DISPLAY CODE by Dilwyn Jones

Version 2.02, 11/11/03

This is a small suite of 15 basic extensions written in assembler designed to help SuperBASIC or SBASIC programmers cope with extended display modes on more recent hardware and emulators such as Aurora, QPC and QXL. It also provides a set of extensions to check for presence of pointer environment, window manager, GD2 (the so-called "colour drivers") and to check the version numbers of the pointer interface and operating system.

Although extensions are built into SMSQ allowing easy checking of such details as screen size and location in memory, programs using those extensions are limited to running on systems with SMSQ and SBASIC.

These extensions will work on SMSQ and QDOS, providing a means of consistently returning the required information, allowing programs a means of working on all systems. Graphical applications often need to write direct to memory, or at least to know the screen size and location details. That's the sort of information this code will allow you to extract from the system.

Over the years, many programs were written which were later found not to work on displays other than the original 512x256 QL screen. The forward-thinking designers of the QL had actually allowed for the possibility of larger screen sizes by including information in the system which was available to machine code programs, but not to SuperBASIC programmers. As the information about this was not readily documented and available or widely understood in those early days, many programs just assumed the original QL display and hence could not work properly when the size and location of the screen memory changed - I know, I wrote such programs myself! This set of extensions won't fix those early programs of course, but does give a simple means of extracting this information for SuperBASIC and SBASIC programmers so that new programs at least won't be guilty of the same sins. To be fair, with the benefit of hindsight it is easy to refer to those old programs as being sinful, though at the time the necessary information was neither readily accessible nor widely understood.

The files are all on the disk - look for DISPLAY_CDE and DISPLAY_ASM. You can simply LRESPR FLP1_DISPLAY_CDE if Toolkit 2's LRESPR command is available (remember it may give a 'not complete' error if there are any jobs running at the time), or add this to your boot program:

base=RESPR(1100):LBYTES FLP1_DISPLAY_CDE,base:CALL base

I hope that the names I have given the extensions don't clash with anything you already have installed on your system. If there is a clash, you'll need to either hack the names of the extensions in DISPLAY_CDE using your preferred editor, or reassemble the source code file DISPLAY_ASM after altering the names in the dc.b statements in the table.

There are fourteen functions and one procedure:

ADDRESS LET adr = ADDRESS(#channel)

This function returns the base address of the display for the given window channel. Normally you'd use #0. For a 512x256. Normally, you'd only need this value if you were writing programs which wrote directly to the screen area, e.g. using LBYTES to load a screen direct to the video area of memory, using a command such as LBYTES filename,ADDRESS(#0) assuming the screen being loaded was the same size as the current display.

BYTES LET bytes_per_line = BYTES(#channel)

The display is organised as a series of horizontal lines, with each line being a given number of bytes wide. In several display sizes, the exact width of these lines in bytes happens to be the number of pixels DIV 4, but this is a dangerous assumption to make - many programs made this assumption and fell over when the Aurora came along, as some of its display modes use a fixed line width, irrespective of the number of pixels on a line, meaning that some of the bytes used to store each line are actually unused. So if you are writing individual lines to the screen, as you would for video effects for example, you need to take account of how many bytes there are between the start of one line and the next. That's the purpose of this function - it tells you how many bytes lie between where one line starts and the next line starts. Users of version JM or earlier ROMs should note that this information is not available, as the area which holds this value is used for something else, so a version JM machine always assumes it has a 128 byte line width.

DMODE LET display_mode = DMODE

Returns the mode number of the current display. This would usually be 0 for the 4 colour modes, and 8 for the 8 colour modes. As the routine uses the mt.inf system trap, it ought to handle the extended colour mode drivers, or monochrome modes on certain emulators (both cases untested at the time of writing). I am not sure what will happen if this function is used while one of the old mixed mode screen displays are used (there are extensions in Quanta library I think which allow part of the screen to be in MODE 4 and part in MODE 8, for example)

SYS_VAR LET system_vars = SYS_VAR

Tells you at what address you can find the system variables. Now you can PEEK and POKE to your heart's content if you really need to!!!

The FLIM_n extensions return information about the maximum sizes or limits of a screen window size. As it uses the iop.flim trap, it means the information can't be extracted if this is not implemented on your system. But I thinkI'm right in assuming that if iop.flim is not on the system for whatever reason, the system can't use extended displays anyhow. If it can't get the required information, it assumes you're running a 512x256 QL screen rather than unhelpfully causing an error report. If you supply a primary channel window, the values returned will be the maximum possible size for that window (essentially the full display width and height), whereas if you supply a secondary channel number the values returned refere to the outline area for the primary. If you don't know what this means, supply the lowest window channel number opened, e.g. #0 for BASIC. The first two extensions return origin details, whereas the other two return the width and height details.

FLIM_X LET x_origin = FLIM_X(#channel)

FLIM_Y LET y_origin = FLIM_Y(#channel)

FLIM_W LET wide = FLIM_W(#channel)

FLIM_H LET high = FLIM_H(#channel)

OS_VER$ LET v$ = OS_VER$(#channel)

Checks the version number of QDOS or SMSQ, returning a 4 digit version string such as 1.23

PTR_ENV LET ptr_present = PTR_ENV(#channel)

Returns 1 if pointer environment is present, or 0 if not.

WIN_MAN LET wman_present = WIN_MAN(#channel)

Returns 1 if the Window Manager is present, or 0 if not. Unlikely to be useful, unless a QDOS user has only installed ptr_gen and failed to install WMAN.

PTRVER$ LET v$ = PTRVER$(#channel)

Returns the 4-digit version number of the pointer interface, or an empty or nul string if this cannot be found (e.g. no pointer interface present or detectable for the channel number given).

WMAVER$ LET v$ = WMAVER$(#channel)

Returns the 4-digit version number of the Window Manager, or an empty or nul string if this cannot be found (e.g. no pointer environment present or detectable for the channel number given)

GD2 LET gd2_present = GD2 (#channel)

Returns 1 if the Graphics Device 2 is present, or 0 if not or unable to find this flag. For experts, the method of checking involves examining the PE linkage block at offset $128 (decimal 296) for the long word flag 'PTR2', the only method I know of to test for GD2 at present.

MOVEMEM from_address, to_address, number_of_bytes

This procedure lets you move the content of memory around. Simply tell it where to move from, where to move it to, and how many bytes. Negative values will cause errors. There is no check on overlaps etc so with care you can use this to fill memory areas by writing the first byte value with a POKE, for example, then moving this up to fill the required number of bytes. It always moves from lower addresses first - there is nothing particularly intelligent about this command in terms of working out the best way to move things. It is quite slow by comparison with similar commands in other toolkits.

RELEASE HISTORY

v1.00 - original version as published in QL Today magazine.

v2.00 - added OS_VER$, PTRVER$, PTR_ENV, WIN_MAN and GD2 functions.

v2.01 - added WMAVER$ function.

EXAMPLES OF USE

It may be more instructive to list a few simple examples of how to use these extensions for simple applications. These routines are on the cover disk, in a file called DISPLAY_bas. Note that they use the Toolkit 2 extensions ALCHP and RECHP for allocating and deallocating temporary buffer areas in the common heap area of memory. Most systems these days have Toolkit 2 or equivalent commands so this should not be a problem.

1. FULL SCREEN WINDOW

This routine shows you how to set a window to occupy the full screen, or the full outline area available to it if it is a secondary window. To make channel #0 occupy the full area of the screen, enter the command FULL_SCREEN #0.

If you tried the same thing on channel #2 on a VGA display, for example, #2 would be set to the maximum possible area as covered by the outline for the primary channel, in this case, #0, which would normally cover #0 and #1 and #2 in BASIC.

The procedure leaves the actual values in the variables dw and dh (width and height) and dx and dy (origin co-ordinates). Note that this routine doesn't actually do anything visibly, you may need to do a CLS command on the channel concerned, for example, to see its effect.

2. STORE A SCREEN IN MEMORY

This routine sets up an area in the common heap to store a copy of the current screen. The address of this area is given by the variable "area". We work out the start address of where to copy from the screen using the ADDRESS function, and the total number of bytes to copy is calculated by the product of the number of bytes per line (given by the BYTES function) and the height of the screen (given by the FLIM_H function). Note that when using 512x256 mode on the Aurora, for example, this routine will save the whole memory used for the screen, not just the visible area, as Aurora uses a fixed line length unrelated to the actual number of pixels used on the current display, meaning that although you only see 512 pixels across, for example, the line used to hold this diplay is 1024 bytes wide, but only 512 used and visible, so the calculation is not as obvious as might be thought at first. A typical application of this little routine might be to store agraphical screen in memory while a menu is superimposed on the picture. The variable "screen_length" holds the actual length (in bytes) of the screen saved.

3. RESTORE A SCREEN FROM MEMORY

This routine restores the screen saved by the previous procedure, and releases the memory area used to store it, by using the RECHP command frm Toolkit 2.

4. MERGE SCREEN

There is a large number of clipart screens available for the QL, mostly as 512x256 QL screens. In the old days, when each QL had the same size screen, it was easy enough to load these direct to the screen with a simple LBYTES filename,131072 command. Not only doesn't this work on modern large displays, it might actually crash the system in sme cases, since the area of memory previously used by the screen may now be used by something else. This routine tackles this problem by loading the 32k (512x256 pixels) screens into a buffer area in the common heap, then copies it line by line into the top left corner of the display. Note how two variables are used to keep track of where each line starts. With old 512x256 screens, we know they are 128 bytes wide, so it is easy enough to step through them 128 bytes at a time. The other variable is incremented by the width of each display line, given by the BYTES function. Of course, writing direct to the screen is not the done thing, and the picture may well be ruined if another job is writing to the screen at the same time! Finally, when the transfer is complete, the heap memory is released with the RECHP command.

5. FILL MEMORY

A task which arises now and again in programming is to fill a given area of memory with a particular value. This routine takes advantage of how the MOVEMEM command works. The command should be issued in this form: FILL_MEM start_address,how_many_bytes,what_value The routine works by setting the first byte of the area to be filled, using the POKE command. Then, it copies this up one byte with the MOVEMEM command, which repeatedly copies each byte up one address, thus the byte copied is always the value of the previous byte and the area is filled with the value of the first byte fairly quickly.

Another example: if you wished to turn the entire display black, then you could issue the following command. This is quite a naughty way of doing things, but it serves to illustrate how the command works: FILL_MEM ADDRESS(#0),BYTES(#0)*FLIM_H(#0),0

6. SYSTEM_VALUE

This routine reads a value from the system variables. You don't need to supply the absolute address, just the offset as published in several QL technical manuals. The routine adds the offset to the base address, peeks a value from there and returns it as the value of the function. LET value = SYSTEM_VALUE(offset)

For example, PRINT SYSTEM_VALUE (140) prints the value of the auto repeat delay, while PRINT SYSTEM_VALUE(55) prints the network station number.

7. SET MODE

Some programs which need to switch between 4 colour and 8 colour mode often set the screen mode (causing an irritating flashing) even if the screen was already in the required mode. A short routine like this can check the current mode and only change it if it is the wrong mode, thus preventing the flashing of windows you get when changing mode to the same mode.

8. IS THERE GD2?

Some programs with graphical content such as games or art programs may need to start up diffferently if the "colour drivers" (graphics device 2 or GD2) are present. The GD2 function makes this easy to check as this routine shows. So if a program found that it was running in QL 4 colour mode for example, but wanted to try to change to high colour, a simple test such as:

IF SCREEN_MODE = 4 THEN

 IF GD2(#0) = 1 THEN DISP_COLOUR 3 : REMark switch to 16-bit colour

END IF

9. VERSIONS

Prints the version numbers of S(uper)BASIC, the operating system version number and the pointer interface and window manager version number. In this way, a program could if absolutely necessary check versions to see if recent enough for it to be able to run.

10. IS_THERE_PE

This procedure checks if pointer interface or window manager (or both) are installed. A simple application of this is for a pointer driven program to test if pointer environment is available and shut down tidily if not with a statement like

IF PTR_ENV(#0)=0 THEN

 PRINT#0,"Sorry, I need pointer environment to run"

 PAUSE 50 : STOP

END IF

VERSION HISTORY

v2.00 New extensions added.

v2.01 Added WIndow Manager version function WMAVER$

v2.02 FLIM_x extensions now work as intended on QDOS (D6 register pointing to FLIM values block stored during parameter fetch call to prevent D6 being smashed)

