
PROforma documentation

PROGS, Professional & Graphical Software

Dr. Frans Hemerijckxlaan 13 /1

2650 Edegem

BELGIUM

tel : +32 (0)3/ 457 84 88
fax : +32 (0)3/ 458 62 07
e-mail : joachim@club.innet.be

www : http://www.club.innet.be/~year2827

	Introduction

 	What is PROforma

	This manual

	Present, Past an Future

	Installation

	Configuration

	PROforma Concepts

	Imaging Model

	Graphics

 	Gstate

	Drivers

	Transformation matrix

	Drawing parameters

	Clipping path

	Building a path

	Controlling the visible area

	Controlling the page

	Displaying pictures

	Windowing aids

	Font Management

 	Font Loading

	Font Information

	Available Fonts

	Text display

	String handling

	Supported character set

	Cache handling

	Charpaths

	PROforma sessions

	Functions

	Writing your own ...

 	... bitmap drivers

	... printer drivers

	... picture drivers

PROGS, Professional & Graphical Software

last edited February 14, 1996

PROforma introduction

	What is PROforma

	This manual

	Present, Past and Future

	Installation

[bookmark: what]What is PROforma

PROforma is short for 'PROGS Font & Raster Manager', and it does exactly
what this name suggest. It is a library of routines to manage and display
vector graphics and fonts on (raster) devices like screens and printers.

The availability of a separate program to manage graphics and fonts has
several advantages. It allows application developers to create output of
equal quality (resolution permitting) on several devices, and they can share
resources. In short this means that the PROforma library only has to be loaded
once, independent of the number of applications which use it. Also fonts only
have to be loaded once, and can be shared between applications.

PROforma was originally developed as the graphics library for LINEdesign.
That does not mean that this is the only kind of application for which PROforma
is of use. PROforma is perfectly suitable as well for desktop publishers, word
processors, business graphics and all applications which want high quality
output (which must be just about every application except compilers and games).
Actually, even at the time of writing there are things which are possible with
PROforma and can't be accessed through LINEdesign.

More recently PROforma has been redesigned to a great extent, to make it
even more future proof, easier to extend (both internally, and by writing
drivers). There have been some changes to make it easier to write a window
manager (for ProWesS) and complete support of colour has been added.

As a library, PROforma has the form of dynamic link library (DLL) (if you
don't know what that is, don't worry).

[bookmark: manual]This manual

This manual is intended to explain in detail what PROforma is about, how it
operates, how it should be used and how it can be extended. For some specific
details like possible errors of the access routines, we would like to refer
to the PROforma_ddf DATAdesign file.

We (and everybody who uses this manual) would like it very much if you could send
us any comments about this manual, like

	omissions

	inaccuraties or mistakes

	typing and/or spelling mistakes

	making this manual better English

	anything else (positive comments are also always appreciated)

At the bottom of each page is mentioned when the HTML document was last
modified. I will try to keep this date correct, however it is only meant to
indicate changes in the information provided, I will not change that date when
correcting spelling mistakes or HTML errors.

[bookmark: time]Present, Past and Future

PROforma is originally developed as the graphics library for LINEdesign.
When we started developing LINEdesign v2, we felt that the graphics routines we
used were too slow, and also too restrictive. On the other hand, LINEdesign v1
was quite greedy on memory. Therefore, we threw away all the old routines, and
started writing a new, more powerful and faster set of routines. During this
development, we even introduced some concepts (like the clipping path), which
are not used in LINEdesign. On the other hand, the graphics library was
expanded to allow efficient editing on screen.

So what do we have now ??

We have a system that can efficiently render and display fonts. All fonts
can be shared among applications. A font cache is used to speed up the handling
of fonts. Even the font cache and everything in it is shared amongst
applications. Fonts are rendered using proper hinting (if the font includes the
hints).

The system can draw lines and curves either stroked (with given accuracy and
thickness), or filled (using either in/out or winding rule).

Anything can be displayed in any gray shade or colour. If wanted, everything
can also be clipped by regular or irregular shapes. Transformation matrices can
be applied on the page.

The user can define which part of the coordinate space is actually visible
on page (or screen).

Bitmapped pictures can be directly displayed. This allows the user to
include screens in his or her output.

Possibilities for the future ??

We want to improve the control over how colour is produced, allowing the
user to define how the colour patterns are formed. We also want to make it
possible to use a pattern (drawn using PROforma of course) to be used as
"colour". Also, we want to add dashed lines, and some variations on line caps,
line joins and maybe even some kinds calligraphic lines.

PROforma already contains three kinds of drivers : bitmap drivers, printer
(or screen) drivers, and picture drivers. At this point the bitmap drivers are
only used internally in PROforma, but we are thinking of making them accessible
from outside PROforma, so that general bitmap graphics routines can be written
using the primitive commands in the bitmap drivers.

Although PROforma already uses hinting when displaying the fonts, we would
like to examine whether we can further improve the quality of hinted fonts at
very small sizes (especially when displayed on screens, e.g. in ProWesS).

Of course we continually try to improve PROforma's speed.

[bookmark: instal]Installation

PROforma is a job which makes itself available to clients in the form of a
Dynamic Link Library (a thing with an efficient access method).

Some extensions have to be loaded for PROforma to run : the dynamic link
library manager and syslib.

PROforma has the shape of a job, and loads its configuration file
("PROforma_cfg") when it starts. A parameter can be given to PROforma to
specify the path where the configuration file can be found (e.g. "win1_pf;flp1"
to search on "win1_pf_" and "flp1_" in that order). If no parameter is given or
the configuration file is still not found, then first the program default and
then the data default devices will be searched.

The fact that PROforma has the form of a job (and not a resident extension
as most libraries like the Menu Extensions), has certain advantages. Jobs can
always be loaded (if you have enough memory), and jobs can always be removed.
When loading a job it is possible to pass a parameter (like where to find the
configuration file), which is particularly useful. Also, no memory is wasted if
PROforma is loaded while a copy was already running. So if you want to release
the memory which is used by PROforma, you can just remove the job. Of course
the disadvantage of this scheme is that you can accidentally remove the
PROforma job, which is dangerous as all programs which use PROforma will also
be removed, so you could loose data that way (in fact, as ProWesS uses
PROforma, all jobs which use ProWesS would also be removed).

PROGS, Professional & Graphical Software

last edited February 13, 1996

PROforma Configuration

	Configuration file

	Dynamic configuration

[bookmark: file]Configuration file

PROforma reads the initial configuration information from a special file
called PROforma_cfg. You can specify the directory where this file
should be searched when executing PROforma.

Each line in the configuration file is interpreted as a configuration
command. Empty lines are discarded as comments. All the other lines are divided
in two types, commands and definitions of configuration constants. The lines
with a command have a fixed format : the first character is the actual command,
the second character should be a space, and the rest of the line is the
parameter. All lines which don't have a space as second character are
considered as configuration constants.

The configuration commands currently supported by PROforma are :

	'%' and ';'

	the line is considered as comment and is discarded.

	'S'

	the parameter is now the searchpath for fonts. If the first
 character of the new path is a plus sign, then the path will be added at
 the end of the existing path.

	's'

	to set the searchpath for drivers. If the first
 character of the new path is a plus sign, then the path will be added at
 the end of the existing path.

	'D'

	will load the give PROforma driver.
 It is not necessary to know what
 kind of driver it is. The names of PROforma driver files normally end in
 '_pfd'. The file will be searched on the current searchpath for
 drivers (cfr 's').

	'M'

	allow you to specify the maximum amount of memory which can be used
 by PROforma as buffer to render a page in. If the amount given is negative,
 then that is the amount of memory which has to remain free (both in bytes).

	'C'

	specify the size of the
 font cache. This consists of two
 numbers, the actual size of the font cache, and the minimum number of
 different font/size combinations that can be in the cache (one more
 combination can be in the cache for each
 gstate). Each combination of font & size
 uses about 1.5kB of memory, so this number should not be too big, however,
 if you use a large fontcache, this number should also be increased.

	'c'

	Define the size for the colour cache. In PROforma each gstate keeps
 a few colours which were last used to make sure that the pattern which is
 used to estimate the colour does not have to be recalculated all the time.
 This causes a very big speed increase in some operations, especially for
 drawing pictures. You can choose how many colours are retained in the
 colour cache. The value is restricted to stay inside the 1..256 range.
 The default value is 8.

	'R'

	load a font file as resident font.
 A resident font will always remain in
 memory (unless PROforma is removed).
 The first resident font is considered to be the
 builtin font (which is essential for
 proper functioning). The characters from the builtin font are (also)
 displayed when that character is not available in the current font. It is
 therefore recommended that the builting font is as complete as possible.

 The parameter is the name of the fontfile, which is searched on the
 searchpath for fonts. If you also want to be able to choose the resident
 fonts in te fontmap, then you should also include a 'P' command.

	'P'

	this command adds a font to the
 fontmap. The fontmap is a matching
 between font names and their filename. The fontmap is also used to figure
 out which fonts are available. The command has two parameters, separated
 by a semicolon (';'), there should be no spaces before and after
 the semicolon. The first parameter is the name of the font (which has to
 be an exact match, including case). The second parameter is the name of
 the font file. PROforma font files normally end in '_pff'.

	'd'

	selects the default printer driver.
 The driver can be given either as
 the driverid number (in ASCII, this starts with a minus sign as driverid's
 are negative) or as the full (case sensitive) printer driver name.

	'v'

	this command should not be used in the PROforma configuration
 file. The parameter is the minimum version number you want to use. An error
 (ERR_ISYN) will be returned when the version of PROforma is older than the
 version requested. An example of the use of this is v 1.14.

The configuration constants are only passed to the last loaded PROforma
printer driver (or if you just selected the
default printer driver, than that driver will get the configuration constants).
Most printer drivers will normally understand the following configuration
constants :

	DEFAULT-DEVICE

	
 The parameter if the default device for the printer driver. Some examples
 are ser1hr or pard. Note that PROforma only prints raw
 data, so translates should be switched off, hence the 'r' in
 ser1hr and the 'd' in pard.

	PRINTABLE-AREA-SIZE

	
 Allows you to set the size of the printable area for your printer.
 This is the area where output can be visible on the page. The parameters
 are in typographical points, which has a unit if 1/72 inch or approx. .35
 mm.

	PRINTABLE-AREA-ORIGIN

	
 Allows you to set the origin of the printable area for your
 printer, or to put it differently, the offset of the printable area from
 the left and top of the page. The parameters are in typographical points,
 which has a unit if 1/72 inch or approx. .35 mm.

[bookmark: dynamic]Dynamic configuration

PROforma can also be configured further while it is already active. PROforma
contains a special entry point which allows you to pass configuration lines
which are then processed.

The 'PROforma DLL' thing has a CNFG extension which is used for
this purpose. This extension accesses a function which accepts a character
array as parameter ("char *"). This string is handled as if it was a line in
the configuration file. It is thus possible (as mentioned in the previous
section) to add printer drivers or fonts, change the default driver etc.

The call to this routine can be done as follows :

#include "thing_h"
#include "PROforma_h"

...
 Error err; /* the error returned by the config routine */
 char *str; /* the config line which is passed */
 ...
 err=THINGCall(PF_THING_NAME,PF_THING_CNFG,1,str);
 if (err) ... /* error handling */
...

PROGS, Professional & Graphical Software

last edited 4 December, 1997

Concepts

	Graphics State - Gstate

	Driver & Device

	Path

	Subpath

	Path segment

	Bezier curve

	Clipping path

	Transformation matrix

	User space

	Device space

	Current point

	PageBbox & PageOrigin

	WindowSub

	Font

	Resident font

	Builtin font

	Fontmap

	Fontlist

	Font caching

	Extended character set

	Kerning

	Ligatures

	Tracking

	Display mode

[bookmark: gstate]Graphics State - Gstate

All operations in PROforma need some kind of entry point, just to let
PROforma know which device has to be used, what parameters are currently valid,
how big the drawing board is etc. To prevent the client (that is the user, or
the application which wants to use PROforma) from having to pass these details
with every command, with all possibilities of mistakes, these parameters are
combined into a general, internal structure for PROforma. This structure is a
'graphics state' or 'Gstate'. A gstate contains information about :

	the device which is used (screen, printer) and the size of the usable
 area, specification about how to draw on that device,...

	All parameters about the current drawing methods like colour, line
 thickness,...

	All information about the fontlist, current font,...

	The current transformation matrix (CTM), list of saved CTM's, current
 point,...

	All information about the current state of the iterators like device
 iterator, fontmap iterator, charpath iterator,...

	Information about the current clipping path.

[bookmark: driver]Driver & Device

A driver is a set of characteristics and routines which describe the
behaviour of a certain output device (like a printer, or the screen).
This usually includes details as size, resolution, available
colours... On the other hand you can probably attache your
printer both to a serial port, or a parallel port, or maybe you just
want your image to to output to a file. Therefore, you always have to
specify the driver (how to draw), and a device (where to draw) when you
allocate a gstate.

PROforma acually works with three kinds of drivers, and one of these
has two variants. The most important kind is a printer driver,
which is used to actually make everything visible (create the output).
A variant of this is a screen driver. This similar to a
printer driver with as only difference that the output is produced by
your monitor instead of your printer. (In this manual the term printer
driver always includes the screen drivers, and the word page can be
replaced by screen when a screen driver is used).

Another type of driver is a bitmap driver, which is used by PROforma
to draw in a buffer which is later copied to the actual output device.

Picture drivers are the third and last kind of drivers. They are used
to display bitmapped pictures in PROforma. They are a separate kind
of driver because there are so many graphics formats in the world.

In this manual, when the general term driver is used,
without specifying which kind of driver, it normally means a printer driver.

On devices : we strongly recommend
the use of the parallel printer port and not the serial port. Serial
ports are extremely slow and the amount of data which has to be sent to
a printer can be huge. Of course we try to send as little data as
possible, but not too many printers can handle compressed data. You
should also be aware that serial to parallel converters do NOT speed
the transfer of data up. The serial port can handle a certain speed and
not more. For instance try sending an A4 page of 300 dpi data on a 9600
baud serial port (standard). This A4 page would need about 966k of data
and this would take at least 13 minutes without control bits or
correction of control bits (and without handshaking). In short, it will
take MORE than 13 minutes to send this data. Luckily, PROforma will
normally send less than 966k.

[bookmark: path]Path

There are actually two meanings for this term, a device interpretation
and a graphical interpretation.

	device : a device name, possibly including directory, where
 files can be found. In PROforma we also allow semicolons in a path
 name to distinguish between several paths to form a searchpath (that is
 all paths are tested from left to right until the requested file is
 found). For example
 win1_fonts_;flp1_
 will search the file first on
 win1_fonts_font_pff
 and later (if not found) on
 flp1_font_pff

	graphical : a collection of subpaths.

[bookmark: subpath]Subpath

A move (to define the origin of the subpath) followed by a sequence of
path segments. A subpath can be open, or closed.

[bookmark: segment]Path segment

A path segment is either a line or a bezier curve. Circular arcs are
converted to bezier path segments.

[bookmark: bezier]Bezier curve

Bezier is a French mathematician who works for Renault and who
"invented" a description/display method for curves based on Bernstein
polynomials.

In PROforma we only use cubic bezier curves. That is curves which
consist of four points: the two endpoints (which are on the curve), and
two controlpoints (which are off the curve).

[bookmark: clippath]Clipping path

A clipping path is a special path which is not actually drawn, but
which is used as a mask for all drawing operation (except text when
the cache is used, see later). So the path itself is not drawn, but
instead only the places which would be coloured by drawing the path are
candidates for all future drawings until the clipping path is cleared.

[bookmark: ctm]Transformation matrix

This is a structure (actually a matrix), which explains how the
coordinates which are passed to PROforma will be transformed to default
user space.

[bookmark: user]User space

User space is the coordinate system which is used to tell PROforma
where and how to display path or text objects. The
user space is converted into default user space by PROforma. This user
space divides an inch in 72 equal parts, the axisses are horizontal (x)
and vertical (y). The origin is at the top left, and the axisses extend
right and down. The unit of 1/72 inch is called a point (pt). Note that
a point can be defined slightly different depending on the source: some
say there are 72.27 points in an inch, others say 72.307 points per
inch.

Please note that PROforma allows to scale the default user space. This
would allow the user to specify all coordinates in inches, or
centimetres,...

[bookmark: device]Device space

Internally, PROforma transforms all coordinates from user space to
device space. This resembles the position of the picture elements
(pixels) of the device. Thus PROforma can decide which pixels to turn
on or off.

[bookmark: point]Current point

The current point is very important when building a path. All path
construction commands start at the current point, and set the current
point to their endpoint.

It is also the start position on the baseline for text, and set to the
end of the text. And it is also the position where a bitmap can be
placed.

However, the current point is not always stable. For instance, the
current point can not handle changes in the CTM. To avoid this kind of
problems, see "PROforma sessions."

[bookmark: pagebbox]PageBbox & PageOrigin

PROforma has a special view on how things have to be visualised on the
chosen device. For starters there is the "page." This entity contains
all path and text objects which have to be drawn. The actual image of
the object depends on the CTM.

On the other hand, the page has to be visualised on the chosen device.
Two things are important for this, the PageBbox which gives the origin
and size (on the device) where the page (or part of) will be visualised.
Which part of the page will be shown is determined by the PageOrigin,
which is the coordinate (in default user space) of the point in the
top-left corner of the PageBbox.

[bookmark: windowsub]WindowSub

Especially for writing such things as window manager which uses
PROforma, the concept of a subwindow is introduced. The concept is
quite similar to a pagebbox except that a pagebbox is used to redraw
part of something bigger (e.g. in interactive applications), and a
subwindow is used to draw an independent part of the screen. If the
concept of a subwindow would not exist in PROforma, you would have to
open a Gstate for each part of the window where you need to draw.
Subwindows allow you to reduce a lot of the overhead by using one
Gstate for lots of smaller parts in a window.

[bookmark: font]Font

Collection of graphical shapes, which can usually be combined to give
readable text. The font files currently have a lot of similarity with
the Adobe Type I font format (slightly adopted for easier access, which
also makes them a bit shorter). However this may
change in future if we choose to add a different hinting scheme (as
the hinting used in type I files is quite obscure, and our current
implementation quite unsatisfactory).

Fonts are handled quite efficiently. Each font will only be in memory
once. Clients have to state which font they want to use (load), or no
longer want to use (unload). Fonts are always referenced by their name.
The name of the font and where to find it are stored in the "fontmap."
The fontmap is read when PROforma is loaded. If a font is not in the
fontmap, then it can't be used.

PROforma automatically releases a font when there are no gstates which
have loaded it. Special routines are included to make sure this is
always true (even when a job is force removed). When a font is loaded
it is placed in the "fontlist" for that gstate.

[bookmark: resident]Resident font

Normally, fonts are loaded when they are first requested to be usable
by a gstate, and they will be discarded when the font is no longer in
use by any gstate.

However, PROforma also contains the concept of a resident font. A
resident font remains loaded from when it is specified until PROforma
is removed (or a reset). A resident font is always available by all
gstates, they don't have to say that they are going to use that font.
It is most practical when a user often uses the same fonts. They are
then always immediately accessible.

[bookmark: builtin]Builtin font

PROforma always needs at least one resident font, which is called the
builtin font (the first resident font). This font has a special
purpose as it will alwys be used when no ther font is selected. It is
also intended that you should use a complete font for the builtin.
When PROforma displays a character, it will get the shape from the
current font. However, it is quite possible that the current font
does not contain a shape for the requested character. In that case,
PROforma will try to get the shape from the builtin font.

[bookmark: fontmap]Fontmap

PROforma always keeps a table of all known fonts. This table is used
to map a fontname to a fontfile. If a client tries to access a font
which is not in the fontmap, then an error is returned.

The fontmap can not change after PROforma has been loaded (except by
removing the PROforma job and loading it again, alas this also removes
all clients of PROforma).

Naturally, the fontmap can be examined to find out which fonts
can be loaded (if the fontfile is available or fonts is already loaded
of course).

[bookmark: fontlist]Fontlist

Each gstate also keeps a list of the fonts which it can already access.
A gstate can only access fonts which are actually loaded. Therefore,
when the client request to load a font, it is added to the fontlist of
the gstate. The fontlist can be examined to find out which fonts can
already be used by a gstate.

[bookmark: fontcache]Font caching

To increase the drawing speed of text, often used characters are also
kept in an internal format which can be displayed much faster than the
standard representation on the font. This is called the font cache.
There are two limitations imposed by the font cache. The font cache is
not capable to display fonts with clipping. Only
characters which are not slanted or rotated (so only scaled) can be
handled by the font cache. This actually means that some fonts can
never be cached (fonts which are internally slanted or
rotated). The font cache is also not used for the characters which
are partly invisible.

Because the font cache has a limited size, a replacement algorithm
must be used. In the case of PROforma, we make sure that only the least
recently used characters are removed from the font cache.
PROforma makes sure that the capacity of the font cache is not
reduced because of fragmentation.

Unfortunately, the font cache doesn't use a magic trick. Although a
cached characters draw at least four times faster than a character which
was not cached, you can only gain speed if the character which is cached
is used again before it is removed. So if you now in advance that a
certain character will only be displayed once, switch off the cache ! This
should be done because actually placing a character in the font cache
can be hard work !

[bookmark: charset]Extended character set

Because typography uses many characters, PROforma uses a special
extended character set, which contains much more characters then the
standard character set which is supported by the operating system.

All character strings which are used to display text use an extended
character set, unicode. In unicode all characters are a word long (two
bytes instead of one).

Actually unicode is a character encoding, while PROforma needs a glyph
 encoding.This means that some things are not supported by unicode which
 PROforma needs and vice versa (e.g. ligatures). So PROforma uses only
 a subset with some extra characters (the ff and fi ligatures). The
 characters which PROforma considers as "supported" all have a proper
 character name (which can be found in the PFCharNameTable).

[bookmark: kerning]Kerning

To increase the cohesion of a combination of characters, it is often
not enough to position all characters side by side, put some character
combinations have to be put closer together (or further apart) to make
sure that they are visually equally spaced (same amount of whitespace
between characters). This process is called kerning. A typical example
is the word "AWAY."

[bookmark: ligatures]Ligatures

Another typesetting feature is that some characters sequences like "ff",
"fi", "fl", "ffi", "ffl" should be replaced by special characters which
look better. Ligatures are supported in the Extended Character Set
and can therefore be used by the client.

[bookmark: tracking]Tracking

Sometimes it may be interesting to add some extra space between all
characters. This is called tracking, and can be particularly useful for
logo's.

[bookmark: displaymode]Display mode

PROforma does all drawing inside a buffer. Only when the PFPageShow
command is called, is the buffer actually displayed to the user.

However, for interactive use, this is not an ideal situation. In fact, users
find it very annoying to wait for the drawing to complete, and time only
passes very slowly when you are waiting. Therefore, PROforma (and specifically
the screen driver) allows you to change the display mode from the default
behaviour, to an update mode where the screen is continually refreshed
with the current state of the drawing buffer. This refreshing is cancelled when
the PFPageShow command is called.

PROGS, Professional & Graphical Software

last edited June 21, 1996

Imaging Model

PROforma has it's own specific way look at pixels and pages, the two basic
entities in this system.

	Pages

	Pixels

	CRT screen

	dot matrix printer

	inkjet or bubblejet printer

	laser printer

[bookmark: pages]Pages

Because not all devices are capable of changing their output (printers for
example), PROforma uses a buffered approach. So instead of drawing on a page,
all operators actually draw in a buffer, and this buffer can then be displayed
on the actual page (using PFPageShow). However, such a buffer can be
quite large (typically 1MB for a 300dpi mono A4 page), and there may not be
enough memory available for the entire page. Therefore, an actual page can be
split into several pieces, and transferring the buffer will only display part
of the page.

So pages are built in passes. The client knows how many passes are necessary
for each page and has to call the display operators for all visible objects on
the page once for each pass. When transferring the buffer to the printer,
PROforma immediately makes sure the buffer is ready for the next pass of that
page, or, if this was the last pass of the page, it makes sure the buffer is
ready for the first pass of the next page. The buffer is however not cleared.
This is done to allow small changes to be made in the buffer without redrawing
all the other stuff (which is only relevant if the page is produced in one
pass and can be particularly useful for interactive use and mailmerging).

The buffered approach is actually taken one step further in PROforma. It
also applies to paths. Although all parameter about
how to draw the path have to be known in advance, the path is not actually
drawn while it is built. The path is only drawn when you call a command to do
so.

To be 100% correct, we must state that some device drivers (possibly in some
versions and with some parameters) may actually bypass the buffer(s). However,
this can only explain some 'unexpected' behaviour in some cases (like marks on
the page when the page or path is not drawn). It should never be assumed.
In fact you could consider the commands to draw a page or path as end of page
or end of path markers, they have to be there !

[bookmark: pixels]Pixels

PROforma has it's own convention on pixels. It assumes that pixels are
rectangles, and that they are positioned between the grid lines.

In this picture you see the grid lines, the pixel centres, and the actual
pixels. On the right, there is a filled triangle drawn. As you can see, pixels
are only drawn when the centre lies inside the triangle. A boundary situation
occurs when the edge of the triangle coincides with a pixel centre. In this
case the edge is shifted to the right over in infinitely small amount.

This also means that areas which have a thickness of less than a pixel may
be (partly) invisible if no pixel centres fall inside the path.

In the picture you see a line which is less than a pixel wide (and not
hairline), and which pixels would be drawn.

The same rules apply to stroked paths. However when the linewidth is less
than one pixel, the path will be drawn hairline. A hairline is a line with a
uniform width of one pixel.

Unfortunately, the view that PROforma has on pixels is ideal and does not
conform with most output devices (none probably) There are two differences
possible.

For starters, some devices don't draw their pixels as PROforma does it, but
at the actual crossing of the grid lines. This is no problem as it only means
there is a shift of half a pixel for the entire page. This causes no problems
at all.

On the other hand, pixels are usually round, and they often overlap. To make
matters even worse, some printers don't even have a consistent pixel size. We
will just explain what the problems are with a few types of devices.

[bookmark: crt]CRT screen

These are the common monitors, and we are lucky. Monitors draw in white,
which has the effect that white pixels are larger than black pixels. However,
the difference in size is not too large. The average size of the dots is
slightly bigger than the addressable resolution. This is quite a good
approximation of the PROforma model.

[bookmark: dot]dot matrix printer

Dot matrix printer have round dots which are always equal in size. Dots are
usually much larger than the resolution at which they are positioned. Although
this produces smoother results, it also meant than output is usually more black
than is intended. For instance the difference between a one or two pixel wide
line can be very small, even if this is a relatively big difference in user
coordinates.

Another problem often encountered in dot matrix printers is banding. This
means that there is a regular repetition of lighter and darker horizontal
bands. This is mainly caused by the use of ink ribbons. They are also used for
printing text and therefore the area in the middle of the ribbon is used more
than the top or bottom. The less used area produces darker dots. On the other
hand the ribbon also rotates horizontally, and this may also cause a difference
in darkness (some parts were used more than others).

[bookmark: ink]inkjet or bubblejet printer

This is generally speaking the same as a dot matrix printer. However, the
ink is fluid now, and it is usually absorbed by the paper. This causes an
additional problem as the size of the dots now also depends on the type of
paper. The shape of each dot can also change, and this
also depends on the paper (very local). Inkjet or bubblejet printer usually
suffer a lot less of banding (unless one of the jets is blocked). A major
advantage of inkjet printers is that they are very good at filling black
regions, although the paper may bend because of the wet ink.

[bookmark: laser]laser printer

Laser printers either draw their page in black (most often) or in white (as
copiers do). This has certain effects on the result (making it either darker or
lighter), and pixels don't always have the same size (especially in corners,
this is sometimes corrected or used by the printer (so called resolution
enhancement).

Because of the technology used (toner which sticks to charged
particles) laser printers have got problems with small (or thin) areas (like
hairline paths, which fade away), and with large black areas (which become
lighter in the middle). On the other hand, laser printer have the highest real
resolution (smallest dots), and gives the highest quality output. Actually, a
300 dpi laser printer giver better, crisper output than a 300 or 360 dpi dot
matrix or inkjet printer.

PROGS, Professional & Graphical Software

last edited February 13, 1996

Font Management

A very important part of PROforma concerns the manipulation and displaying
of vector fonts. The vector fonts which are
used in PROforma are a direct descendant of the Adobe Type I font format, but
optimised for efficient access, and low memory consumption. Programs exist to
convert Adobe Type 1 fonts for PROforma (pfb2pff).

	Font Loading

	Font Information

	Available Fonts

	Text display

	String handling

	Supported character set

	Cache handling

	Charpaths

[bookmark: loading]Font Loading

Fonts have to be loaded upon request of the client, and can also be released
from memory by the client. Fonts only take a little more memory than they
occupy on disk. Fonts are always referenced by their name. Font names are
case dependant ! If a font is loaded by several
gstates, it is only kept in memory once. So
a font is not released from memory if there is at least one gstate which has
that font loaded (or the font is resident -
resident fonts are never released).
A font which is not resident is always removed from memory when there are no
more gstates which have loaded that font.

Resident fonts never have to be loaded by a gstate. They are always
available (so they are always in the fontlist).

	PFFontLoad

	
 Load the given font file into memory, to make that font available
 to the client. This command will automatically select the just
 loaded font (the current fontsize is not affected by this call).
 This command needs a fontname. The corresponding filename
 is searched in the fontmap. So only
 fonts which are in the fontmap can be used. Font files are searched
 'as is', and
 on the configured path.

	PFFontUnLoad

	
 Stop using the given font. After PFFontUnLoad the current font
 is no longer defined. If the font is not loaded by any other
 gstate (and the font is not
 resident), then the memory which this font occupies will be released.
 This actually allows PROforma to release the font. The client
 can no longer use that font, unless it is loaded again.

	PFFontSelect

	
 Select the font with given name as current font. The new font will be
 at the current fontsize.

	PFFontScale

	
 Scale the current font to the given point size. Scaling a font
 is always relative with the CTM.

[bookmark: info]Font Information

	PFFontNameGet

	
 Get name of current font.

	PFFontFamilyGet

	
 Get name of font family of current font.

	PFFontVersionGet

	
 Get version of current font.

	PFFontWeightGet

	
 Get weight of current font.

	PFFontNoticeGet

	
 Get notice of current font. This usually includes details about
 creator and/or copyright on the font.

	PFCharAvailable

	
 Routine to allow the client to know whether a character (with
 given unicode) is available in the current font. Note that the
 character is only searched in the current font. It may actually be
 displayed when the character is displayed because the character may be
 extracted from the builtin font.

	PFWidth, PFStringWidth

	
 Get the width of a string.

	PFWidthKern, PFStringWidthKern

	
 Get the width of a string, when displayed with
 kerning.

	PFFontBbox, PFPFontBbox

	
 Get the FontBbox. This allows you to find out the maximum
 amount a character can extend to the right and top, and to the left
 and bottom.

 PFPFontBbox works slightly different. It tries to approximate
 the fontbbox in pixels by determining a bbox in which the letters 'W',
 'f', 'g', 'm' fit. As it is possible for some characters to extend
 further in any direction as these letters, you can also add an extra
 character to the approximation. In general, this returns a bbox which
 fits most characters (capitals with accents probably not though).

[bookmark: available]Available Fonts

Information about all the available fonts. This allows the client to know
which fonts are loaded and can be used.

	PFFontCount

	
 Get the number of fonts which are loaded (in the
 fontlist).

	PFFontNext

	
 Select the next font in the list of fonts as the current font.
 If the last font in the list was the current, an error will be
 returned (and the current font is not changed).

And you can enquire about all the fonts which are in the fontmap.

	PFFontCountAll

	
 Get the number of fonts in the fontmap. Also makes sure that
 the next enquiry with PFNextFontName will return the first
 font in the fontmap.

	PFFontNextName

	
 Get the name of the next font in the fontmap.

[bookmark: display]Text display

PROforma always uses UniCode character
codes. These character code are "short" in size (and not char). A char just
didn't allow enough possible characters.

All the routines to display text (or get the width thereof) are available in
two varaints. The first variant uses unicode characters directly (a unicode
string is the same as a c string, \0 is used as end of string marker).
The other variant (the commands which start with "PFString") use
strings in the local character set (ordinary strings).

The requested characters are retrieved from the current font at the current
fontsize. If the character is not available in the current font, the character
will be retrieved from the builtin font. If
the builtin font also doesn't contain the character, then an empty character
(no width, not visible) is displayed.

	PFShow, PFStringShow

	
 Show the requested string at the current position. Characters
 are placed proportional. The current position will now be the
 place where the next character should be placed.

	PFShowKern, PFStringShowKern

	
 Show the requested string at the current position with
 kerning.
 The current position will now be the place where the next
 character should be placed.

	PFShowX, PFStringShowX

	
 Show the requested string at the current position. The advance
 width of the characters is overwritten with the given values.
 The vertical advance width is taken as zero.
 The current position will now be the place where the next
 character should be placed.

	PFShowXY, PFStringShowXY

	
 Show the requested string at the current position. The advance
 width of the characters is overwritten with the given values.
 The current position will now be the place where the next
 character should be placed.

	PFShowTrack, PFStringShowTrack

	
 Show the requested string at the current position. The current
 font size is used, but characters are positioned in such a way
 to make sure that the string has the given width (using tracking).

	PFShowJust, PFStringShowJust

	
 Same as PFShow (resp. PFStringShow), except that some
 whitespace is added or
 subtracted at the space characters, to make sure that the text
 is displayed with full justification. The requested width of
 the line has to be specified.

	PFShowKernJust, PFStringShowKernJust

	
 Same as PFShowKern (resp. PFStringShowKern), except
 that some whitespace is added or
 subtracted at the space characters, to make sure that the text
 is displayed with full justification. The requested width of
 the line has to be specified.

Normally, PROforma always attempts to be completely device independent.
Unfortunately, when displaying text on screen, you often prefer quality above
device independence. The main problem is that spaces are usually too small to
seperate characters properly. Therefore, there are some special routines which
force the distance between all characters to be consistent (one pixel). These
commands should only be used on screen, as it would remove all character
spacing on devices with a higher resolution.

As these commands are only ment to be used on screen devices, they use the
PFP prefix. In fact, the string width commands actually return the
width in pixels.

	PFPShow, PFPStringShow

	
 Show the string using one pixel spaces between all characters.

	PFPWidth, PFPStringWidth

	
 Get the width a string occupies when displayed with PFPShow or
 PFPStringShow commands. The width is given in pixels.

[bookmark: handling]String handling

	PFExtraEOS

	
 All strings which are passed to PROforma are '\0' terminated c strings.
 However, it may in some cases be useful to have an extra symbol which
 can be interpretted as end of string marker. Such an extra marker can
 be specified with this command. You can reset the extra marker by
 setting it to '\0'

	PFPrintEscape

	
 When strings which have to be displayed are passed using the local
 character set, not all of the supported character set can be accessed.
 Therefore, PROforma allows an escape sequence to specify all the
 characters in the supported character set when normal strings are
 used. You are then allowed to specify the character by putting the
 (case dependent) name or (decimal)
 unicode between backslashes.
 However, as this behaviour is not always wanted, you can switch it on
 or off.

[bookmark: charset]Supported character set

	PFCharNameTable

	
 To be able to use the supported
 character set, PROforma gives you access to a table which contains
 all the supported characters. Both the name and unicode of each
 character is given. Please note that the name
 of the supported characters is case dependent (for example to allow
 both Egrave and egrave as character names).

	PFASCII2UnicodeTable

	
 Although PROforma allows you to use the local character set for most of
 the font handling commands, it may sometimes be necessary to convert
 characters in the local character set to unicode. Therefore, there is
 this table which gives the unicode value for each character in the
 local character set.

[bookmark: cache]Cache handling

Normally all font display operators try to use the
font cache. However, as
there are some problems with the usage of the font cache, the use of the font
cache can also be switched off. This can be done because all font display
operators work as if there is no clipping path when the cache is switched on !

	PFCacheUse

	
 Tell PROforma whether or not the fontcache should be used.

[bookmark: charpath]Charpaths

For drawing programs like LINEdesign it is interesting to be able to extract
the outline of a character from a font as this allows the user to make some
individual changes to the characters.
Therefore this feature is supported by PROforma. And consists of a loop like :

select character which should be converted
DO
 get the next path operator
 process it
UNTIL end of character

Note: the PFCharPathInit and PFCharPathEl commands should
only be used in such a loop, just as all the other iterators in PROforma (no
other font operators shoud be used inside the loop).

	PFCharPathInit

	
 Select the character for which the outline will be extracted.
 Selects that character from the current font at the current size
 of that font.

	PFCharPathEl

	
 Get the next path element for that character. This can be a
 move, line, curve, width or end of character command (which can be
 interpreted as a PFPathDraw). The coordinates which are
 returned are absolute coordinates, only the character origin has to be
 added.

PROGS, Professional & Graphical Software

last edited December 4, 1996

PROforma sessions

If you want to use PROforma, there are certain rules you have to follow to
assure correct operation. The most important rules concern the order in which
the operators have to be used. For instance, you should not change the
transformation matrix during the building and drawing of a path. This is done
because PROforma is built for efficiently. Everything has to be fast and
flexible. This unfortunately means that robustness is not one of PROforma's
strong points. Doing unexpected things may cause unexpected results.

To try to make things easier we will now give an outline of a common
procedure for programs which generate their output using PROforma. That is
for programs which are not interactive. A program which is interactive does not
produce pages as suggested here. Generally speaking, the scheme will be very
similar though.

The scheme listed here doesn't include two groups of operators. The
operators which request information from the system, as these can be used
between drawing commands, as they don't change anything in the system. Also
some commands like PFPageScroll and PFWindowMove are not
listed. These commands can also be used at about any moment.

There are some general notation used in the following scheme :
command
Execute the command.
{ command }
The command can be repeated zero or more times.
[command]
The command can be executed at most once.
command1 | command2
Either command1 or command2 will be executed.
< command >
Composite command, elaborated somewhere else in the scheme.

Of course these rules can be combined to form a more elaborate scheme.

< PROforma session > =
 PFInitGstate
 [PFCopies]
 /* FOR each page */
 {
 < Draw Page >
 }
 PFRemoveGstate

< Draw Page > =
 /* FOR each pass */
 {
 [PFPaperColourGray | PFPaperColourRGB | PFPaperColourCMYK]
 PFPageClear
 < Draw Pass >
 PFPageShow
 }

< Draw Pass > =
 /* FOR each object */
 {
 < Draw Object >
 }

< Draw Object > =
 [PFPageScale]
 [PFPageBboxSet | PFPageOriginSet]
 [< Set Draw Parameters >]
 [PFSaveCTM]
 {
 < Draw Path > | < Draw Text > | < Draw Picture >
 }
 [PFRestoreCTM | PFResetCTM]
 [PFPageBboxReset | PFPageBboxRestore]
 [PFClearClip]

< Set Draw Parameters > =
 [< Change CTM >]
 [PFLineWidth]
 [PFColourGray | PFColourRGB | PFColourCMYK]
 [PFFlatness]
 [PFPathMethod | PFPathStroked | PFPathFilled | PFPathEOFilled]

< Change CTM > =
 {
 PFCTMSet | PFCTMMove | PFCTMScale | PFCTMXScale | PFCTMYScale
 }

< Draw Path > =
 < Draw First Subpath >
 {
 [< Draw Subpath >]
 }
 PFPathDraw | PFPathClip | PFPathClear

< Draw First Subpath > =
 PFMoveTo
 {
 PFLineTo | PFLineR | PFCurveTo | PFCurveR
 }
 [PFPathClose]

< Draw Subpath > =
 [PFMoveTo | PFMoveR]
 {
 PFLineTo | PFLineR | PFCurveTo | PFCurveR
 }
 [PFPathClose]

< Draw Text > =
 [PFFontLoad]
 [< Set Text Parameters >]
 [PFCacheUse]
 [PFPrintEscape]
 [PFExtraEOS]
 PFMoveTo
 {
 PFShow | PFStringShow
 PFShowKern | PFStringShowKern
 PFShowX | PFStringShowX
 PFShowXY | PFStringShowXY
 PFShowTrack | PFStringShowTrack
 PFShowJust | PFStringShowJust
 PFShowKernJust | PFStringShowKernJust
 }
 [PFFontUnLoad]
 [PFCacheUse]

< Set Text Parameters > =
 [PFFontSelect]
 [PFFontScale]

< Draw Picture > =
 PFMoveTo

PROGS, Professional & Graphical Software

last edited February 13, 1996

Functions

For a list of all the functions which are part of PROforma, including the
prototype, exact behaviour and possible errors, you should have a look at the
PROforma_ddf DATAdesign file.

Two kinds of PROforma access functions

There are two kinds of PROforma access functions. Most of them use
coordinates which are passed as fixpoint values in
user space. These functions all start with
PF (for PROforma).

However, there are also commands which need parameters which are given
directly in device space or pixels. These
functions always start with the PFP prefix (for PROforma Pixels).
Some commands are only available in one of the two flavours, and some in both.
The PFP commands are mostly provided for efficient access from a window
manager (like ProWesS). The functions which work in pixels, usually require
you to pass the coordinates as integers. However, for accuracy, the drawing
operators will always work in fixpoint representation.

Parameters

PROforma is a c (c68) programming library. However, it can also be called
from other languages (e.g. assembler). The calling and register saving
conventions for c68 are valid. This means that parameters are actually passed
on the stack. All parameters are four bytes long and contain either an integer
(int), a pointer to a string, or a fixpoint number.

Strings

Contrary to the approach which is usually taken by the operating system, we
use null terminated strings (instead of preceding them by the length).

Another problem is that we use two kinds of strings. We have the C standard
null terminated strings which contain character codes using the local character
set (one byte per character), and
we have unicode strings, in which each character is represented by a word (2
bytes). The use of unicode allows us to have character sets which contain more
than 256 characters, and have all characters at a fixed spot. Most general
characters (about codes 32 to 126) are at about the same position as in the
ASCII character set.

[bookmark: fixpoint]fixpoint - pt

This is actually just a representation of a decimal character which can be
processed faster than standard floating points. This is done by dividing the
actual representation in two parts: an integer part and a fractional part. Each
part occupies two bytes in a long word. The most significant bytes are the
integer part, and the least significant bytes are the fractional part, expressed
as multiples of 1/65536. In binary representation, this means that there is an
imaginary dot between the two words in a long word.

Fixpoint numbers can be added and subtracted just as normal integers. A
special routine (fixmul) has to be used when you want to multiply
them. Some macros are available in "PROforma_h" to manipulate fixpoint values
more easily.

/*
 most parameters which are passed to PROforma are fixpoints,
 as they give more accuracy than integers, and more speed
 than floats or doubles. A fixpoint number is actually a long,
 with an imaginary dot between the two words. This convention
 allows for fast adding and multiplication, without loosing
 too much accuracy.
*/

#include "err_h"

typedef long pt;
#define pt_one 0x10000
#define pt_half 0x8000
#define pt_quarter 0x4000
#define pt_hundred 0x640000
#define ptmin 0xc0000000
#define ptmax 0x3fffffff
#define ptmagic 36045 /* .55 in fixpoint */
#define ptcigam 29491 /* .45 in fixpoint */

/*
 Most operations can be done directly on fixed-points :
 addition, subtraction, shifting, multiplication or
 division by integer constants; assignment, assignment
 with zero; comparison, comparison against zero.
 Multiplication and division by floats is OK if the result
 is explicitly cast back to fixed.
 Conversion to and from int and float types must be done
 explicitly. Note that if we are casting a fixed to a
 float in a context where only ratios and not actual values
 are involved, we don't need to take the scale factor into
 account: we can simply cast to float directly.
*/

#define long2pt(x) ((pt)((x)<<16))
#define short2pt(x) ((pt)(x)<<16)
#define pt2short(x) ((short)((x)/65536))
#define pt2rshort(x) pt2short((x)+pt_half)
#define pt2long(x) ((long)((x)/65536))
#define pt2rlong(x) pt2long((x)+pt_half)
#define double2pt(x) ((pt)((x)*(double)65536.0))
#define pt2double(x) ((double)((x)/(65536.0)))

/* Rounding and truncation on fixeds */
#define pt_trunc(x) ((x)&(0xffff0000))
#define pt_round(x) pt_trunc(x+pt_half)
#define pt_ceiling(x) pt_trunc(x+pt_one)
#define pt_fraction(x) ((x)&0xffff)
#define pt_center(x) (pt_trunc(x)+pt_half)

/* special multiplication routine for fixpoint coordinates */
pt fixmul(pt x, pt y); /* returns x*y */

PROGS, Professional & Graphical Software

last edited June 28, 1996

Graphics

This document gives an review of what is possible with PROforma when you do
not want to use text. Some of these things also have their consequences when
displaying text, but we have chosen to make the font management a separate document as there is so much to say about it.

Note that the PROforma functions (they all return an error code) use a
consistent naming scheme (as introduced in syslib). The name always starts with
the general module name in capitals ("PF" for PROforma), followed by some words
defining the action. Each word starts with a capital, and the most important
words (indicating a group of commands) are given first. For example
"PFLineWidth" is a PROforma command (PF), concerning lines (Line), and
specifically the width (Width).

	Gstate

	Drivers

	Transformation matrix

	Drawing parameters

	Clipping path

	Building a path

	Controlling the visible area

	Controlling the page

	Displaying pictures

	Windowing aids

[bookmark: gstate]Gstate

All commands in PROforma actually require a
gstate as an access point to PROforma.
Therefore we have introduced some commands to create and delete gstates.

To make sure that you can draw part of a picture without affecting the
current graphics state, you can save the graphics state, so that it can be
restored later. The graphics state which is saved includes the CTM, linewidth, paper and drawing colour,
clipping path, current font (when it
remains loaded), fontsize, pagebbox and
origin, flatness and current position,
path drawing method, usecache,
extraeos, printescape,...

	PFGstateInit

	
 Create a new gstate. The client has to specify which driver to use and
 the device which should be used for that driver. The client also
 determines the size of the page and gets to know how many passes are
 necessary to render a complete page.

 Drivers can be specified either by name, or using a driverid. The
 driverid's are not fixed and depend on the configuration. Positive
 driverid's are interpretted as a pointer to a string containing the
 driver name (case dependent).
 Some driverid's and names are reserved : "default driver", "screen
 driver" and "dummy driver" are the reserved name, and the values are
 PF_DRIVER_DEFAULT, PF_DRIVER_SCREEN and
 PF_DRIVER_DUMMY.

You can also specify the device to which the driver should send it's
 output. However is NULL or "" is passed, then the
 output will be sent to the default device (as can be configured). Note
 that some drivers are only capable of sending their image to one
 device.

The size of the maximum area depends on the type of the driver. A
 printer driver will typically have a 595x842pt area, matching an A4
 page (excluding marging forced by the printer).
 The screen driver has a maximum size of 720x540pt. This is
 approximately a 12inch screen (10x7.5 inch).

The client can specify the requested page size and position on the
 device. However, this area is clipped to the actually usable area.
 If the resulting area is non-existing (so no part
 of the requested area is usable on that printer), an error is reported.

When a gstate is opened, PROforma assumes you want to use the entire
 page. So the PageOrigin is set to the position of the top left pixel
 of the PageBbox on the device.

Most internal structures are initialised properly by PROforma like
 the flatness, drawing colour (black), paper colour (white),... However
 some things are not initialised like the linewidth, and the path type
 (so this should be set or a path will not become visible).

	PFGstateRemove

	
 Remove the given gstate from memory. This releases all the fonts which
 are not used by other gstates (and not resident), and also releases the
 current path,...

	PFGstateSave

	
 Save the current graphics state. This command does not affect anything,
 but allows the gstate to be restored later. The graphics states are
 store in lifo (last in, first out) stack. This command should not be
 called while building a path which has to be drawn.

	PFGstateRestore

	
 Restore the graphics state to an earlier saved version. This command
 should not be called while building a path which has to be drawn.

[bookmark: drivers]Drivers

PROforma also includes routines to enquire about the available printer drivers.
This can be necessary because driverid's are not fixed. They can vary between
versions and/or configurations of PROforma. You need a gstate to able to
query the available drivers. For this purpose you could initialise a gstate
with PF_DRIVER_DUMMY as driver (the dummy driver does not allow you to
draw anything and is specificaly intended to query PROforma).

	PFDriverCount

	
 Get the number of available drivers. This count does not include the
 screen driver as this has a fixed driverid (PF_DRIVER_SCREEN).
 This command also assures that the next call to PFDriverNext
 for this gstate will return the first driver in the list.

	PFDriverNext

	
 Get the driverid and name of the next driver in the list. This list is
 not sorted !

[bookmark: trafo]Transformation matrix

To make it easy for a client to produce moved, slanted, scaled,
rotated,... images, PROforma uses a transformation
matrix. This matrix converts given coordinates to coordinates in default
user space (which are then, internally,
converted to device space). There is
always a current transformation matrix. The default does nothing (unity
matrix).

To allow the client to set the matrix to a certain state, which can be
altered and later recovered, it is possible to save and restore the CTM.

	PFCTMMove

	
 Move the origin of the current transformation matrix. This means that all
 objects are actually moved over the given distance. This command could be
 simulated by adding the given coordinates to all following absolute
 coordinates. This routine is a macro for PFCTMSet.

	PFCTMScale

	
 Scale the current transformation matrix. The origin remains in the same
 position. All following objects are enlarged by the given factor. This
 command maintains the ratio, so everything is scaled by an equal amount in
 all directions. This routine is a macro for PFCTMSet.

	PFCTMXScale

	
 Scale the current transformation matrix along the x axis. The origin
 remains in the same position. All following objects are enlarged along the
 x axis by the given factor. This command does not maintain the ratio,
 scaling is only along the x axis (which can be rotated) ! This routine is a
 macro for PFCTMSet.

	PFCTMYScale

	
 Scale the current transformation matrix along the y axis. The origin
 remains in the same position. All following object are enlarged along the
 y axis by the given factor. This command does not maintain the ratio,
 scaling is only along the y axis (which can be rotated) ! This routine is a
 macro for PFCTMSet.

	PFCTMSet

	
 Set the current transformation matrix to the given value, which
 is relative to the previous value of the CTM.
 This command should not be performed during the building of a
 path as that would give problems when closing the current
 subpath (just as the other commands which change the CTM).

	PFCTMReset

	
 Reset the current transformation matrix to the standard values,
 being all measurements in default user space, the origin at the top left,
 and axisses extending right and down.
 This command clears the list of CTM's which are saved.
 Default user space is normally 1/72 inch (approx .35mm), but this can be
 changed with PFPageScale.

	PFCTMSave

	
 This command allows the client to save the values of the CTM,
 so that it can later be recovered. Can be called as often as
 needed (memory permitting, not that it uses much).

	PFCTMRestore

	
 Restore the CTM to a previously saved CTM. You should
 consider the list of CTM's as as last in, first out (LIFO) stack.
 PFCTMRestore removes the last topmost CTM from the stack and makes
 it the current.

	PFCTMRestoreKeep

	
 This command is functionally equivalent to
 PFCTMRestore(gstate);
 PFCTMSave(gstate);

 It restores the last saved CTM, but doesn't remove that value from the stack of
 saved CTMs.

[bookmark: params]Drawing parameters

Because PROforma actually attempts to produce pages as fast and efficient as
possible, the client has to know how the path has to be visualised before it is
actually built.

	PFPathMethod

	
 Set the drawing method for the following paths. This is a general routine
 to set this drawing method, with a parameter. Especially useful when the
 path is defined in a data structure. Macros are provided to the individual
 cases (given below). If an invalid drawing method is passed, the drawing
 method is undefined (nothing is drawn).

	PFPathStroked

	
 Notify PROforma that all future path construction commands will
 apply to stroked paths. Stroked paths have a thickness (as
 specified by PFLineWidth), and always have round caps and round
 joins.
 Stroked lines are always visible. This means that even zero width lines are
 drawn one pixel wide (also called hairline). This is done to make sure that
 they don't disappear from the final result. Note however that hairlines can
 be so thin on certain high resolution devices that they may be invisible.
 Also some devices (like some laser printers) are very bad at colouring
 small areas, which can have the same result.

	PFPathFilled

	
 Notify PROforma that all future path construction commands will
 apply to paths which are filled using the winding rule. Please note that
 areas which are less than a pixel wide or tall can disappear from the final
 result.

 To determine whether an area is filled by the winding rule.
 Initialise the winding counter to zero and draw a line to infinity. For
 every edge which is crossed you should add one to the winding counter if
 the edge goes up (left if the edge is horizontal). If the edge goes down
 (right for horizontal), then you should subtract one from the counter. The
 area will be filled when the winding counter is not zero. All areas have
 to be closed for this rule to work. The direction of the path is very
 important as can be seen in the picture.

	PFPathEOFilled

	
 Notify PROforma that all future path construction commands will
 apply to paths which are filled using the even odd rule. Please note that
 areas which are less than a pixel wide or tall can disappear from the final
 result, (see "PROforma Imaging Model").

 To determine whether an area is filled by the even odd rule.
 Initialise the winding counter to zero and draw a line to infinity. For
 every edge which is crossed you should add one to the winding counter. If
 the resulting winding counter is odd, then the area will be filled. All
 areas should be closed for this rule to work.

	PFColourGray

	
 Select the current grayshade for drawing. Grayshades are given
 in percentages. All devices have a few distinct grayshades. Higher
 resolution devices have more grayshades than low resolution devices.

	PFColourRGB

	
 Select the current colour for drawing. RGB colours use an additive colour
 model, where the red, green and blue components are given. Each component
 is a percentage, ranging from black (0) to the pure colour (100).
 Devices always have a native colourspace. If that is not RGB, then the
 colour which is given is transformed to the devices native colourspace.

	PFColourCMYK

	
 Select the current colour for drawing. CMYK colours use a subtractive
 colour model, where the cyan (kind of blue), magenta (kind of red), yellow
 and black components are given. Each component is a percentage, ranging
 from white (0) to the pure colour (100). The black component exists because
 mixing cyan, magenta and yellow inks, usually turns out more dark brown
 than black. Therefore the black component should be removed and given
 separately. Devices always have a native colourspace. If that is not CMYK,
 then the colour which is given is transformed to the devices native
 colourspace.

	PFPatternMask, PFPatternMaskUser

	
 When a colour doesn't match a solid colour on the output device, then
 PROforma will produce a fastpattern to approximate the colour. This is a
 8x8 (one or more) pattern. You can determine how such patterns are built
 (how colours are spread in the pattern) with these calls.
 PFPatternMask uses a choice of builtin methods, while the
 User variant allows you to build your own distribution method.

	PFLineWidth

	
 Set the linewidth in user coordinates for stroking. All lines and curves
 which are drawn stroked after this command is given will have the given
 linewidth until the next PFLineWidth command. The linewidth should not be
 changed while the path is built as this could cause unexpected results.

	PFFlatness

	
 Set the flatness. This is the amount of tolerance the approximation of the
 bezier curves allows. A high value
 increases drawing speed, but decreases the accuracy. If this
 value is too high, curves will degenerate to polygons.

[bookmark: clipping]Clipping path

To aid in special constructions, you can define a
clipping path. This means
that of any following drawings, only the parts which fall inside the clipping
path are visible.

	PFClipClear

	
 Clear the clipping path and the current path (initial state).
 The parts of the path which are not inside the
 PageBbox will
 never be visualised, irrespective of the clipping path.

	PFPathClip

	
 Convert the path which was built into the current clipping path.
 The path will actually be clipped according to the previous
 clipping path. The path will also be cleared by this command, and
 the current point will be reset.

 The path will be clipped as drawn with PFPathFilled unless the
 current drawing mode is PFPathEOFilled. If the linewidth is
 hairline (less than a pixel thick), then the clipping path will make
 everything invisible !

Clipping paths are a powerful tool. They allow you to look through an area.
It can be viewed as if the drawing which you draw afterwards is the building
of a large pattern which is used to fill the area indicated by the path which
is clipped.

Thus a clipping path can for example be used if you want to produce graphics
with a gradient fill (the colour tone changes). This can be achieved by using
the shape of the drawing to define a clipping path, and then draw a series of
blocks with slightly differing colours, which are clipped. This will produce
the proper result.

[bookmark: building]Building a path

Of course you also need commands to build a path. This path can then be drawn,
or used as a clipping path. It is strongly
advised that no other operators are
called while building a path, or between building the path and the
actual drawing or clipping. If you do call other operators, the behaviour may
be quite unexpected (see PROforma sessions,
especially the text show operators should not be used).

	PFMoveTo

	
 Set the current point to the given
 absolute position. If you were drawing a filled path which was not
 closed, this will be done automatically. This commands actually starts
 a new subpath.

	PFMoveR

	
 Move the current point by the given
 distance. If you were drawing a filled path which was not closed, this
 will be done automatically. This commands actually starts a new
 subpath.

	PFLineTo

	
 Construct a line from the current
 point to the given point in absolute coordinates. After this
 command, the endpoint will be the new current point.

	PFLineR

	
 Construct a line from the current
 point with the given displacements. After this command, the
 endpoint will be the new current point.

	PFCurveTo

	
 Construct a bezier curve from the
 current point to the given
 endpoint, using the given control points for direction (all
 absolute coordinates). After this command, the endpoint will be the new
 current point.

	PFCurveR

	
 Construct a bezier curve from the
 current point to the given
 endpoint, using the given control points for direction (all
 relative coordinates). After this command, the endpoint will be the new
 current point.

	PFClosePath

	
 Make sure the current subpath is
 closed. A line segment will be added from the end of the subpath (the
 current point) to the beginning.

	PFPathDraw

	
 Make sure the path which was built is
 actually rendered in the buffer. The path will be empty after this
 command, and the current point reset.

	PFPathClear

	
 Clear the current path (make it
 empty). This also resets the current
 point.

PROforma also provides some high level drawing routines. These actually use
the routines above, but are easier that duplicating the code each time.

	PFArcTo

	
 Add a circular arc the the path, starting at the current point and
 ending at the given point. You have to give the coordinates of the
 point where the tangents cross. This routine only works properly
 for arc which cover less than 90 degrees.

	PFArcR

	
 Same as PFArc but with relative coordinates.

	PFCircle

	
 Add a circle subpath to the current path. The center of the circle
 will be at the current point.

	PFPie

	
 With the current point as center, build a pie. You have to specify the
 cosinus and sinus of the start and end degree and the radius. You can
 also choose whther the pie is closed or not. A pie which is not closed
 is just part of a circle.

	PFRectangle

	
 Starting from the current point, build a rectangle subpath. The
 rectangle can have rounded corners with the given radius.

[bookmark: visarea]Controlling the visible area

	PFPageBboxReset

	
 Reset the PageBbox and PageOrigin
 to the original values when the gstate
 was initialised (so reset it to the entire visible page).

	PFPageBboxRestore

	
 Reset the PageBbox to the entire
 visible page, and set the PageOrigin to the point which is already at
 the top left of this area. This allows the client to restore the
 PageBbox after a PFPageScroll or PFPageBboxSet
 command.

	PFPageBboxSet

	
 Set the new size of the PageBbox
 and moves the origin (relative to previous value) of visible area.
 All parameters to this function are in the default user space.

	PFPageOriginSet

	
 Move the PageOrigin relative to the previous value. The
 PageOrigin is the coordinate of the top left point in the
 PageBbox.
 All parameters to this function are in the default user space.

	PFPageScale

	
 This routine allows the client to set the scaling of a page.
 It is useful in cases where the page is zoomed in (as in
 LINEdesign). The default user space is
 actually changed from
 the previous value (initially 72 points/inch) to something
 else (e.g. to 144 pt/inch if factor was 2).
 Please note that this changes both the size of the
 PageBbox and
 the PageOrigin. Both are multiplied by the inverse of the scale.

 PFPageScale allows the client to transparently change the
 imaginary size of the page. Contrary to PFCTMScale which has
 no effect on any parameters in default user space (such as for
 PFPageBboxSet).

	PFPageBboxGet

	
 Get the current size and origin of the PageBbox, and the current value
 of the PageOrigin. All returned values are given in default user space.

[bookmark: ctrlpage]Controlling the page

	PFPageShow

	
 Copy the device buffer to the device. Will display the (part of) the
 page which has already been rendered.
 If the page will be built in several passes, this routine
 automatically adjusts the internal structures to render the next
 pass. In all cases it automatically adjusts the PageBbox to make the
 entire page visible. The client is responsible for rebuilding the page.
 If this was the last pass of a page, the internal structures
 will be adjusted for the first pass again.
 This command also allows multiple copies of the page to be
 produced. However this option will only work if the device
 supports this (like a laser printer). The actual image in the buffer is
 not cleared by this command.

	PFPageScroll

	
 Allows the client to efficiently scroll in interactive
 applications.
 It is only allowed to scroll in one direction at a time
 (horizontal or vertical). The PageBbox and PageOrigin are
 automatically adjusted to fit the newly visible space (which probably
 has to be cleared first).

	PFPageClear

	
 Clear the page using the current paper colour (which by default is
 white). This will only clear the area which falls inside the current
 PageBbox, as this allows efficient
 redrawing of the screen for interactive applications.

	PFPaperColourGray

	
 Select the paper colour. Grayshades are given
 in percentages. All devices have a few distinct grayshades. Higher
 resolution devices have more grayshades than low resolution devices.

	PFPaperColourRGB

	
 Select the current paper colour. RGB colours use an additive colour
 model, where the red, green and blue components are given. Each
 component is a percentage, ranging from black (0) to the pure colour
 (100). Devices always have a native colourspace. If that is not RGB,
 then the colour which is given is transformed to the devices native
 colourspace.

	PFPaperColourCMYK

	
 Select the current paper colour. CMYK colours use a subtractive
 colour model, where the cyan (kind of blue), magenta (kind of red),
 yellow and black components are given. Each component is a percentage,
 ranging from white (0) to the pure colour (100). The black component
 exists because mixing cyan, magenta and yellow inks, usually turns out
 more dark brown than black. Therefore the black component should be
 removed and given separately. Devices always have a native colourspace.
 If that is not CMYK, then the colour which is given is transformed to
 the devices native colourspace.

	PFDisplayMode

	
 This command can be used to set the
 display mode which should be
 used for the page. On screen drivers, this allows you to make sure the
 users does not have to wait for the drawing to finish before they can
 see something.

Some devices (usually laser printers) can
easily produce following copies after the first one at great speed. This is
supported by PROforma.

	PFCopies

	
 Set the number of copies which should be produced. Only works if
 the device supports it (and the driver of course). If not
 supported this command returns an error.

[bookmark: pictures]Displaying pictures

A special library call is provided to display bitmaps. This is particularly
important for DTP applications. Bitmaps can be visualised in any orientation.
In fact a picture can encapsulate any kind of graphical object. A picture could
also consist of vector graphics and/or (possibly preformatted) text. Picture drivers could be written for all these
purposes.

Pictures always have to be in memory (an image of the file on disk) before
they can be used by a picture driver (IOFileLoad). PROforma can then
be used to try to recognize which picture driver can display the picture.
However, recognizing a picture is not always possible. Sometimes, you have to
know the type of the picture in advance (or let the user choose). The picture
can be loaded with code like :

{
 Size size;
 Channel file;
 char *base;

 IOOpenPath(file,OPEN_OLD,path,&file);
 IOLength(file,&size);
 MEMAllocate(size+sizeof(FileInfo),&base);
 IOFileInfoGet(file,(FileInfo *)base);
 IOFileLoad(file,size,base+sizeof(FileInfo));
 IOClose(file);

 PFMoveTo(gstate,xpos,ypos);
 PFPictureDisplay(gstate, driver, base,
 xsize, xsize);
}

Picture drivers (like printer drivers), can be identified either by name
or by driverid. Some driverid's are also reserved for some specific drivers.

	PFPictureCount

	
 Get the number of available picture drivers. This also assures that the
 next call to PFPictureNext will return the first picture
 driver which is available.

	PFPictureNext

	
 Get the name and id of the next printer driver in the list.

	PFPictureRecognize

	
 Let the given picture driver test whether it can recognize the given
 picture. If it can, the picture driver can visualise the picture.
 However, the picture driver is only allowed to recognize picture of
 which it is very sure that it can be displayed. Therefore, if the
 file format does not include a descriptor (e.g. the type is only
 indicated by a file extension), then the driver probably has to reject
 pictures which it can display.

 So the answers are either

 	YES, I can display the picture

	NO, I don't know if I can display the picture

 All the other commands assume that the picture which is passed can be
 displayed by the chosen picture driver !
 The following code can be used to recognize the driver which can
 display the picture.

/* figure out the picture driver id */
{
 int recognized=FALSE;
 int id;
 PFPictureCount(gstate,NULL);
 while (!recognized && !PFPictureNext(gstate,&id,NULL))
 {
 if (PFPictureRecognize(gstate,id,picture base)==ERR_OK)
 recognized=TRUE;
 }
 if (recognized)
 the picture id is now stored in id
}

	PFPictureRatio

	
 Get the aspect ration of the picture, if known.

	PFPictureColourCount

	
 Get the number of colours which are used in the picture. This command
 allows you to figure out how many colours are used in the picture, so
 that the user can display the picture with different colours. If
 changing the colours is not possible, this command will indicate that.

	PFPictureColourGrayGet

PFPictureColourRGBGet

PFPictureColourCMYKGet

	
 Get the colours which are by default used in the picture. The colours
 are given in the requested colour space. The colours are filled in an
 array of the size as returned by PFPictureColourCount.

	PFPictureDisplay

PFPictureDisplayGray

PFPictureDisplayRGB

PFPictureDisplayCMYK

	
 Display the picture at the given size at the position indicated by the
 current point. When using
 PFPictureDisplay, the default colours for the picture will be
 used. The other comands need you to pass the colours which should be
 used (in the colourspace which is indicated by the command).

[bookmark: windows]Windowing aids

	PFWindowMove

	
 This command adjust the internal structures to a gstate to
 match the position of the screen window (it does nothing for
 non-screen gstates). This should be called if the owning job
 uses the Pointer Environment and the window has been moved.

	PFWindowSubSet

	
 The concept of a WindowSub can be
 used recursively. A WindowSub is somewhat similar to the PageBbox, however,
 the pagebbox is used to redraw part of something, while the WindowSub
 is used to draw the contents of a part of the gstate, as a WindowSub
 on the screen. Any following
 PageBbox has to fall inside the current WindowSub. Any successive
 WindowSubs are also confined to fall inside the current WindowSub.
 Any call of PFPageScale is local inside the current and
 subsequent WindowSubs.
 The new WindowSub is always relative with the currect PageBbox, and
 the coordinates are in user space, which should not be rotated.
 When the WindowSub is set, the PageOrigin is at (0,0).

	PFWindowSubRestore

	
 The concept of a WindowSub can be used recursively, so restoring the
 WindowSub will only restore the the changes since the matching call of
 PFWindowSubSet (this acts as a LIFO stack, like
 PFCTMSet and PFCTMRestore).
 The CTM and PageScale, PageBbox and PageOrigin are restored to their
 original values.

PROGS, Professional & Graphical Software

last edited December 4, 1996

Extending PROforma

PROforma can be extended by anybody, by adding new drivers.

	bitmap drivers :

	 A bitmap driver is used by both printer and screen
 drivers to to the actual drawing in the buffers.
 They are a separate type because they are usually
 shared by many drivers and can easily be replaced
 by better - faster versions.

	printer drivers :

	 Make sure the PROforma output can really be
 visualised on your chosen output device.

	screen drivers :

	 Actually just a variant of a printer driver, which
 is intended for interactive use.

	picture drivers :

	 Allow pictures of several types (especially bitmap
 pictures - but vector pictures are also possible),
 to be included without hassles, and without the
 need to know about picture formats.

They can all be written by anybody. All you have to do is actually write the
drivers, and make sure PROforma knows about the driver (loads it).

	How to write a bitmap driver

	How to write a printer driver

	How to write a picture driver

PROGS, Professional & Graphical Software

last edited December 24, 1995

How to write your own picture drivers

	Structure of a picture driver

	The member functions

	Support routines

	Example

[bookmark: structure]Structure of a picture driver

A picture driver is an external module which is loaded by PROforma. The
init routine should be a data structure of type PICTdriver.
The module identifier has to be "PROforma external driver".

/* picture driver definition */

typedef struct _PICTdriver {
 struct _PICTdriver *next; /* next driver in list of drivers */
 int identifier; /* identifies type of driver */

 char name[PF_MAXDRIVERNAME];/* name of driver - the name of a driver */
 /* should not start with "-" or " " !! */

 /* can we recognize the picture */
 Error (*Recognize)(Gstate, char *base);
 Error (*AspectRatio)(Gstate, char *base, int *xratio, int *yratio);

 /* display the picture */
 Error (*Display)(Gstate, char *base, pt xsiz, pt ysiz,
 Error (*ColourSelect)(Gstate, int));

 /* info on colours used in the picture */
 Error (*ColourInfo)(Gstate, char *base, int *count, int *colourspace);
 Error (*ColourGet)(Gstate, char *base, int which, void *colour);

 /* for future extensions */
 Error Handle(int command, ...);
} PICTdriver;

The next pointer allows you to define several picture drivers in one
external module. However, an external module can only contain one type of
drivers (in this case picture drivers).

Each driver contains an identifier which indicates the type of
driver. For a picture driver, the value has to be PF_PICTUREDRIVER.

Each picture driver should have a (preferably unique) name. It is adviseable
to make these names as descriptive as possible, e.g. "QL mode 4 screen,
512x256". Note that driver names are case sensitive !

[bookmark: members]The member functions

A picture driver is quite simple, as it does not contain many member functions.
The main difficulty when writing picture drivers lies in interpretting the
actual picture types.

	Recognize

	
 Try to recognize the given picture as one that can be displayed by this
 picture driver. ERR_INAM should be returned if the picture can not
 be recognized. This routine is included to allow applications to
 automatically detect the picture driver which has to be used. However, not
 all picture files embed sufficient information for automatic detection,
 therefore it is quite allowed to reject all pictures as not recognized.

 A picture which is passed to the picture driver is just a block of
 memory. It is intended that this block starts by the FileInfo
 structure of the file, followed by a copy of the picture file itself,
 as if it was loaded with the following code

#include "mem_h"
#include "io_h"
#include "PROforma_h"
#define catch(x) do { if (err=(x)) return err; } while (0)
...
{
 Error err;
 char *base;
 Channel file;
 Size size;

 catch(IOOpenPath(filename,OPEN_OLD,path,&file));
 catch(IOLength(file,&size));
 catch(MEMAllocate(size+sizeof(FileInfo),&base));
 catch(IOFileInfo(file, (FileInfo *)base));
 catch(IOLoadFile(file,size,base+sizeof(FileInfo)));
 IOClose(file);
 ...
 PFPictureDisplay(gstate, id, base, xsize, ysize);
}

 This is the only picture driver access function which can not assume
 that the picture is of a suitable type. Pictures may only be
 recognized when you are quite sure it is not supposed to be displayed by
 another picture driver.

	AspectRatio

	
 Try to determine the aspect ratio of the given picture. Again, some picture
 formats do not include the aspect ratio, and it is therefore allowed to
 fail (ERR_ITNF) on all pictures passed, however, in all cases a
 guessed aspect ratio should be filled in (4x3 for a full screen is
 normally a good guess).
 The aspect ratio is returned as two integers. This means that when the
 picture is displayed with a with of xratio, then the height should
 be yratio to preserve the aspect ratio of the original.

	Display

	
 Actually display a picture. The picture will be displayed at the current
 position, and at the given size. Pictures can be rotated etc., but all that
 is handled by the support routine PFPictureElement. For an idea
 of the recommended way to implement Display, see the
 example below.

 Please note that the ColourSelect parameter is invalid when the
 picture has fixed colours. In that case the PFColourXXX commands
 should be called directly to set the drawing colour.

Before calling the Display routine for a picture, PROforma will
 first adjust the PageOrigin to the top left position of the picture. Also,
 the current graphics state is saved before and restore after the
 Display routine. This makes sure that the graphics state is not
 affected by drawing pictures.

	ColourInfo

	
 Get some information about the number of colours and the
 colourspace which is used for the default colours.

 This command is used to query the default colours which can be used to
 display a picture. A picture driver can however choose only to support
 fixed colours (especially for real-colour images). In that case, zero (0)
 can be returned as the number of colours.

The possible value for the colourspace are PF_COLOURSPACE_RGB,
 PF_COLOURSPACE_GRAYSHADE or PF_COLOURSPACE_CMYK.

	ColourGet

	
 This function is used by PROforma to build the table with the default
 colours. The which parameter is always in the range
 [0..count-1], where count is returned by ColourInfo.
 The colour parameter points to an area where the colour has to be
 filled in (using the correct colourspace).

	Handle

	
 This is a function which is provided for possible future extensions of the
 PROforma drivers. It should always return ERR_NIMP.

[bookmark: support]Support routines

The PROforma core library contains a support routine which is specifically
intended for drawing pictures.

	PFPictureElement

	
 Draw a picture element, which is a filled rectangle of given size and at
 the given position. The size and position are relative with the current
 point and in user space. The current drawing colour is used.

 This routine will return ERR_ORNG if the rectangle is completely
 invisible. This can be used to speed up the drawing of pictures.

[bookmark: example]Example

code

To start with, the file with all the definition of the data structures which
are used by PROforma has to be loaded. Most of this doesn't concern the author
of picture drivers, by you do need the definition of the picture driver
structure. Accidently, this also includes PROforma_h.

As the definition of PROforma Core routines is not included in the header
files, import the PFPictureElement function.

#include "PFmodule.h"
Error PFPictureElement(Gstate gstate, pt xsiz, pt ysiz, pt xorg, pt yorg);

Next up, define the actual structure of the picture data, as this is used by
all the member functions. For the sake of the example, I have defined a very
simple picture format, including the data needed to recognize the picture, and
the aspect ratio (which is optional). The picture itself has one byte for each
pixel, giving 256 distinct colours.
typedef struct {
 char identifier[24]; /* "example picture format" */
 short xsiz, ysiz; /* size in pixels */
 short xratio, yratio; /* pixel aspect ratio (0 if not known) */
 unsigned char data[2]; /* start of picture data */
} Picture;

Start with the real work. For starters, try to recognize a picture as being
of the correct type. You should always try to build in as many checks as
possible, as illustrated here by assuring that the picture has a real size, and
that the aspect ratio is possible (zero indicactes that the ratio is not
known).

static Error Recognize(Gstate gstate, char *base)
{
 FileInfo *fi=(FileInfo *)base;
 Picture *pict=(Picture *)(base+sizeof(FileInfo));

 if (fi->type==FILETYPE_NORMAL &&
 STRSameCD(pict->identifier,"example picture format") &&
 pict->xsiz>0 && pict->ysiz>0)
 return ERR_OK;
 else
 return ERR_INAM;
}

Get the aspect ratio of the picture. We can assume that the picture passed is
of correct type. If the aspect ratio is defined in the picture, than return
that. If not, give an error, and assume the picture was a full screen.
static Error AspectRatio(Gstate gstate, char *base, int *xratio, int *yratio)
{
 Picture *pict=(Picture *)(base+sizeof(FileInfo));
 if (pict->xratio && pict->yratio)
 {
 *xratio=pict->xratio*pict->xsiz;
 *yratio=pict->yratio*pict->ysiz;
 return ERR_OK;
 }
 else
 {
 *xratio=4; *yratio=3;
 return ERR_ITNF;
 }
}

Get information about the number of colours used, and the colourspace. In
this simple example, all pictures have 256 colours, and as pictures usually
originate from a screen, the colours will be given as red, green and blue
components.

static Error ColourInfo(Gstate gstate, char *base, int *count, int *space)
{
 *count=256;
 *space=PF_COLOURSPACE_RGB;
 return ERR_OK;
}

Get the default colours used for the picture. The default colours only have to
be defined here (except when the colours are fixed). Although the default
colours are often embedded in the picture format, they have to be calculated
in this example.

The colour is calculated by looking at the bits. Each colour component has
to bits allocated to it, and the two remaining bits can increase the intensity
of the colour.

static Error ColourGet(Gstate gstate, char *base, int which, void *colour)
{
 /* the colours are 8 bit : iirrggbb (i for intensity) */
 ColourRGB *rgb=(ColourRGB *)colour;
 int intensity=((which>>6)&3)+1;

 rgb->red =intensity * ((which>>4)&3) * (pt_hundred/12);
 rgb->green=intensity * ((which>>2)&3) * (pt_hundred/12);
 rgb->blue =intensity * ((which)&3) * (pt_hundred/12);
 return ERR_OK;
}

To make sure that a picture is always drawn as fast as possible, the
background of the picture is drawn first. If this is completely invisible, you
can stop immediately.

Each line is also cleared to the background colour before drawing the
individual pixels (or spans). This can also indicate that a line can be
discarded, especially when drawing on screen (where speed is most important).

When drawing the spans, unnecessary drawing is not done, by making sure that
the colour is different from the background colour. This could give a larger
speed gain if the background colour would be the most used colour in the
picture. However, actually determining that colour each time the picture is
displayed, would probably slow the displaying of the picture down.

static Error Display(Gstate gstate, char *base, pt xsiz, pt ysiz,
 Error (*ColourSelect)(Gstate, int))
{
 Picture *pict=(Picture *)(base+sizeof(FileInfo));
 int xpix,ypix=pict->ysiz;
 int colour, backcolour=0;
 short bit=0x80;
 int length, lastcolour;
 unsigned char *linestart=pict->data;
 unsigned char *linepos;
 int posx;
 pt posy=0;

 /* make sure that at least some part of the picture is visible */
 ColourSelect(gstate,backcolour);
 if (PFPictureElement(gstate,xsiz,ysiz,0,posy)) return ERR_OK;

 xsiz/=pict->xsiz;
 ysiz/=pict->ysiz;

 while(ypix)
 {
 posx=0;
 linepos=linestart;

 /* see if this line is clipped - and set background colour */
 ColourSelect(gstate,backcolour);
 if (!PFPictureElement(gstate,xsiz*pict->xsiz,ysiz,0,posy))
 {
 length=1;
 /* get colour */
 lastcolour=*linepos;

 for(xpix=pict->xsiz-1; xpix; xpix--)
 {
 /* get colour */
 colour=*linepos++;

 if (colour!=lastcolour)
 {
 if (lastcolour!=backcolour)
 {
 ColourSelect(gstate,lastcolour);
 PFPictureElement(gstate,xsiz*length,ysiz,xsiz*posx,posy);
 }
 /* skip pixels on page */
 posx+=length;
 lastcolour=colour;
 length=1;
 } else
 length++;
 }
 /* there may be a sequence left at the end of the line */
 if (colour!=backcolour)
 {
 ColourSelect(gstate,colour);
 PFPictureElement(gstate,xsiz*length,ysiz,xsiz*posx,posy);
 }
 }
 posy+=ysiz;
 ypix--;
 linestart+=pict->xsiz;
 }
 return ERR_OK;
}

We also need a dummy routine, for future compatibility with possible
extensions of the picture drivers.

Error Handle(int command, ...)
{
 return ERR_NIMP;
}

To finish the driver, only the actual driver definition has to be written.
The structure is called init to make sure PROforma (the external
module system to be precise) knows where to find the picture driver definition.

PICTdriver init = {
 NULL, PF_PICTUREDRIVER,
 "example 256 colour picture",
 Recognize,
 AspectRatio,
 Display,
 ColourInfo,
 ColourGet,
 Handle
};

makefile

Here are the lines from the makefile which allow you to build the example
given above as a genuine PROforma picture driver. Note that all occurences of
"pict_example" can be replaced by any other filename.
pict_example_pfd : pict_example_o core-dll_o
 ${LD} -ms -opict_example_pfd \
 pict_example_o core-dll_o \
 -lsms -sxmod
 mkxmod pict_example_pfd \"PROforma external driver\"

PROGS, Professional & Graphical Software

last edited November 11, 1996

OEBPS/Misc/shortdoc.txt
\FooterFont(Yearbook)
\SingleSide()
\FooterFontSize(8)
\Footer(PROforma manual and software, �1994 by PROGS, PROfessional & Graphical Software)
\FontSelect(Yearbook)
\FontSize(10)
\Leading(110)
\Chapter(Introduction)
This is an extract of the PROforma manual, which can be distributed for
general information on what the PROforma software is.
\Section(What is PROforma ?)
PROforma is short for 'PROGS Font & Raster Manager', and it does exactly what
this name suggest. It is a library of routines to manage and display vector
graphics and fonts on (raster) devices like screens and printers.

The availability of a separate program to manage graphics and fonts has
several advantages. It allows application developers to create output of
equal quality (resolution permitting) on several devices, and they can share
resources. In short this means that the PROforma library only has to be loaded
once, independent of the number of applications which use it. Also fonts only
have to be loaded once, and can be shared between applications.

PROforma was originally developed as the graphics library for LINEdesign. That
does not mean that this is the only kind of application for which PROforma is
of use. PROforma is perfectly suitable as well for desktop publishers, word
processors, business graphics and all applications which want high quality
output (which must be just about every application except compilers and games).
Actually, even at the time of writing there are things which are possible with
PROforma and can't be accessed through LINEdesign.

As a library, PROforma has the form of an extension thing (if you don't know
what that is, don't worry). It is specifically designed to be called
efficiently from C68. However, it is quite easy to access PROforma from any
other programming language.

\Section(Present, Past and Future)
PROforma is originally developed as the graphics library for LINEdesign. When
we started developing LINEdesign v2, we felt that the graphics routines we
used were too slow, and also too restrictive. On the other hand, LINEdesign v1
was quite greedy on memory. Therefore, we threw away all the old routines, and
started writing a new, more powerful and faster set of routines. During this
development, we even introduced some concepts (like the clipping path), which
are not used in LINEdesign. On the other hand, the graphics library was
expanded to allow efficient editing on screen.

So what do we have now ??

We have a system that can efficiently render and display fonts. All fonts can
be shared among applications. A font cache is used to speed up the handling of
fonts. Even the font cache and everything in it is shared amongst applications.

The system can draw lines and curves either stroked (with given accuracy and
thickness), or filled (using either in/out or winding rule).

Anything can be displayed in any gray shade. If wanted, everything can also be
clipped by regular or irregular shapes. Transformation matrices can be applied
on the page.

The user can define which part of the coordinate space is actually visible on
page (or screen).

Bitmaps can be directly displayed. This allows the user to include screens in
his or her output.

What do we want for the future ??

Although we have done our best to provide the best quality and speed possible,
we do hope we can improve the speed even further. On the other hand, we feel a
need to improve the quality of fonts, especially at small sizes. We hope we
will be able to do this by improving the hinting mechanism and hints in the
fonts.

The current system is completely black and white. We plan to make it full
colour, allowing the use of high quality colour printers, and that users can
automatically get colour separations. Also, we hope to add dashed
lines, and some variations on line caps, line joins and maybe even calligraphic
lines.

Also, we are going to continue to develop PROforma on more
powerful systems. For instance, we might let PROforma use the blitter on
those systems which have one (like the Atari Mega ST, if the OS lets us). We
also foresee special versions to make optimal use of 68030 or higher processors,
and maybe (depends on our compiler support routines), also for floating point
co-processors.

\Chapter(PROforma)
\Section(Concepts)
\Subsection(Graphics State - Gstate)
All operations in PROforma need some kind of entry point, just to let PROforma
know which device has to be used, what parameters are currently valid, how big
the drawing board is etc. To prevent the client (that is the user, or the
application which wants to use PROforma) from having to pass these details with
every command, with all possibilities of mistakes, these parameters are
combined into a general, internal structure for PROforma. This structure is a
'graphics state' or 'Gstate'. A gstate contains information about :

\bullet\ the device which is used (screen, printer) and the size of the usable
area, specification about how to draw on that device,\ellipsis\

\bullet\ All parameters about the current drawing methods like gray shade, line
thickness,\ellipsis\

\bullet\ All information about the fontlist, current font,\ellipsis\

\bullet\ The current transformation matrix (CTM), list of saved CTM's, current
point,\ellipsis\

\bullet\ All information about the current state of the iterators like device
iterator, fontmap iterator, charpath iterator,\ellipsis\

\bullet\ Information about the current clipping path.
\Subsection(Driver & Device)
 A driver is a set of characteristics and routines which describe the
 behaviour of a certain output device (like a printer, or the screen).
 This usually includes details as size, resolution, available
 colours\ellipsis\ On the other hand you can probably attache your
 printer both to a serial port, or a parallel port, or maybe you just
 want your image to to output to a file. Therefore, you always have to
 specify the driver (how to draw), and a device (where to draw) when you
 allocate a gstate.

 On devices : we strongly recommend
 the use of the parallel printer port and not the serial port. Serial
 ports are extremely slow and the amount of data which has to be sent to
 a printer can be huge. Of course we try to send as little data as
 possible, but not too many printers can handle compressed data. You
 should also be aware that serial to parallel converters do NOT speed
 the transfer of data up. The serial port can handle a certain speed and
 not more. For instance try sending an A4 page of 300 dpi data on a 9600
 baud serial port (standard). This A4 page would need about 966k of data
 and this would take at least 13 minutes without control bits or
 correction of control bits (and without handshaking). In short, it will
 take MORE than 13 minutes to send this data. Luckily, PROforma will
 normally send less than 966k.
\Subsection(Path)
 There are actually two meanings for this term, a device interpretation
 and a graphical interpretation.

 \bullet\ device : a device name, possibly including directory, where a
 file(s) can be found. In PROforma we also allow semicolons in a path
 name to distinguish between several paths to form a searchpath (that is
 all paths are tested from left to right until the requested file is
 found).

 \bullet\ graphical : a collection of subpaths.
\Subsection(Subpath)
 A move (to define the origin of the subpath) followed by a sequence of
 path segments. A subpath can be open, or closed.
\Subsection(Path segment)
 A path segment is either a line or a bezier curve. Circular arcs are
 converted to bezier path segments.
\Subsection(Bezier curve)
 B�zier is a French mathematician who works for Renault and who
 "invented" a description/display method for curves based on Bernstein
 polynomials.

 In PROforma we only use cubic bezier curves. That is curves which
 consist of four points: the two endpoints (which are on the curve), and
 two controlpoints (which are off the curve).
\Picture(win1_pf_man_bezier_ldp)
\Subsection(Clipping path)
 A clipping path is a special path which is not actually drawn, but
 which is used as a mask for all drawing operation (except text when
 the cache is used, see later). So the path itself is not drawn, but
 instead only the places which would be coloured by drawing the path are
 candidates for all future drawings until the clipping path is cleared.
\Picture(win1_pf_man_clipping_ldp)
\Subsection(Transformation matrix)
 This is a structure (actually a matrix), which explains how the
 coordinates which are passed to PROforma will be transformed to default
 user space.
\Picture(win1_pf_man_trafomove_ldp)
\Picture(win1_pf_man_traforotate_ldp)
\Subsection(User space)
 User space is the coordinate system which is used to tell PROforma
 where and how to display path or text objects. The
 user space is converted into default user space by PROforma. This user
 space divides an inch in 72 equal parts, the axisses are horizontal (x)
 and vertical (y). The origin is at the top left, and the axisses extend
 right and down. The unit of 1/72 inch is called a point (pt). Note that
 a point can be defined slightly different depending on the source: some
 say there are 72.27 points in an inch, others say 72.307 points per
 inch.

 Please note that PROforma allows to scale the default user space. This
 would allow the user to specify all coordinates in inches, or
 centimetres,\ellipsis\
\Subsection(Device space)
 Internally, PROforma transforms all coordinates from user space to
 device space. This resembles the position of the picture elements
 (pixels) of the device. Thus PROforma can decide which pixels to turn
 on or off.
\Subsection(Current point)
 The current point is very important when building a path. All path
 construction commands start at the current point, and set the current
 point to their endpoint.

 It is also the start position on the baseline for text, and set to the
 end of the text. And it is also the position where a bitmap can be
 placed.

 However, the current point is not always stable. For instance, the
 current point can not handle changes in the CTM. To avoid this kind of
 problems, see "PROforma sessions."
\Subsection(PageBbox & PageOrigin)
 PROforma has a special view on how things have to be visualised on the
 chosen device. For starters there is the "page." This entity contains
 all path and text objects which have to be drawn. The actual image of
 the object depends on the CTM.

 On the other hand, the page has to be visualised on the chosen device.
 Two things are important for this, the PageBbox which gives the origin
 and size (on the device) where the page (or part of) will be visualised.
 Which part of the page will be shown is determined by the PageOrigin,
 which is the coordinate (in default user space) of the point in the
 top-left corner of the PageBbox.
\Picture(win1_pf_man_PageBboxOrg_ldp)
\Subsection(Font)
 Collection of graphical shapes, which can usually be combined to give
 readable text. The font files currently have a lot of similarity with
 the Adobe Type I font format (slightly adopted for easier access, which
 also makes them a bit shorter). However this may
 change in future if we choose to add a different hinting scheme (as
 the hinting used in type I files is quite obscure, and our current
 implementation quite unsatisfactory).

 Fonts are handled quite efficiently. Each font will only be in memory
 once. Clients have to state which font they want to use (load), or no
 longer want to use (unload). Fonts are always referenced by their name.
 The name of the font and where to find it are stored in the "fontmap."
 The fontmap is read when PROforma is loaded. If a font is not in the
 fontmap, then it can't be used.

 PROforma automatically releases a font when there are no gstates which
 have loaded it. Special routines are included to make sure this is
 always true (even when a job is force removed). When a font is loaded
 it is placed in the "fontlist" for that gstate.
\Subsection(Fontmap)
 PROforma always keeps a table of all known fonts. This table is used
 to map a fontname to a fontfile. If a client tries to access a font
 which is not in the fontmap, then an error is returned.

 The fontmap can not change after PROforma has been loaded (except by
 removing the PROforma job and loading it again, alas this also removes
 all clients of PROforma).

 Naturally, the fontmap can be examined to find out which fonts
 can be loaded (if the fontfile is available or fonts is already loaded
 of course).
\Subsection(Fontlist)
 Each gstate also keeps a list of the fonts which it can already access.
 A gstate can only access fonts which are actually loaded. Therefore,
 when the client request to load a font, it is added to the fontlist of
 the gstate. The fontlist can be examined to find out which fonts can
 already be used by a gstate.
\Subsection(Font Caching)
 To increase the drawing speed of text, often used characters are also
 kept in an internal format which can be displayed much faster than the
 standard representation on the font. This is called the font cache.
 There are two limitations imposed by the font cache. The font cache is
 not capable to display fonts with clipping. Only
 characters which are not slanted or rotated (so only scaled) can be
 handled by the font cache. This actually means that some fonts can
 never be cached (fonts which are internally slanted or
 rotated). The font cache is also not used for the characters which
 are partly invisible.

 Because the font cache has a limited size, a replacement algorithm
 must be used. In the case of PROforma, we make sure that only the least
 recently used characters are removed from the font cache.
 PROforma makes sure that the capacity of the font cache is not
 reduced because of fragmentation.

 unfortunately, the font cache doesn't use a magic trick. Although a
 cached characters draw at least four times faster than a character which
 was not cached, you can only gain speed if the character which is cached
 is used again before it is removed. So if you now in advance that a
 certain character will only be displayed once, switch off the cache ! This
 should be done because actually placing a character in the font cache
 can be hard work !
\Subsection(Extended Character Set)
 Because typography uses many characters, PROforma uses a special
 extended character set, which contains much more characters then the
 standard character set which is supported by the operating system.

 All character strings which are used to display text use an extended
 character set, unicode. In unicode all characters are a word long (two
 bytes instead of one).

 \FontSize(8)
 Actually unicode is a character encoding, while PROforma needs a glyph
 encoding.This means that some things are not supported by unicode which
 PROforma needs and vice versa (e.g. ligatures). So PROforma uses only
 a subset with some small changes (actually the same character set as
 used in TrueType).

 \FontSize(10)
\Subsection(Kerning)
 To increase the cohesion of a combination of characters, it is often
 not enough to position all characters side by side, put some character
 combinations have to be put closer together (or further apart) to make
 sure that they are visually equally spaced (same amount of whitespace
 between characters). This process is called kerning. A typical example
 is the word "AWAY."
\Picture(win1_pf_man_kerning_ldp)
\Subsection(Ligatures)
 Another typesetting feature is that some characters sequences like "ff",
 "fi", "fl", "ffi", "ffl" should be replaced by special characters which
 look better. Ligatures are supported in the Extended Character Set
 and can therefore be used by the client.
\Picture(win1_pf_man_ligature_ldp)
\Subsection(Tracking)
 Sometimes it may be interesting to add some extra space between all
 characters. This is called tracking, and can be particularly useful for
 logo's.

\Section(Imaging Model)
PROforma has it's own specific way look at pixels and pages, the two basic
entities in this system.
\Subsection(Pages)
Because not all devices are capable of changing their output (printers for
example), PROforma uses a buffered approach. So instead of drawing on a page,
all operators actually draw in a buffer, and this buffer can then be displayed
on the actual page (PFShowPage). However, such a buffer can be quite large
(typically 1MB for a 300dpi A4 page), and there may not be enough memory
available for the entire page. Therefore, an actual page can be split into
several pieces, and transferring the buffer will only display part of the page.

So pages are built in passes. The client knows how many passes are necessary
for each page and has to call the display operators for all visible objects on
the page once for each pass. When transferring the buffer to the printer,
PROforma immediately makes sure the buffer is ready for the next pass of that
page, or, if this was the last pass of the page, it makes sure the buffer is
ready for the first pass of the next page. The buffer is however not cleared.
This is done to allow small changes to be made in the buffer without redrawing
all the other stuff (which is only relevant if the page is produced in one
pass and can be particularly useful for interactive use and mailmerging).

The buffered approach is actually taken one step further in PROforma. It also
applies to paths. Although all parameter about how to draw the path have to be
known in advance, the path is not actually drawn while it is built. The path is
only drawn when you call a command to do so.

\FontSize(8)
To be 100% correct, we must state that some device drivers (possibly in some
versions and with some parameters) may actually bypass the buffer(s). However,
this can only explain some 'unexpected' behaviour in some cases. It should
never be assumed.

\FontSize(10)
\Subsection(Pixels)
PROforma has it's own convention on pixels. It assumes that pixels are
rectangles, and that they are positioned between the grid lines.
\Picture(win1_pf_man_pixels_ldp)
In this picture you see the grid lines, the pixel centres, and the actual
pixels. On the right, there is a filled triangle drawn. As you can see, pixels
are only drawn when the centre lies inside the triangle. A boundary situation
occurs when the edge of the triangle coincides with a pixel centre. In this
case the edge is shifted to the right over in infinitely small amount.

This also means that areas which have a thickness of less than a pixel may be
(partly) invisible if no pixel centres fall inside the path.
\Picture(win1_pf_man_fill_ldp)
In the picture you see a line which is less than a pixel wide (and not
hairline), and which pixels would be drawn.

The same rules apply to stroked paths. However when the linewidth is less than
one pixel, the path will be drawn hairline. A hairline is a line with a uniform
width of one pixel.

Unfortunately, the view that PROforma has on pixels is ideal and does not
conform with most output devices (actually, I think only LCD screens work like
this). There are two differences possible.

For starters, some devices don't draw their pixels as PROforma does it, but
at the actual crossing of the grid lines. This is no problem as it only means
there is a shift of half a pixel for the entire page. This causes no problems
at all.

On the other hand, pixels are usually round, and they often overlap. To make
matters even worse, some printers don't even have a consistent pixel size. We
will just explain what the problems are with a few types of devices.

\Subsection(CRT screen)
These are the common monitors, and we are lucky. Monitors draw in white, which
has the effect that white pixels are larger than black pixels. However, the
difference in size is not too large. The average size of the dots is slightly
bigger than the addressable resolution. This is quite a good approximation of
the PROforma model.

\Subsection(dot matrix printer)
Dot matrix printer have round dots which are always equal in size. Dots are
usually much larger than the resolution at which they are positioned. Although
this produces smoother results, it also meant than output is usually more black
than is intended. For instance the difference between a one or a two pixel wide
line can be very small, even if this is a relatively big difference in user
coordinates. See picture :
\Picture(win1_pf_man_matrixpixel_ldp)
Another problem often encountered in dot matrix printers is banding. This means
that there is a regular repetition of lighter and darker horizontal bands. This
is mainly caused by the use of ink ribbons. They are also used for printing
text and therefore the area in the middle of the ribbon is used more than the
top or bottom. The less used area produces darker dots. On the other hand the
ribbon also rotates horizontally, and this may also cause a difference in
darkness (some parts were used more than others).

\Subsection(inkjet or bubblejet printer)
This is generally speaking the same as a dot matrix printer. However, the ink
is fluid now, and it is usually absorbed by the paper. This causes an
additional problem as the size of the dots now also depends on the type of
paper. The shape of each dot can also change, and this
also depends on the paper (very local). Inkjet or bubblejet printer usually
suffer a lot less of banding. A major advantage of inkjet printers is that they
are very good at filling black regions, although the paper may bend because of
the wet ink.

\Subsection(laser printer)
Laser printers either draw their page in black (most often) or in white (as
copiers do). This has certain effects on the result (making it either darker or
lighter), and pixels don't always have the same size (especially in corners,
this is sometimes corrected or used by the printer (so called resolution
enhancement). Because of the technology used (toner which sticks to charged
particles) laser printers have got problems with small (or thin) areas (like
hairline paths, which fade away), and with large black areas (which become
lighter in the middle). On the other hand, laser printer have the highest real
resolution (smallest dots), and gives the highest quality output. Actually, a
300 dpi laser printer giver better, crisper output than a 300 or 360 dpi dot
matrix or inkjet printer.
\Picture(win1_pf_man_laserdraw_ldp)
\Contents(Contents)

