIRCLE and ELLIPSE are

interchangeable. (Chapt11f_PIC)

|

|

| ---

| / | \

| | |40 |

|.....|...| | <--(50,50)

| | : |

| \ : /

| ---

| : An ellipse

+---------------------------

The height of the ellipse is 40 as before but the horizontal 'radius' is

now only 0.5 of the height. The number 0.5 is called the eccentricity. If

the eccentricity is 1 you get a circle if it is less than 1 and greater

than zero you get an ellipse. If you want to tilt an ellipse you can change

the fith parameter, for example:

 CIRCLE 50,50,40,.5,1

This will tilt the ellipse anti-clockwise by one radian, about 57 degrees,

as shown in figure (or in Chapt11g_PIC)

|

| --

| / \ \

| | \40 \

| \ \ \

|.....\...\ | <--(50,50)

| \ : /

| -: _/

| :

| : Ellipse at angle one radian

+--

A straight angle is 180 degrees or PI radians, so you can make a pattern of

ellipses with the program:

 100 FOR rot = 0 TO 2*PI STEP PI/6

 110 CIRCLE 50,50,40,0.5,rot

 120 END FOR rot

The order of the parameters for a circle or ellipse is:

 centre _across, centre_up, height [eccentricity, angle]

The last two parameters are optional and this is indicated by putting them

inside square brackets ([]).

Example

Write a program which does the following:

1. Open a window 100x100 at (100,50)

2. Scale 100 in mode 8

3. Select black paper and clear window

4. Make green border 2 units wide

5. Draw a pattern of six coloured circles.

6. Close the window

 100 REMark pattern

 110 MODE 8

 120 OPEN #7,scr_100x100a100x50

 130 SCALE #7,100,0,0

 140 PAPER #7,0 : CLS #7

 150 BORDER #7,2,4

 160 FOR colour = 1 TO 6

 170 INK #7,colour

 180 LET rot = 2*PI/colour

 190 CIRCLE #7,50,50,30,0.5,rot

 200 END FOR colour

 210 CLOSE #7

You can get some interesting effects by altering the program. For example

try the amendments:

 160 FOR colour = 1 TO 100

 180 LET rot = colour*PI/50

ARCS

If you want to draw an arc you need to decide:

 starting point

 end point

 amount of curvature

The first two items are straightforward but the amount of curvature is not

so easy. You can do it by drawing accurately or by trial and error but you

must decide what angle the arc subtends and then specify the angle in

radians. An angle of 1.5 radians would give a sharp bend and a small angle

would give a very gentle curvature. Try for example:

 ARC 10,50 TO 50,90,1

which gives a moderate curvature in the current INK colour. (Chapt12h_PIC)

|

|

| | (50,90)

| : |

| :angle /

| : /

| ___/

| (10,50)

|

| Arc

+------------------------------

FILL

You can fill a closed shape with the current INK colour by simply writing:

 FILL 1

before the shape is drawn. The following program produces a green circle.

 INK 4

 FILL 1

 CIRCLE 50,50,30

The FILL command works by drawing touching horizontal lines between

suitable points.

The statement:

 FILL0

will turn off the FILL effect.

SCROLLING AND PANNING

You can scroll or pan the display in a window like a film cameraman. You

arrange scrolling in terms of pixels. A positive number of pixels indicates

upwards scrolling, thus

 SCROLL 10

moves the display in the current window or screen 10 pixels downwards.

 SCROLL -8

Moves the display 8 pixels up. You can add a second parameter to induce

part-scrolling.

 SCROLL -8, 1

will scroll the part above (not including) the cursor line and:

 SCROLL -8, 2

will scroll the part below (not including) the cursor line.

 As scrolling occurs, the space left by movement of the display is filled

with the current paper colour. A second parameter 0 has no effect.

You can PAN the display in the current window left or right. The PAN

statement works in a similar manner to SCROLL but

 PAN 40 moves display right

 PAN -40 moves display left

A second parameter gives a partial PAN

 0 - whole screen

 3 - the whole of the line occupied by the cursor

 4 - the right hand side of the line occupied by the cursor

 The area of the cursor is also included.

If you are using stipples or are in 8 colour mode then windows must be

panned or scrolled in multiples of 2 pixels.

PROBLEMS ON CHAPTER 12

1. Write a program which draws a 'Snakes and Ladders' grid of ten

 rows of ten squares.

2. Place the numbers 1 to 100 in the squares starting at the bottom

 left and place F for finish in the last square.

3. Draw a dartboard on the screen. It should consist of an outer ring

 which could hold numbers. A 'doubles' ring and 'triples' ring as

 shown and a centre consisting of a 'bull's eye' and a ring around

 it.

CHAPTER 13

ARRAYS

Suppose you are a prison governor and you have a new prison block which is

called the West Block. It is ready to receive 50 new prisoners. You need to

know which prisoner (known by his number) is in which cell. You could give

each cell a name but it is simpler to give them numbers 1 to 50.

In a computing simulation we will imagine just 5 prisoners with numbers

which we can put in a DATA statement:

 DATA 50, 37, 86, 41, 32

We set up an array of variables which share the name, west, and are

distinguished by a number appended in brackets.

 +---+---+ +---+---+ +---+---+ +---+---+ +---+---+

 | | | | | | | | | | | | | | |

 | | | | | | | | | | | | | | |

 | | | | | | | | | | | | | | |

 +---+---+ +---+---+ +---+---+ +---+---+ +---+---+

 west(1) west(2) west(3) west(4) west(5)

It is necessary to declare an array and give its dimensions with a DIM

statement:

 DIM west(5)

This enables SuperBASIC to allocate space, which might be a large amount.

After the DIM statement has been executed the five variables can be used.

The convicts can be READ from the DATA statement into the five array

variables:

 FOR cell = 1 TO 5 : READ west (cell)

We can add another FOR loop with a PRINT statement to prove that the

convicts are in the cells.

 +---+---+ +---+---+ +---+---+ +---+---+ +---+---+

 | | | | | | | | | | | | | | |

 | 5 | 0 | | 3 | 7 | | 8 | 6 | | 4 | 1 | | 3 | 2 |

 | | | | | | | | | | | | | | |

 +---+---+ +---+---+ +---+---+ +---+---+ +---+---+

 west(1) west(2) west(3) west(4) west(5)

The complete program is shown below:

 100 REMark Prisoners

 110 DIM west(5)

 120 FOR cell 1 = 1 TO 5 : READ west(cell)

 130 FOR cell = 1 TO 5 : PRINT cell ! west(cell)

 140 DATA 50, 37, 86, 41, 32

The output from the program is:

 1 50

 2 37

 3 86

 4 41

 5 32

The numbers 1 to 5 are called "subscripts" of the array name, "west". The

array, "west", is a numeric array consisting of five numeric array

elements.

You can replace line 130 by:

 130 PRINT west

This will output the values only:

 0

 50

 37

 86

 41

 32

The zero at the top of the list appears because subscripts range from zero

to the declared number. We will show later how useful the zero elements in

arrays can be.

Note also that when a numeric array is DIMensioned its elements are all

given the value zero.

STRING ARRAYS

String arrays are similar to numeric arrays but an extra dimension in the

DIM statement specifies the length of each string variable in the array.

Suppose that ten of the top players at Royal Birkdale for the 1982 British

Golf Championship were denoted by their first names and placed in DATA

statements.

 DATA "Tom","Graham","Sevvy","Jack","Lee"

 DATA "Nick","Bernard","Ben","Gregg","Hal"

You would need ten different variable names, but if there were a hundred or

a thousand players the job would become impossibly tedious. An array is a

set of variables designed to cope with problems of this kind. Each variable

name consists of two parts:

 a name according to the usual rules

 a numeric part called a subscript

Write the variable names as:

 flat$(1),flat$(2),flat$(3)...etc

Before you can use the array variables you must tell the system about the

array and its dimensions:

 DIM flat$(10,8)

This causes eleven (0 to 10) variables to be reserved for use in the

program. Each string variable in the array may have up to eight characters.

DIM statements should usually be placed all together near the beginning of

the program. Once the array has been declared in a DIM statement all the

elements of the array can be used. One important advantage is that you can

give the numeric part (the subscript) as a numeric variable. You can write:

 FOR number = 1 TO 10 : READ flat$(number)

This would place the golfers in their 'flats':

 flat$(1) flat$(2) flat$(3) flat$(10)

 +----------+ +----------+ +----------+ +----------+

 | | | | | | | |

 | Tom | | Graham | | Sevvy | | Hal |

 | | | | | | | |

 +----------+ +----------+ +----------+ +----------+

You can refer to the variables in the usual way but remember to use the

right subscript. Suppose that Tom and Sevvy wished to exchange flats. In

computing terms one of them, Tom say, would have to move into a temporary

flat to allow Sevvy time to move. You can write:

 LET temp$ = flat$(1) : REMark Tom into temporary

 LET flat$(1) = flat$(3) : REMark Sevvy into flat$(1)

 LET flat$(3) = temp$: REMark Tom into flat$(3)

The following program places the ten golfers in an array named flat$ and

prints the names of the occupants with their 'flat numbers' (array

subscripts) to prove that they are in residence. The occupants of flats 1

and 3 then change places. The list of occupants is then printed again to

show that the exchange has occurred.

 100 REMark Golfers' Flats

 110 DIM flat$(10,8)

 120 FOR number = 1 TO 10 : READ flat$(number)

 130 printlist

 140 exchange

 150 printlist

 160 REMark End of main program

 170 DEFine PROCedure printlist

 180 FOR num = 1 TO 10 : PRINT num,flat$(num)

 190 END DEFine

 200 DEFine PROCedure exchange

 210 LET temp$ = f1at$(1)

 220 LET flat$(1) = f1at$(3)

 230 LET flat$(3) = temp$

 240 END DEFine

 250 DATA "Tom","Graham","Sevvy","Jack","Lee"

 260 DATA "Nick","Bernard","Ben","Greg","HaL"

 output (line 130) output (line 150)

 1 Tom 1 Sevvy

 2 Graham 2 Graham

 3 Sevvy 3 Tom

 4 Jack 4 Jack

 5 Lee 5 Lee

 6 Nick 6 Nick

 7 Bernard 7 Bernard

 8 Ben 8 Ben

 9 Gregg 9 Gregg

 10 Hal 10 Hal

TWO DIMENSIONAL ARRAYS

Sometimes the nature of a problem suggests two dimensions such as 3 floors

of 10 flats rather than just a single row of 30.

Suppose that 20 or more golfers need flats and there is a block of 30 flats

divided into three floors of ten flats each. A realistic method of

representing the block would be with a two-dimensional array You can think

of the thirty variables as shown below:

 flat$(2,0) flat$(2,1) flat$(2,2) flat$(2,9)

 +----------+ +----------+ +----------+ +----------+

 | | | | | | | |

 | | | | | | second(2) | |

 | | | | | | | |

 +----------+ +----------+ +----------+ +----------+

 flat$(1,0) flat$(1,1) flat$(1,2) flat$(1,9)

 +----------+ +----------+ +----------+ +----------+

 | | | | | | | |

 | | | | | | first(1) | |

 | | | | | | | |

 +----------+ +----------+ +----------+ +----------+

 flat$(0,0) flat$(0,1) flat$(0,2) flat$(0,9)

 +----------+ +----------+ +----------+ +----------+

 | | | | | | | |

 | | | | | | ground(0) | |

 | | | | | | | |

 +----------+ +----------+ +----------+ +----------+

Assuming DATA statements with 30 names, a suitable way to place the names

in the flats is:

 120 FOR floor = 0 TO 2

 130 FOR num = 0 TO 9

 140 READ flats$(floor,num)

 150 END FOR num

 160 END FOR floor

You also need a DIM statement:

 20 DIM flat$(2,9,8)

which shows that the first subscript can be from 0 to 2 (floor number) and

the second subscript can be from 0 to 9 (room number). The third number

states the maximum number of characters in each array element.

We add a print routine to show that the golfers are in the flats and we use

letters to save space.

 100 REMark 30 Golfers

 110 DIM flat$(2,9,8)

 120 FOR floor = 0 TO 2

 130 FOR num = 0 TO 9

 140 READ flat$(floor,num) : REMark Golfer goes in

 150 END FOR num

 160 END FOR floor

 170 REMark End of input

 180 FOR floor = 0 TO 2

 190 PRINT "Floor number" ! floor

 200 FOR num = 0 TO 9

 210 PRINT 'Flat' ! num ! flat$(floor,num)

 220 END FOR num

 230 END FOR floor

 240 DATA "A","B","C","D","E","F","G","H","I","J"

 250 DATA "K","L","M","N","O","P","Q","R","S","T"

 260 DATA "U","V","W","X","Y","Z","@","`","$","%"

The output starts:

 Floor number 0

 FLat 0 A

 FLat 1 B

 FLat 2 C

and continues giving the thirty occupants.

ARRAY SLICING

You may find this section hard to read though it is essentially the same

concept as string slicing. You will probably need string-slicing if you get

beyond the learning stage of programming. The need for array-slicing is

much rarer and you may wish to omit this section particularly on a first

reading.

We now use the golfers' flats to illustrate the concept of array slicing.

The flats will be numbered 0 to 9 to keep to single digits and names will

be single characters for space reasons.

 2,0 2,1 2,2 2,2 2,4 2,5 2,6 2,7 2,8 2,9

 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

flat$ | U | | V | | W | | X | | Y | | Z | | @ | | ` | | $ | | % |

 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

flat$ | K | | L | | M | | N | | O | | P | | Q | | R | | S | | T |

 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

flat$ | A | | B | | C | | D | | E | | F | | G | | H | | I | | J |

 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

Given the above values the following are array slices:

 flat$(1,3) Means a single array element with value N

 flat$(1,1 TO 6) Means six elements with values L M N 0 P Q

 Array Element Value

 flat$(1,1) L

 flat$(1,2) M

 flat$(1,3) N

 flat$(1,4) O

 flat$(1,5) P

 flat$(1,6) Q

flat$(1) Means flat$ (1,0 TO 9)

 ten elements with values K L M N O P Q R S T

In these examples a range of values of a subscript can be given instead of

a single value. If a subscript is missing completely the complete range is

assumed. In the third example the second subscript is missing and it is

assumed by the system to be "0 TO 9".

The techniques of array slicing and string slicing are similar though the

latter is more widely applicable.

PROBLEMS ON CHAPTER 13

1. SORTING

Place ten numbers in an array by reading from a DATA statement. Search the

array to find the lowest number. Make this lowest number the value of the

first element of a new array. Replace it in the first array with a very

large number. Repeat this process making the second lowest number the

second value in the new array and so on until you have a sorted array of

numbers which should then be printed.

2. SNAKES AND LADDERS

Represent a snakes and ladders game with a 100 element numeric array. Each

element should contain either.

 zero

or a number in the range 10 to 90 meaning that a player should

 transfer to that number by going 'up a ladder' or 'down a snake'.

or the digits 1, 2, 3, etc. to denote a particular player's position.

Set up six snakes and six ladders by placing numbers in the array and

simulate one 'solo' run by a single player to test the game.

3. CROSSWORD BLANKS

 1 2 3 4 5 columns

 +---+---+---+---+---+

 1| | | | | |

 +---+---+---+---+---+

 2| | | | |XXX|

 +---+---+---+---+---+

 row 3| | | | | |

 +---+---+---+---+---+

 4|XXX| | | | |

 +---+---+---+---+---+

 5| | | | | |

 +---+---+---+---+---+

(The squares represented by XXX above are black squares, the file

Chapt13a_pic contains a better diagram)

Crosswords usually have an odd number of rows or columns in which the black

squares have a symmetrical pattern. The pattern is said to have rotational

symmetry because rotation through 180 degrees would not change it.

Note that after rotation through 180 degrees the square in row 4, column 1

could become the square in row 2, column 5. That is row 4, column 1 becomes

row 2, column 5 in a 5 x 5 grid.

Write a program to generate and display a symmetrical pattern of this kind.

4. Modify the crossword pattern so that there are no sequences, across or

down, of less than four white squares.

5. CARD SHUFFLE

Cards are denoted by the numbers 1-52 stored in an array. They can be

converted easily to actual card values when necessary. The cards should be

'shuffled' as follows.

 Choose any position in range 1-51 e.g. 17

 Place the card in this position in a temporary store.

 Shunt all the cards in positions 52 to 18 down to positions 51 to 17

 Place the chosen card from the temporary store to position 52.

 Deal similarly with the ranges 1-50, 1-49 .. down to 1-2 so that the

 pack is well shuffled.

 Output the result of the shuffle.

6. Set up six DATA statements each containing a surname, initials and a

telephone number (dialling code and local number). Decide on a suitable

structure of arrays to store this information and READ it into the arrays.

PRINT the data using a separate FOR loop and explain how the input format

(DATA), the internal format (arrays) and output format are not necessarily

all the same.

CHAPTER 14

PROGRAM STRUCTURE

In this chapter we go again over the ground of program structure : loops

and decisions or selection. We have tried to present things in as simple a

way as possible but SuperBASIC is designed to cope properly with the simple

and the complex and all levels in between. Some parts of this chapter are

difficult and if you are new to programming you may wish to omit parts. The

topics covered are:

 Loops

 Nested loops

 Binary decisions

 Multiple decisions

The latter parts of the first section, Loops, get difficult as we show how

SuperBASIC copes with problems that other languages simply ignore. Skip

these parts if you feel so inclined but the other sections are more

straightforward.

LOOPS

In this section we attempt to illustrate the well known problems of

handling repetition with simulations of some Wild West scenes. The context

may be contrived and trivial but it offers a simple basis for discussion

and it illustrates difficulties which arise across the whole range of

programming applications.

EXAMPLE 1

A bandit is holed up in the Old School House. The sheriff has six bullets

in his gun. Simulate the firing of the six shots.

Program 1

 100 REMark Western FOR

 110 FOR bullets = 1 TO 6

 120 PRINT "Take aim"

 130 PRINT "Fire shot"

 140 END FOR bullets

Program 2

 100 REMark Western REPeat

 110 LET bullets = 6

 120 REPeat bandit

 130 PRINT "Take aim"

 140 PRINT "Fire shot"

 150 LET bullets = bullets - 1

 160 IF bullets = 0 THEN EXIT bandit

 170 END REPeat bandit

Both these programs produce the same output:

 Take aim

 Fire a shot

is printed six times.

If in each program the 6 is changed to any number down to 1 both programs

still work as you would expect. But what if the gun is empty before any

shots have been fired?

EXAMPLE 2

Suppose that someone has secretly taken all the bullets out of the

sheriff's gun. What happens if you simply change the 6 to 0 in each

program?

Program 1

 100 REMark Western FOR Zero Case

 110 FOR bullets = 1 to 0

 120 PRINT"Take aim"

 130 PRINT "Fire a shot"

 140 END FOR bullets

This works correctly. There is no output. The 'zero case' behaves properly

in SuperBASIC.

Program 2

 100 REMark Western REPeat Fails

 110 LET bullets = 0

 120 REPeat bandit

 130 PRINT "Take aim"

 140 PRINT "Fire shot"

 150 LET bullets = bullets - 1

 160 IF bullets = 0 THEN EXIT bandit

 170 END REPeat bandit

The program fails in two ways:

 1. Take aim

 Fire a shot

 is printed though there were never any bullets.

 2. By the time the variable, "bullets", is tested in line 160

 it has the value -1 and it never becomes zero afterwards.

 The program loops indefinitely. You can cure the infinite

 looping by re-writing line 160:

 160 IF bullets < 1 THEN EXIT bandit

There is an inherent fault in the programming which does not allow for the

possible zero case. This can be corrected by placing the conditional EXIT

before the PRINT statements.

Program 3

 100 REMark Western REPeat Zero Case

 110 LET bullets = 0

 120 REPeat Bandit

 130 IF bullets = 0 THEN EXIT Bandit

 140 PRINT "Take aim"

 150 PRINT "Fire shot"

 160 LET bullets = bullets - 1

 170 END REPeat Bandit

This program now works properly whatever the initial value of bullets as

long as it is a positive whole number or zero. Method 2 corresponds to the

REPEAT... UNTIL loop of some languages. Method 3 corresponds to the

WHILE....ENDWHILE loop of some languages. However the REPeat...END REPeat

with EXIT is more flexible than either or the combination of both.

If you have used other BASICs you may wonder what has happened to the NEXT

statement. We will re-introduce it soon but you will see that both loops

have a similar structure and both are named.

 FOR name = (opening keyword) REPeat name

 (statements) (content) (statements)

 END FOR name (closing keyword) END REPeat name

In addition the REPeat loop must normally have an EXIT amongst the

statements or it will never end.

Note also that the EXIT statement causes control to go to the statement

which is immediately after the END of the loop.

A NEXT statement may be placed in a loop. It causes control to go to the

statement which is just after the opening keyword FOR or REPeat. It should

be considered as a kind of opposite to the EXIT statement. By a curious

coincidence the two words, NEXT and EXIT, both contain EXT. Think of an

EXTension to loops and:

 N means "Now start again"

 I means "It's ended"

EXAMPLE 3

The situation is the same as in example 1. The sheriff has a gun loaded

with six bullets and he is to fire at the bandit but two more conditions

apply:

1. If he hits the bandit he stops firing and returns to Dodge City

2. If he runs out of bullets before he hits the bandit, he tells

 his partner to watch the bandit while he (sheriff) returns to

 Dodge City

Program 1

 100 REMark Western FOR with Epilogue

 110 FOR bullets = 1 TO 6

 120 PRINT "Take aim"

 130 PRINT "FIRE A SHOT"

 140 LET hit = RND(9)

 150 IF hit = 7 THEN EXIT bullets

 160 NEXT bullets

 170 PRINT "Watch Bandit"

 180 END FOR bullets

 190 PRINT "Return to Dodge City"

In this case, the content between NEXT and END FOR is a kind of epilogue

which is only executed if the FOR loop runs its full course. If there is a

premature EXIT the epilogue is not executed.

The same effect can be achieved with a REPeat loop though it is not

necessarily the best way to do it. However it is worth looking at (perhaps

at a second reading) if you want to understand structures which are simple

enough to use in simple ways and powerful enough to cope with awkward

situations when they arise.

Program 2

 100 REMark Western REPeat with Epilogue

 110 LET bullets = 6

 120 REPeat Bandit

 130 PRINT "Take aim"

 140 PRINT "Fire shot"

 150 LET hit = RND(9)

 160 IF hit = 7 THEN EXIT Bandit

 170 LET bullets = bullets - 1

 180 IF bullets <> 0 THEN NEXT Bandit

 190 PRINT "Watch Bandit"

 200 END REPeat Bandit

 210 PRINT "Return to Dodge City"

The program works properly as long as the sheriff has at least one bullet

at the start. It fails if line 20 reads:

 110 LET bullets = 0

You might think that the sheriff would be a fool to start an enterprise of

this kind if he had no bullets at all, and you would be right. We are now

discussing how to preserve good structure in the most complex type of

situation. We have at least kept the problem context simple: we know what

we are trying to do. Complex structural problems usually arise in contexts

more difficult than Wild West simulations. But if you really want a

solution to the problem which caters for a possible hit, running out of

bullets and an epilogue, and also the zero case then add the following line

to the above program:

 125 IF bullets = 0 THEN PRINT "Watch Bandit" : EXIT bandit

We can conceive of no more complex type of problem than this with a single

loop. SuperBASIC can easily handle it if you want it to.

NESTED LOOPS

Consider the following FOR loop which PLOTS a row of points of various

randomly chosen colours (not black).

 100 REMark Row of pixels

 110 PAPER 0 : CLS

 120 LET up = 50

 130 FOR across = 20 TO 60

 140 INK RND(2 TO 7)

 150 POINT across,up

 160 END FOR across

This program plots a row of points thus:

 ..

If you want to get say 51 rows of points you must plot a row for values up

from 30 to 80. But you must always observe the rule that a structure can go

completely within another or it can go properly around it. It can also

follow in sequence, but it cannot 'mesh' with another structure. Books

about programming often show how FOR loops can be related with a diagram

like:

 -------------> ---------------> ----------->

| | |

| ----------> | |

| | | |

| | --------------- ---------------

| | | |

| | Right ---------------> | ----------->

| | (nested) | |

| ---------- | Right | Wrong

| | (sequence) | (Meshed)

 ------------- --------------- ---------------

In SuperBASIC the rule applies to all structures. You can solve all

problems using them properly We therefore treat the FOR loop as an entity

and design a new program:

 FOR up = 30 TO 80

 +-----------------------+

 | FOR across = 20 TO 60 |

 | INK RND(2 TO 7) |

 | POINT across,up |

 | END FOR across |

 +-----------------------+

 END FOR up

When we translate this into a program we are entitled not only to expect it

to work but to know what it will do. It will plot a rectangle made up of

rows of pixels.

 100 REMark Rows of pixels

 110 PAPER 0 : CLS

 120 FOR up = 30 TO 80

 130 FOR across = 20 TO 60

 140 INK RND(2 TO 7)

 150 POINT across,up

 160 END FOR across

 170 END FOR up

Different structures may be nested. Suppose we replace the inner FOR loop

of the above program by a REPeat loop. We will terminate the REPeat loop

when the zero colour code appears for a selection in the range 0 to 7.

 100 REMark REPeat in FOR

 110 PAPER 0 : CLS

 120 FOR up = 30 TO 80

 130 LET across = 19

 140 REPeat dots

 150 LET colour = RND(7)

 160 INK colour

 170 LET across = across + 1

 180 POINT across,up

 190 IF colour = 0 THEN EXIT dots

 200 END REPeat dots

 210 END FOR up

Much of the wisdom about program control and structure can be expressed in

two rules:

1. Construct your program using only the legitimate structures for

 loops and decision making.

2. Each structure should be properly related in sequence or wholly

 within another.

BINARY DECISIONS

The three types of binary decision can be illustrated easily in terms of

what to do when it rains.

i. 100 REMark Short form IF

 110 LET rain = RND(0 TO 1)

 120 IF rain THEN PRINT "Open brolly"

ii. 100 REMark Long form IF. ..END IF

 110 LET rain = RND(0 TO 1)

 120 IF rain THEN

 130 PRINT "Wear coat"

 140 PRINT "Open brolly"

 150 PRINT "Walk fast"

 160 END IF

iii. 100 REMark Long form IF ...ELSE...END IF

 110 LET rain = RND(0 TO 1)

 120 IF rain THEN

 130 PRINT "Take a bus"

 140 ELSE

 150 PRINT "Walk"

 160 END IF

AII these are binary decisions. The first two examples are simple : either

something happens or it does not. The third is a general binary decision

with two distinct possible courses of action, both of which must be

defined.

You can omit THEN in the long forms if you wish. In the short form you can

substitute : for THEN.

EXAMPLE

Consider a more complex example in which it seems natural to nest binary

decisions. This type of nesting can be confusing and you should only do it

if it seems the most natural thing to do. Careful attention to layout,

particularly indenting, is especially important.

Analyse a piece of text to count the number of vowels, consonants and other

characters. Ignore spaces. For simplicity the text is all upper case.

Data

 "COMPUTER HISTORY WAS MADE IN 1984"

Design

Read in the data

 FOR each character:

 IF letter THEN

 IF vowel

 increase vowel count

 ELSE

 increase consonant count

 END IF

 ELSE

 IF not space THEN increase other count

 END IF

 END FOR

 PRINT results

Program

 100 REMark Character Counts

 110 RESTORE 290

 120 READ text$

 130 LET vowels = 0 : cons = 0 : others = 0

 140 FOR num = 1 TO LEN(text$)

 150 LET ch$ = text$(num)

 160 IF ch$ >= "A" AND ch$ <= 'Z'

 170 IF ch$ INSTR "AEIOU"

 180 LET vowels = vowels + 1

 190 ELSE

 200 LET cons = cons + 1

 210 END IF

 220 ELSE

 230 IF ch$ <> " " THEN others = others + 1

 240 END IF

 250 END FOR num

 260 PRINT "Vowel count is" ! vowels

 270 PRINT "Consonant count is" ! cons

 280 PRINT "Other count is" ! others

 290 DATA "COMPUTER HISTORY WAS MADE IN 1984"

Output

 Vowel count is 9

 Consonant count is 15

 Other count is 4

MULTIPLE DECISIONS - SELect

Where there are three or more possible actions and none is dependant on a

previous choice the natural structure to use is SELect which enables

selection from any number of possibilities.

EXAMPLE

A magic snake grows without limit by adding a section to its front. Each

section may be up to twenty units long and may be a new colour or it may

remain the same. Each new section must grow in one of the directions North,

South, East, or West. The snake starts from the centre of the window.

Method

At any time while the snake is still on the screen you choose a random

length and ink colour easily. The direction may be selected by a number

1,2,3 or 4 as shown:

 North 1

 |

 |

 |

 |

 West 4 ----------+---------- East 2

 |

 |

 |

 |

 South 3

Design

Select PAPER

Set snake to centre of window

REPeat

 Choose direction, colour length of growth

 FOR unit = 1 to growth

 Make snake grow north, south, east or west

 IF snake is off window THEN EXIT

 END FOR

END REpeat

PRINT end message

Program

 100 REMark Magic Snake

 110 PAPER 0 : CLS

 120 LET across = 50 : up = 50

 130 REPeat snake

 140 LET direction = RND(l TO 4) : colour = RND(2 TO 7)

 150 LET growth = RND(2 TO 20)

 160 INK colour

 170 FOR unit = 1 TO growth

 180 SELect ON direction

 190 ON direction = 1

 200 LET up = up + 1

 210 ON direction = 2

 220 LET across = across + 1

 230 ON direction = 3

 240 LET up = up - 1

 250 ON direction = 4

 260 LET across = across - 1

 270 END SELect

 280 IF across < 1 OR across > 99 OR up < 1 OR up > 99 : EXIT snake

 290 POINT across,up

 300 END FOR unit

 310 END REPeat snake

 320 PRINT "Snake off edge"

The syntax of the SELect ON structure also allows for the possibility of

selecting on a list of values such as

 5,6,8,10 TO 13

It is also possible to allow for an action to be executed if none of the

stated values is found. The full structure is of the form given below.

LONG FORM

 SELect ON num

 ON num = list of values

 statements

 ON num = list of values

 statements

 -

 -

 -

 -

 ON num = REMAINDER

 statements

 END SELect

where num is any numeric variable and the REMAINDER clause is optional.

SHORT FORM

There is a short form of the SELect structure. For example:

 100 INPUT num

 110 SELect ON num = 0 TO 9 : PRINT "digit"

will perform as you would expect.

PROBLEMS ON CHAPTER 14

1. Store 10 numbers in an array and perform a 'bubble-sort'. This is done

by comparing the first pair and exchanging, if necessary the second pair

(second and third numbers), up to the ninth pair (ninth and tenth numbers).

The first run of nine comparisons and possible exchanges guarantees that

the highest number will reach its correct position. Another eight runs will

guarantee eight more correct positions leaving only the lowest number which

must be in the only (correct) position left. The simplest form of 'bubble

sort' of ten numbers requires nine runs of nine comparisons.

2. Consider ways of speeding up bubblesort, but do not expect that it will

ever be very efficient.

3. An auctioneer wishes to sell an old clock and he has instructions to

invite a first bid of `50. If no-one bids he can come down to `40, `30,

`20, but no lower, in an effort to start the bidding. If no-one bids, the

clock is withdrawn from the sale. When the bidding starts, he takes only `5

increases until the final bid is made. If the final bid is `35 (the

'reserve price') or more, the clock is sold. Otherwise it is withdrawn.

Simulate the auction using the equivalent of a six-sided die throw to start

the bidding. A 'six' at any of the starting prices will start it off.

When the bidding has started there should be a three out of four chance of

a higher bid at each invitation.

4. In a wild west shoot-out the Sheriff has no ammunition and wishes to

arrest a gunman camped in a forest. He rides amongst the trees tempting the

gunman to fire. He hopes that when six shots have been fired he can rush in

and overpower the gunman as he tries to re-load. Simulate the encounter

giving the gunman a one-twentieth chance of hitting the Sheriff with each

shot. If the Sheriff has not been hit after six shots he will arrest the

gunman.

5. The Sheriff's instructions to his Deputy are:

 "If the gun is empty then re-load it and if it ain't then

 keep on firing until you hit the bandit or he surrenders.

 If Mexico Pete turns up, get out fast."

Write a program which caters properly for all these situations:

 Whatever happens, return to Dodge City

 If Mexico Pete turns up, return immediately

 If the gun is empty reload it

 If the gun is not empty ask the bandit to surrender.

 If the bandit surrenders, arrest him.

 If he doesn't surrender fire a shot.

 If the bandit is hit, arrest him and fix his wound.

Assume an unlimited supply of ammunition Use a simulated 'twenty-sided die'

and let a seven mean 'surrender' and a 'thirteen' mean the bandit is hit.

CHAPTER 15

PROCEDURES AND FUNCTIONS

In the first part of this chapter we explain the more straightforward

features of SuperBASIC's procedures and functions. We do this with very

simple examples so that you can understand the working of each feature as

it is described. Though the examples are simple and contrived you will

appreciate that, once understood, the ideas can be applied in more complex

situations where they really matter

After the first part there is a discussion which attempts to explain 'Why

procedures' . If you understand, more or less, up to that point you will be

doing well and you should be able to use procedures and functions with

increasing effectiveness.

SuperBASIC first allows you to do the simpler things in simple ways and

then offers you more if you want it. Extra facilities and some technical

matters are explained in the second part of this chapter but you could omit

these, certainly at a first reading, and still be in a stronger position

than most users of older types of BASIC.

VALUE PARAMETERS

You have seen in previous chapters how a value can be passed to a

procedure. Here is another example.

EXAMPLE

In "Chan's Chinese Take-Away" there are just six items on the menu.

 Rice Dishes Sweets

 1 prawns 4 ice

 2 chicken 5 fritter

 3 special 6 lychees

Chan has a simple way of computing prices. He works in pence and the prices

are:

 for a rice dish 300 + 10 times menu number

 for a sweet 12 times menu number

Thus a customer who ate special rice and an ice would pay:

 300 + 10 * 3 + 12 * 4 = 378 pence

A procedure, "item", accepts a menu number as a value parameter and prints

the cost.

Program

 100 REMark Cost of Dish

 110 item 3

 120 item 4

 130 DEFine PROCedure item(num)

 140 IF num <= 3 THEN LET price = 300 + 10*num

 150 IF num >= 4 THEN LET price = 12*num

 160 PRINT ! price !

 170 END DEFine

Output

 330 48

In the main program actual parameters 3 and 4 are used. The procedure

definition has a formal parameter num, which takes the value passed to it

from the main program. Note that the formal parameters must be in brackets,

but that actual parameters need not be.

EXAMPLE

Now suppose the working variable, "price", was also used in the main

program, meaning something else, say the price of a glass of lager 70p.

The following program fails to give the desired result.

Program

 100 REMark Global price

 110 LET price = 70

 120 item 3

 130 item 4

 140 PRINT ! price !

 150 DEFine PROCedure item(num)

 160 IF num <= 3 THEN LET price = 300 + 10*num

 170 IF num >= 4 THEN LET price = 12*num

 180 PRINT ! price !

 190 END DEFine

Output

 330 48 48

The price of the lager has been altered by the procedure. We say that the

variable, price, is global because it can be used anywhere in the program.

EXAMPLE

Make the procedure variable, "price", LOCAL to the procedure. This means

that SuperBASIC will treat it as a special variable accessible only within

the procedure. The variable, "price", in the main program will be a

different thing even though it has the same name.

Program

 100 REMark LOCAL price

 110 LET price = 70

 120 item 3

 130 item 4

 140 PRINT ! price !

 150 DEFine PROCedure item(num)

 160 LOCaL price

 170 IF num <= 3 THEN LET price = 300 + 10*num

 180 IF num >= 4 THEN LET price = 12*num

 190 PRINT ! price !

 200 END DEFine

Output

 330 48 70

This time everything works properly. Line 70 causes the procedure variable,

"price" to be internally marked as 'belonging' only to the procedure,

"item". The other variable, "price" is not affected. You can see that local

variables are useful things.

EXAMPLE

Local variables are so useful that we automatically make procedure formal

parameters local. Though we have not mentioned it before parameters such as

"num" in the above programs cannot interfere with main program variables.

To prove this we drop the LOCAL statement from the above program and use

"num" for the price of lager. Because "num" in the procedure is local

everything works.

Program

 100 REMark LOCAL parameter

 110 LET num = 70

 120 item 3

 130 item 4

 140 PRINT ! num !

 150 DEFine PROCedure item(num)

 160 IF num <= 3 THEN LET price = 300 + 10*num

 170 IF num >= 4 THEN LET price = 12*num

 180 PRINT ! price !

 190 END DEFine

Output

 330 48 70

VARIABLE PARAMETERS

So far we have only used procedure parameters for passing values to the

procedure. But suppose the main program wants the cost of an item to be

passed back so that it can compute the total bill. We can do this easily by

providing another parameter in the procedure call. This must be a variable

because it has to receive a value from the procedure. We therefore call it

a variable parameter and it must be matched by a corresponding variable

parameter in the procedure definition.

EXAMPLE

Use actual variable parameters, cost_1 and cost_2 to receive the values of

the variable price from the procedure. Make the main program compute and

print the total bill.

Program

 100 REMark Variable parameter

 110 LET num = 70

 120 item 3,cost_1

 130 item 4,cost_2

 140 LET bill = num + cost_1 + cost_2

 150 PRINT bill

 160 DEFine PROCedure item(num,price)

 170 IF num <= 3 THEN LET price = 300 + 10*num

 180 IF num >= 4 THEN LET price = 12*num

 190 END DEFine

Output

 448

The parameters num and price are both automatically local so there can be

no problems. The diagrams show how information passes from main program to

procedure and back

 +-----------+ Menu numbers +-----------+

 | | --------------------> | |

 | Main | | Procedure |

 | Program | | Item |

 | | <-------------------- | |

 +-----------+ prices +-----------+

That is enough about procedures and parameters for the present.

FUNCTIONS

You already know how a system function works. For example the function:

 SQRT(9)

computes the value, 3, which is the square root of 9. We say the function

returns the value 3. A function, like a procedure, can have one or more

parameters, but the distinguishing feature of a function is that it returns

exactly one value. This means that you can use it in expressions that you

already have. You can type:

 PRINT 2*SQRT(9)

and get the output 6. Thus a function behaves like a procedure with one or

more value parameters and exactly one variable parameter holding the

returned value: that variable parameter is the function name itself.

The parameters need not be numeric.

 LEN("string")

has a string argument but it returns the numeric value 6.

EXAMPLE

Re write the program of the last section which used price as a variable

parameter. Let price be the name of the function.

The value to be returned is defined by the RETurn statement as shown.

Program

 100 REMark FuNction with RETurn

 110 LET num = 70

 120 LET bill = num + price(3) + price(4)

 130 PRINT bill

 140 DEFine FuNction price(num)

 150 IF num <= 3 THEN RETurn 300 + 10*num

 160 IF num >= 4 THEN RETurn 12*num

 170 END DEFine

Output

 448

Notice the simplification in the calling of functions as compared with

procedure calls.

WHY PROCEDURES?

The ultimate concept of a procedure is that it should be a 'black box'

which receives specific information from 'outside' and performs certain

operations which may include sending specific information back to the

'outside: The 'outside' may be the main program or another procedure.

The term 'black box' implies that its internal workings are not important:

you only think about what goes in and what comes out. If for example, a

procedure uses a variable, count and changes its value, that might affect a

variable of the same name in the main program. Think of a mail order

company You send them an order and cash: they send you goods. Information

is sent to a procedure and it sends back action and/or new information.

 +-------------------+

 Order by cash | |

 ----------------------------> | Mail |

 | Order |

 Goods | Company |

 <---------------------------- | |

 +-------------------+

 +-------------------+

 Information | |

 ----------------------------> | |

 Action and/or | Procedure |

 new information | |

 <---------------------------- | |

 +-------------------+

You do not want the mail order company to use your name and address or

other information for other purposes. That would be an unwanted

side-effect. Similarly you do not want a procedure to cause unplanned

changes to values of variables used in the main program.

Of course you could make sure that there are no double uses of variable

names in a program. That will work up to a point but we have shown in this

chapter how to avoid trouble even if you forget what variables have been

used in any particular procedure.

A second aim in using procedures is to make a program modular Rather than

have one long main program you can break the job down into what Seymour

Papert, the inventor of LOGO, calls 'Mind-sized bites'. These are the

procedures, each one small enough to understand and control easily. They

are linked together by the procedure calls in a sequence or hierarchy

A third aim is to avoid writing the same code twice. Write it once as a

procedure and call it twice if necessary. Functions and procedures written

for one program can often be directly used, without change, by other

programs, and one might create a library of commonly used procedures and

functions.

We give below another example which shows how procedures make a program

modular.

EXAMPLE

An order is placed for six dishes at Chan's Take Away where the menu is:

 Item Number Dish Price

 1 Prawns 3.50

 2 Chicken 2.80

 3 Special 3.30

Write procedures for the following tasks.

1. Set up two three-element arrays showing menu, dishes and

 prices. Use a DATA statement.

2. Simulate an order for six randomly chosen dishes using a

 procedure, choose, and make a tally of the number of times

 each dish is chosen.

3. Pass the three numbers to a procedure, "waiter", which passes

 back the cost of the order to the main program using a

 parameter "cost". Procedure waiter calls two other procedures,

 "compute" and "cook", which compute the cost and simulate

 "cooking"

4. The procedure, "cook", simply prints the number required and

 the name of each dish.

The main program should call procedures as necessary, get the total cost

from procedure, "waiter" add 10% for a tip, and print the amount of the

total bill.

Design

This program illustrates parameter passing in a fairly complex way and we

will explain the program step by step before putting it together.

 100 REMark Procedures

 110 RESTORE 490

 120 DIM item$(3,7),price(3),dish(3)

 130 REMark *** PROGRAM ***

 140 LET tip = 0.1

 150 set_up

 -

 -

 210 DEFine PROCedure set_up

 220 FOR k = 1 TO 3

 230 READ item$(k)

 240 READ price(k)

 250 END FOR k

 260 END DEFine

 -

 -

 -

 490 DATA "Prawns",3.5,"Chicken",2.8,"Special",3.3

The names of menu items and their prices are placed in the arrays "item$"

and "price".

The next step is to choose a menu number for each of the six customers. The

tally of the number of each dish required will be kept in the array "dish".

 160 choose dish

 -

 -

 -

 270 DEFine PROCedure choose(dish)

 280 FOR pick = 1 TO 6

 290 LET number = RND(1 TO 3)

 300 LET dish(number) = dish(number) + 1

 310 END FOR pick

 320 END DEFine

Note that the formal parameter dish is both:

 local to procedure choose

 an array in main program

The three values are passed back to the global array also called dish.

These values are then passed to the procedure "waiter".

 170 waiter dish,bill

 -

 -

 -

 -

 330 DEFine PROCedure waiter(dish, cost)

 340 compute dish,cost

 350 cook dish

 360 END DEFine

The waiter passes the information about the number of each dish required to

the procedure, "compute", which computes the cost and returns it.

 370 DEFine PROCedure compute(dish, total)

 380 LET total = 0

 390 FOR k = 1 to 3

 400 LET total = total + dish(k)*price(k)

 410 END FOR k

 420 END DEFine

The waiter also passes information to the cook who simply prints the number

required for each menu item.

 430 DEFine PROCedure cook(dish)

 440 FOR c = 1 TO 3

 450 PRINT ! dish(c) ! item$(c) !

 460 END FOR c

 470 END DEFine

Again, the array dish in the procedure "cook" is local. It receives the

information which the procedure uses in its PRINT statement.

The complete program is listed below

Program

100 REMark Procedures

110 RESTORE 490

120 DIM item$(3,7),price(3),dish(3)

130 REMark *** PROGRAM ***

140 LET tip = 0.1

150 set_up

160 choose dish

170 waiter dish,bill

180 LET bill = bill + tip*bill

190 PRINT "Total cost is `" ; bill

200 REMark *** PROCEDURE DEFINITIONS ***

210 DEFine PROCedure set_up

220 FOR k = 1 TO 3

230 READ item$(k)

240 READ price(k)

250 END FOR k

260 END DEFine

270 DEFine PROCedure choose(dish)

280 FOR pick = 1 TO 6

290 LET number = RND(1 TO 3)

300 LET dish(number) = dish(number) + 1

310 END FOR pick

320 END DEFine

330 DEFine PROCedure waiter(dish,cost)

340 compute dish,cost

350 cook dish

360 END DEFine

370 DEFine PROCedure compute(dish,total)

380 LET total = 0

390 FOR k = 1 TO 3

400 LET total = total + dish(k)*price(k)

410 END FOR k

420 END DEFine

430 DEFine PROCedure cook(dish)

440 FOR c = 1 TO 3

450 PRINT ! dish(c) ! item$(c)

460 END FOR c

470 END DEFine

480 REMark *** PROGRAM DATA ***

490 DATA "Prawns",3.5,"Chicken",2.8,"Special",3.3

Output

The output depends on the random choice of dishes but the following choice

illustrates the pattern, and gives a sample of output.

 3 Prawns

 1 Chicken

 2 Special

 Total cost is `20.40

COMMENT

Obviously the use of procedures and parameters in such a simple program is

not necessary but imagine that each sub-task might be much more complex. In

such a situation the use of procedures would allow a modular build-up of

the program with testing at each stage. The above example merely

illustrates the main notations and relationships of procedures.

Similarly the next example illustrates the use of functions.

Note that in the previous example the procedures "waiter" and "compute"

both return exactly one value. Rewrite the procedures as functions and show

any other changes necessary as a consequence.

 DEFine FuNction waiter(dish)

 cook dish

 RETurn compute(dish)

 END DEFine

 DEFine FuNction compute(dish)

 LET total = 0

 FOR k = 1 TO 3

 LET total = total + dish(k) * price(k)

 END FOR k

 RETurn total

 END DEFine

The function call to "waiter" also takes a different form

 LET bill = waiter(dish)

This program works as before. Notice that there are fewer parameters though

the program structure is similar. That is because the function names are

also serving as parameters retuning information to the source of the

function call.

EXAMPLE

All the variables used as formal parameters in procedures or functions are

'safe' because they are automatically local. Which variables used in the

procedures or functions are not local? What additional statements would be

needed to make them local?

Program Changes

The variables "k", "pick" and "num" are not local. The necessary changes to

make them so are:

 LOCAL k

 LOCAL pick,num

TYPELESS PARAMETERS

Formal parameters do not have any type. You may prefer that a variable

which handles numbers has the appearance of a numeric variable and which

handles strings looks like a string variable, but however you write your

parameters they are typeless. To prove it, try the following program.

Program

 100 REMark Number or word

 110 waiter 2

 120 waiter "Chicken"

 130 DEFine PROCedure waiter(item)

 140 PRINT ! item !

 150 END DEFine

Output

 2 Chicken

The type of the parameter is determined only when the procedure is called

and an actual parameter 'arrives'.

SCOPE OF VARIABLES

Consider the following program and try to consider what two numbers will be

output.

 100 REMark scope

 110 LET number = 1

 120 test

 130 DEFine PROCedure test

 140 LOCal number

 150 LET number = 2

 160 PRINT number

 170 try

 180 END DEFine

 190 DEFine PROCedure try

 200 PRINT number

 210 END DEFine

Obviously the first number to be printed will be 2 but is the variable

number in line 200 global?

The answer is that the value of "number" in line 160 will be carried into

the procedure "try". A variable which is local to a procedure will be the

same variable in a second procedure called by the first.

Equally if the procedure "try" is called by the main program, the variable

"number" will be the same number in both the main program and procedure,

"try". The implications may seem strange at first but they are logical.

1. The variable "number" in line 110 is global.

2. The variable "number" in procedure "test" is definitely local to

 the procedure.

3. The variable "number" in procedure "try" 'belongs' to the part

 of the program which was the last call to it.

We have covered many concepts in this chapter because SuperBASIC functions

and procedures are very powerful. However you should not expect to use all

these features immediately. Use procedures and functions in simple ways at

first. They can be very effective and the power is there if you need it.

1. Six employees are identified by their surnames only. Each employee

 has a particular pension fund rate expressed as a percentage. The

 following data represent the total salaries and pension fund rates

 of the six employees.

 Benson 13,800 6.25

 Hanson 8,700 6.00

 Johnson 10,300 6.25

 Robson 15,000 7.00

 Thomson 6,200 6.00

 Watson 5,100 5.75

 Write procedures to:

 input the data into arrays.

 compute the actual pension fund contributions.

 output the lists of names and computed contributions.

 Link the procedures with a main program calling them in sequence.

2. Write a function "select" with two arguments "range" and "miss".

 The function should return a random whole number in the given

 "range" but it should not be the value of "miss".

 Use the function in a program which chooses a random PAPER colour

 and then draws random circles in random INK colours so that none

 is in the colour of PAPER.

3. Re-write the solution to exercise 1 so that a function "pension"

 takes salary and contribution rate as arguments and returns the

 computed pension contribution. Use two procedures, one to input

 the data and one to output the required information using the

 function "pension".

4. Write the following:

 a procedure which sets up a 'pack of cards'.

 a procedure which shuffles the cards.

 a function which takes a number as an argument and returns a

 string value describing the card.

 a procedure which 'deals' and displays four poker hands

 of five cards each.

 a main program which calls the above procedures.

 (see chapter 16 for discussion of a similar problem)

CHAPTER 16

SOME TECHNIQUES

In this final chapter we present some applications of concepts and

facilities already discussed and we show how some further ideas may be

applied.

SIMULATION OF CARD PLAYING

It is easy to store and manipulate "playing cards" by representing them

with the numbers 1 to 52. This is how you might convert such a number to

the equivalent card. Suppose, for example, that the number 29 appears. You

may decide that:

 cards 1-13 are hearts

 cards 14-26 are clubs

 cards 27-39 are diamonds

 cards 40 52 are spades

and you will know that 29 means that you have a "diamond". You can program

the QL to do this with:

 LET suit = (card-1) DIV 13

This will produce a value in the range 0 to 3 which you can use to cause

the appropriate suit to be printed. The value can be reduced to the range 1

to 13 by writing:

 LET value = card MOD 13

 IF value = 0 THEN LET value = 13

Program

The numbers 1 to 13 can be made to print Ace, 2, 3... Jack, Queen, King, or

if you prefer it, such phrases as "two of hearts" can be printed. The

following program will print the name of the card corresponding to your

input number.

 100 REMark Cards

 110 DIM suitname$(4,8),cardval$(13,5)

 120 LET f$ = " of"

 130 set_up

 140 REPeat cards

 150 INPUT "Enter a card number 1-52:" ! card

 160 IF card <1 OR card> 52 THEN EXIT cards

 170 LET suit = (card-1) DIV 13

 180 LET value = card MOD 13

 190 IF value = 0 THEN LET value = 13

 200 PRINT cardval$(value) ! f$! suitname$(suit)

 210 END REPeat cards

 220 DEFine PROCedure set_up

 230 FOR s = 1 TO 4 : READ suitname$(s)

 240 FOR v = 1 TO 13 : READ cardval$(v)

 250 END DEFine

 260 DATA "hearts","clubs","diamonds","spades"

 270 DATA "Ace","Two","Three","Four","Five","Six","Seven"

 280 DATA "Eight","Nine","Ten","Jack","Queen","King"

Input and Output

 13

 King of hearts

 49

 Ten of spades

 27

 Ace of diamonds

 0

COMMENT

Notice the use of DATA statements to hold a permanent file of data whIch

the program always uses. The other data which changes each time the program

runs is entered through an INPUT statement. If the input data was known

before running the program it would be equally correct to use another READ

and more DATA statements. This would give better control.

SEQUENTIAL DATA FILES

Numeric File

The following program will establish a file of one hundred numbers.

 100 REMark Number File

 110 OPEN NEW #6,mdv1_numbers

 120 FOR num = 1 TO 100

 130 PRINT #6,num

 140 END FOR num

 150 CLOSE #6

After running the program check that the filename 'numbers' is in the

directory by typing:

 DIR mdv1_numbers

You can get a view of the file without any special formatting by copying

from Microdrive to screen:

 COPY mdv1_numbers to scr

You can also use the following program to read the file and display its

records on the screen.

 100 REMark Read File

 110 OPEN_IN #6,mdv1_numbers

 120 FOR num = 1 TO 100

 130 INPUT #6,item

 140 PRINT ! item !

 150 END FOR num

 160 CLOSE #6

If you wish you can alter the program to get the output in a different

form.

Character file.

In a similar fashion the following programs will set up a file of one

hundred randomly selected letters and read them back.

 100 REMark Letter File

 110 OPEN NEW #6,mdv1_chfile

 120 FOR num = 1 TO 100

 130 LET ch$ = CHR$(RND(65 TO 90))

 140 PRINT #6,ch$

 150 END FOR num

 160 CLOSE #6

 100 REMark Get Letters

 110 OPEN IN #6,mdv1_chfile

 120 FOR num = 1 TO 100

 130 INPUT #6,item$

 140 PRINT ! item$!

 150 END FOR num

 160 CLOSE #6

SETTING UP A DATA FILE

Suppose that you wish to set up a simple file of names and telephone

numbers.

 RON 678462

 GEOFF 896487

 ZOE 249386

 BEN 584621

 MEG 482349

 CATH 438975

 WENDY 982387

The following program will do it.

 100 REMark Phone numbers

 110 OPEN NEW #6,mdv1_phone

 120 FOR record = 1 TO 7

 130 INPUT name$,num$

 140 PRINT #6;name$;num$

 150 END FOR record

 160 CLOSE #6

Type RUN and enter a name followed by the ENTER key and a number followed

by the ENTER key. Repeat this seven times.

Notice that the data is 'buffered'. It is stored internally until the

system is ready to transfer a batch to the Microdrive. The Microdrive is

only accessed once, as you can tell from looking and listening.

COPY A FILE

Once a file is established, it should be copied immediately as a back-up.

To do this type:

 COPY mdv1_phone TO mdv2_phone

READ A FILE

You need to be certain that the file exists in a correct form so you should

read it back from a Microdrive and display it on the screen. You can do

this easily using:

 COPY mdv2_phone TO scr

The output to the screen will not provide spaces automatically between the

name and the number but it will provide a 'newline' at the end of each

record. The output will be:

 RON678462

 GEOFF896487

 ZOE249386

 BEN584621

 MEG482349

 CATH438975

 WENDY982387

You can get a more controlled presentation of the data with the following

program.

 100 REMark Read Phone Numbers

 110 OPEN_IN #5,mdv1_phone

 120 FOR record = 1 TO 7

 130 INPUT #5,rec$

 140 PRINT,rec$

 150 END FOR record

 160 CLOSE #5

The data is printed, as before, but this time each pair of fields is held

in the variable rec$ before being printed on the screen. You have the

opportunity to manipulate it into any desired form.

Note that more than one string variable may be used at the file creation

stage with INPUT and PRINT but the whole record so created may be retrieved

from the Microdrive file with a single string variable (rec$ in the above

example).

AN INSERTION SORT

The following colours are available in the low resolution screen mode (in

code number order 0-7).

 black blue red magenta green cyan yellow white

EXAMPLE

Write a program to sort the colours into alphabetical order using an

"insertion" sort. We place the eight colours in an array "colour$" which we

divide into two parts:

 +-----------------------+

 | |

 v |

+-----+-----+-----+-----+- - -+ +-----+-----+-----+-----+

| | | ---|--> | : | | | | |

| | | | | : | | | | |

+-----+-----+-----+-----+- - -+ +-----+-----+-----+-----+

 SORTED PART UNSORTED PART

We take the leftmost item of the unsorted part and compare it with each

item, from right to left, in the sorted part until we find its right place.

As we compare we shuffle the sorted items to the right so that when we find

the right place to insert we can do so immediately without further

shuffling.

Suppose we have reached the point where four items are sorted and we now

focus on green, the leftmost item in the unsorted part.

 |

 1 2 3 4 | 5 6 7 8

 black blue magenta red | green cyan yellow white

 sorted part | unsorted part

 | ^

 |

1. We place green in the variable, comp$ and set a variable, p, to 5.

2. The variable, p, will eventually indicate where we think green

 should go. When we know that green should move left, then we

 decrease the value of p.

3. We compare green with red. If green is greater than (nearer to Z)

 or equal to red we exit and green stays where it is.

 Otherwise we copy red in to position 5 thus and decrease the value

 of p thus:

 |

 1 2 3 4 | 5 6 7 8

 black blue magenta red | red cyan yellow white

 |

 ^ |

 |

4. We now repeat the process but this time we are comparing green with

magenta and we get:

 |

 1 2 3 4 5 | 6 7 8

 black blue magenta magenta red | cyan yellow white

 |

 ^ |

 |

5. Finally we move left again comparing green with blue. This time there is

no need to move or change anything. We exit from the loop and place green

in position 3. We are then ready to focus on the sixth item, cyan.

 |

 1 2 3 4 5 | 6 7 8

 black blue green magenta red | cyan yellow white

 |

 | ^

 |

PROBLEM ANALYSIS

1. We will first store the colour$ in an array colour$(8) and use:

 comp$ the current colour being compared

 p to point at the position where we think the colour in

 comp$ might go.

2. A FOR loop will focus attention on positions 2 to 8 in turn (a

 single item is already sorted).

3. A REPeat loop will allow comparisons until we find where the comp$

 value actually goes.

 REPeat compare

 IF comp$ need go no further left EXIT

 copy a colour into the position on its right

 and decrease p

 END REPeat compare

4. After EXIT from the REPeat loop the colour in comp$ is placed

 in position p and the FOR loop continues.

Program Design

1 Declare array colour$

2 Read colours into the array

3 FOR item = 2 TO 8

 LET p = item

 LET comp$ = colour$(p)

 REPEAT compare

 IF comp$ > = colour$(p-1) : EXIT compare

 LET colour$(p) = colour$(p-1)

 LET p = p - 1

 END REPeat compare

 LET colour$(p) = comp$

 END FOR item

4 PRINT sorted array colour$

5 DATA

Further testing reveals a fault. It arises very easily if we have data in

which the first item is not in its correct position at the start. A simple

change of initial data to:

 red black blue magenta green cyan yellow white

reveals the problem. We compare black with red and decrease p to the value,

1. We come round again and try to compare black with a variable

colour$(p-1) which is colour$(0) which does not exist.

This is a well-known problem in computing and the solution is to "post a

sentinel" on the end of the array. Just before entering the REPeat loop we

need:

 LET colour$(0) = comp$

Fortunately SuperBASIC allows zero subscripts, otherwise the problem would

have to be solved at the expense of readability.

MODIFIED PROGRAM

 100 REM Insertion Sort

 110 DIM colour$(8,7)

 120 FOR item = 1 TO 8 : READ colour$(item)

 130 FOR item = 2 TO 8

 140 LET p=item

 150 LET comp$ = colour$(p)

 160 LET colour$(0) = comp$

 170 REPeat compare

 180 IF comp$ >= colour$(p-1) : EXIT compare

 190 LET colour$(p) = colour$(p-1)

 200 LET p = p-1

 210 END REPeat compare

 220 LET colour$(p) = comp$

 230 END FOR item

 240 PRINT"Sorted..." ! colour$

 250 DATA "black","blue","magenta","red"

 260 DATA "green","cyan","yellow","white"

COMMENT

1. The program works well. It has been tested with awkward data:

 A A A A A A A

 B A B A B A B

 A B A B A B A

 B C D E F G H

 G F E D C B A

2. An insertion sort is not particularly fast, but it can be useful

 for adding a few items to an already sorted list. It is

 sometimes convenient to allow modest amounts of time frequently

 to keep items in order rather than a substantial amount of time

 less frequently to do a complete re-sorting.

You now have enough background knowledge to follow a development of the

handling of the file of seven names and telephone numbers.

SORTING A MICRODRIVE FILE

In order to sort the file 'phone' into alphabetical order of names we must

read it into an internal array, sort it, and then create a new file which

will be in alphabetical order of names.

It is never good practice to delete a file before its replacement is

clearly established and proven correct. You should therefore copy the file

first, as security using a different name. The required processes are as

follows:

 1. Copy the file 'phone' to 'phone_temp'

 2. Read the file 'phone' into an array

 3. Sort the array.

 4. Pause to check that everything is in order

 5. Delete file 'phone'.

 6. Create new file 'phone'.

This is all the program needs to do but the new file should be immediately

checked using:

 COPY mdv1_phone TO scr

Any further necessary checks should be carried out then:

 DELETE mdv2 phone

 COPY mdv1_phone TO mdv2_phone

 COPY mdv1_phone TO scr

 DELETE mdv1_phone_temp

The above operations complete the process of substituting a sorted file for

the original unsorted one in both master and back-up files.

ARRAY PARAMETERS

In the following program we illustrate the passing of complete arrays

between main program and procedure. The data passes in both directions.

In line 40 the array "row" holding the numbers 1,2,3 is passed to the

procedure, "addsix". The parameter "come", receives the incoming data and

the procedure adds six to each element. The array parameter, "send", at

this point holds the numbers 7,8,9.

These numbers are passed back to the main program to become the values of

array, "black". The values are printed to prove that the data has moved as

required.

 +----------------------------------+

 | |

 MAIN | | Screen

 PROGRAM | row back | ------- Output

 | | ^ |

 +------ | ----------------- | -----+

 | |

 | |

 | |

 +------ | ----------------- | -----+

 | | | |

 PROCEDURE | come ----> +6 ----> send |

 addsix | |

 | |

 +----------------------------------+

Program

 100 REMark Pass Arrays

 110 DIM row(3),back(3)

 120 FOR k = 1 TO 3 : LET row(k) = k

 130 addsix row,back

 140 FOR k = 1 TO 3 : PRINT ! back(k) !

 150 DEFine PROCedure addsix(come,send)

 160 FOR k = 1 TO 3 : LET send(k) = come(k) + 6

 170 END DEFine

Output

 7 8 9

The following procedure receives an array containing data to be sorted. The

zero element will contain the number of items. Note that it does not matter

whether the array is numeric or string. The principle of coercion will

change string to numeric data if necessary.

A second point of interest is that the array element, come(0), is used for

two purposes:

 it carries the number of items to be sorted

 it is used to hold the item currently being placed.

 100 DEFine PROCedure sort(come,send)

 110 LET num = come(0)

 120 FOR item = 2 TO num

 130 LET p = item

 140 LET come(0) = come(p)

 150 REPeat compare

 160 IF come(0) >= come(p-1) : EXIT compare

 170 LET come(p) = come(p-1)

 180 LET p = p - 1

 190 END REPeat compare

 200 LET come(p) = come(0)

 210 END FOR item

 220 FOR k = 1 TO 7 : send(k) = come(k)

 230 END DEFine

The following additional lines will test the sort procedure. First type

AUTO 10 to start the line numbers from 10 onwards.

 10 REMark Test Sort

 20 DIM row$(7,3),back$(7,3)

 30 LET row$(0) = 7

 40 FOR k = 1 TO 7 : READ row$(k)

 50 sort row$,back$

 60 PRINT ! back$!

 70 DATA "EEL","DOG","ANT","GNU","CAT","BUG","FOX"

Output

 ANT BUG CAT DOG EEL FOX GNU

COMMENT

This program illustrates how easily you can handle arrays in SuperBASIC.

All you have to do is use the array names for passing them as parameters or

for printing the whole array. Once the procedure is saved you can use MERGE

mdv1_sort to add it to a program in main memory.

You now have enough understanding of techniques and syntax to handle a more

complex screen layout. Suppose you wish to represent the hands of four card

players. A hand can be represented by something like:

 H: A 3 7 Q

 C: 5 9 J

 D: 6 10 K

 S: 2 4 Q

To help the presentation the Hearts and Diamonds will be printed in red and

the Clubs and Spades in black. A suitable STRIP colour might be white. The

general background could be green and a table may be a colour obtained by

mixing two colours.

METHOD

Since a substantial amount of character printing is involved it is best to

start planning in terms of the pixel screen. You can see that you need to

provide for twelve lines of characters with some space between lines and a

total screen height of 256 pixels.

 +--+

 | |

 | XXXXXXXXXX |

 | XXXXXXXX |

 | XXXXXXXXX |

 | XXXXXXXX |

 | |

 | +-----------+ |

 | | | |

 | XXXXXXX | | XXXXXXXXXX |

 | XXXXXXXXX | | XXXXXX |

 | XXXXXXX | | XXXXXXXXX |

 | XXXXXXXX | | XXXXXXX |

 | | | |

 | +-----------+ |

 | |

 | XXXXXXXXXXX |

 | XXXXXXX |

 | XXXXXXXX |

 | XXXXXXXXXX |

 | |

 +--+

It is useful to recall that the possible character heights are 10 pixels or

20 pixels. It is obvious that the 10 pixel height must be used to allow

space for a proper layout.

The number of character positions across the screen must be estimated. If

we adopt the convention of "T" for ten instead of "10" all card values can

be represented as a single character. Suppose that we also allow a maximum

of eight cards of the same suit as a first approach. We can reconsider the

problem again if necessary That would require a total of 10 characters for

each hand. The across requirement is therefore:

 west hand + table width + east hand

Allowing a space between characters that would be:

 20 + table width + 20

The decision now depends on which screen mode you choose. The 256 mode will

cope with the problem, as you will see later, but first we will work in 512

pixel mode. The smallest character width is six pixels which would give a

total of 240 pixels + table width. The diagram will have some balance if we

have a table width of about half of 240.

We should therefore experiment with a table width of about 120 pixels which

may be adjusted. A little testing produced the layout shown.

 +--+

 | +--+ |

 | | | |

 | | H: 5 9 K | |

 | | C: A Q | |

 | | D: A 4 6 J | |

 | | S: A 2 3 T | |

 | | | |

 | | +-----------+ | |

 | | | | | |

 | | H: A | | H: 6 8 T Q | |

 | | C: 7 J K | | C: 2 4 5 6 8 | |

 | | D: 5 8 9 K | | D: 7 T Q | |

 | | S: 4 5 7 J K | | S: 6 | |

 | | | | | |

 | | +-----------+ | |

 | | | |

 | | H: 2 3 4 7 J | |

 | | C: 3 9 T | |

 | | D: 2 3 | |

 | | S: 8 9 Q | |

 | | | |

 | +--+ |

 | |

 +--+

WINDOW 440 x 220 at 35,15

 Green with black border of 10 units

TABLE 100 x 60 at 150,60

 Chequerboard stipple of red and green

HANDS Room for at least eight card symbols

 Initial cursor positions are:

 north 150,10

 east 260,60

 south 150,130

 west 30,60

CHARACTER SlZE Standard for 512 mode

NUMBER OF PIXELS between lines is 12

CHARACTER COLOUR White

CHARACTER STRIP Red for Hearts and Diamonds

 Black for Clubs and Spades

VARIABLES

card(52) stores card numbers

sort(13) used to sort each hand

tok$(4,2) stores tokens H:, C:, D:, S:

kmcmh working loop variables

ran random position for card exchange

temp used in card exchange

item card to be inserted in sort

dart pointer to find position in sort

comp hold card number in sort

inc pixel increment in card rows

seat current 'deal' position

ac,dn cursor position for characters

row current row for characters

lin$ builds up row of characters

max highest card number

p points to card position

n current number of card

PROCEDURES

shuffle shuffles 52 cards

split splits cards into four hands and calls sortem to

 sort each hand

sortem sorts 13 cards in ascending order

layout provides background colour border and table

printem prints each line of card symbols

getline gets one row of cards and converts numbers into the

 symbols A,2,3,4,5,6,7,8,9,T,J,Q,K

PROGRAM DESIGN OUTLINE

1. Declare arrays, pick up 'tokens' and place 52 numbers in array

 'card'.

2. Shuffle cards.

3. Split into 4 hands and sort each.

4. OPEN screen window.

5. Fix the screen layout.

6. Print the four hands.

7. CLOSE the screen window.

 100 DIM card(52),sort(13),tok$(4,2)

 110 FOR k = 1 TO 4 : READ tok$(k)

 120 FOR k = 1 TO 52 : LET card(k) = k

 130 shuffle

 140 split

 150 OPEN #6,scr_440x220a35x15

 160 layout

 170 printem

 180 CLOSE #6

 190 DEFine PROCedure shuffle

 200 FOR c = 52 TO 3 STEP -1

 210 LET ran = RND(1 to c-1)

 220 LET temp = card(c)

 230 LET card(c) = card(ran)

 240 LET card(ran) = temp

 250 END FOR c

 260 END DEFine

 270 DEFine PROCedure split

 280 FOR h = 1 TO 4

 290 FOR c = 1 TO 13

 300 LET sort(c) = card((h-1)*13+c)

 310 END FOR c

 320 sortem

 330 FOR c = 1 TO 13

 340 LET card((h-1)*13+c) = sort(c)

 350 END FOR c

 360 END FOR h

 370 END DEFine

 380 DEFine PROCedure sortem

 390 FOR item = 2 TO 13

 400 LET dart = item

 410 LET comp = sort(dart)

 420 LET sort(0) = comp

 430 REPeat compare

 440 IF comp >= sort(dart-1) : EXIT compare

 450 LET sort(dart) = sort(dart-1)

 460 LET dart = dart - 1

 470 END REPeat compare

 480 LET sort(dart) = comp

 490 END FOR item

 500 END DEFine

 510 DEFine PROCedure layout

 520 PAPER #6,4 : CLS #6

 530 BORDER #6,10,0

 540 BLOCK #6,100,60,150,60,2,4

 550 END DEFine

 560 DEFine PROCedure printem

 570 LET inc = 12 : INK #6,7

 580 LET p = 0

 590 FOR seat = 1 TO 4

 600 READ ac,dn

 610 FOR row = 1 TO 4

 620 getline

 630 CURSOR #6,ac,dn

 640 PRINT #6,1in$

 650 LET dn = dn + inc

 660 END FOR row

 670 END FOR seat

 680 END DEFine

 690 DEFine PROCedure getline

 700 IF row MOD 2 = 0 THEN STRIP #6,0

 710 IF row MOD 2 = 1 THEN STRIP #6,2

 720 LET lin$ = tok$(row)

 730 LET max = row*13

 740 REPeat one_suit

 750 LET p = p + 1

 760 LET n = card(p)

 770 IF n >max THEN p = p-1 : EXIT one_suit

 780 LET n = n MOD 13

 790 IF n = 0 THEN n = 13

 800 IF n = 1 : LET ch$ = "A"

 810 IF n >= 2 AND n <= 9 : LET ch$ = n

 820 IF n = 10 : LET ch$ = "T"

 830 IF n = 11 : LET ch$ = "J"

 840 IF n = 12 : LET ch$ = "Q"

 850 IF n = 13 : LET ch$ = "K"

 860 LET lin$ = lin$ & " " & ch$

 870 IF p = 52 : EXIT one_suit

 880 IF card(p)>card(p+1) : EXIT one_suit

 890 END REPeat one_suit

 900 END DEFine

 910 DATA "H:","C:","D:","S:"

 920 DATA 150,10,260,60,150,130,30,60

COMMENT

The program works in the 256 mode. But the various lines of card symbols

may overlap the "table" or overflow at the edge of the window. A simple

change in procedure "getline" from:

 860 LET lin$ = lin$ & " " & ch$

to

 860 LET lin$ = lin$ & ch$

will correct this. The spaces between characters disappear but the larger

sized characters enable the rows to be easily readable. The program thus

works well in either graphics mode.

CONCLUSION

We have tried to show how you can use SuperBASIC to solve problems. We have

shown how simple tasks can be performed in simple ways. When the task is

inherently complex, like manipulating arrays or designing screen graphics,

SuperBASIC enables it to be handled efficiently with maximum possible

clarity.

If you were a beginner and you have worked through a fair proportion of

this guide you will have started well on the road to good programming. If

you were already experienced, we hope that you will appreciate and exploit

the extra features offered by SuperBASIC.

So enormous is the range of tasks which can be done with SuperBASIC that we

have only been able to touch a fraction of them in this guide. We cannot

guess at which of the thousands of possibilities you will attempt, but we

hope that you will find them fruitful, stimulating and fun.

ANSWERS TO SELF TEST ON CHAPTER 1

1. Use the BREAK sequence to abandon a running program because:

 a) something is wrong and you do not understand it

 b) it is longer of interest

 c) any other problem (three points)

2. The RESET button is on the right hand side of the computer

3. The effect of the RESET button is rather like switching the

 computer off and on again.

4. The SHIFT key:

 a) is only effective while you hold it down whereas the CAPS

 LOCK key stays effective after you have pressed it. (one point)

 b) The SHIFT key affects all the letter digit and symbol keys,

 but the CAPS LOCK key affects only letters. (one point)

5. The CTRL <- (CTRL left arrow) keys delete the previous character

 just left of the cursor

6. The [ENTER] key causes a message or instruction to be entered for

 action by the computer.

7. We use [ENTER] for the ENTER key

8. CLS [ENTER] causes part of the screen to be cleared.

9. RUN [ENTER] causes a stored program to be executed.

10. LIST [ENTER] causes a stored program to be displayed on the screen.

11. NEW [ENTER] clears the main memory ready for a new program.

12. Keywords of SuperBASIC are recognised in upper or lower case.

13. The part of a keyword displayed in upper case is the allowed

 abbreviation.

CHECK YOUR SCORE

14 to 16 is very good. Carry on reading.

12 or 13 is good, but re-read some parts of chapter one.

10 or 11 is fair, but re-read some parts of chapter one and do

 the test again.

Under 10. You should work carefully through chapter one again and

 repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 2

1. An internal number store is like a pigeon hole which you can

 name and put numbers into.

2. A LET statement which uses a particular name for the first time

 will cause a pigeon hole to be created and named, for example

 LET count = 1 [ENTER] (1 point)

 A READ statement which uses a name for the first time will have

 the same effect, for example:

 READ count [ENTER] (1 point)

3. You can find the value of a pigeon hole with a PRINT statement.

4. The technical name for a pigeon hole is 'variable' because its

 values can vary as a program runs.

5. A variable gets its first value when it is first used in a LET

 statement, INPUT statement or READ statement.

6. A change in the value of a variable is usually caused by the

 execution of a LET statement.

7. The = sign in a LET statement represents an operation:

 'Evaluate whatever is on the right hand side and place it

 in the pigeon hole named on the left hand side: that is

 'Let the left hand side become equal to the right hand side'.

8. An un-numbered statement is executed immediately.

9. A numbered statement is not executed immediately. It is stored.

10. The quotes in a PRINT statement enclose text which is to be printed.

11. When quotes are not used you are printing out the value of a variable.

12. An INPUT statement makes the program pause so that you can type data

 at the keyboard.

13. DATA statements are never executed.

14. They are used to provide values for the variables in READ statements.

15. The technical word for the name of a pigeon hole is 'identifier'.

16. Example answers:

 i. day

 ii. day_23

 iii. day_of_week (3 points)

17. The space bar is especially important for putting spaces after

 or before keywords so that they cannot be taken as identifiers

 (names) chosen by the user.

18. Freely chosen identifiers are important because they help you to

 make programs easier to understand. Such programs are less prone

 to errors and more adaptable.

CHECK YOUR SCORE

18 to 21 is very good. Carry on reading.

16 or 17 good but re-read some parts of chapter two.

14 or 15 fair, but re-read some parts of chapter two and do the

 test again.

Under 14 you should work carefuly through chapter two again and

 repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 3

1. A pixel is the smallest area of light that can be displayed on

 the screen.

2. There are 256 pixel positions across the low resolution mode.

3. There are 256 pixel positions from top to bottom in the low

 resolution mode.

4. An address is determined by.

 the up value, 0 to 100

 the across value, 0 to a number computed by the system

5. There are eight colours available in the low resolution mode

 including black and white.

6. i. LINE draws a line, e.g. LINE a,b TO x,y

 ii. INK selects a colour for drawing, e.g. INK 5

 iii. PAPER selects a background colour e.g. PAPER 7

 iv. BORDER draws a border, e.g. BORDER 1,5

7. REPeat name....END REPeat name.

8. A REPeat loop terminates when an 'EXIT name' statement is executed.

9. Loops in SuperBASIC have names so that it is possible to EXIT from

 them in a straightforward way. It is not necessary to work out line

 numbers in advance.

CHECK YOUR SCORE

11 to 13 is very good. Carry on reading.

8 to 10 is good but re-read some parts of chapter three.

6 or 7 is fair but re-read some parts of chapter three and do

 the test again.

Under 6. You should work carefully through chapter three again and

 repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 4

1. A character string is a sequence of characters such as letters,

 digits or other symbols.

2. The term, 'character string', is often abbreviated to 'string'.

3. A string variable name always ends with $.

4. Names such as word$ are sometimes pronounced 'worddollar'

5. The keyword LEN will find the length or number of characters in

 a string. For example, if the variable meat$ has the value 'steak'

 then the statement:

 PRINT LEN(meat$)

 will output 5.

6. The symbol for joining two strings is &.

7. The limits of a string may be defined by quotes or apostrophes.

8. The quotes are not part of the actual string and are not stored.

9. The function is CHR$. You must use it with brackets as in CHR$(66)

 or with brackets as in CHR$(RND(65 TO 67)).

10.You generate random letters with statements like:

 lettercode = RND(65 TO 90)

 PRINT CHR$(lettercode)

CHECK YOUR SCORE

9 or 10 is very good. Carry on reading.

7 or 8 is good but re-read some parts of chapter four

5 or 6 is fair but re-read some parts of chapter four and do the

 test again.

Under 5 You should work carefully through chapter four again and

 repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 5

1. Lower case letters for variable names or loop names contrast with

 the keywords which are at least partly displayed in upper case.

2. Indenting reveals clearly what is the extent and content of loops

 (and other structures).

3. Identifiers (names) should normally be chosen so that they mean

 something, for example, count or word$ rather than C or W$

4. You can edit a stored program by:

 replacing a line

 inserting a line

 deleting a line (three points)

5. The ENTER key must be used to enter a command or program line.

6. The word NEW will wipe out the previous SuperBASIC program in the

 QL and will ensure that a new program which you enter will not be

 merged with an old one.

7. If you wish a line to be stored as part of a program then you must

 use a line number.

8. The word RUN followed by [ENTER] will cause a program to execute.

9. The word REMark enables you to put into a program information which

 is ignored at execution time.

10.The keywords SAVE and LOAD enable programs to be stored on and

 retrieved from cartridges. (two points).

CHECK YOUR SCORE

12 to 14 is very good. Carry on reading.

10 or 11 is good but re-read some parts of chapter five.

8 or 9 is fair but re-read some parts of chapter five and do

 the test again.

Under 8 You should re-read chapter five carefully and do the test

 again.

ANSWERS TO SELF TEST ON CHAPTER 6

1. It is not easy to think of many different variable names for

 storing the data. If you can think of enough names, every one has

 to be written in a LET statement or a READ statement if you do

 not use arrays.

2. A number called the subscript, is part of an array variable name.

 All the variables in an array share one name but each has a

 different subscript.

3. You must 'declare' an array giving its size (dimension) in a DIM

 statement usually placed near the beginning of a program before

 the declared array is used.

4. The distinguishing number of an array variable is called the

 subscript.

5. Houses in a street share the same street name but each has its

 own number.

 Beds in a hospital ward may share the name of the ward but each

 bed may be numbered.

 Cells in a prison block may have a common block name but a

 different number

 Holes on a golf course, e.g. the fifth hole at Royal Birkdale.

6. A FOR loop terminates when the process corresponding to the last

 value of the loop variable has been completed.

7. A FOR loop's name is also the name of the variable which controls

 the loop.

8. The two phrases for this variable are 'loop variable' or

 'control variable'.

9. The values of a loop variable may be used as subscripts for

 array variable names. Thus, as the loop proceeds, each array

 variable is 'visited' once.

10. Both FOR loops and REPeat loops:

 a. have an opening keyword:

 REPeat , FOR

 b. have a closing statement:

 END REPeat name, END FOR name

 c have a loop name.

 Only the FOR loop has

 d. a loop variable or control variable. (four points)

CHECK YOUR SCORE

This test is more searching than the previous ones.

15 or 16 is excellent. Carry on reading.

13 or 14 is very good but think a bit more about some of the ideas.

 Look at programs to see how they work.

11 or 12 is good but re-read some parts of chapter six.

8 to 10 is fair but re-read some parts of chapter six and do the

 test again.

Under 8 You should re-read chapter six carefully and do the test again.

ANSWERS TO SELF TEST ON CHAPTER 7

1. We normally break down large or complex jobs into smaller tasks

 until they are small enough to be completed.

2. This principle can be applied in programming by breaking the

 total job down and writing a procedure for each task.

3. A simple procedure is:

 a separate block of code

 properly named. (two points)

4. A procedure call ensures that:

 the procedure is activated

 control returns to just after the calling point. (two points)

5. Procedure names can be used in a main program before the procedures

 have been written. This enables you to think about the whole job and

 get an overview without worrying about the detail.

6. If you write a procedure definition before using its name you can

 test it and then when it works properly forget the details. You

 need only remember its name and roughly what it does.

7. A programmer who can write up to thirty line programs can break down

 a complex task into procedures in such a way that none is more than

 thirty lines and most are much less. In this way he need only worry

 about one bit of the job at a time.

8. The use of a procedure would save memory space if it is necessary

 to call it more than once from different parts of a program. The

 definition of a procedure only occurs once but it can be called as

 often as necessary.

9. A main program can place information in 'pigeon-holes' by means of

 LET or READ statements. These 'pigeon holes' can be accessed by

 the procedure. Thus the procedure uses information originally set

 up by the main program.

 A second method is to use parameters in the procedure call. These

 values are passed to variables in the procedure definition which

 then uses them as necessary.

10.An actual parameter is the actual value passed from a procedure

 call in a main program to a procedure.

11. A formal parameter is a variable in a procedure definition

 which receives the value passed to the procedure by the main

 program.

CHECK YOUR SCORE

This is a searching test. You may need more experience of using procedures

before the ideas can be fully appreciated. But they are very powerful and,

when understood, extremely helpful ideas. They are worth whatever effort is

necessary

12 to 14 excellent. Read on with confidence.

10 or 11 very good. Just check again on certain points.

8 or 9 good but re-read some parts of chapter seven.

6 or 7 fair but re-read some parts of chapter seven. Work

 carefully through the programs writing down all changes

 in variable values. Then do the test again.

Under 6 read chapter seven again. Take it slowly working all the

 programs. These ideas may not be easy but they are worth

 the effort. When you are ready, take the test again.

QL Keywords

The Keyword Reference Guide lists all SuperBASIC keywords in

alphabetical order: A brief explanation of the keywords function is

given followed by loose definition of the syntax and examples of

usage. An explanation of the syntax definition is given in the

Concept Reference Guide under the entry syntax.

Each keyword entry indicates to which, if any, group of operations it

relates, i.e. DRAW is a graphics operation and further information can

be obtained from the graphics section of the Concept Reference Guide.

Sometimes it is necessary to deal with more than one keyword at a

time, i.e. IF, ELSE, THEN, END, IF, these are all listed under IF.

An index is provided which attempts to cover all possible ways you

might describe a SuperBASIC keyword. For example the clear screen

command, CLS, is also listed under clear screen and screen clear.

01984 SINCLAIR RESEARCH LIMITED

ABS maths functions

ABS returns the absolute value of the parameter. It will return the

value of the parameter if the parameter is positive and will return

zero minus the value of the parameter if the parameter is negative.

syntax. ABS(numeric_expression)

example: i. PRINT ABS(0.5)

 ii. PRINT ABS(a-b)

ACOS, ASIN

ACOT, ATAN maths functions

ACOS and ASIN will compute the arc cosine and the arc sine

respectively. ACOT will calculate the arc cotangent and ATAN will

calculate the arc tangent. There is no effective

limit to the size of the parameter.

syntax: angle:= nunieric_expression {in radians}

ACOS (angle)

ACOT (angle)

ASIN (angle)

ATAN (angle)

example: i. PRINT ATAN(angle)

 ii. PRINT ASIN(1)

 iii. PRINT ACOT(3.6574)

 iv. PRINT ATAN(a-b)

ADATE clock

ADATE allows the clock to be adjusted.

syntax: seconds:= numeric_expression

ADATE seconds

example:

 i. ADATE 3600 {will advance the clock 1 hour}

ii. ADATE -60 {will move the clock back 1 minute}

ARC

ARC_R graphics

ARC will draw an arc of a circle between two specified points in the

window attached to the default or specified channel. The end points of

the arc are specified using the graphics co-ordinate system.

Multiple arcs can be drawn with a single ARC command.

The end points of the are can be specified in absolute coordinates

(relative to the graphics origin or in relative coordinates (relative

to the graphics cursor). If the first point is omitted then the are is

drawn from the graphics cursor to the specified point through the

specified angle.

ARC will always draw with absolute coordinates, while ARC_R will

always draw relative to the graphics cursor.

syntax: x:= numeric_expression

 y:= numeric_expression

 angle:= numeric_expression (in radians)

 point:= x,y

 parameter_2:= | TO point, angle (1)

 | ,point TO point,angle (2)

 parameter_1:= | point TO point,angle (1)

 | TO point,angle (2)

ARC [channel,] parameter_1 *[parameter_2]*

ARC_R [channel,] parameter_1 *[parameter_2]*

where (1) will draw from the specified point to the next specified

point turning through the specified angle

 (2) will draw from the the last point plotted to the specified

point turning through the specified angle

example: i. ARC 15,10 TO 40,40,PI/2

 {draw an are from 15,10 to 40,40 turning through PI/2 radians}

 ii. ARC TO 50,50,PI/2

 {draw an are from the last point plotted to 50,50 turning through

PI/2 radians}

 iii. ARC_R 10,10 TO 55,45,0.5

{draw an are, starting 10,10 from the last point plotted to 55,45

from the start of the are, turning through 0.5 radians}

AT windows

AT allows the print position to be modified on an imaginary row/column

grid based on the current character size. AT uses a modified form of

the pixel coordinate system where (row O, column O) is in the top left

hand corner of the window. AT affects the print position in the window

attached to the specified or default channel.

syntax: line:= numeric_expression

 column:= numeric_expression

AT [channel,] line , column

example: AT 10,20 : PRINT "This is at line 10 column 20"

AUTO

AUTO allows line numbers to be generated automatically when entering

programs directly into the computer. AUTO will generate the next

number in sequence and will then enter the SuperBASIC line editor

while the line is typed in. If the line already exists then a copy of

the line is presented along with the line number. Pressing ENTER at

any point in the line will check the syntax of the whole line and will

enter it into the program.

AUTO is terminated by pressing CTRL-SPACE

syntax: first_line:= line_number

 gap:= numeric_expression

AUTO [first_line] [,gap]

example:

 i. AUTO {start at line 100 with intervals of 10}

 ii. AUTO 10,5 {start at line 10 with intervals of 5}

iii. AUTO ,7 {start at line 100 with intervals of 7}

BAUD communications

BAUD sets the baud rate for communication via both serial channels.

The speed of the channels cannot be set independently.

syntax: rate:= numeric_expression

BAUD rate

The value of the numeric expression must be one of the supported baud

rates on the QL:

 75

 300

 600

 1200

 2400

 4800

 9600

 19200 (transmit only)

If the selected baud rate is not supported, then an error will be

generated.

Example: i. BAUD 9600

 ii. BAUD print_speed

BEEP sound

BEEP activates the inbuilt sound functions on the QL. BEEP can accept

a variable number of parameters to give various levels of control over

the sound produced. The minimum specification requires only a duration

and pitch to be specified. BEEP used with no parameters will kill any

sound being generated.

syntax: duration:= numeric_expression {range -32768..32767}

 pitch:= numeric_expression {range 0..255}

 grad_x:= numeric_expression {range -32768..32767}

 grad_y:= numeric_expression {range -8..7}

 wrap:= numeric_expression {range 0..15}

 fuzzy:= numeric_expression {range 0..15}

 random:= numeric_expressian {range 0..15}

BEEP [duration, pitch

 [,pitch_2, grad_x, grad_y

 [, wrap

 [, fuzzy

 [, random]]]]]

duration - specifies the duration of the sound in units of 72

microseconds. A duration of zero will run the sound until

terminated by another BEEP command.

pitch - specifies the pitch of the sound.A pitch of 1 is high and

255 is low.

Pitch_2 - specifies an second pitch level between which the sound

will 'bounce'

grad_x - defines the time interval between pitch steps.

grad_y - defines the size of each step, grad_x and grad_y control the

rate at which the pitch bounces between levels.

wrap - will force the sound to wrap around the specified number

of times. If wrap is equal to 15 the sound will wrap around forever:

fuzzy - defines the amount of fuzziness to be added to the sound.

random - defines the amount of randomness to be added to the sound.

BEEPING sound

BEEPING is a function which will return zero (false) if the QL is

currently not beeping and a value of one (true) if it is beeping.

syntax: BEEPING

example: 100 DEFine PROCedure be quiet

 110 BEEP

 120 END DEFine

 130 IF BEEPING THEN be quiet

BLOCK windows

BLOCK will fill a block of the specified size and shape, at the

specified position relative to the origin of the window attached to

the specified, or default channel. BLOCK uses the pixel coordinate

system.

syntax: width:= numeric_expression

 height:= numeric_expression

 x:= numeric_expression

 y:= numeric_expression

BLOCK [channel,] width, height, x, y, colour

example:

 i. BLOCK 10,10,5,5,7 {10x10 pixel white block at 5,5}

ii. 100 REMark "bar chart"

 110 CSIZE 3,1

 120 PRINT "bar chart"

 130 LET bottom =100 : size = 20 : left = 10

 140 FOR bar =1 to 10

 150 LET colour = RND(O TO 255)

 160 LET height = RND(2 TO 20)

 170 BLOCK size, height, Left+bar*size, bottom-height,0

 180 BLOCK size-2, height-2, left+bar*size+l,

 bottom-height+l,colour

 190 END FOR bar

BORDER windows

BORDER will add a border to the window attached to the specified

channel, or default channel.

For all subsequent operations except BORDER the window size is reduced

to allow space for the BORDER. If another BORDER command is used then

the full size of the original window is restored prior to the border

being added; thus multiple BORDER commands have the effect of changing

the size and colour of a single border. Multiple borders are not

created unless specific action is taken.

If BORDER is used without specifying a colour then a transparent

border of the specified width is created.

syntax: width:= numeric_expression

BORDER [channel,] size [, colour]

example: i. BORDER 10,0,7 {black and white stipple border}

 ii. 100 REMark Lurid Borders

 110 FOR thickness = 50 to 2 STEP -2

 120 BORDER thickness, RND(0 TO 255)

 130 END FOR thickness

 140 BORDER 50

CALL Qdos

Machine code can be accessed directly from SuperBASIC by using the

CALL command. CALL can accept up to 13 long word parameters which will

be placed into the 68008 data and address registers (D1 to D7, AO to

A5) in sequence.

No data is returned from CALL.

syntax: address:= numeric_expression

 data:= numeric_expression

CALL address, *[data]* {13 data parameters maximum}

example: i. CALL 262144,0,0,0

 ii. CALL 262500,12,3,4,1212,6

Warning: Address register A6 should not be used in routines called

using this command. To return to SuperBASIC use the instructions:

 MOVEQ #O, DO

 RTS

CHR$ BASIC

CHR$ is a function which will return the character whose value is

specified as a parameter: CHR$ is the inverse of CODE.

syntax: CHR$(numeric_expressen)

example: i. PRINT CHRS(27) {print ASCII escape character}

 ii. PRINT CHR$(65) {print A}

CIRCLE

CIRCLE_R graphics

CIRCLE will draw a circle (or an ellipse at a specified angle) on the

screen at a specified position and size. The circle will be drawn in

the window attached to the specified or default channel.

CIRCLE uses the graphics coordinate system and can use absolute

coordinates (i.e. relative to the graphics origin), and relative

coordinates (i.e. relative to the graphics cursor). For relative

coordinates use CIRCLE_R.

Multiple circles or ellipses can be plotted with a single call to

CIRCLE. Each set of parameters must be separated from each other with

a semi colon (;)

The word ELLIPSE can be substituted for CIRCLE if required.

syntax: x:= numeric_expression

 y:= numeric_expession

 radius:= numeric_expression

 eccentricity:= numeric_expression

 angle:= numeric_expression {range 2 to PI}

 parameters:= | x, y, (1)

 | radius, eccentricity, angle (2)

where (1) will draw a circle

 (2) will draw an ellipse of specified eccentricity and angle

CIRCLE [channel,] parameters*[; parameters]*

x - horizontal offset from the graphics origin or graphics cursor

y - vertical offset from the graphics origin or graphics cursor

radius - radius of the circle eccentricity the ratio between the

major and minor axes of an ellipse.

Angle - the orientation of the major axis of the ellipse relative to

the screen vertical. The angle must be specified in radians.

example: i. CIRCLE 50,50,20 {a circle at 50,50 radius 20}

 ii. CIRCLE 50,50,20,0.5,0 {an ellipse at 50,50 major axis 20

eccentricity 0.5 and aligned with the vertical axis}

CLEAR

CLEAR will clear out the SuperBASIC variable area for the current

program and will release the space for Qdos.

syntax: CLEAR

example: CLEAR

Comment: CLEAR can be used to restore to a known state the SuperBASIC

system. For example, if a program is broken into (or stops due to an

error) while it is in a procedure then SuperBASIC is still in the

procedure even after the program has stopped. CLEAR will reset the

SuperBASIC. {See CONTINUE, RETRY.}

CLOSE devices

CLOSE will close the specified channel. Any window associated with the

channel will be deactivated.

syntax: channel:= numeric_expression

 CLOSE channel

example: i. CLOSE #4

 ii. CLOSE #input, channel

CLS windows

Will clear the window attached to the specified or default channel to

current PAPER colour, excluding the border if one has been specified.

CLS will accept an optional parameter which specifies if only a part

of the window must be cleared.

syntax: part:= numeric_expression

 CLS [channel,] [part]

where: part = O - whole screen (default if no parameter)

 part = 1 - top excluding the cursor line

 part = 2 - bottom excluding the cursor line

 part = 3 - whole of the cursor line

 part = 4 - right end of cursor line including the cursor

position

example: i. CLS {the whole window}

 ii. CLS 3 {clear the cursor line}

 iii. CLS #2,2 {clear the bottom of the window on channel 2}

CODE

CODE is a function which returns the internal code used to represent

the specified character. If a string is specified then CODE will

return the internal representation of the first character of the

string.

CODE is the inverse of CHR$.

syntax: CODE (string_expression)

example: i. PRINT CODE("A") {prints 65}

 ii. PRINT CODE ("SuperBASIC") {prints 83}

CONTINUE

RETRY error handling

CONTINUE allows a program which has been halted to be continued. RETRY

allows a program statement which has reported an error to be

re-executed.

syntax: CONTINUE

 RETRY

example: CONTINUE

 RETRY

warning A program can only continue if:

 1. No new lines have been added to the program

 2. No new variables have been added to the program

 3. No lines have been changed

The value of variables may be set or changed.

COPY

COPY_N devices

COPY will copy a file from an input device to an output device until

an end of file marker is detected. COPY_N will not copy the header (if

it exists) associated with a file and will allow Microdrive files to

be correctly copied to another type of device.

Headers are associated with directory-type devices and should be

removed using COPY_N when copying to non-directory devices, e.g. mdvl

is a directory device; serl is a non-directory device.

syntax: COPY device TO device

 COPY_N device TO device

It must be possible to input from the source device and it must be

possible to output to the destination device.

example:

 i. COPY mdvl_data_file TO con_ {copy to default window}

 ii. COPY neti_3 TO mdvl_data {copy data from network station to

 mdv_data.}

iii. COPY_N mdvl_test_data TO ser1_ {copy mdvl_test_data to serial

 port 1 removing header information}

COT

COS math functions

COS will compute the cosine of the specified argument.

syntax: angle:= numeric_expression {range -10000..10000 in radians}

 COS (angle)

example: i. PRINT COS(theta)

 ii. PRINT C0S(3.141592654/2)

COT will compute the cotangent of the specified argument.

syntax: angle:= numeric_expression {range -30000..30000 in radians}

COT (angle)

example: i. PRINT COT(3)

 ii. PRINT C0T(3.141592654/2)

CSIZE window

Sets a new character size for the window attached to the specified or

default channel. The standard size is 0,0 in 512 mode and 2,0 in 256

mode.

Width defines the horizontal size of the character space. Height

defines the vertical size of the character space. The character size

is adjusted to fill the space available.

Figure A Character Square

width size height size·

6 pixels

8 pixels

12 pixels

16 pixels

10 pixels

20 pixels

syntax: width:= numeric_expression {range 0..3}

 height:= numeric_expression {range 0..11}

 CSIZE [channel,]- width, height

example: i. CSIZE 3,0

 ii. CSIZE 3,1

CURSOR windows

CURSOR allows the screen cursor to be positioned anywhere in the

window attached to the specified or default channel.

CURSOR uses the pixel coordinate system relative to the window origin

and defines the position for the top left hand corner of the cursor.

The size of the cursor is dependent on the character size in use.

If CURSOR is used with four parameters then the first pair is

interpreted as graphics coordinates (using the graphics coordinate

system) and the second pair as the position of the cursor (in the

pixel coordinate system) relative to the first point.

This allows diagrams to be annotated relatively easily.

syntax: x:= numeric_expression

 y:= numeric_expression

CURSOR [channel,] x, y [,x, y]

example: i. CURSOR 0,0

 ii. CURSOR 20,30

 iii. CURSOR 50,50,10,10

DATA

READ

RESTORE BASIC

READ, DATA and RESTORE allow embedded data, contained in a SuperBASIC

program, to be assigned to variables at run time.

DATA is used to mark and define the data, READ accesses the data and

assigns it to variables and RESTORE allows specific data to be

selected.

DATA allows data to be defined within a program. The data can be read

by a READ statement and the data assigned to variables. A DATA

statement is ignored by SuperBASIC when it is encountered during

normal processing.

syntax: DATA *[expression,]*

READ reads data contained in DATA statements and assigns it to a list

of variables. Initially the data pointer is set to the first DATA

statement in the program and is incremented after each READ.

Re-running the program will not reset the data pointer and so in

general a program should contain an explicit RESTORE.

An error is reported if a READ is attempted for which there is no

DATA.

syntax: READ *[identifier,l*

RESTORE restores the data pointer, i.e. the position from which

subsequent READs will read their data. If RESTORE is followed by a

line number then the data pointer is set to that line. If no parameter

is specified then the data pointer is reset to the start of the

program.

syntax: RESTORE [line_number]

example:

 i. 100 REMark Data statement example

 110 DIM weekdays$(7,4)

 120 RESTORE

 130 FOR count= 1 TO 7 :

 READ weekdays$(count)

 140 PRINT weekday$

 150 DATA "MON","TUE","WED","THUR","FRI"

 160 DATA "SAT"."SUN"

ii. 100 DIM month$(l2,9)

 110 RESTORE

 120 REMark Data statement example

 130 FOR count=l TO 12 :

 READ month$(count)

 140 PRINT month$

 150 DATA "January", "February", "March"

 160 DATA "April","May","June"

 170 DATA "July","August","September"

 180 DATA "October","November","December"

Warning: An implicit RESTORE is not performed before running a

program. This allows a single program to run with different sets of

data. Either include a RESTORE in the program or perform an explicit

RESTORE or CLEAR before running the program.

DATE$

DATE clock

DATE$ is a function which will return the date and time contained in

the QLls clock. The format of the string returned by DATE$ is:

"yyyy mmm dd hh:mm:ss"

where yyyy is the year 1984, 1985, etc

 mmm is the month Jan, Feb etc

 dd is the day 01 to 28, 29, 30, 31

 hh is the hour 00 to 23

 mm are the minutes 00 to 59

 ss are the seconds 00 to 59

DATE will return the date as a floating point number which can be used

to store dates and times in a compact form.

If DATE$ is used with a numeric parameter then the parameter will be

interpreted as a date in floating point form and will be converted to

a date string.

syntax: DATE$ {get the time from the clock)

 DATE$ (numeric_expression) {get time from supplied parameter}

example: i. PRINT DATE$ {output the date and time}

 ii. PRINT DATE$(234567) {convert 234567 to a date}

DAY$ clock

DAY$ is a function which will return the current day of the week. If a

parameter is specified then DAY$ will interpret the parameter as a

date and will return the corresponding day of the week.

syntax: DAY$ {get day from clock}

 DAY$ (numeric_expression) {get day from supplied parameter}

example: i. PRINT DAY$ {output the day}

 ii. PRINT DAY$(234567) {output the day represented by 234567

(seconds)}

DEFine

FuNction

END DEFine functions and procedures

DEFine FuNction defines a SuperBASIC function. The sequence of

statements between the DEFine function and the END DEFine constitute

the function. The function definition may also include a list of

formal parameters which will supply data for the function. Both

the formal and actual parameters must be enclosed in brackets. If the

function requires no parameters then there is no need to specify an

empty set of brackets.

Formal parameters take their type and characteristics from the

corresponding actual parameters. The type of data returned by the

function is indicated by the type appended to the function identifier.

The type of the data returned in the RETURN statement must match.

An answer is returned from a function by appending an expression to a

RETurn statement. The type of the returned data is the same as type of

this expression.

A function is activated by including its name in a SuperBASIC

expression.

Function calls in SuperBASIC can be recursive; that is, a function may

call itself directly or indirectly via a sequence of other calls.

Syntax: formal_parameters= (expression *[, expression]*)

 actual_parameters:= (expression *[, expression]*)

type:= |$

 |%

 |

 DEF FuNction identifier type {forma_parameters}

 [LOCal identifier x[, identifier]*]

 statements

 RETurn expression

 END DEFine

RETurn can be at any position within the procedure body. LOCal

statements must preceed the first executable statement in the

function.

example:

 10 DEFine FuNction mean(a, b, c)

 20 LOCaL answer

 30 LET answer = (a + b + c)/3

 40 RETurn answer

 50 END DEFine

 60 PRINT mean(1,2,3)

Comment: To improve legibility of programs the name of the function

can be appended to the END DEFine statement. However, the name will

not be checked by SuperBASIC.

DEFine

PROCedure

END DEFine functions and procedures

DEFine PROCedure defines a SuperBASIC procedure. The sequence of

statements between the DEFine PROCedure statement and the END DEFine

statement constitutes the procedure. The procedure definition may also

include a list of formal parameters which will supply data for the

procedure. The formal parameters must be enclosed in brackets for the

procedure definition, but the brackets are not necessary when the

procedure is called. If the procedure requires no parameters then

there is no need to include an empty set of brackets in the procedure

definition.

Formal parameters take their type and characteristics from the

corresponding actual parameters.

Variables may be defined to be LOCal to a procedure. Local variables

have no effect on similarly named variables outside the procedure. If

required, local arrays should be dimensioned within the LOCal

statement.

The procedure is called by entering its name as the first item in a

SuperBASIC statement together with a list of actual parameters.

Procedure calls in SuperBASIC are recursive that is, a procedure may

call itself directly or indirectly via a sequence of other calls.

It is possible to regard a procedure definition as a command

definition in SuperBASIC; many of the system commands are themselves

defined as procedures.

syntax: formal_parameter:= (expression *[, expression]*)

 actual_parameters:= expression *[, expression]*

 DEFine PROCedure identifier {forma_parameters}

 [LOCal identifier *[, identifier]*]

 statements

 [RETurn]

 END DEFine

RETURN can appear at any position within the procedure body. If

present the LOCal statement must be before the first executable

statement in the procedure. The END DEFine statement will act as an

automatic return.

example:

 i. 100 DEFine PROCedure start_screen

 110 WINDOW 100,100,10,10

 120 PAPER 7 : INK O : CLS

 130 BORDER 4,255

 140 PRINT "Hello Everybody"

 150 END DEFine

 160 start_screen

ii. 100 DEFine PROCedure slow_scroll(scroll_limit)

 110 LOCal count

 120 FOR count =1 TO scroll

 130 SCROLL 2

 140 END FOR count

 150 END DEFine

 160 slow_scroll 20

Comment: To improve legibility of programs the name of the procedure

can be appended to the END DEFine statement. However, the name will

not be checked by SuperBASIC.

DEG math functions

DEG is a function which will convert an angle expressed in radians to

an angle expressed in degrees.

syntax: DEG(numeric_expression)

example: PRINT DEG(PI/Z) {will print 90}

DELETE micrdrives

DELETE will remove a file from the directory of the cartridge in the

specified Microdrive.

syntax: DELETE device

The device specification must be a Microdrive device

example: i. DELETE mdvl_old_data

 ii. DELETE mdv1_letter_file

DIM arrays

Defines an array to SuperBASIC. String, integer and floating point

arrays can be defined. String arrays handle fixed length strings and

the final index is taken to be the string length.

Array indices run from 0 up to the maximum index specified in the DIM

statement; thus DIM will generate an array with one more element in

each dimension than is actually specified.

When an array is specified it is initialised to zero for a numeric

array and zero length strings for a string array.

syntax: index:= numeric_expression

 array:= indentifier(index *[, index]*)

 DIM array x[, array] *

example: i. DIM string_array$(10,10,50)

 ii. DIM matrix(100,100)

DIMN arrays

DIMN is a function which will return the maximum size of a specified

dimension of a specified array. If a dimension is not specified then

the first dimension is assumed. If the specified dimension does not

exist or the identifier is not an array then zero is returned.

syntax: array:= identifier

 index:= numeric_expression {1 for dimension 1, etc.}

 DIMN(array [, dimension])

example: consider the array defined by: DIM a(2,3,4)

 i. PRINT DIMN(A,1) {will print 2}

 ii. PRINT DIMN(A,Z) {will print 3}

 iii. PRINT DIMN(A,3) {will print 4}

 iv. PRINT DIMN(A) {will print 2}

 v. PRINT DIMN(A,4) {will print 0}

DIR microdrives

DIR will obtain and display in the window attached to the specified or

default channel Microdrives the directory of the cartridge in the

specified Microdrive.

syntax: DIR device

The device specification must be a valid Microdrive device

The directory format output by DIR is as follows:

 free_sectors:= the number of free sectors

 available_sectors:= the maximum number of sectors on this cartridge

 file_name:= a SuperBASIC file name

 screen format: Volume name

 free_sectors | available_sectors sectors

 file_name

 file__name

example: i. DIR mdv1_

 ii. DIR "mdv2_ "

 iii. DIR "mdv" & microdrive_number$ & "_"

 screen format: BASIC

 183 / 221 sectors

 demo_1

 demo_1_old

 demo_2

DIV operator

DIV is an operator which will perform an integer divide.

syntax: numeric_expression DIV numeric_expression

example: i. PRINT 5 DIV 2 {will output 2}

 ii. PRINT -5 DIV 2 {will output -3}

DLINE BASIC

DLINE will delete a single line or a range of lines from a SuperBASIC

program.

syntax: range:= | line_number TO line_number (1)

 | line_number TO (2)

 | TO line_number (3)

 | line_number (4)

 DLINE range*[,range]*

where (1) will delete a range of lines

 (2) will delete from the specified line to the end

 (3) will delete from the start to the specified line

 (4) will delete the specified line

example: i. DLINE 10 TO 70, 80, 200 TO 400

{will delete lines 10 to 70 inclusive, line 80 and lines 200 to 400

inclusive}

 ii. DLINE {will delete nothing}

EDIT

The EDIT command enters the SuperBASIC line editor.

The EDIT command is closely related to the AUTO command, the only

difference being in their defaults. EDIT defaults to a line increment

of zero and thus will edit a single line unless a second parameter is

specified to define a line increment.

If the specified line already exists then the line is displayed and

editing can be started. If the line does not exist then the line

number is displayed and the line can be entered.

The cursor can be manipulated within the edit line using the standard

QL keystrokes.

 cursor right

 cursor left

 cursor up - same as ENTER but automatically gives previous

existing line to edit next

 cursor down - same as ENTER but automatically gives next existing

line to edit next

 CTRL -> delete character right

 CTRL <- delete character left

When the line is correct pressing ENTER will enter the line into the

program.

If an increment was specified then the next line in the sequence will

be edited otherwise edit will terminate.

syntax: increment:= numeric_expression

 EDIT line_number [,increment]

example: i. EDIT 10 {edit line 10 only}

 ii. EDIT 20,10 {edit lines 20, 30 etc.}

EOF devices

EOF is a function which will determine if an end of file condition has

been reached on a specified channel. If EOF is used without a channel

specification then EOF will determine if the end of a program's

embedded data statements has been reached.

syntax: EOF [(channel)]

example: i. IF EOF(#6) THEN STOP

 ii. IF EOF THEN PRINT "Out of data"

EXEC

EXEC_W Qdos

EXEC and EXEC_W will load a sequence of programs and execute them in

parallel.

EXEC will return to the command processor after all processes have

started execution, EXEC_W will wait until all the processes have

terminated before returning.

syntax: program: =device {used to specify a Microdrive file

 containing the program}

 EXEC program

example: i. EXEC mdv1_communcations

 ii. EXEC_W mdv1_printer_process

EXIT

repetition EXIT will continue processing after the END of the named

FOR or REPeat structure.

syntax: EXIT identifier

example: i. 100 REM start Looping

 110 LET count = O

 120 REPeat Loop

 130 LET count = count +1

 140 PRINT count

 150 IF count = 20 THEN EXIT Loop

 160 END REPeat loop

{the loop will be exited when count becomes equal to 20}

 ii. 100 FOR n =1 TO 1000

 110 REM program statements

 120 REM program statements

 130 IF RND >.5 THEN EXIT n

 140 END FOR n

{the loop will be exited when a random number greater than 0.5 is

generated}

EXP

maths functions

EXP will return the value of e raised to the power of the specified

parameter.

syntax: EXP (numeric_expression) {range -500..500}

example: i. PRINT EXP(3)

 ii. PRINT EXP(3.141592654)

FILL graphics

FILL will turn graphics fill on or off. FILL will fill any

non-re-entrant shape drawn with the graphics or turtle graphics

procedures as the shape is being drawn. Re-entrant shapes must be

split into smaller non-re-entrant shapes.

When you have finished filling, FILL 0 should be called.

syntax: switch:= numeric_expression {range 0..1}

 FILL [channel,] switch

example: i. FILL 1:LINE 10,10 TO 50,50 TO 30,90 TO 10,10:FILL 0

{will draw a filled triangle}

 ii. FILL 1:CIRCLE 50,50,20:FILL 0

{will draw a filled circle}

FILL$ string arrays

FILL$ is a function which will return a string of a specified length

filled with a repetition of one or two characters.

syntax: FILL$ (string_expression, numeric_expression)

The string expression supplied to FILL$ must be either one or two

characters long.

example: i. PRINT FILL$("a",5) {will print aaaaa}

 ii. PRINT FILL$("oO",7) {will print oOoOoOo}

 iii. LET a$ = a$ & FILL$(" ",10)

FLASH windows

FLASH turns the flash state on and off. FLASH is only effective in low

resolution mode. FLASH will be effective in the window attached to the

specified or default channel.

syntax: switch:= numeric_expression {range 0..1}

 FLASH [channel,] switch

where: switch = 0 will turn the flash off

 switch = 1 will turn the flash on

example: 100 PRINT "A ";

 110 FLASH 1

 120 PRINT "flashing ";

 130 FLASH 0

 140 PRINT "word"

Warning: Writing over part of a flashing character can produce

spurious results and should be avoided.

FOR

END FOR repetition

The FOR statement allows a group of SuperBASIC statements to be

repeated a controlled number of times. The FOR statement can be used

in both a long and a short form. NEXT and END FOR can be used together

within the same FOR loop to provide a loop epilogue, ie. a group of

SuperBASIC statements which will not be executed if a loop is exited

via an EXIT statement but which will be executed if the FOR loop

terminated normally.

define: for_item:= | numeric_expression

 | numeric_exp TO numeric_exp

 | numeric_exp TO numeric_exp STEP numeric_exp

for_list. = for_item *[, for_item] *

SHORT: The FOR statement is followed on the same logical line by a

sequence of SuperBASIC statements. The sequence of statements is then

repeatedly executed under the control of the FOR statement. When the

FOR statement is exhausted, processing continues on the next line. The

FOR statement does not require its terminating NEXT or END FOR. Single

line FOR loops must not be nested.

syntax: FOR variable = for_list : statement x[: statement]*

example: i. FOR i = 1, 2, 3, 4 TO 7 STEP 2 : PRINT i

 ii. FOR element = first TO last : LET buffer (element) = 0

LONG: The FOR statement is the last statement on the line. Subsequent

lines contain a series of SuperBASIC statements terminated by an END

FOR statement. The statements enclosed between the FOR statement and

the END FOR are processed under the control of the FOR statement.

syntax: FOR variable = for_list

 statements

 END FOR variable

example:

 100 INPUT "data please" x

 110 LET factorial = 1

 120 FOR value = x TO 1 STEP -1

 130 LET factorial = factorial * value

 140 PRINT x !!!! factorial

 150 IF factorial>lE20 THEN

 160 PRINT "Very Large number"

 170 EXIT value

 180 END IF

 190 END FOR value

Warning: A floating point variable must be used to control a FOR

loop.

FORMAT microdrives

FORMAT will format and make ready for use the cartridge contained in

the specified Microdrive.

syntax: FORMAT [channel,] device

Device specifies the Microdrive to be used for formatting and the

identifier part of the specification is used as the medium or volume

name for that cartridge. FORMAT will write the number of good sectors

and the total number of sectors available on the cartridge on the

default or on the specified channel.

It is helpful to format a new cartridge several times before use. This

conditions the surface of the tape and gives greater capacity.

example: i. FORMAT mdv1_data_cartridge

 ii. FORMAT mdv2_wp_letters

FORMAT can be used to reinitialise a used cartridge. However all data

contained on that cartridge will be lost.

GOSUB

For compatibility with other BASICs, SuperBASIC supports the GOSUB

statement. GOSUB transfers processing to the specified line number; a

RETurn statement will transfer processing back to the statement

following GOSUB.

The line number specification can be an expression.

syntax: GOSUB line_number

example: i. GOSUB 100

 ii. GOSUB 4*select_variable

Comment: The control structures available in SuperBASIC make the

GOSUB statement redundant.

GOTO

For compatibility with other BASICs, SuperBASIC supports the GOTO

statement. GOTO will unconditionally transfer processing to the

statement number specified. The statement number specification can be

an expression.

syntax: GOTO line_number

example: i. GOTO program start

 ii. GOTO 9999

comment: The control structures available in SuperBASIC make the GOTO

statement redundant.

IF

THEN

ELSE

END IF

The IF statement allows conditions to be tested and the outcome of

that test to control subsequent program flow.

The IF statement can be used in both a long and a short form:

SHORT: The THEN keyword is followed on the same logical line by a

sequence of SuperBASIC keyword. This sequence of SuperBASIC statements

may contain an ELSE keyword. If the expression in the IF statement is

true (evaluates to be non-zero), then the statements between the THEN

and the ELSE keywords are processed. If the condition is false

(evaluates to be zero) then the statements between the ELSE and the

end of the line are processed.

If the sequence of SuperBASIC statements does not contain an ELSE

keyword and if the expression in the IF statement is true, then the

statements between the THEN keyword and the end of the line are

processed. If the expression is false then processing continues

at the next line.

syntax: statements:= statement *[: statement]*

 IF expression THEN statements [:ELSE statements]

example: i. IF a=32 THEN PRINT "Limit" : ELSE PRINT "OK"

 ii. IF test >maximum THEN LET maximum = test

 iii. IF "1"+1=2 THEN PRINT "coercion OK"

LONG 1: The THEN keyword is the last entry on the logical line. A

sequence of SuperBASIC statements is written following the IF

statements. The sequence is terminated by the END IF statement. The

sequence of SuperBASIC statements is executed if the expression

contained in the IF statement evaluates to be non zero. The ELSE

keyword and second sequence of SuperBASIC statements are optional.

LONG 2: The THEN keyword is the last entry on the logical line. A

sequence of SuperBASIC statements follows on subsequent lines,

terminated by the ELSE keyword. IF the expression contained in the IF

statement evaluates to be non zero then this first sequence of

SuperBASIC statements is processed. After the ELSE keyword a second

sequence of SuperBASIC statements is entered, terminated by the END IF

keyword. If the expression evaluated by the IF statement is zero then

this second sequence of SuperBASIC statements is processed.

syntax: IF expression THEN

 statements

 [ELSE

 statements]

 END IF

example: 100 LET Limit =10

 110 INPUT "Type in a number" ! number

 120 IF number > limit THEN

 130 PRINT "Range error"

 140 ELSE

 150 PRINT "Inside Limit"

 160 END IF

In all three forms of the IF statement the THEN is optional. In the

short form it must comment be replaced by a colon to distinguish the

end of the IF and the start of the next statement. In the long form it

can be removed completely.

IF statements may be nested as deeply as the user requires (subject to

available memory). However, confusion may arise as to which ELSE, END

IF etc matches which IF. SuperBASIC will match nested ELSE statements

etc to the closest IF statement, for

example:

 100 IF a = b THEN

 110 IF c = d THEN

 120 PRINT "error"

 130 ELSE

 140 PRINT "no error"

 150 END IF

 160 ELSE

 170 PRINT "not checked"

 180 END IF

The ELSE at line 130 is matched to the second IF. The ELSE at line 160

is matched with the first IF (at line 100).

INK windows

This sets the current ink colour, i.e. the colour in which the output

is written. INK will windows be effective for the window attached to

the specified or default channel.

syntax: INK [channel,] colour

example: i. INK 5

 ii. INK 6,2

 iii. INK #2,255

INKEY$

INKEY$ is a function which returns a single character input from

either the specified or default channel.

An optional timeout can be specified which can wait for a specified

time before returning, can return immediately or can wait forever. If

no parameter is specified then INKEY$ will return immediately.

syntax: INKEY$ [|(channel)

 |(channel, time)

 |(time)]

where: time = 1..32767 {wait for specified number of frames}

 time = -1 {wait forever}

 time = 0 {return immediately}

examples:

 i. PRINT INKEY$ {input from the default channel}

 ii. PRINT INKEY$(#4) {input from channel 4}

iii. PRINT INKEY$(50) {wait for 50 frames then return anyway}

 iv. PRINT INKEY$(0) {return immediatly (poll the keyboard)}

 v. PRINT INKEY$(#3,100) {wait for 100 frames for an input from

channel 3 then return anyway}

INPUT

INPUT allows data to be entered into a SuperBASIC program directly

from the QL keyboard by the user. SuperBASIC halts the program until

the specified amount of data has been input; the program will then

continue. Each item of data must be terminated by the ENTER key.

INPUT will input data from either the specified or the default

channel.

If input is required from a particular console channel the cursor for

the window connected to that channel will appear and start to flash.

syntax: separator:= |!

 |,

 |\

 |;

 | TO

 prompt:= [channel,] expression separator

 INPUT [prompt] [channel] variable *[,variable]*

example:

 i. INPUT ("Last guess "& guess & "New guess?") ! guess

 ii. INPUT "What is your guess?"; guess

 iii. 100 INPUT "array size?" ! Limit

 110 DIM array(limit-1)

 120 FOR element = 0 to Limit-1

 130 INPUT ("data for element" & element) array(element)

 140 END FOR element

 150 PRINT array

INSTR operator

INSTR is an operator which will determine if a given substring is

contained within a specified string. If the string is found then the

substring's position is returned. If the string is not found then

INSTR returns zero.

Zero can be interpreted as false, i.e. the substring was not contained

in the given string. A non zero value, the substrings position, can be

intepreted as true, i.e. the substring was contained in the specified

string.

syntax: string_expression INSTR string expression

example: i. PRINT "a" INSTR "cat" {will print 2}

 ii. PRINT "CAT" INSTR "concatenate" {will print 4}

 iii. PRINT "x" INSTR "eggs" {will print 0}

INT maths functions

INT will return the integer part of the specified floating point

expression.

syntax: INT (numeric_expression)

example: i. PRINT INT(X)

 ii. PRINT INT(3.141592654/2)

KEYROW

KEYROW is a function which looks at the instantaneous state of a row

of keys (the table below shows how the keys are mapped onto a matrix

of 8 rows by 8 columns). KEYROW takes one parameter, which must be an

integer in the range 0 to 7: this number selects which row is to be

looked at. The value returned by KEYROW is an integer between 0 and

255 which gives a binary representation indicating which keys have

been depressed in the selected row.

Since KEYROW is used as an alternative to the normal keyboard input

mechanism using INKEY$ or INPUT, any character in the keyboard

type-ahead buffer are cleared by KEYROW: thus key depressions which

have been made before a call to KEYROW will not be read by a

subsequent INKEY$ or INPUT.

Note that multiple key depressions can cause surprising results. In

particular, if three keys at the corner of a rectangle in the matrix

are depressed simultaneously, it will appear as if the key at the

fourth corner has also been depressed. The three special keys CTRL,

SHIFT and ALT are an exception to this rule, and do not interact with

other keys in this way.

syntax: row:= numeric_expression (range 0..7)

 KEYROW (row)

example: 100 REMark run this program and press a few keys

 110 REPeat loop

 120 CURSOR 0,0

 130 FOR row = 0 to 7

 140 PRINT row !!! KEYROW(row) ;" "

 150 END FOR row

 160 END REPeat Loop

KEYBOARD MATRIX

COLUMN

ROW 1 2 4 8 16 32 64 128

7 ISHIFT(CTRL I ALT I X I V I N

8121610 EIOITIU

41L5

WII ITABIRI-Iv

31HIIIAIPIDIJ

CAPS

LOCK

KISIFI=IG

ZI .IC B f M

ENTER I t up ESC I I ISPACE down

F4 I F1 5 F2 F3 F5 4 7

LBYTES devices microdrives

LBYTES will load a data file into memory at the specified start

address.

syntax: start_address:= numeric_expression

 LBYTES device ,startaddress

example:

 i. LBYTES mdvl_screen, 131072 {load a screen image}

 ii. LBYTES mdvl_program, start_address {load a program at a

specified address}

LEN string arrays

LEN is a function which will return the length of the specified string

expression.

syntax: LEN(string_expression)

example: i. PRINT LEN("LEN will find the ength of this string")

 ii. PRINT LEN(output_string$)

LET

LET starts a SuperBASIC assignment statement. The use of the LET

keyword is optional. The assignment may be used for both string and

numeric assignments. SuperBASIC will automatically convert unsuitable

data types to a suitable form wherever possible.

syntax: [LET] variable = expression

example: i. LET a = 1 + 2

 ii. LET a$ = "12345"

 iii. LET a$ = 6789

 iv. b$ = test_data

LINE

LINE_R

LINE allows a straight line to be drawn between two points in the

window attached to the default or specified channel. The ends of the

line are specified using the graphics coordinate system.

Multiple lines can be drawn with a single LINE command.

The normal specification requires specifying the two end points for a

line. These end points can be specified either in absolute coordinates

(relative to the graphics origin) or in relative coordinates (relative

to the graphics cursor). If the first point is omitted then a line is

drawn from the graphics cursor to the specified point. If the second

point is omitted then the graphics cursor is moved but no line is

drawn.

LINE will always draw with absolute coordinates, i.e. relative to the

graphics origin, while LINE_R will always draw relative to the

graphics cursor.

syntax: x:= numeric_expression

 y:= numeric_expression

 point:= x,y

 parameter_2:= | TO point (1)

 | ,point XO point (2)

 parameter_1:= | TO point, angle (1)

 | TO point (2)

 | point (3)

LINE [channel,] parameter_1 *[, parameter_2]*

LINE_R [channel,] parameter_1 *[,parameter_2]*

where

 (1) will draw from the specified point to the next specified point

 (2) will draw from the the last point plotted to the specified point

 (3) will move to the specified point - no line will be drawn

example:

 i. LINE 0,0 TO 0, 50 TO 50,0 TO 50,0 TO 0,0 {a square}

 ii. LINE TO 0.75, 0.5 {a line}

 iii. LINE 25,25 {move the graphics cursor}

LIST

LIST allows a SuperBASIC line or group of lines to be listed on a

specific or default channel. LIST is terminated by CTRL-SPACE

syntax: line:= | line_number TO line_number (1)

 | line_number TO (2)

 | TO line_number (3)

 | line_number (4)

 | (5)

 LIST [channel,] line*[,line]*

where (1) will list from the specified line to the specified line

 (2) will list from the specified line to the end

 (3) will list from the start to the specified line

 (4) will list the specified line

 (5) will list the whole program

example: i. LIST {list all lines}

 ii. LIST 10 TO 300 {list lines 10 to 300}

 iii. LIST 12,20,50 {list lines 12,20 and 50 only}

If LIST output is directed to a channel opened as a printer channel

then LIST will provide hard copy.

LOAD devices microdrives

LOAD will load a SuperBASIC program from any QL device. LOAD

automatically performs a NEW before loading another program, and so

any previously loaded program will be cleared by LOAD.

If a line input during a load has incorrect SuperBASIC syntax, the

word MISTAKE is inserted between the line number and the body of the

line. Upon execution, a line of this sort will generate an error

syntax: LOAD device

example: i. LOAD "mdvl_test_program"

 ii. LOAD mdvl_guess

 iii. LOAD neti_3

 iv. LOAD serl_e

LN

LOG10 maths functions

LN will return the natural logarithm of the specified argument. LOG10

will return the common logarithm. There is no upper limit on the

parameter other than the maximum number the computer can store.

syntax: LOG10 (numenic_expression) {range greater than zero}

 LN (numeric_expression) {range greater than zero}

example: i. PRINT LOG10(20)

 ii. PRINT LN(3.141592654)

LOCal functions and procedures

LOCal allows identifiers to be defined to be LOCal to a function or

procedure. Local identifiers only exist within the function or

procedure in which they are defined, or in procedures and functions

called from the function or procedure in which they are defined.

They are lost when the function or procedure terminates. Local

identifiers are independent of similarly named identifiers outside the

defining function or procedure. Arrays can be defined to be local by

dimensioning them within the LOCal statement.

The LOCal statement must precede the first executable statement in the

function or procedure in which it is used.

syntax: LOCal identifier *[, identifier]*

example: i. LOCal a,b,c(10,10)

 ii. LOCal temp_data

comment: Defining variables to be LOCal allows variable names to be

used within functions and procedures without corrupting meaningful

variables of the same name outside the function or procedure.

LRUN devices microdrives

LRUN will load and run a SuperBASIC program from a specified device.

LRUN will perform NEW before loading another program and so any

previously stored SuperBASIC program will be cleared by LRUN.

If a line input during a loading has incorrect SuperBASIC syntax, the

word MISTAKE is inserted between the line number and the body of the

line. Upon execution, a line of this sort will generate an error.

syntax: LRUN device

example: i. LRUN mdv2_TEST

 ii. LRUN mdv1_game

MERGE devices microdrives

MERGE will load a file from the specified device and interpret it as a

SuperBASIC program. If the new file contains a line number which

doesn't appear in the program already in the QL then the line will be

added. If the new file contains a replacement line for one that

already exists then the line will be replaced. All other old program

lines are left undisturbed.

If a line input during a MERGE has incorrect SuperBASIC syntax, the

word MISTAKE is inserted between the line number and the body of the

line. Upon execution, a line of this sort will generate an error.

syntax: MERGE device

example: i. MERGE mdv1_overlay_program

 ii. MERGE mdv1_new_data

MOD operators

MOD is an operator which gives the modulus, or remainder; when one

integer is divided by another.

syntax: numeric_expression MOD numeric_expression

example: i. PRINT 5 MOD 2 {will print 1}

 ii. PRINT 5 MOD 3 {will print 2}

MODE screen

MODE sets the resolution of the screen and the number of solid colours

which it can display. MODE will clear all windows currently on the

screen, but will preserve their position and shape. Changing to low

resolution mode (8 colour) will set the minimum character size to 2,0.

syntax: MODE numeric_expression

where: 8 or 256 will select low resolution mode

 4 or 512 will select high resolution mode

example: i. MODE 256

 ii. MODE 4

MOVE turtle graphics

MOVE will move the graphics turtle in the window attached to the

default or specified channel a specified distance in the current

direction. The direction can be specified using the TURN and TURNTO

commands. The graphics scale factor is used in determining how far the

turtle actually moves. Specifying a negative distance will move the

turtle backwards.

The turtle is moved in the window attached to the specified or default

channel.

syntax: distance:= numeric_expression

 MOVE [channel,] distance

example: i. MOVE #2,20

 {move the turtle in channel 2 20 units forwards}

 ii. MOVE -50

 {move the turtle in the default channel 50 units backwards}

MRUN devices microdrives

MRUN will interpret a file as a SuperBASIC program and merge it with

the currently loaded program.

If used as direct command MRUN will run the new program from the

start. If used as a program statement MRUN will continue processing on

the line following MRUN. If a line input during a merge has incorrect

SuperBASIC syntax, the word MISTAKE is inserted between the line

number and the body of the line. Upon execution, a line of this sort

will generate an error.

syntax: MRUN device

example: i. MRUN mdv1_chain_program

 ii. MRUN mdv1_new_data

NET network

NET allows the network station number to be set. If a station number

is not explicitly set then the QL assumes station number 1.

syntax: station:= numeric_expression (range 1..127}

 NET station

example: i. NET 63

 ii. NET 1

Confusion may arise if more than one station on the network has the

same station number:

NEW

NEW will clear out the old program, variables and channels other than

0,1 and 2.

syntax: NEW

example: NEW

NEXT repetition

NEXT is used to terminate, or create a loop epilogue in, REPeat and

FOR loops.

syntax: NEXT identifier

The identifier must match that of the loop which the NEXT is to

control

example:

 i. 10 REMark this loop must repeat forever

 11 REPeat infinite loop

 12 PRINT "sti LI looping"

 13 NEXT infinite loop

ii. 10 REMark this loop will repeat 20 times

 11 LET limit = 20

 12 FOR index=1 TO Limit

 13 PRINT index

 14 NEXT index

iii. 10 REMark this Loop will tell you when a 30 is found

 11 REPeat Loop

 12 LET number = RND(1 TO 100)

 13 IF number = 30 THEN NEXT Loop

 14 PRINT number; " is 30"

 15 EXIT LOOP

 16 END REPeat loop

If NEXT is used inside a REPeat - END REPeat construct it will force

processing to continue at the statement following the matching REPeat

statement.

The NEXT statement can be used to repeat the FOR loop with the control

variable set at its next value. If the FOR loop is exhausted then

processing will continue at the statement following the NEXT;

otherwise processing will continue at the statement after the FOR.

ON...GOTO

ON...GOSUB

To provide compatibility with other BASICs, SuperBASIC supports the ON

GOTO and ON GOSUB statements. These statements allow a variable to

select from a list of possible line numbers a line to process in a

GOTO or GOSUB statement. If too few line numbers are specified in the

list then an error is generated.

syntax: ON variable GOTO expression *[, expression]*

 ON variable GOSUB expression *[, expression]*

example: i. ON x GOTO 10, 20, 30, 40

 ii. ON select_variable GOSUB 1000,2000,3000,4000

comment: SELect can be used to replace these two BASIC commands.

OPEN

OPEN_IN

OPEN_NEW devices Microdrives

OPEN allows the user to link a logical channel to a physical QL device

for I/O purposes. If the channel is to a Microdrive then the

Microdrive file can be an existing file or a new file. In which case

OPEN_IN will open an already existing Microdrive file for input and

OPEN_NEW will create a new Microdrive file for output.

syntax: channel:= # numeric_expressicn

 OPEN channel, device

example: i. OPEN #5, f_name$

 ii. OPEN_IN #9,"mdv1_filename" {open file mdvl_file__name}

 iii. OPEN_NEW #7,mdv1_datafile {open file mdvl_datafile}

 iv. OPEN #6,con_10x20a20x2032

{Open channel 6 to the console device creating a window size 10x20

pixels at position 20,20 with a 32 byte keyboard type ahead buffer.}

 v. OPEN #8,mdv1_read_write_file.

OVER windows

OVER selects the type of over printing required in the window attached

to the specified or default channel. The selected type remains in

effect until the next use of OVER.

syntax: switch:= numeric_expression [range -1..i]

 OVER [channel,] switch

where switch = 0 - print ink on strip

 switch = 1 - print in ink on transparent stnp

 switch = -1 - XORs the data on the screen

example: i. OVER 1 {set "overprinting")

 ii. 10 REMark Shadow Writing

 11 PAPER 7 : INK O : OVER 1 : CLS

 12 CSIZE 3,1

 13 FOR i = 0 TO 10

 14 CURSOR i,i

 15 IF i=10 THEN INK 2

 16 PRINT "Shadow"

 17 END FOR i

PAN windows

PAN the entire current window the specified number of pixels to the

left or the right. PAPER is scrolled in to fill the clear area.

An optional second parameter can be specified which will allow only

part of the screen to be panned.

syntax: distance:= numeric_expression

 part:= numeric_expression

 PAN [channel,] distance [, part]

where part = 0 - whole screen (or no parameter)

 part = 3 - whole of the cursor line

 part = 4 - right end of cursor line including the cursor

position

If the expression evaluates to a positive value then the contents of

the screen will be shifted to the right.

example:

 i. PAN #2,50 {pan left 50 pixels}

 ii. PAN -100 {pan right 100 pixels}

 iii. PAN 50.3 {pan the whole of the current cursor line 50 pixels

to the right}

If stipples are being used or the screen is in low resolution mode

then, to maintain the stipple pattern, the screen must be panned in

multiples of two pixels.

PAPER windows

PAPER sets a new paper colour tie. the colour which will be used by

CLS, PAN, SCROLL, etc). The selected paper colour remains in effect

until the next use of PAPER. PAPER will also set the STRIP colour

PAPER will change the paper colour in the window attached to the

specified or default channel.

syntax: PAPER [channel,] colour

example: i. PAPER #3,7 {White paper on channel 3}

 ii. PAPER 7,2 {White and red stipple}

 iii. PAPER 255 {Black and white stipple}

 iv. 10 REMark Show colours and stipples

 11 FOR colour = 0 TO 7

 12 FOR contrast = 0 TO 7

 13 FOR stipple = 0 TO 3

 14 PAPER colour, contrast, stipple

 15 SCROLL 6

 16 END FOR stipple

 17 END FOR cent rest

 18 END FOR colour

PAUSE

PAUSE will cause a program to wait a specified period of time delays

are specified in units of 20ms in the UK only, otherwise 16.67ms. If

no delay is specified then the program will pause indefinitely.

Keyboard input will terminate the PAUSE and restart program execution.

syntax: delay:= numeric_expression

 PAUSE [delay]

example: i. PAUSE 50 {wait 1 second}

 ii. PAUSE 500 {wait 10 seconds}

PEEK

PEEICW

PEEK_L BASIC

PEEK is a function which returns the contents of the specified memory

location. PEEK has three forms which will access a byte (8 bits), a

word (16 bits), or a long word (32 bits).

syntax: address:= numeric_expression

 PEEK(address) {byte access}

 PEEK_W(address) {word access}

 PEEK_L(address) {long word access}

example: i. PRINT PEEK(12245) {byte contents of location 12245}

 ii. PRINT PEEK_W(12) {word contents of locations 12 and 13}

 iii. PRINT PEEK_L(1000) {long word contents of location 1000}

Warning: For word and long word access the specified address must be

an even address.

PENUP

PENDOWN turtle graphics

Operates the 'pen' in turtle graphics. If the pen is up then nothing

will be drawn. If the pen is down then lines will be drawn as the

turtle moves across the screen.

The line will be drawn in the window attached to the specified or

default channel. The line will be drawn in the current ink colour for

the channel to which the output is directed.

syntax: PENUP [channel]

 PENDOWN [channel]

example: i. PENUP {will raise the pen in the default channel}

 ii. PENDOWN #2 {will lower the pen in the window attached to

channel 2}

PI maths function

PI is a function which returns the value of x.

syntax: PI

example: PRINT PI

POINT

POINT_R graphics

POINT plots a point at the specified position in the window attached

to the specified or default channel. The point is plotted using the

graphics coordinates system relative to the graphics origin. If

POINT_R is used then all points are specified relative to the

graphics cursor and are plotted relative to each other. Multiple

points can be plotted with a single call to POINT.

syntax: x:=numeric_expression

 y:=numeric_expression

 parameters:= x,y

 POINT [channel,] parameters* [,parameters]*

example: i. POINT 256,128 {plot a point at (256,128)}

 ii. POINT x,x*x {plot a point at (x,x*x)}

 iii. 10 REPeat example

 20 INK RND(255)

 30 POINT RND(100),RND(100)

 40 END REPeat example

POKE

POKL_W

POKE_L BASIC

POKE allows a memory location to be changed. For word and long word

accesses the specified address must be an even address.

POKE has three forms which will access a byte (8 bits), a word (16

bits), a long word (32 bits).

syntax: address:= numeric_expression

 data:= numeric_expression

 POKE address, data {byte access}

 POKE_W address, data {word access}

 POKE_L address, data {long word access}

example: i. POKE 12235,0 {set byte at 12235 to O}

 ii. POKE_L 131072,12345 {set long word at 131072 to 12345}

Warning: Poking data into areas of memory used by Qdos can cause the

system to crash and data to be lost. Poking into such areas is not

recommended.

PRINT devices microdrives

Allows output to be sent to the specified or default channel. The

normal use of PRINT is to send data to the QL screen.

Syntax: separator:= | !

 | ,

 | \

 | ;

 | TO numeric_expression

 item:= | expression

 | channel

 | separator

 PRINT *[item]*

Multiple print separators are allowed. At least one separator must

separate channel specifications and expressions.

Example: i. PRINT "Hello World"

{will output Hello World on the default output device (channel 1)}

 ii. PRINT #5,"data",1,2,3,4

{will output the supplied data to channel 5 (which must have been

previously opened)}

 iii. PRINT TO 20; "This is in column 20"

! - Normal action is to insert a space between items output on the

screen. If the item will not fit on the current line a line feed will

be generated. If the current print position is at the start of a line

then a space will not be output. ! affects the next item to be

printed and therefore must be placed in front of the print item being

printed. Also a ; or a ! must be placed at the end of a print list if

the spacing is to be continued over a series of PRINT statements.

, - Normal separator, SuperBASIC will tabulate output every 8 columns.

\ - Will force a new line.

; - Will leave the print position immediately after the last item to

be printed. Output will be printed in one continuous stream.

TO - Will perform a tabbing operation. TO followed by a

numeric_expression will advance the print position to the column

specified by the numeric_expression. If the requested column is

meaningless or the current print position is beyond the specified

position then no action will be taken.

RAD maths functions

RAD is a function which will convert an angle specified in degrees to

an angle specified in radians.

syntax: RAD (numeric_expressio

example: PRINT RAD(180) {will print 3.141593}

RANDOMISE maths functions

RANDOMISE allows the random number generator to be reseeded. If a

parameter is specified the parameter is taken to be the new seed. If

no parameter is specified then the generator is reseeded from internal

information.

syntax: RANDOMISE [numeric_expression]

example: i. RANDOMISE {set seed to internal data}

 ii. RANDOMISE 3.2235 {set seed to 3.2235}

RECOL windows

RECOL will recolour individual pixels in the window attached to the

specified or default channel according to some preset pattern. Each

parameter is assumed to specify, in order, the colour in which each

pixel is recoloured, i.e. the first parameter specifies the colour

with which to recolour all black pixels, the second parameter blue

pixels, etc.

The colour specification must be a solid colour, i.e. it must be in

the range O to 7.

syntax: c0:= new colour for black

 c1:= new colour for blue

 c2:= new colour for red

 c3:= new colour for magenta

 c4:= new colour for green

 c5:= new colour for cyan

 c6:= new colour for yellow

 c7:= new colour for white

 RECOL [channel ,] c0, cl, c2, c3, c4, c5, c6, c7

example:

 RECOL 2,3,4,5,6,7,1,0 {recolour blue to magenta, red to green,

magenta to cyan etc.}

REMark

REMark allows explanatory text to be inserted into a program. The

remainder of the line is ignored by SuperBASIC.

syntax: REMark text

example: REMark This is a comment in a program

REMark is used to add comments to a program to aid clarity.

RENUM

RENUM allows a group or a series of groups of SuperBASIC line numbers

to be changed. If no parameters are specified then RENUM will renumber

the entire program. The new listing will begin at line 100 and proceed

in steps of 10.

If a start line is specified then line numbers prior to the start line

will be unchanged. If an end line is specified then line numbers

following the end line will be unchanged.

If a start number and stop are specified then the lines to be

renumbered will be numbered from the start number and proceed in steps

of the specified size.

If a GOTO or GOSUB statement contains an expression starting with a

number then this number is treated as a line number and is renumbered.

syntax: startline:= numeric_expression {start renumber}

 end_line:= numeric_expression {stop renumber}

 start_number:= numeric_expression {base line number}

 step:= numeric_expression {step}

 RENUM [start_line [TO end_line];] [startnumber] [,step]

example: i. RENUM {renumber whole program from 100 by 10}

 ii. RENUM 100 TO 200 {renumber from 100 to 200 by 10}

Comment: No attempt must be made to use RENUM to renumber program

lines out of sequence, ie to move lines about the program. RENUM

should not be used in a program.

REPeat

END REPeat repetition

REPeat allows general repeat loops to be constructed. REPeat should be

used with EXIT for maximum effect. REPeat can be used in both long and

short forms:

SHORT: The REPEAT keyword and loop identifer are followed on the same

logical line by a colon and a sequence of SuperBASIC statements. EXIT

will resume normal processing at the next logical line.

syntax: REPeat identifier : statements

example: REPeat wait : IF INKEY$ = "" THEN EXIT wait

LONG: The REPEAT keyword and the loop identifier are the only

statements on the logical line. Subsequent lines contain a series of

SuperBASIC statements terminated by an END REPeat statement.

The statements between the REPeat and the END REPeat are repeatedly

processed by SuperBASIC.

syntax: REPeat identifier

 statements

 END REPeat identifier

example:

 10 LET number = RND(1 TO 50)

 11 REPeat guess

 12 INPUT "What is your guess?", guess

 13 IF guess = number THEN

 14 PRINT "You have guessed correctly"

 15 EXIT guess

 16 ELSE

 17 PRINT "You have guessed incorrectly"

 18 END IF

 19 END REPeat guess

Comment: Normally at least one statement in a REPeat loop will be an

EXIT statement.

RESPR Qdos

RESPR is a function which will reserve some of the resident procedure

space. (For example to expand the SuperBASIC procedure list.)

syntax: space:= numeric_expression

 RESPR (space)

example:

PRINT RESPR(1024) {will print the base address of a 1024 byte block}

RETurn functions and procedures

RETurn is used to force a function or procedure to terminate and

resume processing at the statement after the procedure or function

call. When used within a function definition them RETurn statement is

used to return the function's value.

syntax: RETern [expression]

example:

 i. 100 PRINT ack (3,3)

 110 DEFine FuNction ack(m,n)

 120 IF m=0 THEN RETurn n+l

 130 IF n=0 THEN RETurn ack (m-l,l)

 140 RETern a c k (m-l ,a c k (m, n-l))

 150 END DEFine

ii. 10 LET warning_flag =1

 11 LET error_number = RND(0 TO 10)

 12 warning error_number

 13 DEFine PROCedure warning(n)

 14 IF warning_flag THEN

 15 PRINT "WARNING:";

 16 SELect ON n

 17 ON n =1

 18 PRINT "Microdrive full"

 19 ON n = 2

 20 PRINT "Data space full"

 21 ON n = REMAINDER

 22 PRINT "Program error"

 23 END SELect

 24 ELSE

 25 RETurn

 26 END IF

 27 END DEFine

It is not compulsory to have a RETurn in a procedure. If processing

reaches the END DEFine of a procedure then the procedure will return

automatically.

RETurn by itself is used to ieturn from a GOSUB.

RND maths function

RND generates a random number. Up to two parameters may be specified

for RND. If no parameters are specified then RND returns a pseudo

random floating point number in the exclusive range 0 to 1. If a

single parameter is specified then RND returns an integer in the

inclusive range 0 to the specified parameter. If two parameters are

specified then RND returns an integer in the inclusive range specified

by the two parameters.

syntax: RND([numeric_expression] [TO numeric_expression])

example: i. PRINT RND {floating point number between 0 and 1}

 ii. PRINT RND(10 TO 20) {integer between 10 and 20}

 iii. PRINT RND(1 TO 6) {integer between 1 and 6}

 iv. PRINT RND(10) {integer between 0 and 10}

RUN

program RUN allows a SuperBASIC program to be started. If a line

number is specified in the RUN command then the program will be

started at that point, otherwise the program will start at the lowest

line number.

syntax: RUN [numeric_expression]

example: i. RUN {run from start}

 ii. RUN 10 {run from line 10}

 iii. RUN 2*20 {run from line 40}

Comment: Although RUN can be used within a program its normal use is

to start program execution by typing it in as a direct command.

SAVE devices microdrives

SAVE will save a SuperBASIC program onto any QL device.

syntax: line:= | numeric_expression TO numeric_expression (1)

 | numeric_expression TO (2)

 | TO numeric_expression (3)

 | numeric_expression (4)

 | (5)

 SAVE device *[,line]*

where (1) will save from the specified line to the specified line

 (2) will save from the specified line to the end

 (3) will save from the start to the specified line

 (4) will save the specified line

 (5) will save the whole program

example:

 i. SAVE mdv1_program,20 TO 70 {save lines 20 to 70 on mdv1_program}

 ii. SAVE mdv2_test_program,10,20,40 {save lines 10,20,40 on

mdv1_test_program}

iii. SAVE net3 {save the entire program on the network}

 iv. SAVE ser1 {save the entire program on serial channel }

SBYTES devices microdrives

SBYTES allows areas of the QL memory to be saved on a QL device

syntax: start_address:= numeric_expression

 length:= numeric_expression

 SBYTES device, start_address, length

example: i. SBYTES mdv1_screendata,131072,32768

 {save memory 50000 length 10000 bytes on mdv1_test_program}

 ii. SBYTES mdv1_test_program,50000,10000

 {save memory 50000 length 1000 bytes on mdvl_test_program}

 iii. SBYTES neto_3,32768,32678

 {save memory 32768 length 32768 bytes on the network}

 iv. SBYTES ser1,0,32768

 {save memory 0 length 32768 bytes on serial channel 1}

SCALE graphics

SCALE allows the scale factor used by the graphics procedures to be

altered. A scale of 'x' implies that a vertical line of length 'x'

will fill the vertical axis of the window in which the figure is

drawn. A scale of 100 is the default. SCALE also allows the origin of

the coordinate system to be specified. This effectively allows the

window being used for the graphics to be moved around a much larger

graphics space.

syntax: x:=numeric_expression

 y:=numeric_expression

 origin:= x,y

 scale:= numeric_expression

 SCALE [channel,] scale, origin

example:

 i. SCALE 0.5,0.1,0.1 {set scale to 0.5 with the origin at 0.1,0.l}

 ii. SCALE 10,0,0 {set scale to 10 with the origin at 0,0}

iii. SCALE 100,50,50 {set scale to 100 with the origin at 50,50}

SCROLL windows

SCROLL scrolls the window attached to the specified or default channel

up or down by the given number of pixels. Paper is scrolled in at the

top or the bottom to fill the clear space.

An optional third parameter can be specifiedto obtain a part screen

scroll.

syntax: part:= numeric_expression

 distance:= numeric_expression

where part = 0 - whole screen (default is no parameter)

 part = 1 - top excluding the cursor line

 part = 2 - bottom excluding the cursor line

 SCROLL [channel,] distance [, part]

If the distance is positive then the contents of the screen will be

shifted down.

example: i. SCROLL 10 {scroll down 10 pixels}

 ii. SCROLL -70 {scroll up 70 pixels}

 iii. SCROLL -10,2 {scroll the lower part of the window up 10

pixels}

SDATE clock

The SDATE command allows the QCs clock to be reset.

syntax: year:= numeric_expression

 month:= numeric_expression

 day:= numeric_expression

 hours:= numenc_express,on

 minutes:= numeric_expression

 seconds:= numeric_expression

 SDATE year, month, day, hours, minutes, seconds

example: i. SDATE 1984,4,2,0,0,0

 ii. SDATE 1984,1,12,9,30,0

 iii. SDATE 1984,3,21,0,0,0

SELect

END SELect conditions

SELect allows various courses of action to be taken depending on the

value of a variable.

define: select_variable:= numeric_variable

 select_item:= | expression

 | expression TO expression

 select_list:= | select_item *[, select_item]*

LONG: Allows multiple actions to be selected depending on the value

of a selectvariable. The select variable is the last item on the

logical line. A series of SuperBASIC statements follows, which is

terminated by the next ON statement or by the END SELect statement. If

the select item is an expression then a check is made within

approximately 1 part in 10-', otherwise for expression TO expression

the range is tested exactly and is inclusive. The ON REMAINDER

statement allows a, "catch-all" which will respond if no other select

conditions are satisfied.

syntax: SELect ON select_variable

 *[[ON select_variable] = select_list

 statements] *

 [ON selectvariable] = REMAINDER

 statements

 END SELect

example:

 100 LET error number = RND(1 TO 10)

 110 SELect ON error_number

 120 ON error_number =1

 130 PRINT "Divide by zero"

 140 LET error_number = 0

 150 ON error_number = 2

 160 PRINT "File not found"

 170 LET error_number = 0

 180 ON error_number = 3 TO 5

 190 PRINT "Microdrive file not found"

 200 LET error_number = 0

 210 ON error_number = REMAINDER

 220 PRINT "Unknown error"

 230 END SELect

If the select variable is used in the body of the SELect statement

then it must match the select variable given in the select header.

SHORT: The short form of the SELect statement allows simple single

line selections to be made. A sequence of SuperBASIC statements

follows on the same logical line as the SELect statement. If the

condition defined in the select statement is satisfied then the

sequence of SuperBASIC statements is processed.

syntax: SELect ON select_variable = select_list : statement *[:

statement] *

example:

 i. SELect ON test data =1 TO 10 :

 PRINT "Answer within range"

 ii. SELect ON answer = 0.00001 TO 0.00005 : PRINT "Accuracy OK"

 iii. SELect ON a =1 TO 10 : PRINT a ! "in range"

Comment: The short form of the SELect statement allows ranges to be

tested more easily than with an IF statement. Compare example ii.

above with the corresponding IF statement.

SEXEC Qdos

Will save an area of memory in a form which is suitable for loading

and executing with the EXEC command.

The data saved should constitute a machine code program.

Syntax: start_address:= numeric_expression {start of area}

 length:= numeric_expression {length of area}

 data_space:=numeric_expression

 {length of data area which will be required by the program}

 SEXEC device, start_address, length, data_space

example: SEXEC mdv1_program,262144,3000,500

The Qdos system documentation should be read before attempting to use

this command.

SIN maths function

SIN will compute the sine of the specified parameter.

syntax: angle:= numeric_expression {range -10000..10000 in radians}

 SIN(angle)

example: i. PRINT SIN(3)

 ii. PRINT SIN(3.141592654/2)

SQRT maths function

will compute the square root of the specified argument. The argument

must be greater maths functions than or equal to zero.

syntax: SORT (numeric_expression) {range >= 0}

example: i. PRINT SQRT(3) {print square root of 3}

 ii. LET C = SQRT(a^2+b^2)

 {let c become equal to the square root of a^2 + b^2}

STOP BASIC

STOP will terminate execution of a program and will return SuperBASIC

to the command BASIC interpreter.

syntax: STOP

example: i. STOP

 ii. IF n =100 THEN STOP

You may CONTINUE after STOP. The last executable line of a program

will act as an automatic stop.

STRIP windows

STRIP will set the current strip colour in the window attached to the

specified or default channel. The strip colour is the background

colour which is used when OVER 1 is selected. Setting PAPER will

automatically set the strip colour to the new PAPER colour.

syntax: STRIP [channel,] colour

example: i. STRIP 7 {set a white strip}

 ii. STRIP 0,4,2 {set a black and green stipple strip}

Comment: The effect of STRIP is rather like using a highlighting pen.

TAN maths functions

TAN will compute the tangent of the specified argument. The argument

must be in the range -30000 to 30000 and must be specified in radians.

syntax: TAN (numeric_expression) {range -30000..30000}

example: i. TAN(3) {print tan 3}

 ii. TAN(3.141592654/2) {print tan PI/2}

TURN

TURNTO turtle graphics

TURN allows the heading of the 'turtle' to be turned through a

specified angle while TURNTO allows the turtle to be turned to a

specific heading.

The turtle is turned in the window attached to the specified or

default channel.

The angle is specified in degrees. A positive number of degrees will

turn the turtle anti-clockwise and a negative number will turn it

clockwise.

Initially the turtle is pointing at 0 degrees, that is, to the right

hand side of the window.

syntax: angle:= numeric_expression {angle in degrees}

 TURN [channel,] angle

 TURNTO [channel,] angle

example: i. TURN 90 {turn through 90 degrees}

 ii. TURNTO 0 {turn to heading 0 degrees}

UNDER windows

Turns underline either on or off for subsequent output lines.

Underlining is in the current INK colour in the window attached to the

specified oi default channel.

syntax: switch:= numeric_expression {range 0..1}

 UNDER [channel,] switch

example: i. UNDER 1 {underlining on}

 ii. UNDER 0 {underlining off}

WIDTH

WINDOW windows

WIDTH allows the default width for non-console based devices to be

specified, for example printers.

syntax: line_width:= numeric_expression

 WIDTH [channel,] line_width

example: i. WIDTH 80 {set the device width to 80}

 ii. WIDTH #6,72 {set the width of the device attached to

channel 6 to 72}

WINDOW windows

Allows the user to change the position and size of the window attached

to the specified or default channel. Any borders are removed when the

window is redefined. Coordinates are specified using the pixel system

relative to the screen origin.

syntax: width:= numeric_expression

 depth:= numeric_expression

 x:=numeric_expression

 y:=numeric_expression

 WINDOW [channel,] width, depth, x, y

example: WINDOW 30, 40, 10, 10 {window 30x40 pixels at 10,10}

QL CONCEPTS MANUAL

==================

ARRAYS

Arrays must be DIMensioned before they are used. When an array is dimensioned

the value of each of its elements is set to zero or a zero length string if it

is a string array. An array dimension runs from zero up to the specified value.

There is no limits to the number of dimensions which can be defined other than

the total memory capacity of the computer. An array of data is stored such that

the last index defined cycles round most rapidly:

the array defined by

 DIM array(2,4)

will be stored as

 0,0 low address

 0,1

 0,2

 0,3

 0,4

 1,0

 1,1

 1,3

 1,4

 2,0

 2,1

 2,2

 2,3

 2,4 high address

The element referred to by array(a,b,c) is equivalent to the element referred to

by array(a)(b)(c)

 --

 Command Function

 --

 DIM dimension an array

 DIMN find out about the dimensions of an array

 --

BASIC

SuperBASIC includes most of the functions, procedures and constructs found in

other dialects of BASIC. Many of these functions are superfluous in SuperBASIC

but are included for compatibility reasons:

 GOTO use IF, REPEAT, etc

 GOSUB use DEFine PROCedure

 ON...GOTO use SELect

 ON...GOSUB use SELect

Some commands appear not to be present. They can always be obtained by using a

more general function. For example, there are no LPRINT or LLIST statements in

SuperBASIC but output can be directed to a printer by opening the relevant

channel and using PRINT or LIST.

 LPRINT use PRINT #

 LLIST use LIST #

 VAL not required in SuperBASIC

 STR$ not required in SuperBASIC

 IN not applicable to 68008 processor

 OUT not applicable to 68008 processor

Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to

be able to convert the internal codified form of the value of a string

expression to or from the internal codified form of the value of a numeric

expression.

These functions are redundant in SuperBASIC because of the provision of a unique

facility referred to as "coercion". The VAL and STR$ functions are therefore not

provided.

BREAK

If at any time the computer fails to respond or you wish to stop a SuperBASIC

program or command then

 hold down

 [CTRL]

 and then press

 [SPACE]

 keys

A program broken into in this way can be restarted by using the CONTINUE

command.

CHANNELS

A channel is a means by which data can be output to or input from a QL device.

Before a channel can be used it must first be activated (or opened) with the

OPEN command. Certain channels should always be kept open: these are the default

channels and allow simple communication with the QL via the keyboard and screen.

When a channel is no longer in use it can be deactivated (closed) with the CLOSE

command.

A channel is identified by a channel number. A channel number is a numeric

expression preceded by a #. When the channel is opened a device is linked to a

channel number and the channel is initialised. Thereafter the channel is

identified only by its channel number. For example:

 OPEN #5,SER1

Will link serial port 1 to the channel number 5. When a channel is closed only

the channel number need be specified. For example:

 CLOSE #5

Opening a channel requires that the device driver for that channel be activated.

Usually there is more than one way in which the device driver can be activated,

for example the network requires a station number. This extra information is

appended to the device name and passed to the OPEN command as a parameter. See

concepts DEVICE and PERIPHERAL EXPANSION.

Data can be output to a channel by PRINTing to that channel; this is the same

mechanism by which output appears on the QL screen. PRINT without a parameter

outputs to the default channel #1. For example:

 10 OPEN #5,mdv1_test_file

 20 PRINT #5,"this text is in file test_file"

 30 CLOSE #5

will output the text "this text is in file test_file" to the file test_file. It

is important to close the file after all the accesses have been completed to

ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT. Data can be input

from a channel a character at a time using INKEY$

A channel can be opened as a console channel; output is directed to a specified

window on the QL screen and input is taken from the QL keyboard. When a console

channel is opened the size and shape of the initial window is specified. If more

than one console channel is active then it is possible for more than one channel

to be requesting input at the same time. In this case, the required channel can

be selected by pressing CTRL C to cycle round the waiting channels. The cursor

in the window of the selected channel will flash.

The QL has three default channels which are opened automatically. Each of these

channels is linked to a window on the QL screen.

 channel 0 - command and error channel

 channel 1 - output and graphics channel

 channel 2 - program listing channel

+----------+----------+ +---------------------+

| | | | +---------------+ |

| | | | | | |

| 2 | 1 | | | 1 & 2 | |

| | | | | | |

| | | | | | |

+----------+----------+ | +---------------+ |

| | | | | |

| 0 | | | 0 | |

+---------------------+ +--+---------------+--+

Monitor Television

 --

 Command Function

 --

 OPEN open a channel for I/O

 CLOSE close a previously opened channel

 PRINT output to a channel

 INPUT input from a channel

 INKEY$ input a character from a channel

 --

CHARACTER SET AND KEYS

The cursorncontrols are not built in to the operating system: however, if these

functions are to be provided by applications software, they should use the keys

specified; also the specified keys should not normally be used for any other

purpose.

--

Decimal Hex Keying Display/Function

--

 0 00 CTRL ` NULL

 1 01 CTRL A

 2 02 CTRL B

 3 03 CTRL C Change input channel (see note)

 4 04 CTRL D

 5 05 CTRL E

 6 06 CTRL F

 7 07 CTRL G

 8 08 CTRL H

 9 09 TAB (CTRL I) Next field

 10 0A ENTER (CTRL J) New line / Command entry

 11 0B CTRL K

 12 0C CTRL L

 13 0D CTRL M Enter

 14 0E CTRL N

 15 0F CTRL O

 16 10 CTRL P

 17 11 CTRL Q

 18 12 CTRL R

 19 13 CTRL S

 20 14 CTRL T

 21 15 CTRL U

 22 16 CTRL V

 23 17 CTRL W

 24 18 CTRL X

 25 19 CTRL Y

 26 1A CTRL Z

 27 1B ESC (CTRL SHIFT |) Abort current level of command

 28 1C CTRL SHIFT \

 29 1D CTRL SHIFT]

 30 1E CTRL SHIFT `

 31 1F CTRL SHIFT ESC

 32 20 SPACE

 33 21 SHIFT 1 !

 34 22 SHIFT ' "

 35 23 SHIFT 3 #

 36 24 SHIFT 4 $

 37 25 SHIFT 5 %

 38 26 SHIFT 7 &

 39 27 ' '

 40 28 SHIFT 9 (

 41 29 SHIFT 0)

 42 2A SHIFT 8 *

 43 2B SHIFT = +

 44 2C , ,

 45 2D - -

 46 2E . .

 47 2F / /

 48 30 0 0

 49 31 1 1

 50 32 2 2

 51 33 3 3

 52 34 4 4

 53 35 5 5

 54 36 6 6

 55 37 7 7

 56 38 8 8

 57 39 9 9

 58 3A SHIFT ; :

 59 3B ; ;

 60 3C SHIFT . <

 61 3D = =

 62 3E SHIFT ?? >

 63 3F SHIFT / ?

 64 40 SHIFT 2 @

 65 41 SHIFT A A

 66 42 SHIFT B B

 67 43 SHIFT C C

 68 44 SHIFT D D

 69 45 SHIFT E E

 70 46 SHIFT F F

 71 47 SHIFT G G

 72 48 SHIFT H H

 73 49 SHIFT I I

 74 4A SHIFT J J

 75 4B SHIFT K K

 76 4C SHIFT L L

 77 4D SHIFT M M

 78 4E SHIFT N N

 79 4F SHIFT O O

 80 50 SHIFT P P

 81 51 SHIFT Q Q

 82 52 SHIFT R R

 83 53 SHIFT S S

 84 54 SHIFT T T

 85 55 SHIFT U U

 86 56 SHIFT V V

 87 57 SHIFT W W

 88 58 SHIFT X X

 89 59 SHIFT Y Y

 90 5A SHIFT Z Z

 91 5B [[

 92 5C \ \

 93 5D]]

 94 5E SHIFT 6 ^

 95 5F SHIFT - _

 96 60 ` `

 97 61 A a

 98 62 B b

 99 63 C c

 100 64 D d

 101 65 E e

 102 66 F f

 103 67 G g

 104 68 H h

 105 69 I i

 106 6A J j

 107 6B K k

 108 6C L l

 109 6D M m

 110 6E N n

 111 6F O o

 112 70 P p

 113 71 Q q

 114 72 R r

 115 73 S s

 116 74 T t

 117 75 U u

 118 76 V v

 119 77 W w

 120 78 X x

 121 79 Y y

 122 7A Z z

 123 7B SHIFT [{

 124 7C SHIFT \ |

 125 7D SHIFT] }

 126 7E SHIFT ` ~

 127 7F SHIFT ESC �

 128 80 CTRL ESC €

 129 81 CTRL SHIFT 1 �

 130 82 CTRL SHIFT ' ‚

 131 83 CTRL SHIFT 3 ƒ

 132 84 CTRL SHIFT 4 „

 133 85 CTRL SHIFT 5 …

 134 86 CTRL SHIFT 7 †

 135 87 CTRL ' ‡

 136 88 CTRL SHIFT 9 ˆ

 137 89 CTRL SHIFT 0 ‰

 138 8A CTRL SHIFT 8 Š

 139 8B CTRL SHIFT = ‹

 140 8C CTRL , Œ

 141 8D CTRL _ �

 142 8E CTRL . �

 143 8F CTRL / �

 144 90 CTRL 0 �

 145 91 CTRL 1 ‘

 146 92 CTRL 2 ’

 147 93 CTRL 3 “

 148 94 CTRL 4 ”

 149 95 CTRL 5 ·

 150 96 CTRL 6 –

 151 97 CTRL 7 —

 152 98 CTRL 8 ˜

 153 99 CTRL 9 ™

 154 9A CTRL SHIFT ; š

 155 9B CTRL ; ›

 156 9C CTRL SHIFT , œ

 157 9D CTRL = �

 158 9E CTRL SHIFT . �

 159 9F CTRL SHIFT / Ÿ

 160 A0 CTRL SHIFT 2

 161 A1 CTRL SHIFT A ¡

 162 A2 CTRL SHIFT B ¢

 163 A3 CTRL SHIFT C £

 164 A4 CTRL SHIFT D ¤

 165 A5 CTRL SHIFT E ¥

 166 A6 CTRL SHIFT F ¦

 167 A7 CTRL SHIFT G §

 168 A8 CTRL SHIFT H ¨

 169 A9 CTRL SHIFT I ©

 170 AA CTRL SHIFT J ª

 171 AB CTRL SHIFT K «

 172 AC CTRL SHIFT L ¬

 173 AD CTRL SHIFT M

 174 AE CTRL SHIFT N ®

 175 AF CTRL SHIFT O ¯

 176 B0 CTRL SHIFT P °

 177 B1 CTRL SHIFT Q ±

 178 B2 CTRL SHIFT R ²

 179 B3 CTRL SHIFT S ³

 180 B4 CTRL SHIFT T ´

 181 B5 CTRL SHIFT U µ

 182 B6 CTRL SHIFT V ¶

 183 B7 CTRL SHIFT W ·

 184 B8 CTRL SHIFT X ¸

 185 B9 CTRL SHIFT Y ¹

 186 BA CTRL SHIFT Z º

 187 BB CTRL [»

 188 BC CTRL \ ¼

 189 BD CTRL] ½

 190 BE CTRL SHIFT 6 ¾

 191 BF CTRL SHIFT _ ¿

 192 C0 Left Cursor left one character

 193 C1 ALT Left Cursor to start of line

 194 C2 CTRL Left Delete left one character

 195 C3 CTRL ALT Left Delete line

 196 C4 SHIFT Left Cursor left one word

 197 C5 SHIFT ALT Left Pan left

 198 C6 SHIFT CTRL Left Delete left one word

 199 C7 SHIFT CTRL ALT Left

 200 C8 Right Cursor right one character

 201 C9 ALT Right Cursor to end of line

 202 CA CTRL Right Delete character under cursor

 203 CB CTRL ALT Right Delete to end of line

 204 CC SHIFT Right Cursor right one word

 205 CD SHIFT ALT Right Pan right

 206 CE SHIFT CTRL Right Delete word under & right of cursor

 207 CF SHIFT CTRL ALT Right

 208 D0 Up Cursor right

 209 D1 ALT Up Scroll up

 210 D2 CTRL Up Search backward

 211 D3 ALT CTRL Up

 212 D4 SHIFT Up Top of screen

 213 D5 SHIFT ALT Up

 214 D6 SHIFT CTRL Up

 215 D7 SHIFT CTRL ALT Up

 216 D8 Down Cursor down

 217 D9 ALT Down Scroll down

 218 DA CTRL Down Search forwards

 219 DB ALT CTRL Down

 220 DC SHIFT Down Bottom of screen

 221 DD SHIFT ALT Down

 222 DE SHIFT CTRL Down

 223 DF SHIFT CTRL ALT Down

 224 E0 CAPS LOCK Toggle CAPS LOCK function

 225 E1 ALT CAPS LOCK

 226 E2 CTRL CAPS LOCK

 227 E3 ALT CTRL CAPS LOCK

 228 E4 SHIFT CAPS LOCK

 229 E5 SHIFT ALT CAPS LOCK

 230 E6 SHIFT CTRL CAPS LOCK

 231 E7 SHIFT CTRL ALT CAPS LOCK

 232 E8 F1

 233 E9 CTRL F1

 234 EA SHIFT F1

 235 EB CTRL SHIFT F1

 236 EC F2

 237 ED CTRL F2

 238 EE SHIFT F2

 239 EF CTRL SHIFT F2

 240 F0 F3

 241 F1 CTRL F3

 242 F2 SHIFT F3

 243 F3 CTRL SHIFT F3

 244 F4 F4

 245 F5 CTRL F4

 246 F6 SHIFT F4

 247 F7 CTRL SHIFT F4

 248 F8 F5

 249 F9 CTRL F5

 250 FA SHIFT F5

 251 FB CTRL SHIFT F5

 252 FC SHIFT space "Special" space

 253 FD SHIFT TAB Back tab (CTRL ignored)

 254 FE SHIFT ENTER "Special" newline (CTRL ignored)

 255 FF See below

--

Codes up to 20 hex are either control characters or non-printing characters.

Alternative keyings are shown in brackets after the main keying.

Note that CTRL-C is trapped by Qdos and cannot be detected without changes to

the system variables.

Note that codes C0-DF are cursor control commands.

The ALT key depressed with any key combination other than cursor keys or CAPS

LOCK generates the code FF, followed by a byte indicating what the keycode would

have been if ALT had not been depressed.

Note that CAPS LOCK and CTRL-F5 are trapped by Qdos and cannot be detected

without special software.

CLOCK

The QL contains a real time clock which runs when the computer is switched on.

The format used for the date and time is standard ISO format.

 1983 JAN 01 12:09:10

Individual year, month, day and time can all be obtained by assigning the string

returned by DATE to a string variable and slicing it. The clock will run from

1961 JAN 01 00:00:00

For a description of the format, see BS5249: Part 1: 1976 and as modified in

Appendix D.2.1 Table 5 Serial 5 and Appendix E.2 Table 6 Serials 1 and 2.

Command Function

SDATE set the clock

ADATE adjust the clock

DATE return the date as a number

DATE$ return the date as a string

DAY$ return day of the week

COERCION

If necessary SuperBASIC will convert the type of unsuitable data to a type which

will allow the specified operation to proceed.

The operators used determine the conversion required. For example, if an

operation requires a string parameter and a numeric parameter is supplied then

SuperBASIC will first convert the parameter to type string. It is not always

possible to convert data to the required form and if the data cannot be

converted an error is reported.

The type of a function or procedure parameter can also be converted to the

correct type. For example, the SuperBASIC LOAD command requires a parameter of

type NAME but can accept a parameter of type STRING and which will be converted

to the correct type by the procedure itself. Coercion of this form is always

dependent on the way the function or procedure was implemented.

There is a natural ordering of data types on the QL, see figure below. String is

the most general type since it can represent integer data (almost exactly). The

figure below shows the ordering diagramatically. Data can always be converted

moving up the diagram but it is not always possible moving down.

+--+

| |

| not always string ^ |

| possible /\ | |

| | / \ | |

| | / \ | |

| | / \ | |

| | / name | |

| | / | |

| | floating point | |

| | | | |

| | | | |

| | | always possible |

| | integer |

| v |

| |

+--+

EXAMPLE

a = b + c (no conversion is necessary before performing the addition.

 Conversion is not necessary before assigning the result to a)

a% = b + c (no conversion is necessary before performing the addition but

 the result is converted to integer before assigning)

a$ = b$ + c$ (b$ and c$ are converted to floating point,if possible,before

 being added together. The result is converted to string before

 assigning)

LOAD "mdv1_data" (the string "mdv1_data" is converted to type name by the LOAD

 procedure before it is used)

Statements can be written in SuperBASIC which would generate errors in most

other computer languages. In general, it is possible to mix data types in a very

flexible manner:

 i. PRINT "1" + 2 + "3"

 ii. LET a$ = 1 + 2 + a$ + "4"

COLOUR

Colours on the QL can be either a SOLID colour or a STIPPLE - a mixture of two

colours to some predefined pattern. Colour specification on the QL can be up to

three items: a colour, a contrast colour and a stipple pattern.

i. Single:

 The single argument specifies the three parts of the colour

 specification. The main colour is contained in the bottom three bits

 of the colour byte. The next three bits contain the exclusive or (XOR)

 of the main colour and the contrast colour. The top two bits indicate

 the stipple pattern.

 +----------------------- stipple

 |

 | +------------ contrast XOR main (mix)

 | |

 | | +- colour

 | | |

 +--------+------------+------------+

 |::::::::|XXXXXXXXXXXX|************|

 |::::::::|XXXXXXXXXXXX|************|

 |::::::::|XXXXXXXXXXXX|************|

 +--------+------------+------------+

 bit 7 6 5 4 3 2 1 0

 By specifying only the bottom three bits (i.e. the required colour) no

 stipple will be requested and a single solid colour will be used for

 display.

ii. Double

 colour: = background, contrast

 The colour is a stipple of the two specified colours. The default

 checkerboard stipple is assumed (stipple 3)

iii. Triple

 colour: = background, contrast, stipple

 Background and contrast colours and stipple are each defined separately.

COLOURS

The codes for colour selection depend on the screen mode in use:

--

code bit pattern composition colour

--

 8 colour 4 colour

0 0 0 0 black black

1 0 0 1 blue blue black

2 0 1 0 red red red

3 0 1 1 red + blue magenta red

4 1 0 0 green green green

5 1 0 1 green + blue cyan green

6 1 1 0 green + red yellow white

7 1 1 1 green + red + blue white white

--

Colour Composition and Codes

STIPPLES

Stipples mix a background and a contrast colour in a fine stipple pattern.

Stipples can be used on the QL in the same manner as ordinary solid colours

although stipples may not be reproduced correctly on an ordinary domestic

television. There are four stipple patterns:

 XO XX OX OX

 XX OO OX XO

 Stipple 0 Stipple 1 Stipple 2 Stipple 3

Stipple 3 is the default.

example: i. PAPER 255 : CLS

 ii. PAPER 2,4 : CLS

 iii. PAPER 0,2,0 : CLS

warning: Stipples may not reproduce correctly on a domestic television

 set which is fed via the UHF socket.

COMMUNICATIONS RS-232-C

The QL has two serial ports (called SER1 and SER2) for connecting it to

equipment which uses serial communications obeying EIA standard RS-232-C or a

compatible standard.

The RS-232-C 'standard' was originally designed to enable computers to send and

receive data via telephone lines using a modem. However, it is now frequently

used to connect computers directly with each other and to various items of

peripheral equipment, e.g. printers, plotters, etc.

As the RS-232-C 'standard' manifests itself in many different forms on different

pieces of equipment, it can be an extremely difficult job, even for an expert to

connect together for the first time two pieces of supposedly standard RS-232-C

equipment. This section will attempt to cover most of the basic problems that

you may encounter.

The RS-232-C 'standard' refers to two types of equipment:

 1. Data Terminal Equipment (DTE)

 2. Data Communication Equipment (DCE)

The standard envisaged that the terminal (usually the DTE) and the modem

(usually the DCE) would both have the same type of connector.

+---------+ +---------+

| | | |

| | | |

| 2 | ---- TxD (output) --------> | 2 |

| | | |

| | | |

| 3 | <--- RxD (input) ---------- | 3 |

| | | |

| | | |

| 7 | <--- GND (ground) --------> | 7 |

| | | |

| DTE | | DCE |

+---------+ +---------+

The diagram above illustrates how the DTE transmits data on pin 2 whilst the DCE

must receive data on its pin 2 (which is still called transmit data!). Likewise,

the DTE receives data on pin 3 whilst the DCE must transmit data on its pin 3

(which is still called receive data!). Although this is confusing in itself, it

can lead to far greater problems when there is disagreement as to whether a

certain device should be configured as DCE or DTE.

Unfortunately, some people decide that their computers should be configured as

DCE devices whilst others configure equivalent computers as DTE devices. This

obviously leads to difficulties in the configuration of the serial ports on each

piece of equipment.

SER1 on the QL is configured as DCE, while SER2 is configurd as DTE. Therefore,

it should be possible to connect at least one of the serial ports to a given

device simply by using whichever port is wired the 'correct' way. The pin-out

for the serial ports is given below. A cable for connecting the QL to a standard

25-way 'D' type connector is available from Sinclair Research Limited.

---------------------------------- ---------------------------------

 SER1 SER2

---------------------------------- ---------------------------------

 pin name function pin name function

---------------------------------- ---------------------------------

 1 GND signal ground 1 GND signal ground

 2 TxD input 2 TxD output

 3 RxD output 3 RxD input

 4 DTR ready input 4 DTR ready output

 5 CTS ready output 5 CTS ready input

 6 +12V 6 +12V

---------------------------------- ---------------------------------

TxD Transmit Data DTR Data Terminal Ready

RxD Receive Data CTS Clear To Send

Once the equipment has been connected to the 'correct' port, the baud rate (the

speed of transmission of data) must be set so that the baud rates for both the

QL and the connected equipment are the same. The QL can be set to operate at:

 75

 300

 600

 1200

 2400

 4800

 9600

 19200 (transmit only) baud

The QL baud rate is set by the BAUD command and is set for both channels. The

baud rates cannot be set independently.

The parity to be used by the QL must also be set to match that expected by the

peripheral equipment. Parity is usually used to detect simple transmission

errors and may be set to be even, odd, mark, space or no parity, i.e. all 8 bits

of the byte are used for data.

Stop bits mark the end of transmission of a byte or character. The QL will

receive data with one, one and a half, or two stop bits, and will always

transmit data with at least two stop bits. Note that if the QL is set up to 9600

baud it will not receive data with only one stop bit: at least one and a half

stop bits are required.

The may be necessary to connect the handshake lines between the QL and a piece

of equipment connected to it. This allows the QL and its peripheral to monitor

and control their rate of communication. They may need to do this if one of them

cannot cope with the speed at which data is being transmitted. The QL uses two

handshaking lines:

 CTS Clear to Send

 DTR Data Terminal Ready

If DTE cannot cope with the rate of transmission of data then it can negate the

DTR line which tells the DCE to stop sending data. Obviously, when the DTE has

caught up it tells the DCE, via the DTR line, to start transmitting again. In

the same way, the DCE can stop the DTE sending data by negating the CTS line. If

additional control signals are required they can be wired up using the 12V

supply available on both serial ports.

ALTHOUGH TRANSMISSION FROMT HE QL IS OFTEN POSSIBLE WITHOUT ANY HANDSHAKING AT

ALL, THE QL WILL NOT RECEIVE CORRECTLY UNDER ANY CIRCUMSTANCES WITHOUT THE USE

OF CTS ON SER1 AND DTR ON SER2.

Communications on the QL are 'full duplex', that is both receive and transmit

can operate concurrently.

The parity and handshaking are selected when the serial channel is opened.

 --

 command function

 --

 BAUD set transmission speed

 OPEN open serial channels *

 CLOSE close serial channels

 --

 * see concept 'DEVICE' for a full specification

DATA TYPES - VARIABLES

INTEGER

Integers are whole numbers in the range -32768 to +32767. Variables are assumed

to be integer if the variable identifier is suffixed with a percent %. There

are no integer constants in SuperBASIC, so all constants are stored as floating

point numbers.

syntax: identifier%

example: i. counter%

 ii. size_limit%

 iii. this_is_an_integer_variable%

FLOATING POINT

Floating point numbers are in the range +/- (10^-615 to 10^615), with 8

signiflcant digits. Floating point is the default data type in SuperBASIC.

All constants are held in floating point form and can be entered

using exponent notation.

syntax: identifier | constant

example: i. current accumuLation

 ii. 76.2356

 iii. 354E25

STRING

A string is a sequence of characters up to 32766 characters long. Variables

are assumed to be type string if the variable name is suffixed by a $.

String data is represented by enclosing the required characters in either

single or double quotation marks.

syntax: identifier$ | "text"

example: i. string_variables$

 ii. "this is string data"

 iii. "this is another string"

Type name has the same form as a standard SuperBASIC identifier and is used by

the name system to name Microdrive files etc.

syntax: identifier

example: i. mdv1_data_file

 ii. ser1e

DEVICES

A device is a piece of equipment on the QL to which data can be sent (input)

and from which data can be output.

Since the system makes no assumptions about the ultimate I/O (input/output)

device which will be used, the I/O device can be easily changed and the

data diverted between devices. For example, a program may have to output

to a printer at some point during its run. If the printer is not available

then the output can be diverted to a Microdrive file and stored.

The file can then be printed at a later date. I/O on the QL can be thought of as being written to and read from a logical file which is in

a standard device-independent form.

All device specific operations are performed by individual device drivers

specially written for each device on the QL. The system can automatically

find and include drivers for peripheral devices which are fitted. These

should be written in the standard QL device driver format; see the

concept 'peripheral expansion'.

When a device is activated a channel is opened and linked to the device.

To correctly open a channel device basic information must sometimes be

supplied. This extra information is appended to the device name.

The file name should conform to the rules for a SuperBASIC type name though

it is also possible to build up the file name (device name) as a SuperBASIC

string expression.

In summary the general form of a file name is:

 identifier [information]

where the complete file name (including the extra information) conforms to

the rules for a SuperBASIC identifier.

Each logical device on the system requires its own particular 'extra

information' although default parameters will be assumed in each case

where possible.

DEFINE device: = name

where the form of the device name is outlined below.

EXAMPLE for console device

 -------------- Select Console Device

 |

 | ------------ Underscore

 | |

 | | ----------- Window Width

 | ||

 | || ---------- Separator

 | |||

 | ||| --------- Height

 | ||||

 | |||| -------- Separator - read as AT

 | |||||

 | ||||| ------- Window X coordinate

 | ||||||

 | |||||| ------ Separator

 | |||||||

 | ||||||| ----- Window Y coordinate

 | ||||||||

 | |||||||| ---- Separator

 | |||||||||

 | ||||||||| --- length of keyboard type ahead buffer

 | ||||||||||

 | ||||||||||

con_wXhaxXy_k

CON wXhaxXy_k Console I/O

 |wXh| - window, wldth, height

 |AxXy| - wIndow X,Y coordinate of upper left-hand corner

 |k| - keyboard type ahead buffer length (bytes)

 default: con_448x180a32x16_128

 example: OPEN #4,con_20x50a0x0_32

 OPEN #8,con_20x50

 OPEN #7,con_20x50a10x10

SCR_wXhaxXy Screen Output

 [wXh] - window, width, height

 [AxXy] - window X, Y coordinate

 default: scr_448x180a32x16

xample: PEN #4, scr _0x10a20x50

 OPEN #5, scr_10x10

SERnphz Serial (RS-232-C)

 n port number (1 or 2)

 [p] parity [h] handshaking [z] protocol

 e - even i - ignore r - raw data no EOF

 o - odd h - handshake z - control Z is EOF

 m - mark c - as z but converts

 s - space ASCII 10 (Qdos

 newline character)

 to ASCII 13

 <CR>)

 default: ser1rh (8 bit no parity with handshake)

 example: OPEN #3, serle

 OPEN #4, serc

 COPY mdv1_test_file TO ser1c

NETd_s Serial Network I/O

 [d] indicates direction [s] station number

 i - input 0 - for broadcast

 o - output own station - for general listen

 (input only)

 default: no default

 example: OPEN #7, neti_32

 OPEN #4, neto_0

 COPY ser1 TO neto_21

MDVn_name Microdrive File Access

 n - Microdrive number

 name - Microdrive file name

 default: no default

 example: OPEN #9, mdv1_data_file

 OPEN #9, mdv1_test_program

 COPY mdv1_test_file TO scr_

Keyword Function

OPEN initialise a device and activate it for use

CLOSE deactivate a device

COPY copy data between devices

COPY_N copy data between devices, but do

 not copy a file's header information

EOF test for end of file

WIDTH set width

DIRECT COMMAND

SuperBASIC makes a distinction between a statement typed in preceded by a

line number and a statement typed in without a line nurnber. Without a

line number the statement is a direct command and is processed immediately

by the SuperBASIC command interpreter. For example, RUN is typed in on the

command line and is processed, the effect being that the program starts

to run. If a statement is typed in with a line number then the syntax of

the line is checked and any detectable syntax errors reported. A correct

line is entered into the SuperBASIC program and stored. These statements

constitute a SuperBASIC program and will only be executed when the

program is started with the RUN or GOTO command.

Not alI SuperBASIC statements make sense when entered as a direct command, for

example, END FOR, END DEFine, etc

ERROR HANDLING

Errors are reported by SuperBASIC in a standard form:

 At line line_number error_text

Where the line number is the number of the line where the error was detected and

the error text is listed below.

(1) Not complete

 An operation has been prematurely terminated (or break has been pressed).

(2) Invalid job

 An error return from Qdos relating to system calls controlling multitasking

 or I/O.

(3) Out of memory

 Qdos and/or SuperBASIC has insufficient free memory.

(4) Out of range

 Usually results from attempts to write outside a window or an incorrect

 array index.

(5) Buffer full

 An I/O operation to fetch a buffer full of characters filled the buffer

 before a record terminator was found.

(6) Channel not open

 Attempt to read, write or close a channel which has not been opened.

 Can also occur if an attempt to open a channel fails.

(7) Not found

 File system, device, medium or file cannot be found.

 SuperBASIC cannot find an identifier. This can result from incorrectly

 nested structures.

(8) Already exists

 The file system has found an already existing file with the same name

 as a new file to be opened for writing.

(9) In use

 The file system has found that a file or device is already exclusively

 used.

(10) End of file

 End of file detected during input.

(11) Drive full

 A device has been filled (usually Microdrive).

(12) Bad name

 The file system has recognised the name but there is a syntax or parameter

 value error.

 In SuperBASIC it means a name has been used out of context. For example, a

 variable has been used as a procedure.

(13) Xmit error .

 RS-232-C parity error

(14) Format failed

 Attempted format operation has failed, the medium is possibly faulty

 (usually a Microdrive cartridge).

(15) Bad parameter

 There is an error in the parameter list of a system or SuperBASIC

 procedure or function call.

 An attempt was made to read data from a write only device.

(16) Bad or changed medium

 The medium (usually a Microdrive cartridge) is possibly faulty

(17) Error in expression

 An error was detected while evaluating an expression.

(18) Overflow

 Arithmetic overflow division by zero, square root of a negative number,

 etc.

(19) Not Implemented

(2O) Read only

 There has been an attempt to write data to a shared file.

(21) Bad line

 A SuperBASIC syntax error has occurred.

(22) PROC/FN cleared

 This is a message which is for information only and is not reporting an

 error. It is reporting that the program has been stopped and subsequently

 changed forcing SuperBASIC to reset its internal state to the outer

 program level and so losing any procedure environment which may have

 been in effect.

ERROR RECOVERY

After an error has occurred the program can be restarted at the nextstatement by typing

 CONTINUE

If the error condition can be corrected, without changing the program, the

program can be restarted at the statement which triggered the error. Type

 RETRY

EXPRESSIONS

SuperBASIC expressions can be string, numeric, logical or a mixture: unsuitable

data types are automatically converted to a suitable form by the system wherever

this is possible.

monop: = | +

 | -

 | NOT

expression: = | [monop] expression operator expression

 | (expression)

 | atom

 atom: = | variable

 | constant

 | function | (expression *|, expression *)

 | array_element

 variable: = | identifier

 | identifier%

 | identifier$

 function: = | identifier

 | identifier%

 | identifier$

 constant: = | digit * [digit] *

 | *[digit] *, *[digit]*

 | *[digit] * |,| *[digit]* E *[digit]*

The final value returned by the evaluation of the expression can be integer

giving an "integer_expression", string giving a "string_expression" or floating

point giving a "floating expression". Often floating point and integer

expressions are equivalent and the term "numeric_expression" is then used.

Logical operators can be included in an expression. If the specified operation

is true then a one is returned as the value of the operation. If the operation

is false then a zero is returned. Though logical operators can be used in any

expression they are usually used in the expression part of an IF statement.

example: i. test_data + 23.3 + 5

 ii. "abcdefghijklmnopqrstuvwxyz"(2 TO 4)

 iii. 32.1 * (colour = 1)

 iv. count = -limit

FILE TYPES - FILES

All I/O on the QL is to or from a 'logical file'. Various file types exist.

DATA - SuperBASIC programs, text files. Created using PRINT, SAVE, accessed

 using INPUT, INKEY$, LOAD etc.

EXEC - An executable transient program. Saved using SEXEC, loaded using EXEC,

 EXEC_W etc.

CODE - Raw memory data, screen images, etc. Saved using SBYTES, loaded using

 LBYTES.

FUNCTIONS AND PROCEDURES

SuperBASIC functions and procedures are defined with the DEFine FuNction and

DEFine PROCedure statements. A function is activated (or called) by typing its

name at the appropriate point in a SuperBASIC expression. The function must be

included in an expression because it is returning a value and the value must be

used. A procedure is activated (or called) by typing its name as the first item

in a SuperBASIC statement.

Data can be passed into a function or procedure by appending a list of actual

parameters after the function or procedure name. This list is compared to a

similar list appended after te name of the function or procedure when it was

defined. This second list is called the "formal parameters" of the function or

procedure. The formal parameters must be SuperBASIC variables. The actual

parameters must be an array, an array slice or a SuperBASIC expression of which

a single variable or constant is the simplest form.

Since the actual parameters are actual expressions, they must have an actual

type associated with them. The formal parameters are merely used to indicate how

the actual parameters must be processed and so have no type associated with

them. The items in each list of parameters are paired off in order when the

function or procedure is called and the formal parameters become equivalent to

the actual parameters. There are three distinct ways of using parameters.

If the actual parameter is a single variable and if data is assigned to the

formal parameter in the function or procedure then the data is also assigned to

the corresponding actual parameter.

If the actual parameter is an expression then assigning data to the

corresponding formal parameter will have no effect outside the procedure. Note

that a variable can be turned into an expression by enclosing it within

brackets.

if the actual parameter is a variable but has not previously been set then

assigning data to the corresponding formal parameter will set the variable

specified as the actual parameter.

Variables can be defined to be local to a function or procedure with the LOCal

statement. Local variables have no effect on similarly named variables outside

the function or procedure in which they are defned and so allow greater freedom

in choosing sensible variable names without the risk of corrupting external

variables. A local variable is available to any inside function or procedure

called from the procedure function in which it is declared to be local unless

the function or procedure called contains a further local declaration of the

same variable name.

Functions and procedures in SuperBASIC can be used recursively. That is a

function or procedure can call itself either directly or indirectly.

 Command Function

 DEFine FuNction define a function

 DEFine PROCedure define a procedure

 RETurn leave a function or procedure

 (return data from a function)

 LOCal define local data in a function or

 procedure

GRAPHICS

It is important to realise that the QL screen has non-square pixels and that

changing screen mode will change the shape of the pixels. Thus if the grapics

procedures were simply pixel based they would draw different shapes in the two

modes. For example, in one mode we would have a circle while the same figure in

the other mode would be an ellipse.

The graphics procedures ensure that whatever screen mode is in use, consistent

figures are produced. It is not possible to use a simple pixel count to indicate

sizes of figures, so instead the graphics procedures use an arbitrary scale and

coordinate system to specify sizes and positions of figures.

The graphics procedures use the Graphics Co-ordinate System, i.e. draw relative

to the Graphics Origin which is in the bottom left hand corner of the specified

or default window. Note that this is not the same as the Pixel Origin used to

define the position of Windows and Blocks etc. The graphics origin allows a

standard Cartesian coordinate system to be used. A graphics cursor is updated

after each graphics operation: subsequent operations can either be relative to

this cursor or can be absolute, i.e. relative to the graphics origin.

 +--+

 | |

 | ^ 100 |

 | | |

 | | |

 | | y |

 | | |

 | | |

 | | |

 | | |

 | | |

 | | |

 | | |

 | | |

 | | (0,0) x |

 | --> |

 | |

 +--+

 The Graphics Coordinate System

The scaling factor is such that the full distance in the vertical direction in

the specified or default window has length 100 by default and can be changed

with the SCALE command. The scale in the x direction is equal to the scale in

the y direction. However, the length of line which can be drawn in the x

direction is dependent on the shape of the window. Increasing the scale factor

increases the maximum size of the figure which can be drawn before the window

size is exceeded. If the graphics output is switched to a different size of

window then the subsequent size of the output is adjusted to fit the new window.

If the figure exceeds its output window then the figure is clipped.

It is useful to consider the window to be a window onto a larger graphics space

in which the figures are drawn. The SCALE command allows the graphics origin to

be set so allowing the window to be moved around the graphics space.

The graphics procedures are output to the window attached to the specified or

default channel and the output is drawn in the INK colour for that channel.

--

Command Function

--

CIRCLE draw an ellipse or a circle }

LINE draw a line } absolute

ARC draw an arc of a circle }

POINT plot a point }

--

CIRCLE_R draw an ellipse or a circle }

LINE_R draw a line }

ARC_R draw an arc of a circle } relative

POINT_R plot a point }

--

SCALE set scale and move origin

FILL fill in a shape

CURSOR position text

--

GRAPHICS FILL

Figures drawn with the graphics and turtle graphics procedures can be optionally

'filled' with a specified stipple or colour. If FILL is selected then the figure

is filled as it is drawn.

The FILL algorithm stores a list of points to plot rather than actually plotting

them. When the figure closes there are two points on the same horizontal line.

These two points are connected by a line in the current INK colour and the

process repeats. Fill must always be reselected before drawing a new figure to

ensure that the buffer used to store the list of points is reset.

The following diagram illustrates FILL:

 +--+

 | |

 | |

 | (75,50) |

 | |

 | /\ |

 | / \ |

 | / \ |

 | / \ |

 | / \ |

 | .---------------- |

 | . . (50,80) |

 | . . |

 | . . |

 | . . |

 | . |

 | (10,20) FILL 1:LINE 10,20 TO 75,50 TO 50,80 |

 +--+

WARNING: There is an implementation restriction on FILL. FILL must not be used

for re-entrant shapes (i.e. a shape which is concave). Re-entrant shapes must be

split into smaller shapes which are not re-entrant and each sub-shape filled

independently.

IDENTIFIER

A SuperBASIC identifier is a sequence of letters, numbers and underscores.

define: letter:= | a..Z

 | A..Z

 number:= | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

 identifier:= letter * || letter | number | _ | | *

example: i. a

 ii. limit_1

 iii. current_guess

 iv. counter

An identifier must begin with a letter followed by a sequence of letters,

numbers and underscores and can be up to 255 characters long. Upper and lower

case characters are equivalent.

Identifiers are used in the SuperBASIC system to identify Variables, Procedures,

Functions, Repetition loops, etc.

WARNING: NO meaning can be attributed to an identifier other than its ability to

identify constructs to SuperBASIC. SuperBASIC cannot infer the intended use of

an identifier from the identifier's name!

JOYSTICK

The joystick ports marked CTL1 and CTL2, allow two joysticks to be attached to

the QL.

The joysticks are arranged to generate specific key depressions when moved in a

specific way and any program which uses a joystick must be able to adapt to

these keys. The QL keyboard can be read directly using the KEYROW function.

 CTL1 CTL2

moe key key

up cursor up F4

down cursor down F2

left cursor left F1

right cursor right F3

fire space F5

The joystick ports can be used for adding other more general purpose control

devices to the QL.

Joysticks for other computers using a 9-way 'D' connector require an adaptor to

be used with the QL. Such an adaptor is available from Sinclair Research.

KEYWORD

SuperBASIC keywords are identifiers which are defined in the SuperBASIC Keyword

Reference Guide. Keywords have the same form as a SuperBASIC standard

identifier. The case of the keyword is not significant. Keywords are echoed as a

mixture of upper and lower case letters and are always reproduced in full. The

upper case portion indicates the minimum required to be typed in for SuperBASIC

to recognise the keyword.

The set of SuperBASIC keywords may be extended by adding PROCEDURES to the QL.

It is a good idea to define these with their names in upper case and this will

indicate their special function in the SuperBASIC system. Conversely, ordinary

procedures should be defined with their names in lower case.

WARNING: Existing keywords cannot be used as ordinary identifiers within a

SuperBASIC program. SuperBASIC keywords are:

--

List of Keywords

--

ABS DEFine PROCedure LEN RANDOMISE

ACOS,ASIN END DEFine LET RND

ACOT,ATAN DEG LIST RECOL

ADATE DELETE LOAD REMark

ARC,ARC_R DIM LOCal RENUM

AT DIMN LN,LOG10 REPeat

AUTO DIR LRUN END REPeat

BAUD DIV MERGE RESPR

BEEP DLINE MOD RETurn

BEEPING EDIT MODE RETRY

BLOCK ELLIPSE MOVE RUN

BORDER ELLIPSE_R MRUN SAVE

CALL EOF NET SIN

CHR$ EXEC,EXEC_W NEW SCALE

CIRCLE EXIT NEXT SCROLL

CIRCLE_R EXP ON GO TO SDATE

CLEAR FILL ON GO SUB SELect

CLOSE FILL$ OPEN,OPEN_IN END SELect

CLS FLASH OPEN_NEW SEXEC

CODE FOR OVER SQRT

CONTINUE END FOR PAN STOP

RETRY FORMAT PAPER STRIP

COPY,COPY_N GO SUB PAUSE TAN

COS GO TO PEEK,PEEK_W TO

COT IF,THEN,ELSE PEEK_L TURN

CSIZE END IF PENUP TURN TO

CURSOR INK PENDOWN UNDER

DATA,READ INKEY$ PI VER$

RESTORE INPUT POINT,POINT_R WIDTH

DATE$,DATE INSTR POKE,POKE_W WINDOW

DAY$ INT POKE_L

DEFine FuNction KEYROW PRINT

END DEFine LBYTES RAD

--

MATHS FUNCTIONS

SuperBASIC has the standard trigonometrical and mathematical functions.

Function Name

COS cosine

SIN sin

TAN tangent

ATAN arctangent

ACOT arcotangent

ACOS arcosine

ASIN arcsine

COT cotangent

EXP exponential

LN natural logarithm

LOG10 common logarithm

INT integer

ABS absolute value

RAD convert to radians

DEG convert to degrees

PI return the value of pi ±

RND generate a random number

RANDOMISE reseed the random number generator

MEMORY MAP

The QL contains a Motorola 68008 microprocessor, which can address 1 Megabyte of

memory, i.e. from 00000 to FFFFF Hex. The use of addresses within this range are

defined by Sinclair Research to be as follows:

FFFFF +----------------------+

 | ---------- |

 | RESERVED | expansion I/O

 | ---------- |

C0000 +----------------------+

 | ---------- |

 | RESERVED | add on RAM

 | ---------- |

40000 +----------------------+

 | RAM |

 | 96 Kbytes | main RAM

 | |

28000 +----------------------+

 | RAM |

 | 32 Kbytes | screen RAM

 | |

20000 +----------------------+

 | |

 | I/O | QL I/O

 | |

18000 +----------------------+

 | ROM |

 | 16 Kbytes | plug in ROM

 | |

0C000 +----------------------+

 | ROM |

 | 48 Kbytes | system ROM

 | |

00000 +----------------------+

 Physical Memory Map

The screen RAM is organised as a series of sixteen bit words starting at address

Hex 20000 and progressing in the order of the raster scan, i.e. from left to

right with each display line and then from the top to the bottom of the picture.

The bits within eachbword are organised so that a pixel to the left is always

more significant than a pixel to the right (i.e. the pixel pattern on the screen

looks the same as the binary pattern). However, the organisation of the colour

information in the two screen modes is different:

 +-----------+-----------+---------------------+

 | high byte | low byte | mode |

 | A0=0 | A0=1 | |

 +-----------+-----------+---------------------+

 | | | |

 | GGGGGGGG | RRRRRRRR | 512 mode (high res) |

 +-----------+-----------+---------------------+

 | | | |

 | GFGFGFGF | RBRBRBRB | 256 mode (low res) |

 +-----------+-----------+---------------------+

 G-Green B-Blue R-Red F-Flash

Setting the Flash bit toggles the flash state and freezes the background colour

for the flash to the value given by R, G and B for that pixel. Flashing is

always reset at the beginning of each display line.

In high resolution mode, red and green specified together is interpreted by the

hardware as white.

WARNING: Use of reserved areas in the memory map may cause incompatibility with

future Sinclair products. Spurious output to addresses defined to be peripheral

I/O addresses can cause unpredictable behaviour. It is recommended that these

areas are NOT written to and not used for any other purpose. Poking areas in use

as Microdrive buffers can corrupt Microdrive data and can result in a loss of

information. Pokng areas in use such as system tables can cause the system to

crash and can result in the loss of data and programs.

All I/O should be performed using either the relevant SuperBASIC commands or the

QDOS Operating System traps.

MICRODRIVES

Microdrives provide the main permanent storage on the QL. Each Microdrive

cartridge has a capacity of at least 100Kbytes. Available free memory space is

allocated by QDOS as Microdrive buffers when necessary to improve performance.

Each blank cartridge must be formatted before use and can hold up to 255 sectors

of 512 bytes per sector. QDOS keeps a directory of files stored on the

cartridge. Each microdrive file is identified using a standard SuperBASIC file

or device name.

A cartridge can be write protected be removing the small lug on the right hand

sie.

On receiving new blank microdrive cartridges, format them a few times to

condition the tape.

GENERAL CARE

Physically each Microdrive cartridge contains a 200 inch loop of high quality

video tape which is moved at 28 inches per second. The tape completes one

circuit every 7.5 seconds.

NEVER touch the tape with your fingers or insert anything into the cartridge

NEVER turn the computer on or off with cartridges in place

ALWAYS store cartridges in their sleeves when not in use

ALWAYS insert or remove cartridges from the Microdrive slowly and carefully

ALWAYS ensure the cartridge is firmly installed before starting the microdrive

NEVER move the QL with cartridges installed - even if not in operation

NEVER touch the cartridge while the Microdrive is in operation

DO NOT repeatedly insert and remove the cartridge without running the Microdrive

TAPE LOOPS: If a tape loop appears at either of the two places shown in figure 1

then gently ease it back into the cartridge. Use a non-fibrous instrument for

this, e.g. the side of a pen or pencil. NEVER tocuh the tape with your fingers

for this or any reason.

 | |

 | v

 | +--------------------+

 tape | \ ** / |

 loop | ---- |

 | |\ |

 | |*| | <----- write protect lug

 -----> | | |

 |/ |

 | ---------------- |

 | | | |

 | | | |

 | | <-------------- label

 | | | |

 | | | |

 | | | |

 | ---------------- |

 +----------------------+

 |======================|

 |======================| A Microdrive Cartridge

 +----------------------+

 ^

 |

 label ----------

 Command Function

 FORMAT prepare a new cartridge for use

 DELETE delete a file from a cartridge

 DIR list the files on a cartridge

 SAVE

 SBYTES saves data from a cartridge

 SEXEC

 LOAD

 LBYTES

 EXEC loads data from a cartridge

 MERGE

 OPEN_IN

 OPEN_NEW

 OPEN opens and closes files

 CLOSE

 PRINT

 INPUT SuperBASIC file I/O

 INKEY$

WARNING: If you attempt to write to a cartridge which is write protected then

the QL will repeatedly attempt to write the data but will eventually give up and

give a "bad medium" error.

MONITOR

A monitor may be connected to the QL via the RGB socket on the back of the

computer. Connection is via an 8-way DIN plug plus cable for colour monitors, or

a 3-way DIN plug plus cable for monochrome. The RGB socket connections are as in

the following table, and the column indicating wire colour refers to the colour

coding used on the 8-way cable and connector available from Sinclair Research

Limited. Pin designation is as shown in the diagram below.

--

 sleeve colour

 pin function signal on QL RGB

 colour lead

--

 1 PAL composite PAL (4) orange

 2 GND ground green

 3 VIDEO composite monochrome video (3) brown

 4 CSYNC composite sync (2) yellow

 5 VSYNC vertical sync (1) blue

 6 GREEN green (1) red

 7 RED red (1) white

 8 BLUE blue (1) purple

--

A monochrome monitor can be connected using a screened lead with a 3-way or an

8-way DIN plug at the QL end. Only pins 2 (ground) and 3 (composite video) need

to be connected via the cable to the monitor. The connection at the monitor end

will vary according to the monitor but is usually a phono plug. The monitor must

have a 75 ohm 1V pk-pk composite video non-inverting input (which is the

industry standard). Both 3-way DIN plugs and phono plugs are available from

audio shops.

 RGB CONNECTOR

 8(blue)

 POWER CONNECTOR -| |-

------------------------------ 7(red) / +-+ \ -----------------------------

 +-------------+ / \ 6(green)

 | | / 7 6 \

 | | / \

 | ------- | 3(composite | 3 8 1 | 1(composite PAL)

 | / \ | monochrome) | |

 || || \ 5 4 /

 || . . . || 5(vertical synch) \ / 4(composite synch)

 || || \ 2 /

 |+-----------+| \ /

 +-------------+ -----

 2(ground)

Diagram of Monitor Connector as viewed from rear of QL, showing pin numbers and

functions.

An RGB (colour) monitor can be connected using a lead with an 8 way DIN plug at

the QL end. The connection at the monitor end will vary according to the monitor

(there is no industry standard) and will often be supplied with it. A suitable

cable with an 8-way DIN plug at one end and bare wires at the other end is

available from Sinclair Research Limited.

A composite PAL monitor, or the composite video input on some VCRs may work

witht he QL. Only pins 2 (ground) and 1 (composite PAL) need to be connected via

a cable to the monitor or VCR.

NETWORK

The QL can be connected with up to 63 other QLs. If there are more than 2

computers on the network then each computer (or station) must be assigned a

unique station number. On the QL this can be done using the NET command.

Information is transmitted over the network in blocks. For normal communication

between two stations the receiving station must acknowledge correct reception of

the block. If a block is corrupted then the receving station will request

retransmission.

Using a network station number of zero has a special meaning. Sending to neto_0

is called broadcasting: any message sent in this way can be read by any station

which is listening to neti_0. Note that the normal verification that a message

has been received is disabled for broadcasts, so that broadcasting messages of

length more than one block (255 bytes) s unreliable.

A network station which listens to its own station number (e.g. NET3:LOAD

neti_3) can receive data from any station sending to it.

 Command Function

 NET assign a network station number

 OPEN open a network channel

 CLOSE close a network channel

 PRINT

 INPUT network I/O

 INKEY$

 LOAD

 SAVE

 LBYTES

 SBYTES

 EXEC load and save via network

 SEXEC

 LRUN

 MRUN

 MERGE

If you are planning to connect several QLs on the network, or use a long piece

of cable then you should wire it up with low capacitance twin core cable such as

3 amp light flex or bell wire. Take care to connect the centres of each jack to

each other, and the outsides to each other. You will find that although the

software can handle 63 stations, the hardware will not drive more than about

100m of cable, depending on what type it is.

If you are only connecting a few machines with the lads supplied, you need not

worry.

OPERATORS

 Operator Type Function

 = floating string logical type 2 comparison

 == numeric string almost equal ** (type 3 comparison)

 + numeric addition

 - numeric subtraction

 / numeric division

 * numeric multiplication

 < numeric string less than (type 2 comparison)

 > numeric string greater than (type 2 comparison)

 <= numeric string less than or equal to (type 2 comparison)

 >= numeric string greater than or equal (type 2 comparison)

 <> numeric string not equal to (type 3 comparison)

 & string concatenation

 && bitwise AND

 || bitwise OR

 ^^ bitwise XOR

 ~ bitwise NOT

 OR logical OR

 AND logical AND

 XOR logical XOR

 NOT logical NOT

 MOD integer modulus

 DIV integer divide

 INSTR string type 1 string comparison

 ^ floating raise to the power

 - floating unary minus

 + floating unary plus

**almost equal - equal to 1 part in 10^7

If the specified logical operation is true then a value not equal to zero will

be returned. If the operation is false then a value of zero will be returned.

The precedence of SuperBASIC operators is defined in the table above. If the

order of evaluation in an expression cannot be deduced from this table then the

relevant operations are performed from left to right. The inbuilt precedence of

SuperBASIC operators can be overriden by enclosing the relevant sections of the

expression in parentheses.

HIGHEST unary plus and minus

 string concatenation

 INSTR

 exponentiation

 multiply, divide, modulus and integer divide

 add and subtract

 logical comparison

 NOT (bitwise or logical)

 AND (bitwise or logical)

LOWEST OR and XOR (bitwise or logical)

PERIPHERAL EXPANSION

The expansion connector allows extra peripherals to be plugged into the QL. The

connections available at the connector are:

 +----------+

 | *|

 GND | a 1 b | GND

 D3 | a 2 b | D2

 D4 | a 3 b | D1

 D5 | a 4 b | D0

 D6 | a 5 b | ASL

 D7 | a 6 b | DSL

 A19 | a 7 b | RDWL

 A18 | a 8 b | DTACKL

 A17 | a 9 b | BGL

 A16 | a 10 b | BRL

 CLKCPU | a 11 b | A15

 RED | a 12 b | RESEYCPUL

 A14 | a 13 b | CSYNCL

 A13 | a 14 b | E

 A12 | a 15 b | VSYNCH

 A11 | a 16 b | VPAL

 A10 | a 17 b | GREEN

 A9 | a 18 b | BLUE

 A8 | a 19 b | FC2

 A7 | a 20 b | FC1

 A6 | a 21 b | FC0

 A5 | a 22 b | A0

 A4 | a 23 b | ROMOEH

 A3 | a 24 b | A1

 DBGL | a 25 b | A2

 SP2 | a 26 b | SP3

 DSMCL | a 27 b | IPLOL

 SP1 | a 28 b | BERRL

 SP0 | a 29 b | IPL1L

 VP12 | a 30 b | EXTINTL

 VM12 | a 31 b | VIN

 VIN | a 32 b | VIN

 | *|

 +----------+

The connector on the QL is a 64 way (male) DIN-41612 indirect edge connector.

An 'L' appended to a signal name indicates that the signal is active low.

--

Signal Function

--

A0-A19 68008 address lines

RDWL Read / Write

ASL Address Strobe

DSL Data Strobe

BGL Bus Grant

DSMCL Data Strobe - Master Chip

CLKCPU CPU Clock

E 6800 peripherals clock

RED Red

BLUE Blue

GREEN Green

CSYNCL Composite Sync

VSYNCH Vertical Sync

ROMOEH ROM Output Enable

FC0 Processor status

FC1 Processor status

FC2 Processor status

RESETCPUL Reset CPU

--

QL Peripheral Output Signals

--

Signal Function

--

DTACKL Data acknowledge

BRL Bus request

VPAL Valid Peripheral Address

IPL0L Interrupt Priority Level 5

IPL1L Interrupt Priority Level 2

BERRL Bus Error

EXTINTL External Interrupt

DBGL Data bus grab

--

QL Peripheral Input Signals

--

Signal Function

--

D0..D7 Data Lines

--

QL Peripheral Bi-directional Signals

--

Signal Functional

--

SP0..SP3 Select peripheral 0 to 3

VIN 9V DC (nominal) - 500mA max.

VM12 -12V

VP12 +12V

GND ground

--

Miscellaneous

It is not intended that the following description of the QL peripheral expansion

mechanism be sufficient to implement an actual expansion device, but rather be

read to gain a basic understanding of the expansion mechanism.

Single or multiple peripherals may be added to the QL up to a maximum of 16

devices. A single peripheral can be plugged directly into the QL Expansion Slot

while multiple peripherals must be plugged into the QL Expansion Module, which

in turn is plugged into the QL Expansion Slot via a buffer card.

In this context the term 'device' also includes expansion memory. Although the

areas of the QL memory map allocated to expansion memory are different from

those allocate to expansion devices, the basic mechanism is the same. Only one

expansion memory peripheral can be plugged into the QL at any one time. The

address space allocated for peripheral expansion in the QL Physical memory map

allows 16 Kbytes per peripheral. This area must contain the memory mapped I/O

required for the driver and the code for the driver itself.

QDOS includes facilities for queue management and simple serial I/O which may be

of use when writing device drivers.

The position of each peripheral device in the overall memory map of the QL is

determined by the select peripheral lines: SP0, SP1, SP2 and SP3. These select

lines generate a signal corresponding to the slot position in the QL expansion

module, thus for a device to be selected the address input from address lines:

A14, A15, A16 and A17 must be the same as the signals from SP0, SP1, SP2 and SP3

respectively.

PIXEL COORDINATE SYSTEM

The pixel coordinate system is used to defien the positions and sizes of

windows, blocks and cursor positions on the QL screen. The coordinate system has

its origin in the top left hand corner of the default window (or screen) and

always assumes that positions are specified as though the screen were in 512

mode (high resolution mode). The system will use the nearest pixel available for

the particular mode set making the coordinate system independent of the screen

mode in use.

Some commands are always relative to the default window origin, e.g. WINDOW,

while some are always relative to the current window origin, e.g. BLOCK

 +--------------------------------------+

 | |

 | --------------------------------> |

 | |(0,0) (0,512) |

 | | |

 | | |

 | | |

 | | |

 | |y |

 | | |

 | | |

 | v(256,0) |

 | |

 +--------------------------------------+

 The Pixel Coordinate System

PROGRAM

A SuperBASIC program consists of a sequence of SuperBASIC statements, where each

statement is preceded by a line number. Line numbers are in the range of 1 to

32767.

--

 Command Function

--

 RUN start a loaded program

 LRUN load a program from a device

 and start it

 [CTRL] [SPACE] force a program to stop

--

syntax: line_number:= *[digit]* [range 1,32767]

 *[line_number statement *[:statement]*]*

example: i. 100 PRINT "This is a valid line number"

 RUN

 ii. 100 REMark a small program

 110 FOR foreground = 0 TO 7

 120 FOR contrast = 0 TO 7

 130 FOR stipple = 0 TO 3

 140 PAPER foreground, contrast, stipple

 150 CURSOR 0,70

 160 FOR n = 0 TO 2

 170 SCROLL 2,1

 180 SCROLL -2,2

 190 END FOR n

 200 END FOR stipple

 210 END FOR contrast

 220 END FOR foreground

 RUN

QDOS

Qdos is the QL Operating System and supervises:

 Task Scheduling and resource allocation

 Screen I/O (including windowing)

 Microdrive I/O

 Network and serial channel communication

 Keyboard input

 Memory management

MEMORY MAP

A full description of Qdos is beyond the scope of this guide but a brief

description is included.

The system RAM has an organisation imposed by the QDOS operating system and is

defined as follows:

 SV_RAMT-1

 +---------------------+ QDOS MEMORY MAP

 | | |

 | Resident | |

 | Procedures | |

 SV_RESPR | | v fills

 +---------------------+

 | | |

 | Transient | |

 | Programs | |

 SV_TRNSP | | v fills

 +---------------------+

 | SuperBASIC command | |

 | interpreter data | |

 | and | |

 SV_BASIC | SuperBASIC programs | v fills

 +---------------------+

 | |

 Filing subsystem

 slave block

 SV_FREE | |

 +---------------------+

 | | ^

 | Channels and other | |

 | heap items | |

 SV_HEAP | | | fills

 +---------------------+

 | |

 | System tables |

 | and |

 | System Variables | 28000 Hex

 +---------------------+

 | |

 | Display memory |

 | |

 | |

The terms SV_RAMT, SV_RESPR, SV_TRNSP, SV_BASIC, SV_FREE, SV_HEAP are used to

represent addresses inside the QL. These terms are not recognised by SuperBASIC

or the QDOS operating system. Furthermore, the addresses represented are liable

to change as the system is running.

sv_ramt RAM Top

 This will vary according to the memory expansion boards attached

 to the system.

sv_respr Resident Procedures

 Resident procedures are loaded into the top of RAM. Space can be

 allocated in the resident procedure area using the RESPR function,

 but this space cannot be released except by resetting the QL.

 Resident Procedures written in machine code can be added to the

 SuperBASIC name list and so become extensions to the SuperBASIC

 system.

sv_trnsp Transient Programs

 Transient programs are loaded immediately below the resident

 procedures. Each program must be self contained, i.e. it must

 contain space for its own data and its own stack. It must be

 position independent or must be loaded by a specially written

 linking loader. A transient program is executed from BASIC by using

 the EXEC command or from QDOS by activating it as a job.

 The transient program area may be used for storing data only but

 this data will still be treated by QDOS as a job and therefore must

 not be activated.

sv_basic SuperBASIC Area

 This area contains all loaded SuperBASIC programs and related data.

 This area expands and contracts using up the free space as required.

sv_free Free Space

 Free space is used by the Qdos file subsystem to create Microdrive

 Slave Blocks, i.e. copies of Microdrive blocks which can be held in

 RAM.

sv_heap System Heap

 This is used by the system to store data channel definitions and

 also provides working storage for the I/O subsystem. Transient

 programs may allocate working space for themselves on the heap via

 Qdos system calls.

 System Tables/System Variables

 This area is directly above the screen memory. The System Tables and

 supervisor stack are resident above the system variables.

SYSTEM CALLS

System calls are processed by Qdos in 'supervisor mode'. When in supervisor

mode, Qdos will not allow any other job to take over the processor. System calls

processed in this way are said to be 'atomic', i.e. the system call will process

to completion before relinquishing the processor. Some system calls are only

partially atomic, i.e. once they have completed their primary function they will

relinquish the processor if necessary. Unless specifically requested all the

system calls are partially atomic.

The standard mechanism for making a system call is by making a trap to one of

the Qdos system vectors with appropriate parameters in the processor registers.

The action taken by Qdos following a system call is dependent on the particular

call and the overall state of the system at the time the call was made.

INPUT/OUTPUT

Qdos supports a multitasking environemtn and therefore a file can be accessed by

more than one process at a time. The Qdos filing sub-system can handle files

which have been opened as EXCLUSIVE files or as SHARED files. A shared file

cannot be written to. QL devices are processed by the SERIAL I/O SYSTEM. As its

name suggests any data output by this system can be redirected to any other

device also supported by the redirectable I/O system.

The device names required by Qdos are the same as the device names required by

SuperBASIC and are discussed in the concept section DEVICES. The collection of

standard devices supplied with the QL can be expanded.

DEVICES

The standard devices included in the system are discussed in this guide in the

section DEVICES. Further devices may be added to the system, given a name (e.g.

SER1, NET) and then accessed in the same way as any other QL device.

MULTITASKING

Jobs will be allowed a share of the CPU in line with their priority and

competition with other jobs in the system. Jobs running under the control of

Qdos can be in one of three states:

active: Capable of running and sharing system resources. A job in this

 state may not be runnign continuously but will obtain a share

 of the CPU in line with its priority.

suspended: The job is capable of running but is waiting for another job or I/O.

 A job may be suspended indefinitely or for a specific period of

 time.

inactive: The job is incapable of running, its priority is 0 and so it can

 never obtain a share of the CPU

Qdos will reschedule the system automatically at a rate related to the 50 Hz

frame rate. The system will also be rescheduled after certain system calls.

Example: This program generates an on-screen readout of the rel-time clock,

running as an independent job.

First RUN this program with a formatted cartridge in microdrive 2. This

generates a machine code title called 'clock'. Wait for the microdrive to stop.

Next, set the clock using the SDATE command.

Then type:

 EXEC mdv2_clock

and a continuous time display will appear at the top right of the command

window.

100 c=RESPR(100)

110 FOR i = 0 TO 68 STEP 2

120 READ x:POKE_W i+c,x

130 END FOR i

140 SEXEC mdv2_clock,c,100,256

1000 DATA 29439,29697,28683,20033,17402

1010 DATA 48,13944,200,20115,12040

1020 DATA 28691,20033,17402,74,-27698

1030 DATA 13944,236,20115,8279,-11314

1040 DATA 13944,208,20115,16961,16962

1050 DATA 30463,28688,20035,24794

1060 DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window - the data

terms are, in order:

border colour/width, paper/ink colour, window width, height, x-origin, y-origin

These are pairs of bytes, entered by POKE_W as words.

The x-origin and the y-origin (the last data item) should be 272 and 202 in

monitor mode, or 240 and 216 in TV mode.

Generate the paper and ink word, for example, as 256*paper+ink. Thus white

paper, red ink is 256*7 + 2 = 1794

REPETITION

Repetition in SuperBASIC is controlled by two basic program constructs. Each

construct must be identified to SuperBASIC:

 REPeat identifier FOR identifier = range

 statements statements

 END REPeat identifier END FOR identifier

These two constructs are used in conjunction with two other SuperBASIC

statements:

 NEXT identifier EXIT identifier

Processing a NEXT statement will either pass control to the statement following

the appropriate FOR or REPeat statement, or if a FOR range has been exhausted,

to the statement folliwng the NEXT.

Prcoessing an EXIT will pass control to the statement after the END FOR or END

REPeat selected by the EXIT statement. EXIT can be used to exit through many

levels of nested repeat structures. EXIT should always be used in REPeat loops

to terminate the loop on some condition.

A combination of NEXT,EXIT and END statements allows FOR and REPeat loops to

have a loop EPILOGUE added. A loop epilogue is a series of SuperBASIC statements

which are executed on some special condition arising within the loop:

 FOR identifier = for_list

 statements <-------------| exit--

 NEXT identifier --next-------| |

 epilogue |

 END FOR identifier <-------------------

The loop epilogue is only processed if the FOR loop terminates normally. If the

loop terminates via an EXIT statement then processing will continue at the END

FOR and the epilogue will not be processed.

It is possible to have a similar construction in a REPeat loop:

 REPeat identifier <-----------------

 statements |

 IF condition THEN NEXT identifier ----

 epilogue

 END REPeat identifier

This time entry into the loop epilogue is controlled by the IF statement. The

epilogue will or will not be processed depending on the condition in the IF

statement. A SELect statement can also be used to control entry into the

epilogue.

ROM CARTRIDGE SLOT

Allows software to be used in the QL system from a Sinclair QL ROM Cartridge.

The ROM Cartrdge can contain software to directly change the behaviour of the

SuperBASIC system. The cartridge can contain:

i. Software to be used instead of or with the SuperBASIC system. For example:

 assemblers

 compilers

 debuggers

 application software

 etc

ii.Software to expand the SuperBASIC system. FOr example:

 special procedures

 etc

It is not possible to use ZX ROM Cartridges on the QL.

PIN OUT

 +------------+

 _ | a 1 b | VDD

 A12 | a 2 b | A14

 A7 | a 3 b | A13

 A6 | a 4 b | A8

 A5 | a 5 b | A9

 SLOT | a 6 b | SLOT

 A4 | a 7 b | A11

 A3 | a 8 b | ROMOEH

 A2 | a 9 b | A10

 A1 | a 10 b | A15

 A0 | a 11 b | D7

 D0 | a 12 b | D6

 D1 | a 13 b | D5

 D2 | a 14 b | D4

 GND | a 15 b | D3

 +------------+

Side b is the upper side of the connector; side a is the lower.

 Signal Function

 A0..A15 Address lines

 D0..D7 Data lines

 ROMOEH ROM Output Enable

 VDD 5V

 GND Ground

WARNING: Never plug or unplug a ROM cartridge while the QL power is on.

SCREEN

512 MODE

The screen is 512 pixels across and 256 pixels deep. Only the solid colours

black, red, green and white can be displayed in this mode.

256 MODE

Low resolution mode also has a hardware flash. The screen is 256 pixels across

and 256 pixels deep. The full set of solid colours is available in this mode:

black, blue, red, magenta, green, cyan, yellow and white

WARNING: A domestic television is not capable of displaying the complete QL

screen. Portions of the screen at the top and the sides will not be reproduced.

The default initial window will take account of this and will reduce the

effective picture size. The full size can be restored with the WINDOW command.

 Command Function

 MODE set screen mode

SLICING

Under certain circumstances it is possible to refer to more than one element in

an array i.e. slice the array The array slice can be thought of as defining

a subarray or a series of subarrays to SuperBASIC. Each slice can define a

continuous sequence of elements belonging to a particular dimension of the

original array. The term array in this context can include a numeric array,

a string array or a simple string.

It is not necessary to specify an index for the full number of dimensions of an

array. If a dimension is omitted then slices are added which will select the

full range of elements for that particular dimension, i.e. the slice (0 TO).

SuperBASIC can only add slices to the end of a list of array indices.

syntax: index: = | numeric_exp {single element}

 | numeric_exp TO numeric_exp {range of elements}

 | numeric_exp TO {range to end}

 | TO numeric_expression {range from beginning}

 array_reference: = | variable

 | variable (| index * |,index| * |)

An array slice can be used to specify a source or a destination subarray for

an assignment statement.

example: i . PRINT data array

 ii. PRINT letters$(1 TO 15)

 iii. PRINT two_d_array (3) (2 TO 4)

String slicing is performed in the same way as slicing numeric or string arrays.

Thus

 a$(n) will select the nth character.

 a$(n TO m) will select all characters from the nth to the mth, inclusively

 a$(n TO) will select from a character n to the end, inclusively

 a$(1 TO m) will select from the beginning to the nth character inclusively

 a$ will select the entire contents of a a$

Some forms of BASIC have functions called LEFT$, MID$, RIGHTS. These are not

necessary in SuperBASIC. Their equivalents are specified below:

 SuperBASIC Other BASIC

 a$(n) MID$(a$,n,1)

 a$(n TO m) MID$ (a$,n,m+1-n)

 a$(1 TO n) LEFT$ (a$,n)

 a$(n TO) RIGHTS (a$,LEN(a$)+1-n)

WARNING: Assigning data to a sliced string array or string variable may not have

the desired effect. Assignments made in this way will not update the length of

the string. The length of a string array or string variable is only updated

when an assignment is made to the whole string.

START UP

Immediately after switch on (or reset) the QL will perform a RAM test which

will give a spurious pattern on the display. If the RAM test is passed then

the screen will be cleared and the copyright screen displayed.

 +--+

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | F1 ... monitor |

 | F2 ... TV |

 | |

 | �1983 Sinclair Research Ltd. |

 | |

 +--+

After start up, the QL displays the copyright message and asks whether it is

being used on a television or a monitor. The QL will set different initial

screen modes and window sizes depending on the answer.

Press F1 if you are using a monitor and F2 if you are using a television set.

The QL has the ability to 'boot' itself up from programs contained in either

the ROM cartridge slot or in Microdrive 1. If the ROM cartridge slot contains a

self starting program then start up will continue under the control of the

program in the ROM cartridge.

If nothing suitable is found then the QL will check Microdrive 1 for a

cartridge. If a cartridge is found and if it contains a file called

BOOT it is loaded and run.

DEFAULT SCREEN

The QL has three default channels which are linked to three default windows.

+----------+----------+ +---------------------+

| | | | ----------------- |

| | | | | | |

| | | | | | |

| 2 | 1 | | | 1 & 2 | |

| | | | | | |

| | | | | | |

+----------+----------+ +-+-----------------+-+

| | | |

| 0 | | 0 |

+---------------------+ +---------------------+

Channel 0 is used for listing commands and error messages, channel 1 for program

and graphics output and channel 2 for program listings. The default channel can

be modified using the optional channel specifier in the relevant command.

It is important NOT to switch on the QL with a Microdrive cartridge in position

If booting from a Microdrive cartridge is required then the cartridge must be

inserted between switching on and pressing either F1 or F2.

SOUND

Sound on the QL is generated by the QL's second processor (an 8049) and is

controlled by specifying:

 up to two pitches

 the rate at which the sound must move between the pitches, the ramp

 how the sound is to behave after it has reached one of the specified

 pitches, the wrap

 if any randomness should be built into the sound, i.e. deviations from the

 ramp

 if any fuzziness should be built into the sound. i.e. deviations on every

 cycle of the sound

Fuzziness tends to result in buzzy sounds while randomness, depending on the

other parameters, will result in 'melodic' sounds or noise.

The complexity of the sound can be built up stage by stage gradually building

more complex sounds. This is, in fact, the best way to master sound on the QL.

Specify a duration and a single pitch. The specified pitch will be beeped for

the specified time.

LEVEL 1

pitch |

 |

 |

 | ---

 |

 |

 |

 |

 +--

 time

This is the simplest sound command, other than the command to stop the sound,

on the QL.

LEVEL 2

A second pitch and a gradient can be added to the command. The sound will then

'bounce' between the two pitches at the rate specified by the gradient.

The sounds produced at this level can vary between: semi musical beeps, growls,

zaps and moans. It is best to experiment.

pitch |

 | ------- -- ---------- -- ---------- -- --------------- pitch2

 | | | | | | |

 | - - - - - -

 | | | | | | |

 | - - - - - -

 | | | | | | |

 | --- ---------- -- ---------- -- ---------- ----------- pitch1

 |

 +--

 time

LEVEL3

A parameter can be added which controls how the sound behaves when it becomes

equal to one of the specified pitches. The sound can be made to 'bounce' or

'wrap'.

The number of wraps can be specified, including wrap forever. It is even more

important to experiment.

pitch |

 | ------- -- ---------- -- ---------- -- --------------- pitch2

 | | | | | | |

 | - - - - - -

 | | | | | | |

 | - - - - - -

 | | | | | | |

 | --- ---------- -- ---------- -- ---------- ----------- pitch1

 |

 +--

 time

pitch |

 | ------- --- --- --- ---------------------------------- pitch2

 | | | | |

 | - - - -

 | | | | |

 | - - - -

 | | | | |

 | --- --- --- --- -------------------------------------- pitch1

 |

 +--

 time

LEVEL4

Randomness can be added to the sound. This is a deviation from the specified

step or gradient.

Depending on the amount of randomness added in relation to the pitches and

the gradient, it will generate a very wide and unexpected range of sounds.

pitch |

 | ------ --- ---------- -- ---------- -- --------------- pitch2

 | | | | | | |

 | | | | | - --

 | - - | | | |

 | | | -- - - |

 | | | | | | |

 | --- ---------- -- ---------- -- ---------- ----------- pitch1

 |

 +--

 time

LEVEL 5

More variation can be added by specifying 'fuzziness'. Fuzziness adds a random

factor to the pitch continuously Fuzziness tends to make the sound buzz.

Combining all of the above effects can make a very wide range of sounds, many

of them unexpected. QL sound is best explored through experiment. By specifying

a time interval of zero the sound can be made to repeat forever and so a

sequence of BEEP commands can be used until the sound generated is the sound

which is required. A word of warning: slight changes in the value of a single

parameter can have alarming results on the sound generated.

STATEMENT

A SuperBASIC statement is an instruction to the QL to perform a specific

operation, for example:

 LET a = 2

will assign the value 2 to the variable identified by "a".

More than one statement can be written on a single line by separating the

individual statements from each other by a colon (:), for example:

 LET a = a + 2 : PRINT a

will add 2 to the value identified by the variable a and will store the result

back in a. The answer will then be printed out

If a line is not preceded by a line number then the line is a direct command

and SuperBASIC processes the statement immediately. If the statement is

preceded by a line number then the statement becomes part of a SuperBASIC

program and is added into the SuperBASIC program area for later execution.

Certain SuperBASIC statements can have an effect on the other statements over

the rest of the logical line in which they appear i.e. IF, FOR, REPeat, REM,

etc. It is meaningless to use certain SuperBASIC statements as direct commands.

STRING ARRAYS, STRING VARIABLES

String arrays and numeric arrays are essentially the same, however there are

slight differences in treatment by SuperBASIC. The last dimension of a string

array defines the maximum length of the strings within the array. String

variables can be any length up to 32766. Both string arrays and string

variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the

sizes are not the same then either the right hand string is truncated to fit

or the length of the left hand string is reduced to match. If an assignment

is made to a sliced string then if necessary the 'hole' defined by the

slice will be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not

specifying the dimension selects the whole string while specifying a single

element will pick out a single character and specifying a slice will

define a sub string.

COMMENT: Unlike many BASICs SuperBASIC does not treat string arrays as fixed

length strings. If the data stored in a string array is less than the maximum

size of the string array then the length of the string is reduced.

WARNING: Assigning data to a sliced string array Or string variable may not

have the desired effect. Assignments made in this way will not update the

length of the string and so it is possible that the system will not recognise

the assignment. The length of a string array or a string variable is only

updated when an assignment is made to the whole string.

--

 Command Function

--

 FILL$ generate a string

 LEN find the length of a string

--

STRING COMPARISON

ORDER:

 . (decimal point/full stop)

 digits or numbers in numerical order

 AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz

 space ! " # $ % & ' () * + , - . / : ; < = > ? @ [|] ^ _ / { | } ~ �

 other non printing characters

The relationship of one string to another may be:

 equal: All characters or numbers are the same or equivalent

 lesser: The first part of the string, which is different from the

 corresponding character in the second string, is before it

 in the defined order.

 greater: The first part of the first string which is different from

 the corresponding character in the second string, is after

 it in the defined order.

Note that a '.' may be treated as a decimal point in the case of string

comparison which sorts numbers (such as SuperBASIC comparisons). Note also

that comparison of strings containing non-printable characters may give

unexpected results.

TYPES OF COMPARISON

type 0 case dependent - character by character comparison

type 1 case independent - character by character

type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type 0 not normally used by the SuperBASIC system.

USAGE

type 1 File and variable comparison

type 2 SuperBASIC <, <=, =, >= ,>, INSTR and <>

type 3 SuperBASIC == (equivalence)

SYNTAX DEFINITIONS

SuperBASlC syntax is defined using a non-rigorous 'meta language' type notation.

Four types of construction are used :

| | Select one of

[] Enclosed item(s) are optional

* * Enclosed items are repeated

.. Range

{ } Comment

e.g. | A | B | A or B

 [A] A is optional

 * A * A is repeated

 A..Z A, B, C, etc

 {this is a comment}

Consider a SuperBASIC identifier.

A sequence of numbers, digits, underscores, starting with a letter and

finishing with an optional % or $

letter: | A..Z

 | a..z

 {a letter is one of: ABCDEFGHIJKLMNOPQRSTUVWXYZ}

 or abcdefghijklmnopqrstuvwxyz

digit: = | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

 {a digit is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9}

underscore:= _

 {an underscore is _ }

identifier:= letter * [letter | digit | underscore] * | % | $ |

 --+--- ---------------+----------------

 | |

must start ---- |

with a letter |

 |

 a sequence of letters

 digits and underscores

 i.e. repeat something

 which is optional

TURTLE GRAPHICS

SuperBASIC has a set of turtle graphics commands:

 Command Function

 PENUP stop drawing

 PENDOWN start drawing

 MOVE move the turtle

 TURN turn the turtle

 TURNTO turn to a specific heading

The set of commands is the minimum and normally would be used within another

procedure to expand on the commands. For example:

 100 DEFine PROCedure forward(distance)

 110 MOVE distance

 120 END DEFine

 130 DEFine PROCedure backwards(distance)

 140 MOVE -distance

 150 END DEFine

 160 DEFine PROCedure left(angle)

 170 TURN angle

 180 END DEFine

 190 DEFine PROCedure right(angle)

 200 TURN -angle

 210 END DEFine

These will define some of the more famous turtle graphic commands.

Initially the turtle's pen is up and the turtle is pointing at 0 degrees

which is to the right hand side of the window.

The FILL command will also work with figures drawn with turtle graphics. Also

ordinary graphics and turtle graphics can be mixed, although the direction of

the turtle is not modified by the ordinary graphics commands.

WINDOWS

Windows are areas of the screen which behave, in most respects, as though each

individual window was a screen in its own right, i.e. the window will scroll

when it has become filled by text, it can be cleared with the CLS command, etc.

Windows can be specified and linked to a channel when the channel is opened.

The current window shape can be changed with the WINDOW command and a border

added to a window with the BORDER command. Output can be directed to a window

by printing to the relevant channel. Input can be directed to have come from

a particular window by inputting from the relevant channel If more than one

channel is ready for input then input can be switched between the ready

channels by pressing

 [CTRL] C

The cursor will flash in the selected window

Windows can be used for graphics and non-graphic output at the same time. The

non graphic output is relative to the current cursor position which can be

positioned anywhere within the specified window with the CURSOR command and

at any line-column boundary with the AT command. The graphics output is

relative to a graphics cursor which can be positioned and manipulated with

the graphics procedures.

PARTS

Certain commands (CLS, PAN etc.) will accept an optional parameter to define

part of the current window for their operation. This parameter is as defined

below:

--

 part description

--

 0 whole screen

 1 above and excluding cursor line

 2 bottom of screen excluding cursor line

 3 whole of cursor line

 4 line right of and including cursor

--

--

 Command Function

--

 WINDOW re-define a window

 BORDER take a border from a window

 PAPER define the paper colour for a window

 INK define the ink colour for a window

 STRIP define a strip colour for a window

 PAN pan a window's contents

 SCROLL scroll a window's contents

 AT position the print position

 CLS clear a window

 CSIZE set character size

 FLASH character flash

 RECOL recolour a window

--

cover_image.jpg
QL User Manual

Paolo Proietti

Libro 1 di Sinclair QL

