
25 years have gone by since the launch of the QL.

More than one person has suggested that I should wrile a little something to celebrate the occasion.
This seems to me a bit strange. I am well aware that the launch of the QL was nol as disaslrous as the
sinking of the Titanic or the 2004 lndian Ocean Tsunami. Bul celebrate it? Strangel

So rather than describing the development of Domesdos {lhe earlier name for QDOS), I thought I would
look back at all the progress thal has been made in system software, and, in particular personal compu-
ter systems over lhe past 25 years.

To appreciate the progress made, it is necessary to wind back the clock to 1983, the year that the
ZX83 was not launched. Much has akeady been written about this rudderless project that started out as
a development of a portable version of the Spectrum {2X82) and ended up as a quantum leap into the
void, so I willnot repeat, confirm or deny il here. I will just try lo give the background.

Then I shall describe where Domesdos wenl after the ill timed launch of lhe QL which was just a black
shadow of the planned ZXB3.

Finally I shall give my own view of the progress made in workstation operaling systems since 1984

ln the beginning
The QL started as the ZXB3, a developmenl of the ZXB2, The impetus to create a new operating sys-
lem lor il came from the decision lo replace the trusty ZB0A microprocessor by a cut down MC68000.
This 'sexy'32 bit microprocessor obviously needed something more impressive than the old speclrum
software and Sir Clive decreed that it should have a 'version of Unix that works". Later on, other require-
ments were added.

Depending on your point of view the resulting syslem was a major breakthrough and oulstanding suc-
cess or it was a totally disastrous devianl.

For those who were not around at the time the idea of a "version of Unix that works"must seem bizarre.
Surely, all versions of Unix worked, didn't they?

Unix in 1983
Wellnot quite, Unix "sort-of' worked provided you did not try to use it. At the time, UNICS {and later Unix)
had been around for aboul 13 years, during which it had become legendary for its exceptional slowness
and quirkiness. Unix had three great atlraclions for academics - it was free and so did nol require a bud-
get - il was portable and so could be implemented on new platforms in not much more time than il
would take to re-write il from scralch, keeping lhousands of students off the streels - it was quirky and
so using it was a real challenge. The slowness was nol an attraction, but neither was it a serious pro-
blem in the academic world.

Unix however had offered a glimpse of a different idea of an operating system. lt was not so much what
it did, but what it mighl have been able to do in a world with unlimited computing powe[ and if il had not
been Unix. The problems were lhat computing power was not, is not and is not likely lo become unlimi-
ted, and Unix was Unix.

The ill-fated XENIX system should give an idea of the slowness of Unix. When this was launched (just

after the QL) on an IBM PC XT platform {about 4 times fasler lhan a QL with 10 times as much working
memory) one journalist coined the phase 'a brain dead version of Unix" - an epithet that sluck. But it
was not 'a brain dead version of Unix", il was a real Unix running on a desktop computer which lacked
the power of a $100,000 VAX {the favourile Unix platform of lhe period). A 2009 personal compuler is

several thousand times faster wilh several hundred times more memory, than a early 1980s VAX, so,
although Unix is still chronically slow this is not now as obvious.

The slowness of Unix was, howeve[ not the only problem, it also suffered from an operating system
interface that was, as the French would put it, bordelique and it had a well deserved repulation for
chronic inslability.



A Unixly chaotic operating system interface

The chaolic operating syslem interface was a direct result of a design choice made by the developers *

minimisalion of the number of operating system functions.

This minimisation of lhe number of operating syslem functions had three effects.

The initial eflect was that the real world had to be twrsted lo fit into the Unix minimalist world. For exam-
ple, the llo system was based on ihe paper lape reader I punch model' when console lio and a data

storage system were added, these had to be twisted to fit the paper tape model. While this had the
advantage of facilitating the implementalion of scripts {which are still fundamental lo the operation of a
Unix system), it had very serious consequences both for the primary use of the filing syslem (data slo-
rage and retrieval) and the interaclive use of lhe console. So the whole l/O system was all lurned onto
its head and everything was treated as a file, even if it was an interactive device, This made il even
more irrational.

The second effect was that anylhing other than lhe most basic functions had to be added on. This was
greal, everyone could have their own flavour of extended Unix - hundreds of different, incompatible
commercial and university versions and lhousands of privale versions. ls this really a good idea? The
developers and lhe academic esiablishmenl thought so - natural selection of the besl version was
obviously better that allowing a development group to impose an arbitrary choice.l did not find this such
an obviously good idea.

The third effect was that functions that could be implemenled simply and efficiently by a single opera-
ting system call were pushed out into C libraries where complex and inefficient routines had to make
large numbers of 'primitive" OS calls for each higher level funclion. Later this complex and inefficient
approach was elevated to a virtue. Minimalist operating systems inlertaces became"a good thing".

A Unixly unslable operating system

The instability of Unix was another concern. Just before the QL came into the world, Sun Microsyslems
was set up to exploit lhe nascent interest in Unix by making workslations using the most powerful

microprocessors then avaihbb {3M machines: 1 MIP 1 Megabyte, 1 Megapixel). These were sufficiently
powerful for lheir SUnOS version of Unix to seem comatose rather than brain dead. A greal innovation in
SUnOS was lhe fast boot process to recover from syslem crashes quickly. Paradoxically as one
reviewer pointed oul at the time, this made SunOS seem even less reliable than standard Unix, an
ordinary version of Unix taking five minules to bool could only crash 12 limes an hour whereas SUnOS

booting in less than a minute could crash 60 times an hour Even when Unix was noi crashing, lhe
reliability, in terms having a system that did what you wanted lo do rather than whal it wanted to do, was
not parlicularly good - lo quole Dave Mankinsl who slighlly misquoted Johnson, 'making Unix run

securely means forcing it to do unnatural acts. ll's like the dancing dog at a circus, but not as funny -
especially when rt is your files that are being eaten by the dog', evoking the propensity of Unix for
destroying your data even in the absence of deliberate attacks.

Sir Clive's "Unix lhat works"
Sir Clive's idea of a 'version of Unix that works"was, therefore, really rather revolutionary.

I interpreled 'that works" as meaning that it should be efficieni, reliable and with a rational operating
system interface to remove the three main Unix problems. Some people have always objected that a
'version of Unix that works' should have been efficient, reliable and with a standard Unix operating
syslem interface. However I took the view thal the standard Unix operating syslem interface was not
only a serious problem in itsell but also a barrier to making the system efficient and reliable.

There never was even an oulline specification for the new operaling system for the ZXB3, Sir Clive did
nol work thal way - he had an amazing capacity for delegation, for letting his 'chosen"lo get on with
the job and for accepting the consequences himself if it all went wrong. So what were to be the salient
points of a new operaling system for lhe 7XB3?

Unix Hater's Handbook http,//wwwsimson.net/ref/ugh.pdf



Single user with ore-emptive lime-sharing between tasks.

Unix was (and still is) a multi-user system. Allhough it was possible for a single user to pretend that he

was several users, this provided only limited multitasking wilh negligible interaction between tasks,
"native" pre-emptive muliitasking allowing operalions on shared dala structures was not to become
available for many years.

At a distance, il is difficult to imagine why pre-emptive time-sharing between tasks was thought to be a
good idea, but there was a group at Sinclair that was working on parallel systems, and they thought it

would be useful to be able to have a hundred programs running simultaneously, sharing memory for
simulating a massivefy parallel processing syslem. So one hundred application programs running

simultaneously became the target.

Maybe il was not such a bad idea. After all, this was something that you could not do using a $10,000
Apple Lisa, a $20,000 Sun workstalion or a $100,000 VAX'z and the typical Sinclair customer was an

enthusiast.

From a more mundane point of view, this did allow little features such as clocks to be implemented
without requiring the "main application" lo continuously call a function lo pass conlrol to another task. lt
did allow background communications tasks to receive and transmit data wiihout the"main application'
being affected. Bul, in itsell it could not direclly handle'switching'between applicalions. Why not?

Because, if you had two or more applicalions running simullaneously they could both be wriling lo the
display at the same time, which would you see? lf a user typed something, which application would get

the keystrokes? There were two reasonable solutions lo this problem' having only one application
"active' at a time {single task switching) or windowing - it being much easier to do both as in the early
Apple Mac.

Monospaced text l/0 on bit mapped disnlay.

This was lo become, possibly, the most disappointing feature of the QL software. There were reasons
for this being the obvious choice.

1. The display handling was all carried oul by a device driver that could be iand was, many times)

replaced, even while the machine was running. A graphical user inlerface {GUl), was, therefore, not
a baseline requirement.

2. The conventional schemas for implementing these GUls all placed a very heavy inierface burden

on applications, making it very dilficult to wrile soflware for the machine. Moreover Sinclair had

contracted Psion to port an office suite designed for the monospaced lext PCDOS environment.

3. Existing systems with GUls were, lo say the leasl, extremely limited and slow even with hardware

much more powerful than the QL.
4. The Sinclair compuler range had, from the slart been a 'inslant programming machine'. This is

lotally anti-GUl.

5. Time.

Device independeni filing system.

Not the Unix "everything is a file'syndrome, bul allowing, for example, data to be read from a storage
device as if it were coming from a console {a line at a time} and files to be read or written {handling file

lengih, properties and end of file) over a communications port as if you were accessing a storage
device, while providing a clear separation of dislinct input and output funclions.

Real-time hardware management.

The QL hardware was designed using wellestablished Sinclair principles' do nol do it in hardware if you

can do il in software. There was no queslion of trading off cosl against performance. The soflware had

lo respond lo a general interrupt, identify the interrupt source and transfer informalion to or from a
device driver or application in a handful of instructions - unlike any other PC or workstation, there was
no hardware buffering, FIFO or DMA.

Five years later contemporary reports on the spread of the Morris Worm estimated that 19BB VAXs running BSD Unix

were unable to handle more than 20 active processes.



Like mosl computer users and software developers at the time I had suffered from conventional opera-
ling systems I could undersland the potential of Unix but I did nol understand why it was so
exceptionally bad. lt was supposed to be simple, which should make it efficient, but ils slowness was
already legendary lt was supposed to be simple, which should have made it reliable, but it wasn't.

So, there I was, lhad a few months to turn Unix into a working system - a task that had defeated thou-
sands of developers who had been working on it for years - or had it?

The answer did not come in a flash, but when I finally got lhere, lhe answer was sirnple. The Unix lhat
we knew had nol been designed to work and the developers had nol been trying to make it work. This

Unix was the result of the applicalion of academic theories of no relevance to the real world.

The Why is easier to explain than the How

Why was Unix so bad?
That is very simple. Unix came from the academic world. Nobody's job was on the line. Whether it

worked or not ceased to be an issue afler the firsi version printed "Hello world". What was importanl
was the application of 'modern operating systems"theories. Al the time, the operating systems provided

by the major computer manufacturers had no theoretical basis - they were just cobbled together to
meel ad hoc requirements. On the other hand, the developers of lhese systems did not have cosy jobs

for life in research, so that if these syslems did not work, their developers would soon be looking for
new iobs. This was a fairly powerful incenlive in the days before employment protection.

As a scientist, {l have a certificale to say that I have a degree in physics, for what it's worlh) a sound
theorelical basis is something that I wholeheartedly welcome, but, being a pragmatist, I feel that having a
working system is far more importanl.

How did Unix get to be so bad?
What intrigued me in 1983, while the Unix story was still unfolding, was that the main platform for Unix

was the VAX series of computers. lt was all too obvious that the operating system running on these
VAXes just could not be lhe same as the UNICS that printed out 'Hello world"from a PDPT in 1970 - The
PDPT was about as powerful as a ZXBO. There was clearly something louche in this story that no-one
was owning up to The Unix we knew could never have even given an indication of working on a PDP7. I

managed to gel hold of some documents about the development of Unix, written by Dennis Richie,

amongst others, which shed some light on this anomaly. Although this is not the way it was pul in those
documents, il seems that Unix had been the victim of the upsurge in computer science that occurred
over a very short period from 1962 to 1965. At that time, the leading lights in computer science were
unanimous in their view of the future of computing: the near future {lhe i970s) of computing was enor-
mous lime-sharing syslems serving thousands of users. There was no possibility of building a single
computer powerful enough to serve lhousands of users - lhe natural consequence was that the future
was in "symmetric multiprocessing' with massive arrays or networks of thousands of processors work-
ing in parallel.

The lwo problems lo be addressed in lhis symmetric mulliprocessing future were managing the con-
flicts between different processors for shared resources and distributing the users'workloads between
the processors. The solulions to both problems had to be transparent and equitable ifor more details,

see "Modern Operating Systems", 1990 by Prof A. Tanenbaum, who still believed in these theories 25
years later).

The mulliprocessing model

There was a unified model of software execution (the "mulliprocessing" model) underlying the theories
that were developed to meet this challenge. I am not sure that this was ever explicitly defined, I think it
was just a private consensus. This model trealed all hardware configurations, single processor
compulers, multiple processor machines with shared memory, loosely coupled nelworks of computer
and any other imaginable configuration as being equivalent, presenting the same problems and
accepling the same solutions. Above all, it elevated"symmetry"to lhe stalus of an inviolable law



This was an approach that is very attractive' it provided solutions lhat were generalised and it promised

a sound, universally applicable theoretical basis for operating system development.

Unfortunately, the real world was and is ralher differenl. Problems of sharing memory that can occur on

tightly coupled processor systems cannol occur on a dislributed syslem with independent memory for
each processor: Likewise, solutions that rnake use of shared memory cannol be used if the processors

do not share memory.

I will not bore you with the almost endless list of real differences between different real hardware confi-
gurations that mean that, even where common problems can be identified, common solutions will be at

besl suboptimal and frequently totally unworkable on real systems. As a result, single processor

multitasking systems were considered to be iust a poor emulation of multiprocessor syslems and so
were required to emulale all lhe problems of these multiprocessor systems, even though these
problems were not inlrinsic to single processor systems.

The scenario was surreal. lt was as if an eminent group of transport engineers had set out lhe design
rules for future transport, This would mean that cars, lorries and trains could not have wheels, because
they are useless on water Ships could not have underwater propellers because roads are solid. Aircraft
would have to fly at ground level, because a ship or lrain taking off could be quite dangerous. The
generalised solution is, of course a hovercraft - a surface tland or sea) following airborne crafl. ln fulure,

all transport would by by hovercraft. This metaphor is not an exaggeration, quite the opposite. A
hovercraft at least has some useful applications, but I could nol see any evidence thal this mass of
1960s computer science theories could ever be applicable to any real system.

The surreal bit was not lhe theories themselves, but that, instead of being laughed into oblivion, they
were actually taken seriously and were still being taught as inviolable gospel truth to computer science
studenls. (25 years later this is still happening!)

Symmetrical multiprocessing

The unshakeabie, immutabfe, unconditional, belief in symmetry had ihree main sources.

The firsl was a naiVe idea of fairness that arose from the only form of computing envisaged; mulli user
time sharing systems. Symmetry should provide total fairness, but in practice it does not. Even the aim is

not very sensible' surely it is better that all lasks are compleled quickly if unfairly ralher lhan slowly and
equitablir

The second was a naiVe idea of simplicity ll was felt that it was simpler lo have all processors being
equal, and, lherefore, all programmed the same way lt is difficull to imagine that anyone could be so
narve as to believe that it would be simpler to have many processors each deciding which lasks were
to be executed and fighting over resources rather than having a dedicated controller But they did.

The lhnd was a simplistic idea of retiability. The model was thal of an ant colony lndividual ants can be
killed but the colony carries on regardless. The big fallacy is thinking that lhe loss of a processor does
nol matter - it does, lhe data being processed is lost and if it is your bank account that is lost, you

would think it mattered. The controller in a asymmetrical system is usually presented as a weak point. ll
is nol. A controller failure will not lose dala and il can provide recovery from individual processor failure

with a simpticity and reliability lhat would be unimaginable in a symmetric system.

MULTICS and UNICS

The first major altempt to put these symmetric multiprocessing theories into action was in the develop-
ment of the multi-user MULTICS operating system, The story of the MULTICS development project and
the subsequent atlempt by two of the MULTICS development team to salvage their amour propre by
developing their own system, UNICS, on the side, is now the stuff of legends. A thoroughly revised
anodyne history of the creation of Unix can be found in Wikipedia while another view can be found in
'Multicians strike back'u.

But the story I found in the 'original sources" was rather different. Quite a lot of passages in these
original sources were clearly unlrue. There was a categorical statemenl that 'fork" was the only

http:/lwwwmullicians.org/myths.html



MULTICS feature incorporaled in UNICS. MULTICS was designed as a set of concentric shells round a
kernel, UNICS was designed as a shell round a kernel {notice the similarity). MULTICS used a virtual
machine execulion modeland, as"fork"works by replicating a virtualmachine, UNICS also used a virtual
machine model {coincidence? I do not think so) and so on. MULTICS had an execulion model based on
processes, UNICS had one process and later versions mulliple processes {spot the difference).

I do not think that Richie et al were trying to mislead us, lhe striking similarities were probably more a
result of UNICS being designed using the sarne dogmas as MULTICS, by people who had worked on
MULTICS.

Despite this there were many differences (UNICS had, for example, separale"process space'and'files"
unlike the MULTICS combined process and file space), but, in their various descriptions, the authors poin-

ted out only one deliberate divergence from MULTICS: they abandoned ihe symmetric multiprocessing
of MULTICS with its associated problems of "competition for resources" and the 1960s theories for
dealing with these problems {including the synchronisation / mutual exclusion horrors). I could find no
suggestion anywhere in the documenls that mutual exclusion was omitted because the theories were
fundamentally flawed' the authors apparently regretted leaving it out - they did so only to simplify lhe
system so that it could be made to work.

lrepeat'simplify the system so that it could be made to work". That was lhe key, UNICS was designed
lo work, it was not designed on the basis of academic theories.

Furthermore, when UNICS was extended to handle more than one process at a time, mutual exclusion
was nol re-inlroduced into lhe kernel. The authors noted that UNICS worked despite the omission of
mutual exclusion, but they do not appear lo have considered the possibility that UNICS worked
because of the omission of mutual exclusion.

UNICS and Unix

Over the nexl few years UNICS became Unix and as it was ported to more and more powerful
computers, deveiopers slarted to put back into Unix ihose things lhai had been left out of UNICS - no
wonder that it hardly worked any more.

By 1983, Unix had appeared on a small nurnber of "execulive workstalions' (or rather executive toys)
such as the Three Rivers Perq and the Sun, although, at that time,"the industry"trealed Unix as a 1oke.
Most computer manufaclurers thought that their cuslomers would prefer lo have their payroll output
reliably and correctly every Friday rather than sit typing commands such as grep "\( [tr]he\> end" all

day. 0t as I heard it "How can you trust an operaling system whose commands sound like body
functions"{ps, sh, fc, grep, awk}. The main usage of computers at the lime was carrying out the same
operalions every day, week, monlh or yeal reliably and predictably - in other words, bodngly. Unix, on
the other hand, could do almost anylhing - and io make it even less boring, it did do almost anything,
regardless of what you might wanl lo do.

The starting point for Domesdos

Basic design criteria and philosophy

There were 5 basic design crileria for Domesdos

Compactness

Unlike most executive toy and personal computer operating systems, the self contained operating
system for the QL had to be residenl in a targel 16k ROM.

Efficiencv

It might seem obvious, but as the raw power of the QL was less than that of the first 1981 IBM PC, the
operating syslem needed to be efficient.



Reliabilitv

This might seem rather odd for a company like Sinclair which did not have an outstanding reputation for
the reliability of its products, but there were two reasons for this, although both would disappear before
the first machine was delivered. The first was that the operating syslem was to be delivered in ROM and
it was nol easily upgradeable. The second was that the machine was targeted at a more"professional"
market than earlier machines because Sir Clive did not want to be in the games market - he wanted to
be taken seriously.

Predictabilitv

The dominanl form of 'serious"on-line computing was connection to a multi-user timesharing mainframe.

This form of office working had created a new stress syndrome. A major contributing factor was the
annoyance or frustration caused by highly unpredictable response which varied from sub-second to
tens of seconds. The predictability of the response lo user actions had become major requirement.

Accessibilitv

The general philosophy of a mulli-user syslem {and this includes Unix} is of a reslricting system whose
primary aim is to restrict users access to prevent them taking control of the whole syslem. Domesdos,
however was to be an enabling system to maximise lhe accessibility of the system and hardware
functions for bolh specialists and hobbyists

Things to avoid in Domesdos

A good starting point seemed to be defining THINGS TO AVOID (the capitals are for fans of Terry
Pratchett's Discworld * to be spoken with a hollow dealh-like voice). These things to avoid were those
academically popular ideas lhal seemed to lead straighl towards complexity, poor or unpredictable
performance, fragility or any combination of these,

L Wilful ignorance

2. C programming language

3. Object oriented programming

4. Virtual memory / virtual machines

5. User based security

6. Synchronisation

7. Minimalisation

These THINGS TO AVOID are described in more detail in Box 1 and the means used to avoid them in
Box2.I did not realise at the time thal lhese things to avoid would become the objects of worship by a
narcissistic idolatry cult popularly known as the 'Computer Scienlists". I suppose that I should now call

them the'Seven Cardinal Sins of Syslem Design'.

Goodintentions...
The grand plans for a super operating system were derailed by a whole series of cornpromises required
to fit Domesdos into the world of the QL hardware, to support the Psion office suite written for a CGA
display on an MS DOS based IBM PC and 1o accommodate rapidly evolving in speciiicalions and target
markets.



Box 1 - Domesdos's things to Avoid
The seven cardinal sins of operaling system design as seen from 1983.

1 Wilful ignorance
ll should seem obvious that if you wish to build a system that works well and reliably, it is a good idea to know its
performance and know its limits rather than sticking bits together following a set of arbitrary (possibly inappropriate)
set of rules and hoping that it does the iob. Apparently, this is not obvious.

While a cerlain amounl of care is required to produce elficient code and there are some trade-ofls between effi'
ciency and code size, inefficiency comes mostly from not bothering to quantify the costs of operations and, there-
fore, wasling valuable resources through sheer laziness. Similarly a system is likely to have a very unpredictable
response if no effort is taken to evaluate worsl case (or worst likely case) behaviour

ln all the documents concerning the development of Unix, I did not find a single documenl with calculations of the
cost of any basic operating syslem function. The authors did not seek efficiency so Unix was inefficient by default.

ln all the mass ol i960s theories on'multiprocessing'I did not find a single typical or worst case cost calculation to
justify the complex mechanisms proposed for managing'compelition lor resources'or protecting'critical sections",
these theories relied on asserting the'obvious superiority' of something that was not obviously superior

2 C programming language
lf you are going to program a version of Unix, C would be the obvious language, would it not?

I was not convinced. The various documents I had found about the original versions ol Unix gave some very
interesting figures on timescales. lt appeared that the rewrite of Unix in C took less time than it took to write the
original version in machine code, but not by much, whereas rewriting a piece of software should take much less
time than writing from scratch {because you know exactly where you are going}. Furthermore, the first time the C
version of Unix was ported to another machine, it apparently took longer to adapt it than it had laken to write it for
the first time. On the face of it C wasted time rather than saving it.

C represenied a specific computer instruction set which was nol appropriate and, even worse, it was tied to the
Unix environment and concepts and, therefore,likely to induce typical Unix errors.

Finally it was so ilFconceived that, while it was possible to do really stupid things writing in machine code, writing in

C you could do really stupid things without even knowing it.

3 Object orienled programming

Obiect oriented programming is based on'encapsulation" a fancy term for hiding allthe dirty little tricks you do not
wish others lo know aboul inside a hard shell. Furthermore, rather than being explicit aboul lhe operations that are
carried out, and how they are done, every operation is implicit, abstract or both:programmers are not supposed to
know what goes in inside an object. The result is that nobody knows how a system created using object oriented
programming works because nobody is supposed to know. lt is all deep magic {when it works} or wilful ignorance
{when it does not) - a BAD IDEA.

To cap it all, all operalions using objects are stunningly ine{ficient. You need a byle of data from an obiect? lt should
take one machine instruction. With object oriented programming it takes at minimum tens of instructions and can be
severalhundred, just to make the system obscure.

4 Virtual memory and virtualmachines
These two concepts are entirely independent but, as both require a dynamic address translaiion unit (a unit that
converts the "virtual addresses" seen by an applications program into 'real memory addresses"), they are often
associated.

The supposed advantage of virtual memory was that it allowed the system to degrade more gently when there
was a shortage of memory allowing systems to use less memory This theoretical view is the result of a dramatic
oversimplification of memory allocation processes. Experience pointed to the opposite conclusion. For example, in
the late 70s when changing from IBM MVT (realmemory system) to MVS (virtual memory system) the main memory
had to be doubled in order to handle the same workload. This experience was repeated many times on many
dilferent systems.

The virlualmachine model is a fundamental part of the 1960s dogma for multi-user systems. The idea is that each
user'sees' a virtual compuler that is completely isolated from the virtual computers seen by all other users, thus
providing a naively simplistic security mechanism. This was, of course, lotally irrelevant to personalcomputer usage
where there is only one user and it had akeady be demonstrated to provide a fundamental security breach rather
than a security mechanism. The other main drawback to the virlual machine model is that most operating syslem
lunclions are concerned with transferring information to, kom or between tasks - while the virtual machine model
not only made systems more vulnerable, it made inter task communication bolh more complex and more costly.



5 User based security
ln 1983, the dominant form of 'serious' computing was time-sharing a multi'user central cornputer system. The
same scenario formed the basis of the 1960s multiprocessing lheories. For this type ol system, security was limited
to preventing individual users hijacking, using or corrupting oiher users' data. Oddly enough, UNICS, which was
designed as a single user system, had user based security concepts from the start. For a personal computer
(single user workstation) the multi-user problem does not exist, so there is no need for user based security
mechanisms. At best they are merely obstruciive and annoying while giving a false sense of security.

Unix had two separate user based security mechanisms, the 'process' model of program execution and ihe file
system owner/group/all and rool/notrool concepts.

Processes are closely related to virtual machines. As Unix type virtual machines are more of a security risk than a
security mechanism, the Unix process modelmerely makes a single user workstation more vulnerable.

The Unix owner/grouplall concept of file system security was almost unworkable on multi-user systems as il
assumed a strict hierarchy implying that each user belongs to only one group, and that only one group could be
allowed access to a file. For a workstation il was totally ineffective, where a machine has accessible file store media

{even if you need a crowbar to access it} or can be re-booled to a different operating system on a external drive,
removable medium or over a network; the only effective mechanism against data theft is file encryption (using
per-file keys NOT per-user keys) and there is no protection against data loss or destruction except for mirroring the
data on remote storage.

6 Synchronisalion
ln the 1960s a whole edifice of theories was built up on the basis of using synchronisation as a means of providing
rnutual exclusion to resolve access conflicts between 'processes". ln fact this was misleading. The theories were
nol concerned with resolving the conflicts themselves, but concerned with resolving the problems arise when
mutualexclusion is used to try to deal with these conflicts.

This created a self-sustaining spiral. The basic mutual exclusion theories simply made the underlying problems
worse, which led to the development of synchronisalion theories which exacerbated the problems of mutual
exclusion which led to more theories...

ln conventional systems, synchronisation mechanisms had also been adopted for signalling between tasks, for
example indicating that data was available for processing. This too had proved to be the source of many
fundamental system design problems.

Avoiding synchronisation and all its associated nasties was, therefore, a primary design aim.

7 Minimalisalion
The concept of minimalisation is associated with ihe'less is more" and'worse is better'system design philosophies
that developed in the 1970s and eighties to iustify increasing idleness and incompetence.

The principle is that by minimalising the operating system functions, the complexity is pushed into the application
programs, making it simpler and easrer to design the operating system.

ln praclice the effect of this approach is rather different. As an operaling system should not just be considered to be
a set of core functions but the whole of the support for the applications programs, minimising lhe core functions
has the effect of increasing the complexity and size of the"higher level' functions providing applications support.

It becomes even worse when the minimalisation is compromised. A real minimalist approach to reading data is lo
treat input from any device of any type as a stream and have just one 'non-blocking" operating system call to read
a either one byte or a given number of bytes from the stream. As the callreturns rmmediately whether the read is
complete or not, then this call can be used for both checking for input and reading from a file. To read any data that
was nol instantly available, the program would have to cycle in a tight loop retrying the call, which in most cases
would be unnecessarily complex and inefficient.

The first typicalminimalist compromise was to provide two calls: a {non-blocking) call to test whether there is data
available and a (blockinglcall to read a fixed number of bytes from the stream.

This did not solve the problems. lt did not allow {or keyboard input where the user may type characters and then
edit them before hitting ENTER. This meant that the minimalist approach was then further compromised by
introducing switches changing the behaviour of lhe read bytes function depending on the device and how the
application wished to interact with it, increasing the system complexity significantly.

The end result is that compromised minimalisation not only makes applications programs and application support
soflware inevitably more complex ihan providing an appropriate range of core functions, but the minimalised core
functions themselves are very likely to be more complex than more complete set of regular core functions.



Box 2 - Avoiding the things to avoid 1

1 Avoiding wilful ignorance
All the Domesdos system data structures were completely defined {with provision for expansion}before any part of
the system was coded.

ln design, the execution time of all critical sections of code was calculated lor both typical and extreme scenarios.
For example, the scheduler design was fixed when it was able to schedule 100 application programs, active or
waiting lor l/O, wiih a worst case overhead of 5006 of the processor time. The perlormance of the system was
known before it was coded.

All timing critical services interfacing directly to the hardware had known worst case timings.

2 Avoiding C programming language
Convenlionally, operating systems had usually been written in assembler {a family of programming languages based
directly on the machine's instructions' one line of assembler translates into a single instruction). Unix was a notable
exception.

Domesdos was not, howevet written in machine code or assembler lt was written in pseudo code (the fancy name
for any representation of a program using rules that are made up as you go along) which was then'hand compiled'
even though hands had nothing to do with it.

This ensured that the implementation was not constrained by the
programming language.

3 Avoiding obiect orienled programming

limitation and peculiarities of C or any other

Any one with a knowledge of the principles of object oriented programming looking at the structure of Domesdos
might think that the attempt to avoid object oriented programming had lailed completely: every item in memory
including iobs, could be considered to be an instance of an object complete with constructor destructor and a
variety ol methods and properlies,

A channel to a file, for example, could be considered to be an instance of a 'file channel' object which added file
speci{ic methods and properties {position, flush, etc.) to the melhods and properties {read, write, etc.}inherited from
the'l/O channel'obiect which itself inherited basic methods and properties (create, destroy ownership) from the
'memory"object.

The Domesdos approach was, howeve[ very different. Domesdos used 'data design', a slightly earlier concept
which, because of its simplicity, found little favour with academics. Most programming languages are algorithmic or
proceduraland not particularly concerned with data. Obiecl oriented programming is the apogee of the procedural

approach as the data is completely inaccessible.

Data design was a programming approach that took, as its basis, the primordial value of data and the relative
insignificance of procedures and algorithms. This is not an ideal approach for calculating the value ol Pl or drawing
fractals but, then, as now most computing outside research laboratories was concerned with data handling ralher
than intensive calculation.

The principle of dala design was that data structures should be designed to be well defined for all possible states.
For example, rather than writing an algorithm or procedure for suspending a job, lhe executing and suspended
slates of the "job controldata struclures"are first defined and then the code for suspending a job'writes itself'.

There are similarities between the Domesdos use of data design and some of the aims of object oriented
programming. A 'file channel block' had all the data structure of a basic 'llo channel block', so that all code that
could operate on an'l/O channelblock'could also operate on a"file channelblock'. Likewise, an 'llO channelblock'
had all the data structure for a 'memory block", so that allcode that could operale on an'memory block'could also
operate on an "l/O channel block'and a "file channelblock'.
There are also maior differences. Because the data blocks in Domesdos were defined explicitly, the Domesdos file
system device driver (privileged code) could not only access the file channel block defining a 'channel" from the
application to a file, but also the associated filing syslem block (shared between all files open in a particular filing
syslem), the associaled physical device block {shared belween all filing systems on a disk} the associated disk
interface block {for all disks on a particular bus)and the operaling system block which held all information common
to applications, device drivers and hardware.

This simplicity led to ridiculous accusations that the system was unsa{e, an error in the privileged device driver
would not necessarily be contained. This is absolute nonsense based on the academic view that reliability is a

maiter of keeping the system going regardless of how much damage is being done 1o the data. An error in the filing
syslem willdestroy daia: the system will be broken whether or not other system struclures are damaged. lntrusive
coniainment measures simply increase the complexity and, therefore, the increase the probability of there being
errors while reducing the probability that those errors willbe detected.



The data design principles used in Domesdos, therefore, provided the use{ul features o1 object oriented
programming in an open, clear explicit, efficient, natural way instead of the closed, obscure, implicit, ine{ficient, object
oriented way.

4 Avoiding virtualmemory and virlualmachines
Avoiding virtual memory was not difficult as lhe hardware did had neither dynamic address translation nor fast
backup storage. The memory management strategies used did not, however preclude the use of virtualmemory
It would have been possible to implement a virtual machine memory model, by shuffling the contents of memory on
every task switch, but as this would merely have added to the inefficiencies inherenl in the virtual machine model, a
realaddress memory model was implemented.

5 Avoiding user based security
The Domesdos application task model was based on the classic '1ob' concept. I have seen Domesdos iobs
described as processes, but they certainly are not. lf you were trying to be contentious, a Domesdos job couid be
described as combining all the advantages of Unix processes and Unix threads while avoiding the drawbacks of
either But I will not describe them that way as Unix enthusiasts are not noted for their sense of humour

Although the hardware did not support any form ol prolection against accidental or deliberate corruption by one
task of the data belonging to another Domesdos did have a rights system in the form of 'ownership'and'usership".

This rights system could have been enforced if appropriate hardware had been available. The 'ownership" and
'usership' of dala and program memory blocks made the system self-cleaning provided that tasks did not abuse
the rights system.

A Domesdos tob has its own code base and data space. lt can spawn independent jobs having no access to the
spawning job's code base and data space {like processes). lt can spawn dependent jobs which, by virlue of the
separation of "ownership'and 'usership" rights, may have their own code base and data space {like processes but
unlike threads) and may access their owner's code base or data space (unlike processes bui like threads).

As user rights to files on a workstation are completely unenforceable, files were not flagged with user rights. Per
file encryption, which would have been the only effective data protection mechanism, was considered too complex.

6 Avoiding synchronisation
The earliest versions of Unix did not use synchronisation mechanisms for dealing with access conflicts; they relied
on operating system calls being atomic unless voluntarily suspended. For applicaiion programs, where a response
time of some tens of milliseconds is adequate, this is an simple, efficient and safe approach and it was used to a
cerlain extenl in Domesdos.

It is, howevel unsuitable for dealing with contention for access to shared data structures belween interrupt servers
and other software. Rather than using invasive mechanisms such as disabling interrupts to protect "critical sections'
oI even worse, using symmetric synchronisation mechanisms, Domesdos implemented a range of asynchronous,
asymmetric access mechanisms. For example, i{ an interrupt server needs to release a scheduled task, it can do it
at any time, even while the scheduler is in the process of rescheduling, without any lost events or any precautlons
being required in the scheduler code or the interrupt code to prevent access conflicts. These mechanisms do not
have any 'critical sections' and sq in Domesdos terminology, they were called 'intrindcally safe'. These
mechanisms were developed specifically for Domesdos but some of the ideas were partly based on the concepls
for asynchronously updating distributed dalabases that were being developed by the systems group al the
CADCentre, my previous employer

Synchronisation mechanisms were also avoided when flagging completion of asynchronous processes such as
transmitting or receiving data on an l/0 port. Fvents {intrinsicatly safe} were used instead.

7 Avoiding minimalisation
Rather than seeking to minimise the operating systems interfaces, Domesdos sought to regularise the interface by
providing a broad, coherent set of basic functions. Using a simplistic analogy, the broader the base, the more stable
the edifice built on it.

The best example was the l/O sub-system. For reading data, separate calls were provided for testing, reading a
single byte, reading a 'line', reading a string ol bytes and unbuffered direct reads. There was no arbitrary 'blocking I
non- blocking' behaviour on individualcalls' all calls had a timeout parameter from 0 to 10 minutes (or wait forever)
whether or not a timeout had any sense for a particular call.

Because of this regularity, and because the operating system itself handled the timeout, buffering and event
signalling, wriling a comprehensive lO device driver for Domesdos was much easier than writing a primitive lO
device driver for Unix or even MSD0S {or at least it did seem that way to me * some accurate documentation
would have been a help ior othersl).



Desperately Seeking QL
Although I made good progress in completing my QL collection last year I'm still looking for the
following,o Video footage on the Sinclai/Ql in TV programs {on VHS tape or as files}.
e Photographs of Sinclai/Ql appearance in lT-shows such as Personal Computer World show

(PCW), London, Which Computer? show Birmingham, Earl's Court Computer Fair: London or ZX
Microfan, London {1984 to 19BB)

r More software for GST's 6BK/0S beside the two bundled Microdrive cartridges.
o More QL software/articles written by Linus Torvalds.
. Sinclair QL tB ROM {physical tPROMs or binary file).
. Sinclair QL PM ROM {physical EPROMs or binary file}.
o Any Sinclair QL Professional Computer; sertal number {S/N} pre D04-001371.
o Any Sinclair QL Prolessional Computer S/N post D16-1224t8, a D17 would be very nice
o Any Sinclair QL Professional Computer US-tdition, S/N post 513-005854
o Any Sinclair QL Professional Computer German-tdition, S/N post SG1B-010800.
r Other Sinclair QL regional editions (Spanish, French, ltalian, Danish, Turkish, Greek, Portuguese,

Norwegian, Swedish, Finnish and Arabic).
. Any names or contact to people who worked at a subcontractor of Sinclair Research like Thorn

(tMl) Datatech.
r QUEST CP/M 6BK for the QL

Just drop me a line (mailto:urs-koenig@bluewin.ch). Thank you very much.

I hope you enjoyed this journey back in time. QL foreverl

Welcome to the next parl of our series. More has been prepared, and Tony writes "Jusl the
FUTURE lo do". We ended last issue wilh "25 Years - oul of the Morrass ..." and continue:

Domesdos hits the fan
The peer review

How well was the syslem received in the computer science world? Not very well The main criticisms
were lhat it did not incorporate all the idiocies that I had deliberately avoided ln other words, it was
criticised for how it worked rather than whether it worked well.

Other criticisms cenired on the 0S interface, "lt stinks" was one verbal reaction - the silent reactions
were probably worse. For me, the oddest thing about the criticisms was the irrationality-the thing that
stank the worst seemed to be the l/0 calls. These were designed to meet a wide range of require-

ments including communications and interactive use where an application might have to react if data

was not received within a given time. This meant that all l/0 calls had a timeout This combination of
scheduling {for the limeoul) and data transfer seemed to be fundamentally offensive to any true belie-
vers in operating system purity, Apparently the "correct' way of dealing with this was to make the
application spin in a tight loop checking the elapsed time, checking ior data, transferring the data and
processing it a byte at a time ls this really better, in any respect, than making a single operating sys-

tem call? A lot of people thought so.

The third group of criticisms centred on the security or rather, lack of security in Domesdos. The main

concern was that as the hardware had no protection mechanisms, the system did not try to provide a

false sense of security by implementing arbitrary highly obstructive protection mechanisms that
would, in any case, have been totally ineffective on the QL platform.



Users'reactions
I have no doubt at all that there were many users who were disappointed in the system and there really
was no adequate documenlation on the operation of the system, no guidelines and interface information.
On the other hand, "ordinary" compuler enthusiasls did not suffer from the preconceptions of systems
'experts' and so a fair number succeeded in making the syslem do all sorts of extraordinary things. The
lack of formal guidelines for programming showed up some unforeseen characteristics, on the one hand,
the ability of the system to put up with extreme abuse while continuing to function and, on the other
hand, the ability of a certain type of person to take great pleasure in exploiting all the undefined holes in
the system rnterface thal will always occur if you adopt the "garbage in, garbage out" approach used by
Domesdos.

My own assessment
Relief that it worked. Although I had believed lhe theoretical basis lo be sound, it was still a relief that I

had not completely screwed up.

Anger al myself for having compromised the integrity of the system to incorporate SuperBASlC rather
than changing SuperBASlC to be"Domesdos friendly'.

Pleasure when, on a simple system test with 100 application programs, the QL outperformed a VAX
running VMS.

Frustration that I could not redesign il from scratch and "do it righl" lhe second time around on a better
platform without the compromises for CGA compatibility and the QL hardware

Meeting the design criteria
Compactness
The first version of Domesdos met its largel for compaclness. The core occupied less than 5 kbytes
even though the range of core operaling systern functions was very much rnore comprehensive than
Unix. The complete sel of device and filing system drivers occupied less than 10 kbyies.
The compactness of the core functions was largely due lo lhe use of pseudo code for programming,

the 'real world" approach to task management, the use of evenls in place of synchronisation and the
adoplion of regular coherent interfaces.

The compactness of the device and filing system drivers was largely due to the simplicity of the inter-
faces provided by lhe data design concepl and the use of intrinsically safe intertask communications
belween the interrupt servers and the operating system functions.

The compactness was not achieved by "crafting" the code. Subsequent development indicated that
some sections of the code could have been reduced by more than 2070 by more careful coding.

Efficiency
The first version of Domesdos was not as efficient as it could have been, bul all the targets were met.
Basic operating system functions were more than an order of magnitude fasler than Unix SV One
hundred applications running simultaneously did not bring the system to ils knees. The only real bottle-
neck in performance was the display handling, but this was nol a basic design fault, it was simply an
unsatisfactory trade-off between speed and size of code in the first cut that was never to be revised.

The efficiency came from an awareness of the cosls of various options that were selected and the
many oplions reiecled, the absence of any intrusive synchronisation mechanisms, the use of a real
memory address space model and the extensive use of shared data structures lhal this memory model
and the intrinsically safe access mechanisms made possible.

Once again, lhe efficiency was not obtained by crafting the code. Some critical seclions could have
coded up to 3070 faster

Reliability
The reliability of the system has three differenl aspects, There may be problems with the fundamental
system design, there may be problems recovering from or handling external errors {hardware faults,

exception conditions, OS call parameter errors, etc.) and there are simple coding errors.

These three sources of errors were all dealt with by design.



The probability of simple coding errors was reduced by using a dala design approach translated into

machine code via state diagrams and pseudo code. The error handling was made simpler by having a

single, ralher primitive, mechanism for reporting errors from procedures which, together with the regula-
rity o{ the inlerfaces, reduced the probability of errors in the error handling. The two major differences
between Domesdos and convenlional operating systems were, however the total elimination of syn-
chronisation and mutual exclusion mechanisms and the regularisation of the operating systems interface
which, between them, eliminaled the root causes of most of the known design problems in operating
systems at the time,

ln a fit of hubris over this "design for reliability" approach, lhe new operating system was called Domes-
dos {a home {domestic) DOS, even though it was designed for business use and il was a ROM operating
syslem and not a disk operating syslem) after the slogan for a brand of bleach "Domestos" which "kills

99% of all known germs (bugs)'.

How well did lhis approach succeed in eliminating bugs at source? ln reality better than lhe syslem's repu-

tation might indicate, When the frrst QLs were shipped, Sinclair set out lo create lhe impression of

bug-ridden software to mask the chronic hardware problems. To back this up, machines were deliberately
delivered with pre-tesl firmware {c.f."QL firmware bugs myth"4), Furlhermore, Sinclair's failure to organise
any form of operatrng system documentalion led to a whole bug-hunting industry, with lournalists fighting
it out to produce the most extravagant lists of "bugs' withoul actually knowing whal the system was
meant to do, Mark Knight gathered all these togeth* weeded them and created the'definilive" list of 77

bugs and quirks, most of which were only in pre-release versions or the SuperBASlC inlerpreter and its
associated utilities, procedures and graphics These bugs are analysed in 'QL ROM bugs - an annotated
list"5 which shows that there were 10 bugs and serious quirks in the first release version {Vl,03 JM) of the
operating system and device drivers, excluding SuperBASlC and the graphics {see Box 3),

It is quite possible that there were olher errors and the syslem could have been better bul by industry
standards, for an operaling system developed from scratch within a six month deadline using new
radically different, paradigms, it was probably better than industry average

Predictabilily
From the a user's point of view the ratio of the median response {typical response) to the worst case
and the incidence rate of long delays are two reasonable measures of the predictability

ln some respects, users would have found the system occasionally slow and unpredictable. Wilh a mean
Microdrive access time of 3,5 seconds, fetching dala from files was bound to be slow By comparison
with simple buffering, the file imaging {borrowed from CST's 68KOS) and pre-fetch strategies
significantly reduced the median access times but could do nothing to improve the worst case delays,
thus the predictability measured as the ratio of median lo worst case delay was made worse. These
strategies did, however significantly reduce the incidence rate of long delays .

On the other hand, the character drawing speed was certainly too predictable! The screen driver was
designed for compactness first, speed was only a secondary consideration. The most compact design
was to draw all characters using lhe same code, regardless of the complexity of the operation. As
common cases could have been be drawn much quicker than the general case, using separale code for
these would have increased the apparent performance at the cost of predictability. lt should have been
done.

Accessibilily
Domesdos was very accessible.

The end point
The release of the QL was also the effective endpoint of development of that operating system
concept, The general hostility of the computer science world to the concept, coupled with lhe fact thal
the system was closely tied to a flawed hardware platform and Sinclair's decision to make the firmware
a scapegoat for the early QL production problems would have turned Domesdos inlo a little footnote in

the history ol operating systems if the Sinclair marketing department had not buried it.

4 hltp,//wwwJ-t-web.com/OS/QL-firmware-bugs-mylh.pd{

5 http://wwwl-t-web.comiOS/QL-R0M-bugs-list.pdf



Domesdos was now called QDOS by the marketing department. Possibly they did not know that
QDOS already existed and was alive, if not very well, and that BillGates had been to Sinclair Research
in a attempt to license it to Sinclair for the QL. Possibly they thought that the operating system on the
QL had been licensed from Microsoft! As the ultimate insult, they took its name away and hung the
albatross-like"QUICK and DIRTY 0S" epithet round its neck

Box 3 - First release bug list
The numbers are those in Mark Knighi's original "definitive" bug list

1. A trivial coding error (bug 57) checks only one plug in card (Plug 'n Play in 1984). Simple workaround.
2. Serious oversight (bug 8) remapping the colours on changing from eight colour to four colour mode. The

driver did not check whether the "ink' and "paper' mapped onto the same colour in the 4 colour mode.
3. Simple coding error (bug 15) panning a window less than B prxels wide. Why would you do this?
4. Trivial coding error (bug 43) filling a full screen width block. lt actually did nothing at all, I do not know why.
5. One bit coding error (bug 37) closing a serialport. A little endian IPC connected to a big endian MCOB000.
6. Serious oversight (bug 33) pre-fetching Microdrive sectors when you had run out of memory. This rather

reduced the buffering ef{iciency.
7. Serious coding error (bug i9) in the Microdrive device driver opening MDV8. There was no MDVSI
8. Fatal oversight (bug 71) sending a null file over the network. One end lust waited lor nothing for ever
9. Serious coding error (bug 50) in the Trap n4 / Trap u3 patch to cater for a "moving task"(SuperBASlC).
10. Design error (bug 49) handling job release events. This did not allow for nested release events making it

possible to break the system using apparently legitimate OS calls

SMS2

When il had been well established that Domesdos did work reliably and significantly more efficiently
than conventional rnultitasking syslems, I set about writing version 2. The interface was cleaned up to
remove 'QL nasties", which meanl thal there was no SuperBASlC, graphics or Microdrive supporl and
the 0S calls that had been patched in to support direct access to the QL hardware were not included.
This SMS2 (Small Microcomputer System V2) was hardly any larger than the original Domesdos core
and, typically, important operating system calls were 30% to 100% faster as register handling was
optimised for the more complex calls, rather than the simplest, and the code was crafted more carefully.

There was no permanenl user interface program but, whenever there were no jobs in the sysiem, a
default application (job 0) was slarted. The only job 0 application that was written was a simple com-
mand line interpreler that could read from a file or the console. This was, effectively, going back to the
original Domesdos concept.

This syslem was implemented on the Atari ST monochrome system and feasibilily trials were carried
out on a small number of embedded systems. lt was never made available commercially on "standard"

plalforms and no project using il ever made it to market,

Windowing software
Windowing is not normally a fundamental part of an operating system, it may be a function of the display
driver or it may managed by an independent {ask, in either case the emergent windowing systems 25
years ago all relied on the applications programs doing most of the work, although some of this work
may have been hidden in "APl" libraries This approach of requiring application programs lo re-draw at
any time, regardless of what they were doing at that time, any parls of their windows that became
uncovered, was so costly and fragile that it seemed thal the real way forward was hardware windowing.
This should have been able to provide a much better price/performance ratio than a 10070 software
approach.

The original Domesdos display driver was based on writing to windows rather than the whole display
This was a prerequisite for a exlension to a windowing system although it did nol aclually provide win-
dowing facilities. The upgrade path was laid out but no more lhan lhat.

The QJump Pointer lnterface QPTR was designed as a stopgap measure for the QL. lt provided true
windowing without clipping, it was 'optimised" for a platform lhree times slower than the recently
released Apple Mac, it had to be compatible with existing QL software and it was based on lhe assump-
tion that windowing hardware would soon become available, As a result, the overlapping window pro-



blem was dealt with by freezing partially covered windows, a less than satisfactory approach, but, possi-

bly, the only practical short term solution.

At the "presentalion level' (the Window Manager), however there were a number of innovations which
were intended to deal wilh some of the less desirable features of what was to become the "standard'

windowing inlerface as presented on the Apple Mac, the Commodore Amiga and the Atari ST Some of
these innovations (right click menu, button bar etc.) were adopted in improved form in later mainstream
systems (conlext menu, lask bar / dock, elc,). Others, such as the Hotkeys, were nol.

SMSQ
SMSQ was SMS2 to which SuperBASlC compatibility was retrofitted. lt was inlended to provide a QL
compatible operatrng system {or various QL emulalors. ln general it was much faster lhan QDOS (exe-

cuting in equivalent speed memory), The expanded console driver could draw strings ol characters at

speeds within a few percent of the QDOS add-on record holder and it could draw single characters
faster: lt was purely relrospective and did not further the Domesdos style OS principles.

SMSQ-E

SMSQ-I was SMSQ bundled with the slandard QJUMP [xtended Environment, There was no develop-
ment effort available to provide a mechanism for writing to buried windows which had become practical

with the availability of 'QL compatible" platforms 5-10 times fasler than the original QL. Various enlhu-
siasls and third party developers produced their own solulions by continuously updating the display
buffer from the off-screen window buffers. This was a bit of a paich that was laler adopted by Mac OS

X and Windows Vista.

Minerva

Minerva was a re-engineered QDOS / SuperBASlC ROM destined only for retrofitting to QLs. it provided
improved performance with a reasonably high level of QL compatibility Although it provided interpreted
mullitasking BASIC it did nol represent any form of advance in operating system principles.

Windowing hardware
A hardware windowing display circuit was designed using 1980s technology. The principle was very
simple: for each frame there was a table of "pixel rurS": the start address in lhe display memory, the
number of pixels in the run and the atlributes {colour deplh, colour map, and display/porchlblanking/
sync), While this made displaying a line slightly more complex than a simple rectangular memory map for
the whole screen, it greatly simplified the generation of the blanking and synchronisation which were lust
special pixel runs and enlirely defined in the pixel run table, The principal addilional cosl component was
a deep F|FO to smooth out the pixel rale at lhe window edges.

Thrs system allowed for arbitrary shaped windows, which could be moved simply by changing the pixel
run table. At the time, large display memories were expensive so the design allowed different windows
to use different paleltes or different colour depths to economise on memory usage.

ll never made it to market.

Stella

Stella was designed as a'lels get it right the second time round"Domesdos. After a few years, I felt that
I understood most of lhe problems with the original Domesdos. Stella was based on an updated, more
rigorous version of the Domesdos design principles applied to a wider range of platforms,
o Elimination of ihe UNIX legacyo Extended data design conceplr Wider 0S inlerface base. Higher efficiency. Less memory constrainedr Generalised entity management. Exlernal event management for guaranteed real time responseo Ralionalised and more rigorous ownership and usership concepls. Mix and match modularisation of core operating system funciions



Slella on test

At the request of someone at Sun Microsystems, Stella was benchmarked against Unix SVR4 {Solaris 2)

on a Sun3x equivalent platforrn (Sun's proyecl to replace BSD Unix was not giving the desired
improvement in performance). The benchmark conditions were not very well defined bul, on the first
lesls, Stella outperformed SVR4 by around 2 orders of magnitude on simple 0S calls and filing system
operations. My contacl in Sun lold me that he could not possibly pass these figures onto his project
manager as he would lose all credibilily!

Stella on the market

Stella was implemented as the embedded operaling syslem for a number of projecis, but none ever
made it to market.

The first mass market CUI machines
Apple Macintosh

The Apple Mac was launched soon after the QL, although it had been in development for nearly 5
years. Wilh a price tag three limes that of the QL and operating system development costs aboul 50
limes that of Domesdos, the machine was far more polished than the QL. lt has since become a
landmark, for many of lhe wrong reasons, Many histories of lhe development of personal computers
placed the Apple Macintosh as the computer that started the windowing revolulion. ln reality it had very
little lasting e{fect.

A recent history of the Mac stales "it had very little memory . . . low processor speed and limited
graphics ability". The"little memory"was surprising - it had no more memory than the vastly cheaper QL
and less than typical for a new PC but was aimed above the PC markei. Given ihe lack of expansion
capability, this was a clear marketing error The"low processor speed"is more interesting. The proces-
sor was comparable to a PC of the period, but lhe system was slowed down by the windowing soft-
ware which was based on the principle of pushing all the real work up into the application. lt is not that
the soflware was parlicularly inefficient, it was more that the windowing principles were totally inappro-
priate for the single tasking Mac,

The operating system was reasonably compact, having a basic l/O and filing system, primitive memory
managemenl, scaled pixel fonts and desklop in 64k RAM.

ll fell down very badly on accessibility. tarly software development was limited lo a few privileged
partners who had received advance specifications and cross development systems. Ordinary develo-
pers had to wait lwo years before the MPW native development platiorm became available and they
were able to sample the dubious delights of programming in an environmenl where the operating sys-
tem imposed very serious constraints but provided very little assistance.

This lack of syslem accessibility meanl thal, despite its popularity with lournalists, the persistently over-
the-top reviews and an extravaganl marketing campaign, the Mac did not manage to stop the much
more basic MSDOS PCs becoming dominant, Software developmenl was just loo difficult.

Over ihe next few years, Apple's marketing strategy for the Mac was pursued through adverlising and
vigorous, lotally baseless, legal action presenting Apple as the underdog suffering under the market
dominance of IBM and from thefl of its intellectual property. At the llme the campaign started the IBM PC
was a long way behind the Apple ll in terms of installed base and third party soflware supporl - IBM was
the underdog -and the disputed intellectual property did not even belong to Apple

Although both parts of Apple's strategy were based on misrepresenlation, this has left a lasting impres-
sion that the Mac was an innovative machine thal was pushed out o{ the market by IBM monopolislic
marking practices. ln reality, ils software was 99Yo derivative and it was unable to compete with Apple's
own Apple ll series,

The Mac had one feature borrowed from the Lisa that did get copied, This was the menu bar al the top
of lhe screen, The menus for each program or window were not part of the program's windows, but
'belonged" to the screen as a whole. This bizarre arrangement also appeared on two computers that
sel out to succeed where Apple had failed, the Atarr ST and the Commodore Amiga.



The Atari / Commodore twins

The Commodore Amiga (which was aclually an Alari garnes console) and the Atari ST {which was
designed by Commodore or by engineers that had left Commodore, depending on who you believe)
both had user inlerfaces based on the Mac, Put on the market a year after the Mac, both had more
powerful hardware than the Mac and both were milestones in the development of personal computer
system software.

The similarities between them and the differences between them and the Mac were striking.
. Their MacAlike GUls were patched in at a lale development stage, whereas the Mac was designed

that way.. They both opted for the efficiency and simplicily of mono-spaced fonis, whereas lhe Mac was
designed to use proportional, scalable, fonlso TheV were both designed for expansion whereas the Mac was a take-it-or-leave-it closed syslem.. Their syslems were lumbled heaps of recycled bits of archaic systems and reverse engineered
clone software, whereas the Mac systern was designed for the job.

It is this last aspecl that made them the true precursors of the syslems that have dominated systems
developmenl over the last 25 years.

There were, however significant differences between the operating systems.

The Atari ST with its rather simpler system, easily outperformed the Mac although its inbuilt mono-
spaced text made the screen (desktop) look look rather clunky A large part of TOS (The Operating
System) was recycled from CP/M.

The Amiga screen {workbench) also looked rather clunky However aparl from the demos which
bypassed the operating system, it was slow (particularly the filing system), even by comparison with the
Mac, despile the Amiga's more powerful hardware. Moreover the although lhe operating system was
arguably less capable than the Mac (the Domesdos experience had shown that scalable fonts "cost'far

more than multitasking), the operating system was grossly oversized, ealing up aboul 4 times as much
memory as lhe Mac. Fart of the reason for bolh the low performance and the enormous size of the
operating system was that it was bodged together from three separate and largely incompalible units:
the recycled [xec and AmigaDOS and the reverse engineered MacAlike Workbench,

What was amazing was that the press, as a whole, accepled the proposition that the Amiga was slow
because it had a "powerful"operating system. This gave a whole new hilherto unsuspected meaning to
the word'powerful",
The Amiga operating system was "powerful' in the sense that, by comparison wilh other personal com-
puter operating systems of the period, it consumed vast resources and, therefore, required a power{ul
hardware platform for it to work at all.

It is difficult to see 'powerful' in this sense being applied to any other engineering domain. Can you ima-
gine automobile journalists raving over the "power"of a car just because it guzzled fuel in unpreceden-
ted quantities despite an acceleration that would make model T Ford blush and a top speed that guaran-
teed that you could never never pick up a fine?

24 years on,"powerful"in the sense"memory hungry and inefficient"is now accepted usage. Only today,
lwas helping out someone who was lamenting thal the lalest soflware versions {and you must have the
latest!) were loo "powerful' for his 2 year old machine.

The Amiga, lherefore, was the compuler that established
. "scrapyard" (recycled, re-used) software technologyo 'bloatware"and
o the new meaning of 'powerful".

1984-XWindowSystem
The X Window System is now closely associated wilh Unix bul the original version"W"was writlen for
the V operating system. The development of X at MIT which slarted a year after Domesdos, has had a

long lasling impact in two respects: not only is X the dominanl display managemenl software in the Unix
world, but the egocentric minrmalist design philosophy adopted for X has also been recycled many
times in compuler science To be fair to Bob Scheifler and Jim Gettys, the developers o{ the X Window
System, X was never designed for lhe purposes for which it is now misused and lhey did not originate
ihe egocentric minimalist design philosophy, they just gave it an air of respectability by formalising it as
parl of their 7 golden rules,



Box 4 - X Window System's 7 golden rules
1 Do not add new funclionality unless an implementor cannot complete a realapplication without it.

lf this golden rule were to be believed and {ollowed rigidly by systems developers, it would be a disasler ior the
world. This is the minimalist philosophy in its most rigid form. As 'application implementors' can, in principle, do
anything that an operating system implementor can do, this implies lhat the system should do nothing.

With this rule, there is no question of whether implementing useful bul non-essential facilities could be better for
the overall system foperating system + applications). All functionality is dumped on the applicaiions developers
regardless oi the overall cost in reliability, per{ormance and development effort.

This rule, although being the first, most important rule, is so stupid that it was not was not followed by the deve-
lopers of the X Window System. This provided a number o{ non-essential drawing primitives, in particular glyphs
(characters). Drawing glyphs is clearly not "required" as applications can, of course, do it themselves.

2 ll is as importanl lo decide whal a syslem is not as to decide whal it is. Do not serve all the world's needs;
rather, make the syslem exlensible so lhat additionalneeds can be met in an upwardly compatible fashion,

There are two different completely different concepts in this golden rule. The first is a platitude thal restales a

fundamental engineering rule "design 1o purpose', This implies that the purpose is known - for operating sys-
tems that means reading the future, The second would seem to be good advice, but is usually taken to mean
"do not do today what you can leave unlilsomeone else is forced io do il".

3 The only thing worse than generalizing from one example is generalizing from no examples at all.

This was prophetic. Although originally the X Window System avoided generalisation by being designed for a

single case, it must be the most significant example of 'generalising from one example'. Designed for a system
architecture that was already archaic fX Terminals connected to a centralised lime sharing system) it has been
generalised {or architectures lor which it is fundamenlally unsuitable {such as stand-alone workstations).

But there is much worse than the X Window System. The 1960s operating system theories that have been the
cause of so many system design errors and problems were based on a, rather ill defined, abstract system
architecture that corresponded to no real computer They are the prime example o{"generalizing from no exam-
ples at all" so maybe this golden rule is right.

But are there other things worse than generalising from one example? Unix generalized the "file" concept to
apply to l/O devices, with horrific results. MSDOS had no generalized l/O at all. lf you believe that the MSDOS
approach was worse than Unix {l am not taking sides) then you will have to take it that not generalizing at all is

also worse than generalizing lrom one example,

4 lf a problem is not completely underslood, it is probably best to provide no solulion al all.

lf you cannot completely understand the problems that you have to deal with, iirst try changing the problem, if

that does not help, change jobs to somethrng less mentally exacting (a trader in the derivatives market, for
example). Copping out by providlng no solution at all is, at best, lazy and irresponsible, at worst, criminally

negligent.

5 lf you can get 90 percent of the desired effect for 10 percent of the work, use the simpler solution.

Even if 9070 wero good enough {would you buy a car where only 90% worked?), it is highly improbable thai you

could make a system 90% functional for only 10?o of the effort. This is no more than a justification o{ "if you can
get 10 percenl of the desired effecl wilhout thinking about it, that's OK, take a break".

6 lsolate complexity as much as possible.

The X Window System does some fairly complex things, but they are certainly not isolated into easily maintain-

able modules, they are built into the amorphous mass. lsolate, in this context should, therefore, be take to mean

bury out of sight.

7 Provide mechanism rather than policy.ln parlicular, place user interface policy in lhe clienls' hands.

This is abdication of responsibility. Policy is far more difficult than mechanism. lt is very wise to separate policy
from mechanism. lt is very wise to provide flexible policies. lt is very wise to allow to policy to be adapted to
changing circumstances. A system with every application imposing its own policies is, however an end user's

nightmare.

X Window System's 7 golden rules

A windowing system has the same requiremenls for compactness, efficiency reliabilittr predictability and

accessibility as any other system software, even if "accessibility" for developers (coherence and

richness of the functionality) and accessibility for users (ease of use) are measured in different ways.
Bob Scheifler and Jim Gettys' seven golden rules, howeve[ do not address any user requirements

{neither end users nor developers): they are concerned merely wilh producing something that gives an

appearance of 'working"while requiring a minimum of effort.



A fuller analysis of these rules is to found in Box 4, but I have tried to translate these into plain tnglish.
1. Push all functionality possible up to the applicaiions regardless of lhe effect on overall system

reliability, complexity, efficiency or cost.

2. Leave anything that you do not feel like dealing with for someone else to deal with later

3. Design for specific cases only.

4. Do not do anything that that mighl require thought.

5. Quick hacks are always justified.

6. Bury your hacks so thal no-one will ever find them.

7. Do nol bother about what the syslern will do, just how it will do it,

X Window Syslem's implementation

The early X Window System implemenlations crawled out slowly until Xll was released in 1988, The
system was nowhere near as bad as it would have been if the rules had been followed as it included a

large number of useful but non-essential fealures {breaking the first three rules). lt had, however three
major failings: the speed, the complexity required in the applications and the bizarre architecture.

The soeed

There seems to be very little concrete in{ormation about the speed, apart from endless nagging, ln

19926, B years after the development started, The professor of eleclrical engineering at Berkeley replied
to criticism"with the 50 MlPs computers we are seeing now performance is nol a problem'. This reply
implies that the performance was a problem up to then and there is much anecdolal evidence to to
suggest that the performance remained a problem for most of the next decade. ln 2004, FBUI? was
patched into Linux 2.6,9 to replace X'which can be an impossible burden"

The complexity of trhe apolications

The display refresh policy required each application to redraw its windows when they were uncovered
by another window being moved or removed. Although an atlempt was made lo justify this window
redraw policy in a seminal paper published in ACM llansaclions, the "lustification" is very thin: ln reality
the policy used by earlier windowing systems was simply adopted without any real consideration of the
possibilities for "local display refresh" where the windowing system itself deals with changes in lhe
window arrangement. The basis was that applications were belter able to redraw the display than the
windowing system ilself.

Those who have never tried lo program for a mainstream windowing environmenl may not understand
just how far removed from reality this is. This "better" re{resh policy requires applications to be able to
respond to redraw evenls within the human perception time {0.1 sec}, whalever they might be busy
doing at the time, and maintain their own data structures always in a stale such lhat the window can be
redrawn. Failure maintain the state of lhe data struclures can result, at worst, in crashes and, at best, in
lhe famous "bits of window' left over syndrome. Failure to respond can produce the trails of windows
immorlalised in the tttle sequence of the 'lT Crowd', oI on more recent versions, swalhes of blank
screen.

The summary elimination of local display refresh was short termism in extreme. By the time that lhere
were machines fasi enough to handle the X Window System, memory sizes had increased far faster
than processing power and removed the only real objection to using local display refresh. This made the
redraw policy used by the X Window Syslem obsoleie and ripe for sending to the museum of horrors.

The oddest feature of this was thal X1l did have off-screen window buffers {for flicker-free window
updates). lt, therefore, had all the code required to write to off-screen window buffers and to refresh the
display from these buffers. 11 lust did not do itl

The bizarre architecture

The bizarre archiiecture of X was more the result of trying to patch the system into computers with
inflexible, totally inadequate operating systems than of detiberately bad design. Moreover as il was

6 I cannot {ind the reference. lt mighl have been 1993. I cannot {ind the name of the professor

7 http://home.comcast.net/-f bui/



designed for multi-vendor environments, it had lo be designed to the lowesl common denominator: you
cannot get iower than Unix.

The X Window System has been described in glowing terms as being modular, having a layered archi-
leclure and providing hardware abstraction. These are all considered generally desirable in operaling
system software. X is modular in the sense that the amorphous mass of X is nol integrated in any way
wilh the operating system, X is layered in the sense lhat X provides a lump with lhe low level functions,
protocol handling and the graphics device driver while the applications have 1o provide all the "upper

level" functions. X does not provide any form of hardware abstraction (See Box 5).

The most bizarre fealure of X was lhat, as X could not be implemenled "properly' as a system
component on the lowest common denominalor operating system, it was implemented as a applicalion
program accessing the display hardware directly.

This anomaly has persisted right through to the present: "X is unlike any olher subsystem ol Linux in that
the hardware-accelerated video drivers it uses are located within the X server which is outside the
kernel .,. normally Lrnux drivers and vital subsystems such as keyboard, USB, filesystem, serial l/0, et
cetera are all located inside the kernel"u.

25 years later there are signs that the X windows archilectural legacy is finally being eliminated, even if

its egocentric minimalist design philosophy design lives on.

The major lesson to learn from X is that, although it was built using a design philosophy thal set out to
minimise the functionalily and implemenlation effort in order to make it compact, efficient and quick to
implemenl, X turned oul oversized, painfully slow and very long in gestation

Box 5 - Hardware abstraction in X and Unix
Hardware abstraction is one oi the conventionalrequirements o{ an operating system. lts ensures that applications
programs do not themselves need to support all possible peripherals that can be used lor a particular funclion. X,

howevel works only with a single type of hardware {a frame buffer type of display controller). The lack of hard-
ware abstraction was always a very serious problem with X, in particular its failure to support printers. Various
fixes were attempted {such as combining X with display postscript) but the trauma caused by the arrival ol Micro-
soft Windows, which did have hardware abslraction allowing pages to be output to a printer using the same appli-
cation code as used for writing to a window provoked the crealion of a parallel system'XPrint". This was released
in X11R6.3 in December 1996, a decade after the first release of X1l and later removed from X.Org Server in 2008
because 'X is not an APl". More to the point, X had never had an applications program inter{ace (APl) for any
operating system, because Unix did not support hardware abstraction in any meaning{ul way

Just a minute, you might say, there is a lot of Unix system documentation that states clearly that Unix provides
hardware abstraction. Rubbish! Unix started off life pretending that all peripherals were paper tape reader / pun-

ches and then changed this to all peripherals being files, which is even worse.

At the time X was being designed, communication with a Unix system was almost exclusively by"glass teletype'
terminals: 'during the laie 1970s and early 1980s, there were dozens of manufacturers of terminals including DtC,
Wyse, Televideo, Hewlett Packard, lBM, Lear-Siegler and Heath, many ol which had incompatible command
sequences" {Wikipedia).

ln order to use these termrnals for anything other than Teletype (scrolling text) emulation, each type of terminal
had its own "protocol' 

{command sequences). So before, you start editing a file with emacs or vi, {or example, you
needed to type

set term.vt100
set term=wyse60

for a DIC VT100

{or a Wyse 60

Qurte a lot of emacs manuals say that these commands 'tell Unix the type of terminal being used'. RubbishlUnix
does not know about terminals. These commands set an'envrronment variable' to be accessed by an application,
so that the applicalion ifse/f can generate the right protocols for the terminal. This requires every application to
have its own protocoi handling for every terminal supporled by the application.

The whole purpose of hardware abstraction is to provide a well defined common inter{ace and have the right
drivers installed in the operating system so that applications only need to implement a common interface and do
not have to have their own device handlers for each type of peripheral. This requires an operating systems
interface [or API) that directly supports the whole range of functions that a particular class of perrpherals can
provide - totally contrary to the Unix minimalist approach.

B http,//home.comcast.net/-fbuii



1986 - The rise and fall of RISC
Computer hardware design had its own equivalent of the software minimalisation theories but rather
more successful.

ln 1986, when the first commercial RISC (Reduced lnstruclion Set Computeri processors were shipped,
lhe concept was already fairly old. From the mid 1970s it had been observed lhal the compilers of the
time were often unable to take advantage of fealures intended to facililate machine coding and that
complex addressing inherently takes many cycles.

The argument was lhat such functions would better be performed by sequences of simpler instruclions
that could be execute faster {in a single cycle), RISC became synonymous with the use of uniform, fixed
lenglh instruclions with arithmetic only in registers and dedicaied load-store instruclions to access
mem0ry.

The first production processors based on RISC principles were the Sun Microsystems SPARC processoti
based on the Berkeley RISC project, and the rather different ARM from Acorn. These were followed by
the lntel i860/i960, the |BM/Motorola Power processors, and MIPS, DtC Alpha, etc. These RISC proces-
sors all had dedicated workstalion architectures built around them but looking back from 2009, it is clear
that the technology has not been successful at displacing complex instruction set computer archilec-
tures. Of the large number of RISC architectures produced, only the SPARC and ARM are still holding
their own,

What was wrong with the concept and why were the SPARC and ARM particularly successful?

The problem with the concept was that it was a one-size-fits-all theory, so whrle there is a general
explanation of its failure (Box 6), the two successes had radically different explanations (Box 7).

ln the case of the SPARC, Sun Microsystem's long standing opposilion to the "Axis of Wintel" as a
marketing ploy has weakened of late and their commilment to the SPARC is looking less and less firm.
The June 2009 Top500 list of supercomputers gives two Sun clusters in the top 10, both are xB6
architecture. There is every sign that the SPARC is on its way out, leaving the ARM as the only survivor

Box 6 - The RISC of failure
The argument at the time that compilers were unable to take advantage of the instruction sets of the mainstream
processors is a polite way of saying "the C language and the standard C compiler were designed for PDPT com-
puters". The "back ends' of these compilers converled primitive PDPT type instructions into the nearest equiva-
lent groups of instructions on the target computers. They therefore generated excessive and often redundant
code for CISC (Complex lnstruction Set)compulers.

This still tends to be true, but more recent C compilers for complex instruction set computers include 'optimisa-

tion' to identify groups of instructions that can be reduced to lewer instructions. A recent C compiler for a CISC
processor will normally generate fewer instructions than a compiler for a RISC processor; thus giving an advan-
tage to CISC architectures in terms of code size and, therefore, instruction memory bandwidth required.

The argument that an instruction that includes complex addressing will take more than one cycle to execute is

still valid but it is illogical as a justification.

0n a RISC processo[ it will still take more than one cycle, because it requires separate instructions for the ad-
dressing. Technology advances since the 1970s however tilts the balance firmly in favour of CISC as, with a pipe-
lined architecture the address calculations can be performed by a small dedicated shift / multiply / add / fetch
addressing unit at an earlier stage of the plpeline so that addressing cycles overlap instruction execution cycles.

The real reason for the failure of RISC, however was already apparent by the time that the {irst RISC machines ap-
peared. The QL processor was memory bandwidth limited not instruction execution time limited. This was generally
true of 1984 workstation technology. The potentially higher instruction execution speed of a RISC processor would
give no advantage. The fixed width, rather wide instructions and lhe use of several RISC inslruclions to do the job of
one CISC insiruction increased the memory bandwidth required to execute most operations: d Sr€st disadvantage.

ln the short term, the smaller core of a RISC processor made il possible to add inslruction caches with burst ac-
cesses to the main memory to compensate for the increased bandwidth required. ll was not long, however: be-
fore technology advances made instruction caches praclicalfor CISC processors as well. Because the CISC core
took more space, lhere was less space for the instruction cache, but, because CISC code was more compact,
less cache space was needed.

As processor speed improvements consistently outstripped mernory speed improvements over the next
decades, any possible advantages of RISC architectures for generalpurpose workstations iust became more and

more hypothetical.



BoxT - The RISC of success
The SPARC

The SPARC processor owes its exislence and its survival to just one cofirpdn!: Sun Microsystems.

ln lhe early days, SPARC processors really did yield performance benefits in the C / Unix environment where
they were used. These processors could be regarded as C / Unix optimised in two ways,

The primitive SPARC instructions were well suited to code generation by early C compilers

The processor has a dedicated register stack to mitigale the inefficiency of the C funclion callconventions (the

C function call conventions require that parameter values cannot be modified - this is efficient and simple where
the stack is used lor passing parameters, as required for the PDP7, but very inefficient where values are
passed in registers in more modern processors as il requires the register values to be saved and restored).

The SPARC only has a smallhardware window onto the register stack, everything above lhe window has to be
pushed out to, and relrieved from memory. The larger the window the more efficient the execution, but,
unfortunately lhe more costly the task switching as the whole window has lo be saved. This was not a
problem for earlier Unix versions as Unix was a multi-user system with very expensive, very slow and
infrequent task switching. This became a problem when native threads were introduced in an attempt to pass

Unix off as a multitasking system.

The ARM

The ARM architecture seems likely to have a much better long term future. The ARM instruction set really only
qualifies as RISC from the point of view of being designed for single cycle instruction execution. With features
such as generalised condrtional execution of each Instruction, one ARM instruction can sometimes replace two
CISC inslructions. lt would be more appropriate to consider i1 not as a Reduced but as a Regular lnstruction Set
Computer The ARM architecture escaped the fate of real RISC architectures for two other reasons.

The first was the licensing strategy which propelled it into the domain o{ embedded and integrated processors,
For embedded applications with much less RAM than a typical workstalion, low power fast, static RAM gives
far higher bandwidth than power hungry slower dynamic RAM. When executing {rom on chip RAM and ROM
the external memory bus bandwidih is not a performance limiting factor making the bandwidth inelficiency
RISC instruction set less important, so the compact, low power fast ARM core provides a very competitive
solution, particularly in custom and semi custom chip solutions.

The second reason that the ARM architecture has come to dominate portable embedded and integrated
systems is that the last pretence of RISC was abandoned with the introduction of the Thumb instruction set that
packs the most used 32 bit instructions into i6 bits, thus reducing the bus bandwidih problems as well as

bringing the code size closer into line with CISC processors.

It would be very incomplete not to include a
game of stralegy in this present series of classic
computers games for the QL. Strategy games
generally consist of a territory which has to be
secured against an adversary with both tactics
and chance deciding the outcomes of the
conflict.
So I declded to try to design such a game as
simply as possible, using two players so as not
to have to program the QL using Artificial lntelli-
gence, which would greatly lengthen the code.
The territory is simply a grid, whose size is

determined by the difficulty chosen. [ach player
(green or red), in turn chooses a position to try to
gain {by hitting an across 'x' ihen down 'y' figure),
and the QL then decides which player has the
most force for that spot, and draws the winning
player's letter colour and force figure on the grid

(To find out how to augment your force factor:
study the listing!).
lf you choose a location that has already been
contested, you can still win it if you obtain a

higher force than that which your opponenl has
already in place. lf both adversaries get the same
force, the QL beeps and the game moves on to
the next player
The force of each player {or each try is shown at
the bottom of the screen. Maximum force is

equal to the difficulty level per grid. Once maxi-
mum force has been reached, a position is won
irrevocably When one player has won the big-
gest share of territory, the game is overl
As mentioned previously there is a winning stra-
tegy, but I shall give you no clues!



Welcome to the next part of our series. This lime, we look al the time before Windows appears ...

and this is where we continue in the nexl volume ... enjoy!

Worms in the system
ln 19BB viruses had been circulating freely attached to programs on PC diskettes for several years.

For even longel the academic and science fiction worlds had been toying with ideas for "free living"
agents or worms that travelled around networks of computers carrying out maintenance tasks.

1988 - The Morris Worm

The Morris worm turned sci-fi into realitir This worm brought down many of the VAXs and Sun 3s
running BSD Unix connected to the Arpanet. Diflerent people have interpreted the incident in different
ways, but for me the incident brought the degenerate state of the lT 'establishment" to my attention I

am not referring to Robert Tappan Morris, the author of the worm, but the computer centre managers
and system administrators ol sites with Unix machines connected to the Arpanet.

The worm was analysed in a reporte from Purdue University,

I ntthougn UMX has long been known to have some security weaknesses (fcitations going back to
19791ll, the scope of the break-ins came as a great surprise to almost everyone ... The most
noticeable effect was that systems became more and more loaded with running processes as they
became repeatedly infected. As time went on, some of these machines became so loaded that
they were unable to continue any processing fabout 20 processesl. 

i

Why should this have been a great surprise to anyone? The risks had been known for about a

decade. Even earlier in 1975, Dennis Ritchie had written "The first fact to face is that UNIX was not
developed with security in any realistic sense, in mind"'0. The machines affected were mainly in acade-
mic and research establishments and in the US Department of Defence and they were very lucky as
the worm did not carry a malicious payload. Morris created and released the worm, but it was the
computer centre managers and system administrators that created the conditions that allowed it to
spread. lt appears that, although Morris was convicted, no computer centre manager or system admi-
nistrator lost his lob or was convicted of criminal negligence for connecting Unix systems directly or
indirectly to a public network. This failure to lake aclion against those who were really responsible for
the damage caused by the altack was to have serious consequences.

1990 - Desert Storm
Two years after the Morris Worm, the US launched Operalion Desert Storm and Operation Desert
Shield. The ground had been well prepared: in the intervening period, a group of hackers had placed
backdoors in a number of militarli DoE and DoD servers, using known Unix security flaws, giving them
almost complete freedom to access the US military networks. This time the'worms' had payloads, not
to destroy the systems, but to download everything about US military plans and capabilities. lt appears
that the operation was run for profit from the Netherlands, but it was not profitable as they could not
find any buyers for the informalion. Had allthe potential buyers been there first?

When lfirst heard about this story lhad my doubts, surely those responsible for US military networks
could not be so stupid or negligent that they continued to use Unix machines? But then I came across
the US Navy Computer lncident Response Guidebook"

hltp:i/homes.cerias.purdue.edu/ -spaf/tech-repsi B23.pdf
http:l/wwwtom'yam,or.ip/2238/ref /securpdf
http://all.net/books/ irlnswc/P52 39-19.html
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I Many of the cases of unauthorized access to U.S mllitary syslems during Operation Desert Storm
J enrl f)norrtinn l-\acort Qhiald urara lho mrnifactrtinn nf acninnrna rnlirrihr rnrinct thn I lQIand Operation Desert Shield were the manifestation of espionage activity against the USi*"-

: Governmet _ ___
Apparently, the "espionage' attacks were not the majorily of "unauthorized accesses' and that does
not include lhe intrusions that were nol detected - it is just mind boggling.

Everyday worms and other atlacks
Worm attacks continued, carrying payloads such as trolan horses, key loggers and denial of service
co-ordinators. The situation took a turn for the worse when the world's largest software supplier aban-
doned its own system software in favour of a remodelled Unix system. With the arrivalof Windows NT
Microsoft's systems became vulnerable to the same type of attacks as mainstream Unix, culminating
with the "Code Red'worm in July 2001 which cost computer users an estimated $38.
The Morris and Code Red worms exploited fundamental design weakness in the Unix / C execution
model to break programs executing on the target compute[ but other attacks exploited human
fallibility.

ln 2001 I 2402, Gary McKinnon"scanned a large number of computers in the.milnetwork, was able to
access the computers and obtained administralive privileges ... McKinnon would then use the hacked
computer to find additional military and NASA victims'{US Department of Justice). With administralive
privileges, he could have done enormous damage, but he was only 'looking for evidence of UFOs'
How did he get in? Just by using remote login with blank or obvious passwordsl

ln 2003, H. Orman wrote, in The Morris Worm' A Fifteen-Year Perspective'2,

Ioday the Morris worm is remembered as the first of many such attacks, as whal might have been
a wake-up call to system administrators and security researchers, and as the first certain signal to

L ilgT_y[q1tuluPpfl_99ri*84_ojllh9|nlgtg!_tFt it **ffi t.ggisuty_*99__ 
i

'Might have been a wake up call", but it was not. System administrators iusl dozed on with "business as usual".

As the years passed, knowledge about subverting Unix access permissions abounded and j

spread. The number of loopholes, and their varieties, had begun to look unmanageable to many
system administrators and computer-security experts. Two camps developed, one hoping to fix all

the problems, and another advocating keeping one step away from the fnternet.

Why only two camps? Surely the obvious solution was to ditch Unix. A number of attempts were
made to develop'replacements", but, in general these were Unix rebranded, Unix restructured or Unix
rewritten. Even though there were numerous private attempts to create 'better"systems, there were
no significant attempts to deploy systems thal were radically more efficient, radically cleaner radically
more predictable or radically more secure.

1990 - Plan 9
Plan 9 (the title of a sci-fi film) was the BellLabs Unix team's attempt at getting it right the second time
around. What is most striking was the difference between quick and dirty design of the original Unix
and the X Window System, and ihe 'we are going lo get it right' philosophy of the Plan g deve-
lopment. The story in Box B is as it is told by lhe developers". Remember, when you read this text, it
was written by the creators and developers of Unix: there is, therefore, a certain bias! I did not write
Unix, therefore there is a certain bias in my comments.

Apart from the'Unix centric'approach, this discussion starts off very reasonably, explaining why the
central time sharing concept of the 1960s had lost favour and why the personal cornputer systems
that were replacing it were, themselves, far from salisfactory for large organisations Then it slips away
and they end up aiming to build straightforward, archaic 1960s time sharing systerns with central
machines and terminals! Or rather they aimed to emulate this archaic syslems architecture using
cheap or not so cheap microcomputers.

12 IEEE Security & Privacy September/October 2003
13 http://plan9.bell-labs.com/sys/doc/9.html



As the discussion goes on it becomes clear how little functional difference there was between Unix

and Plan 9' the same kernel concept, the user based access rights, the same hierarchical file system
and fhe same vulnerabilifies.

Scaltered throughout the text are lhe keywords "complete"and'consistent'. Compared to the earlier
Unix and X Window System philosophies of not caring about either this is a welcome return to
rigorous design. The authors noted, with some surprise, that taking a general, consistent design
approach actually saved time when it came to extending ihe capability. Why should they have been
surprised? Because by the time they came to extend Plan g, the belief that rigorous, complete and

consistent design can save you time had come to be considered as a sign of incurable mental illness

or senility {see Worse is Better).

Some quotes {circa 1991) lrom Ken Thompson and Rob Pike of Unix and Plan 9 Fame

Obiect oriente d progr amming
. Object-oriented design is the Roman numerals of computing
r We have persistent objects' they're called files

Structured progr ammin g
o lf you want to go somewhere, goto is the best way to get there

Unix
o Not only is Unix dead, it's starting to smell really bad

x
r The X server has to be the biggest program I've ever seen that doesn't do anything for you,

With attitude like that, they cannot be all bad.

Box B - Plan 9 rationale and implementation
Plan 9 began in the laie 1980's as an atiempt io have it both ways: to build a system that was centrally adminis-

tered and cost-effective using cheap modern microcomputers as its computing elements. The idea was to build a

time-sharing system oul of workslations, but in a novel way. Dif{erent computers would handle dilferent tasks'
small, cheap machrnes in people's offices would serve as terminals providing access to large, central, shared re-

sources such as computing servers and file servers. For the centralmachines, the coming wave of shared-memo-

ry multiprocessors seemed obvious candidates fsee "shared memory mulfprocessing" below]. The early catch
phrase was to build a Unix out of a lot ol little systems, not a system out of a lot of little Unixes.

By the mid 1980's, the trend in computing was away from large centralized time-shared computers towards
networks of smallel personal machines, typically Unix 'workstations' fHow isolated from reality can you get?

lJnix had negligible penetration oufside the academic wortdl. People had grown weary of overloaded,
bureaucratic timesharing machines and were eager to move to small, self-maintained systems, even if that meant

a net loss in computing power fMosl people, as they were nof using Unix, saw a massive nel gain in computing
powerJ. As microcomputers became fastel even thal loss was recovered, and this style of compuling remains
popular today.

ln the rush to personal workstations, though, some of their weaknesses were overlooked. First, the operating
system they run, Unix, is itself an old timesharing system and has had trouble adapting to ideas born after it.

Graphics and networking were added to Unix well into its lifetime and remain poorly integrated and difficult to
administer fthe comment is also lrue of MSDOS, lhe dominanf worksfation OS af fhe timel. More important, the

early focus on having private machines made it difficult for networks of machines to serve as seamlessly as the

old monolithic timesharing systems. Timesharing centralized the management and amorlization of costs and

resources;personal compuling fractured, democratized, and ultimately amplified administrative problems ifhis fails

to draw the very important drstinclion between centrafised data and centralised processing - and ther relative
merifs in drfferenf types of organisafion - anolher example of one-size-fifs-allJ.

The problems with Unrx were too deep to fix, but some of its ideas could be brought along. The best was its use

o{ the file system to coordinate naming of and access to resources, even those, such as devices, not traditionally

treated as files. [Ouch!]... our laboratory has a history of building experimenlal peripheral boards. To make it easy
to write device drivers, we want a system that is available in source form fwhal sysfem, other than Unix, requued
you to haye fhe OS source in order to write device drivers?1... llnstead ofl normal Unix-style processes and
light-weight kernel threads, Plan 9 provides a single class of process but allows fine control of the sharing of a
process's resources such as memory and file descriptors fJust lrke Slella and not far from Domesdos c.f. Box 21.

A single class of process is a feasible approach in Plan 9 because the kernel has an efficient system call
interface and cheap process crealion and scheduling fbul still orders of magnitude slower fhan Stella].
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25 Years -1991- The Rise of "Worse is Better"
'The rise of worse is better" is a chapter of Richard Gabriel's lament for Lisp'o published in 1991 This

chapter which circulated as a article in its own right, was clearly intended to be provocative and he

adopts the devil's advocate method of argument. lt has often been quoted as the definitive explana-
tion for the dominance of very, very bad system software from the mid 1980s onwards.

He attempted to explain why although Unix and C are clearly 'worse' than'his" Al operating system
and Lisp compiler: the Unix+C pair was apparently more successful. He compared the "New Jersey"

{Bell Labs) "Worse is Better' philosophy with the MIT "Right Thing". These two philosophies are

detailed in Box 9.

The New Jersey approach is described as providing a quick and dirty, incomplete solution which is

then evolved by armies of developers working independently, ultimately the best solution is that which
attracts the most developers. MIT 'Right Thing' approach is described as leading to the interminable
development of slow overly complex, oversized, inefficient programs.

There are some serious flaws in the argumenis. The MIT / New Jersey distinction is nonsense. The X

Window System was quite deliberately designed breaking every one of his'Right Thing'rules - even
more so than Unix - and X was created at MIT ' whereas Plan 9 was designed using a strict 'Right

Thing" philosophy - and Plan 9 was from New Jersey.

The comparison between C and Lisp is no better Two years before the arlicle was written, C had

become mature enough to be standardised as ANSI X3.159-1989, 'only' 20 years after its creation,
whereas Lisp, created 10 years before C, was still evolving and would not be standardised until three
years later as ANSI X3.226-1994. Lisp is, therefore, a better example of the 'New Jersey" approach
than C.

Box 9 - MIT versus New Jersey by Richard Gabriel
The essence ol the [MlT/Stanford] style can be captured by the phrase the right thing ... it is important to get all

of the following characteristics right'
. Simplicity - the design musl be simple, both in implementation and interface. lt is more important for the inter-

face to be simple than the implementation.
o Correctness - the design must be correcl in all observable aspects. lncorrectness is simply not allowed.

e Consistency - the design must noi be inconsistent. A design is allowed to be slightly less simple and less com-
plete to avoid inconsistency. Consistency is as important as correctness.

o Completeness - the design must cover as many important situations as is practical. All reasonably expected
cases must be covered. Simplicity is not allowed to overly reduce completeness.

I believe mosi people would agree that these are good characteristics. I will call the use of this philosophy of
design the MIT approach

The [Unix] worse-is-belter philosophy is only slightly different:
. Simplicity - the design must be simple, both in implementation and interface. lt is more important for the imple-

mentation to be simple than the interface.
o Correctness - the design must be correct in all observable aspects. lt is slightly better to be simple than

correct.
o Consistency - the design must not be overly inconsistent. Consistency can be sacriftced for simplicity in some

cases, but il is better to drop those parts of the design that deal with less common circumstances than to
introduce either implementational complexity or inconsistency.

. Completeness * the design musl cover as many important situations as is practical. All reasonably expected
cases should be covered. Completeness can be sacrificed in favor of any other quality. ln {act, completeness
must sacrificed whenever implementation simplicity is jeopardized. Consislency can be sacrificed to achteve

completeness if simplicity is retained; especially worthless is consistency of interface.

ff

14 http://www.dreamsongs.com/NewFiles/LispGoodNewsBadNews.pdl



His description of the two basic nghf fhing development scenarios is even more peculiar

The big complex system scenario goes like this' First, the Right Thing needs to be designed. Then
its implementation needs to be designed. Finally it is implemented. Because it is the Right Thing, it

has nearly 100% of desired functionality and implementation simplicity was never a concern so it
takes a long lime to implement. lt is large and complex. lt requrres complex tools to use properly
The last 20% takes B0% of the effort, and so the right thing takes a long time to get out, and it only
runs satisfactorily on the most sophisticated hardware.

The diamond-like jewel scenario goes like this:

The right thing takes forever to design, but it is quite small at every point along the way To imple-

ment it to run fast is either impossible or beyond the capabilities of most implementors."

ln a rebuttal'u Richard Gabriel did point out the he was not supporting "Worse is Better'and he came
close to apologising for calling Unix a virus, but his premise remained intact: trying to design software
is totally futile - whatever you do it will turn out oversize and underperforming and the more complete,
coherent and correct you try to make it, the longer it will take to release.

He does not appear to consider the classic"Right Way"scenario.

First, the Right Thing needs to be designed. Then its implementation needs to be designed. Finally

it is implemented. Because the scope is known from the start it has 100% of the design functionali-
ty. Because no short cuts are taken on implementation, no reworking is required, saving time. lt is
compact, clearly structured and efficient. The regularity of the interface makes it easy to use.

Because most of the time is spent buildinq solid foundations, the last B07o is a downhill run so itBecause most of the time is spent building solid foundations, the last B07o i

finished quickly and the system needs only the minimum of resources to run.

It is clear from the Plan 9 article cited above, that the authors of Plan 9 believed that they had imple-

mented The Right Thing in the Right Way. Having been involved in dozens ol developmenl projects

{for quite a few, called in at the last minute panic stage}, I have to admit that projects using a Right

Thing design philosophy may not always follow the Right Way scenario, but they will never result in a

big complex syslem. The most likely problem is that doubts set in half way through the project when
there is still (quite rightly) no visible sign of life. At this point there is a risk the the project veers off into

the quick hack {"Worse is Better'} approach, the software starts ballooning, the errors starl multiplying
and the completion date starts receding. What is worse, this is justified as "pragmatism" to get the
system out "even if it is not perfect".

Richard Gabriel also illustrates these two development philosophies on a specific example, the "PC

loser-ing" problem. The MIT approach to solving the problem was to add complex and fragile code,

after the problem had been identified, to give the"right"results. The Unix "Worse is Better"approach
just gets it wrong but flags the error so that applications can take the necessary corrective action {or
else crash).

The MIT solution was clearly not the "Right Thing" because il the system had been designed accor-
ding to the Right Thing philosophy {the correctness rule}, the problem would not have occurred, Do-

mesdos was designed to be 'correct' so'PC loser-ing" was impossible. This took some thought in
design but, because there was no 'tricky" code or extra error handling, it was faster to implement, it
was more compact, it was fasler in execulion and the applications did not need to allow for an error
that could not occur, in this case, it was the 'Right Thing" done the'Right Way".

Finally, he concludes that the Worse is Better approach wins over the Right Thing because the Right

Thing delays the release and winner is the first to be released, no matter how incomplete, incoherent
or dilficult to use il may be. Even on this he is clearly wrong, Lisp was widely used a decade before
anyone outside BellLabs had ever heard of C, but Lisp lost out to C.

He seems to have missed out on the point, that, in the beginning, Unix and C were freeware. fven if

they were worth less than you paid for them, most organisations'accounting methods did not, and still

do not, consider time wasted as an expense. ln academic establishments, time wasted is'research'.
Lisp and Lisp machines cost money - they never stood a chance.

i5 http://dreamsongs.comlFiles/worse-is-worse.pdi



Behind the rhetoric, there is, however something far more sinister: in computer science courses,
around the world, students were being taught that writing correct, complete, cohereni software was
either impossible or not worth doing and that users are unimportant.

A year before Richard Gabriel's rant, Professor A Tannenbaum published his "Modern Operating
Systems"in which he wrote on the evolution of operating systems "this evolution is very similar to the
evolution from assembly language programming, where the machine came first, to programming in

high level languages, where the programmer came first - programmers are no longer able to write
compact, ef f icient sof tware'6'.

This is an extraordinary "insider view" of computer science. ln the "bad old days' when programmers
were able to write compact, efficient and reliable software, they did not write this compact, efficient
and reliable software for the machine itsell but wrote compact, efficient and reliable software for the
users of the machine.

1991- The Rise and Fall of Virtual Memory
Alihough Unix workstations had suffered from virtual memory for many years, it was only introduced
to mass market personal computers in Mac System 7 in 1991 and Windows 3.1 in 1992

There are three popular views of virtualmemory and at least one controversial view
1. Virtual memory allows you to execute programs that need more than the physical memory of the

computer

2. Virtual memory increases hardware costs and reduces performance.

3. Virtual memory allows the performance to degrade gracefully as demand for memory outstrips
supply.

4. Vrrtualmemory increases the demand for real memory
The idea of virtual memory being virtually unlimited is a simplistic view believed by too many software
developers, but it is vaguely true, provided you do not care at all about usability

That virtual memory is costly is inescapably true. Virtual memory requires additional hardware over
and above that required for memory access protection and all accesses to data and programs are
slowed down - even under the most favourable conditions.

The concept of degrading gracefutly depends on your definition of 'graceful". 25 years ago this was a
ideatistic view of virtual memory, but is now completely unrealistic.

That virtual memory increases the demand for real memory is totally contrary to the theory but
observably true There must, therefore, be something wrong with the theory.

The failings are discussed in Box 10.

The end of virtual memory in sight
ln 2009, there seems to be a certain amount of dispute amongst "tweekies" as to whether it is a good
idea turning off virtual memory on systems such as Windows.

Some tweekies recommend it, others trot out conventional wisdoms such as "you gain no perfor-
mance improvement by turning off the pagefile', clearly without trying it. My own experience on a
rather memory limited portable is thal overall performance is significantly better as I no longer suffer
from slow motion windows. Most software that I use runs perfectly. The only significant problem is
that, from time to time, Firefox gives up with out of memory, usually when il is just sitting around doing
nothing. This is not serious, as it can be restarted, re-opening all the tabs while occupying a few
hundred megabytes less memory.

With diskless computing becoming more common, we can possibly look forward to a future without
virtual memory ln the shorter term, double your RAM every one or two years to keep ahead of virtual
memory guzzlers.

16 This is my own translation of the French translation of a book written in English by a Dutchman.



Box 10 - The failings of virtual memory
Disgracelul degradation

Virtualmemory does allow programs executing to take more memory space than is really available. The principle

is that not all the memory space taken is actually used, having the unused or liltle used space'swapped out' to
disk releases valuable 'real memory' for use. The memory is divided into pages.lf a page is in memory, it can be
accessed almost as fast as il real memory were used. lf there is a "page fault' because the processor tries to
access a page that has been swapped out, there is a long delay The delay does not depend on the memory
overload, but the page fault rale does.

25 years ago, a typical average disk access time was about 40ms with memory cycle times o{ aboui 400ns' a
ratio of about 100,000 times. A one in ten thousand page fault rate would have caused a computer to run 10

times more slowly than the "benchmark'speed, this could be considered graceluldegradaiion.

ln 2009, an optimistic typical average disk access time is about 6ms with Ll cache access times o{ lns, a ratio of
about 6,000,000 times. A one in ten thousand page fault rate will cause a modern desktop compuler to run 600
times more slowly than the'benchmark'{11 cache} speed' this cannot be considered to be gracefuldegradation.

Whal is lhe memory overload thal will cause a one in ten lhousand page fault? There is no simple answer as it
depends on the details of the memory usage of all the programs executing. Experience with a fairly large variety
of PCs from Windows 95 onwards (business and private usage) has indicated that users tend to think that their
machine is suffering from viruses (slow erratic execution) when the memory overload reaches 20%-30%.

For at least a decade, the standard cure for PC performance problems has not been to increase the processor

speed, but to increase the size of the RAM to avoid using virtual memory.

The costs of virlualmemory

Virtualmemory requires a dynamic address translation unit (more commonly and incorrectly known these days as
a memory managemeni unit, MMU, although it does not do any memory management). This translates the 'virtual

addresses' seen by the processor into the real memory addresses and raises a page fault error if the virtual
address is not in realmemory.

25 years ago, MMUs were more expensive than processors. ln 2009, lhey are buill into the processor bus
interface and, possibly, account {or less than 20% of the processor cost.

The address translation in the MMU is not free, it takes time to calculate lhe real memory address {ii there is one)

for each and every access to data or program. 25 years ago, this typically added 20% to the memory access
time under the most favourable conditions. ln 2009, it not only adds overheads to exlernal memory accesses bul
complicates caching as well.

Virtual memory increases the demand for realmemory
'We all'know that this is true, but why?

The glib answer is in Parkinson's law as applied lo computer ffierrlor!: 'programs expand to fill the avarlable

memory'. The result is that the virtualmemory space fills up, overloading the real memory. ls this inevitable? Why
should this happen? Why should this be serious?

On introducing virtualmemor)t there is an immediate effect and a more pernicious longer term effect.

ln the the short term, memory overload occurs with applications wrillen BVM (before virtual memory) for two
main reasons.

l. Wellbehaved software, such as the older versions of Microso{t Word, will check whether there is enough
room before taking extra temporary working memory Wilhout virlual memory, fall back methods are used if

there is not enough realmemory. With virtualmemory extra memory always seems to be available so it will
be taken and the availability of virtual memory willautomatically increase the demand for realmemory.

2. With virtual memorll users can start applications for which there is not enough room in realmemory without
stopping other applications. This results in instant memory overload which can make it almost impossible to
remove any of the applications as the machine has become so slow {ln one extreme case I had to deal with a

PC that that had been "corrupted' by a minor sollware upgrade, il look more than 25 minutes to slart up - the
user thought it was dead, but it was just a simple memory overload).

ln the longer term, memory overload occurs with applications written AVM {after virtual memory} because many
developers have adopted the attitude that memory is unlimited and they iust do nol care.



tEditor:l First, lwo apologies to lan: one for
having held back his second article for two
issues - but there's a good reason for thr's: we
do not have very many hardware articles, so
we thought if would be a good idea to spread it
a bit.
When I sfarfed with fhe layaut of fhis article, I
noticed lhat I used the wrong picture fo go with
lans GPS article rn lssue l of Volume 14.

The corecl picfure, which should have been
prinfed together with the arficle of issue t, is
shown to the righL

And naw enioy the next of lans very interesting
hardware arlicles...

ln my first article on improving the QL ernulator
l/0 published in volume 12, issue 3 of QL loday I

showed how you can get parallel inputs and

outputs via the RS232 port on your PC As pro-

mised in that article here is the second part deal-
ing with the oscilloscope project. This, in the
event took me longer than I expected, sorting
out routines to carry out the FFT {Fast Fourier
iiansform). More on this later
The hardware for this project was originally pu-

blished in the August and September 2AA7
issues of Everyday Practical ilectronics maga-
zine. The project has two PCB's one handles the
analogue processing and contains the analogue
to digital converters. There are two channels on
this card so you have a two channel oscilloscope
as a result. lt is not impossible to change the enti-
re project to deal with more channels. However
you would need to have some PIC programming

experience to achieve this, B channels should be
possible. The basic hardware, with additional in-
put cards can support this. The second card con-
tains the memory and a PIC processor 1o take
the streams of data produced by the analogue to
digital converters in to a RS232 stream. There is

a lot more daia here to be handled, compared to
the parallel l/O project. Because of the higher
data rates involved, 57,600 baud is required A PC

fitted with a RS232 porl or if your PC does not
have one then you can use a USB to RS232 con-
verter However please note, most QL original

hardware will not run at these speeds. The ana-
logue to digltalconverters are able to handle sig-
nals up to 40KHz. Not very high by today's stan-
dards but for simple audio type projects it is

good enough. The signal processing is B bit so
is not CD quality. Also it is more a storage oscil-
loscope. I will explain. There is also a mode you

can put the hardware into which will make the
oscilloscope a B bit digital analyser this aspect I

will not be covering in lhis article, but is not diffi-
cult to achieve As lhave said before we are sup-
posed to be tinkerers. lt is not my aim to give
you a total solution but give you ideas.

The right picture for this arlicle



992 - Microsoft Windows
The first three versions of Windows marked a gradual drift from the 'add on windowing'of the Atari
ST the Amiga and X, towards integrated windowing as found on the Apple Mac.

Windows 1, 2,3
Version 1 was started before Domesdos, although it was not released until 1985. lt had very little suc-
cess. Version 2 was a mlnor upgrade, with hardly any more success. Version 3, grafted on MSDOS,
was somewhat belier but it was not until Microsoft released Version 3.1 in 1992, with TrueType fonts,
that Microsoft had a competitive GUI with scalable, proportionally spaced fonts, virtual memory and
cooperative multitasking, slightly after Apple released system 7 for the Mac with a similar specilication,
Microsolt has olten been accused of being the king of bloatware, but Windows 3.1 worked quite
happily on a machine with 2 MByte ol RAM - only 3 limes larger ihan a fully expanded QL.

Windows nelwork
Microsoft SMB (Server Message Block) is a peer"to-peer nelworl<ing system that was built into
Windows for Workgroups in 1992 to provide shared access to files and printers. Some hardy QL
types might remember the TK2 network for the QL: although lhe raw performance was rather limited
{about 100 limes slower than the Ethernet of the period) by lhe network hardware which comprised a
one bit software driven l/O port without even an interrupt lacility it did actually work, serving files over
the network, sharing printers, even providing clunky instant messaging, The QL nelwork was derided,
nol because il was slow (and because of the exlreme hardware limitations it was somelimes slower
than Novell on a PC with Ethernet) but because it was peer-io-peer which was considered a poor
relation of the established Unix dedicated server archileclure.
Microsoft, bless their hearts, had realised that the dedicated server approach was a pretty stupid
solution for ordinary olfice requirements and provided a peer-lo-peer system that worked fairly well
and still does - moreove[ like the TK2 network, it does not preclude the use of dedicated servers, so
you get lhe best of all worlds.

SMB is the most important Microsoft technology io be built into Linux.

Windows NT 3
Windows NT must be considered to be the sort of brainstorm enor thal can only be made by compa-
nies that have entirely lost contact with reality.

When it was released in 1993, Bill Gates said that NT stood for New Technology but, allhough it did
incorporate some peripheral technology from the early 1970s (lnternel Protocol, Alto-derived GUI), for
the rest it was just anolher syslem based on recycled 1960s theories. Other explanations given for
NT is that Windows NT started off life as WNT (one letter up from VMS Dave Cutle/s system for lhe
VAX) or N-Ten - lhe development sysiem used.

ls Windows NT really different from Unix or is it just anolher flavour of Unix? The parentage is in no
doubt. Both NT and Unix are descended from Multics: Unix via UNICS, NT via OS2 on one side and via
VAX/VMS and Mica on the other Mica was designed to be Unix (BSD and Posix) compatible, NT was
designed lo ?esemble Unix'.

The delining differences between Multics and UNICS were the elimination of multiprocessor support,
the radically simplified multi user security model and the hierarchical filing syslem. As Unix developed,
the multiprocessor support was restored and lhe 'process / thread dicholomy' (to use the Plan 9's
developers'polite term) was added. NT has the hierarchical filing system and process / thread dichoto-
my of Unix with a slightly improved multi user security model which is, howevei still closer to Unix than
to MULTICS.

Even Microsoft's senior management is unsure whether NT aims to be beller than Unix or a better
Unix: 'The day I come in front of a Gartner audience and say I have a better Unix than Linux, that'll be
a good day"{Microsoft's CEO Steve Ballmer October 20,2005lr.



So is NT is a bastardised Unix, an evolved Unix; or a failed Unix copy? Ii was intended to be POSIX
compatible {i.e. more Unix than Unix) and Microsoft's detailed list of differences between NT and
mainstream Unix is only lwo pages long fwhich is a bit shorter than the 3000 pages describing one
minor Linux revision).

How was it received? Very badly! The workstation versions were targeted as business use: they were
just a bad joke. The server versions did not make much of inroads inio the Unix dominated market.

1994 - Early Linux development
Although the lirst full version dates from 1994, Linux version 0.01 was released in September 1991; it
had 10,239 lines of code.

Linux 0
It is widely reported that Linux grew oul of Minix, but scralching around, I can find little evidence for
this although lhere was some borrowing. Minix was created by Pro[ A Tanenbaum, a fanatical believer
in semaphores, microkernels and 'burying interrupt handling as deeply as possible in the operating
system'.

Linux was much more like the original UNICST Linus Torvalds defended the monolithic kernel vigorously
against altacks by Pro[ Tanenbaum, he had much to say about the mental health of anyone who
suggested improving Linux by using semaphores and he wrote, right at lhe start, 't also happen to
LIKE intenupts, so interrupts are handled without trying to hide the reason behind lhem'
(comp,os.minix).

Setling aside the minor fact that in the ensuing (very public) argument Prof Tanenbaum was provably
wrong on almost every counl, Linus lorvaids'approach was vindicated when Linux started displacing
'advanced'versions of Unix, with lheir semaphores, microkernels and the resl of the 1960s theoretical
junk, simply on the basis that Linux worked better - as should have been expected by anyone who
bothered lo do a proper theoretical analysis (or by anyone who really underslood computer systems).

Linux I
Version f, including the X Window System, was the first complete Linux version, which appeared in
1994, 2 years later than announced.

Although it was free, the take-up was minimal outside the academic world. lt did not usually work
when installed, even if the user managed to install it. The shortage of device drivers meant that Linux
could only be used with very basic PC configurations. The situation improved gradually over lhe nexl
decade.

1995 - Wirth's Law
'Software is getting slower more rapidly than hardware becomes faster'r7

This is the core of Niklaus Wirth's Plea for Lean Software. Unfortunately it really comes out as a
lamenl for his Oberon operating system and programming language. ln lhe same way as Richard
Gabriel could only explain lhe general preference for Unix and C over his operaling syslem and
language by resorting to the 'Worse is Better'proposition, Niklaus Wirth could not undersland why the
world seemed lo prefer bloated sof tware to his neat, compacl operating system and language.
The 'law' was based 0n a commenl in Martin Reiser's preface {o the Oberon System Manual, 'The
hope is that the progress in hardware will cure all soflware ills. Howeve[ a critical observer may
observe that software manages to outgrow hardware in size and sluggishness'. As this was wrilten at
the latest in 1991, it can only refer to mainstream Unix, not, as many people have claimed, Windows NT

17 A Plea for Lean Soflware, Compulel vol.28, no.2, pp.64.68, Feb. 1995



Unfortunately in the lT world, only cranks and those living in the past do not know that it does not mat-
ter how inelficiently software is written because you can always get a more powerful computer He is
reputed to have said with self deprecating humour 'Whereas Europeans generally pronounce my
name the right way ('Nicklouse Veert'), Americans invariably mangle it into 'Nickel's Worth'. This is to
say that Europeans call me by name, but Americans call me by value'.
li by this comment he meanl to imply that his ideas on software neatness were not apprecialed the
other side of lhe Atlantic, lhe USA / Europe software divide has no more value than Richard Gabriel 's
MIT / Bell labs divide. Europeans are as much responsible for bloat as our American cousins. On the
other hand, it might have been a joke about parameter passing.

1995 - Microsoft Windows Grows
With the failure of NT 3 to achieve any significant sales, part of Microsoft pressed on with making pro-
ducts to sell.

Windows 95
Windows 95, released in 1995, was radically diflerent from the 1,2,3 line, bul was compromised to main-
tain compatibility with the earlier versions. Although the only 'headline' architeclural difference bet-
ween Windows 95 and Windows 3.1 was the "pre-emptive multitasking', the system was much better
integrated and the windowing system was WlN32: Windows 3 ihat had been re-wrillen for NT 3 and
then canied back to Microsoft's home operating system.
It also marked the start of Microsoft bloatware, although it was not in the same league as Unix bloat-
ware (requiring about a fifth of the RAM and a quarler 0f the processor speed of Unix / X for an equi-
valent workload), it did gobble up about 4 times as much RAM as Windows 3.1 (for a very small
increase in f unctionality).

The taskbar (which had appeared on the QL as the rather primitive 'Button bar' (1986), re-cycled as
the Acorn Arthur'lcon bar' (1987), the NextStep 'Dock'(1989) and later patented by Apple in 2008)
made its first appearance on a mainstream computer system. Unlike most other manifestations, it was,
in true Microsoft 'hedging-their-bets' style, not a replacement for the desktop icon mess, but an ad-
junct. lt might not have been very original but it was quite well done,

Windows NT 4
The best thing about Windows 95 was that it was not Unix. The Unix clan within Microsoft, however
did not give up and they had support right from lhe top. ln 1996, Microsoft launched Windows NT 4,
This inherited the Windows 95 user interface and it had Microsoft's Internet lnformation Server as well
as the SMB peer-to-peer network. For servers, the rapidly increasing computer RAM sizes and pro-
cessor speeds meanl that the slunning inefficiency of NT was becoming less of a problem. llS proved
to be competitive with mainslream Unix internet protocol servers (and äs vulnerable) and in combina-
tion with SMB for local file serving, NT 4, with its far higher level of integration and coherence than any
Unlx system, started to be adopted for'enterprise seivers', lt was significantly helped by the inability
of the Unix world to get 10 grips with the mass changeover in the 1970s, to displays and keyboards
with both upper and lower case letters.
As a wotkstation operaling system, NT 4 was a disaster lts customers, both business and personal,
preferred Windows 95 and Microsoft was forced t0 conlinue supporting it and released Windows 98
as an upgrade.

Windows 98
Windows 98 and SBSE provided very mrnor upgrades (USB, lnternet connection sharing) and fixed
some problems at quite a high cost' lhe recommended RAM size for SBSE was lhree times greater
than for Windows 95 - Wirth's law in aclion - welcome to bloatware.
For a while Microsoft seemed to be the unlikely saviour of the world as the last bastion against the
encroaching Unix hordes. Unfortunately the Unix rol was too pervasive within Microsoft.



Windows NT 5
Microsoft upgraded NT to NT 5 and tried branding it as Windows 2000, but very lew people were
taken in. All that NT offered them over Windows 98 was lower performance, an apparently insaliable
demand for memory and seriously difficult system mainlenance - who would want that?

Forced into either continuing to support Windows 98 or upgrading it, Microsoft decided to make a sort
of hybrid 'Millennium edition'. Disaster again.

1996 - Linux 2, a radical shift
Linux 2, released in 1996 marked a major shift lowards lhe academic world and lhe mainstream Unix
server market with support for shared mem0ry symmetric multiprocessing: first with a Big Kernel Lock
and then with finer grained locking. lt also marked a malor shift in policy ln the early days, Linus
Torvalds had vigorously opposed not only locking, but also making separate versions of Linux for
different applications. Linux 2 could be compiled with and without symmetric multiprocessing support.

2001 - Microsofl slabs ils own cuslomers in the back

Microsolt's customers had made it very clear what they thought about Microsoft's Unix-like NT opera-
ting system, but Microsoft did nol seem lo consider thal the NT development policy could possibly
have been misguided.

Microsolt's recovery plan for the Millenium edition mess was to rush out a minor upgrade to NT5 INT
5.1) in 2001, branding it as Windows XP with a massive publicity campaign, this time targeting their
core market, small users. The new version of NT had both'home'and 'professional' editions. Realising
that the customer resislance to Unix levels of performance would have to be overcome, nolhing was
left to chance. On the one side, Microsoft advertised the 'powef 

{i.e. ine{ficiency and insatiable hunger
for memory, remember lhe 'powerful' Amiga operating system) of XP - the recommended minimum
configuralion was B times more RAM (128k vs 16k) and two generations of processor {Pentium ll vs
i4B6) by comparison with Windows 98. XP was, therefore, destined exclusively for a new generation of
'Designed for Microsoft Windows XP' labelled PCs: there was no question of running it on a

one-year-old machine, 0n the other side, Microsoft withdrew Millennium edition and announced lhe
imminent withdrawal of support for Windows 98, As a result, XP was widely if reluctantly adopted tor
new machines. After all, what alternalive did users have? Linux?

2001 -Linux2grows
Over the years, Linus Torvalds seems to have lost his grip on Linux.

Kernel version 0.01 had 10,239 lines of C (against Domesdos's 5,000 lines of assembler), kernel version
2.6,30 had 11,637,137 lines of C. Did it really have a thousand times the functionality of version 0.01?

Not only is the code size of version 2 ballooning for litlle visible improvement, with the recent

2.6.26tc1kernel, the AIM benchmark ran 40% slower than with lhe previous releasers. The problem

was tracked down to just one semaphore {how on earth did that gel lhere?).

The problem was caused by removing 7000 lines of 'unlamented' code from the general semaphore.
Semaphores are usually treated academically as having zero cost because the cost cannot be
quantified, but to slreamline this semaphore, someone had removed about four times as much code
as the whole of Domesdos and all its device driversl Unforlunately the 7000 lines of 'unlamented'

code proved lo have been necessary
Linux is notorious for its hundreds of changes between its frequent releases, but these are mostly
minor: I could well be wrong, but I can find only lwo changes that mark significant shifts in capability

ln 2001 Linux 2.4 introduced support for USB.

This was three years after Windows and Mac OS, which shows one of lhe limitations of the Linux
development method. For the first time, Linux became a conlender for PCs and workstations.

1B htlp://wwwlinuxworld.com/news/2008/052008-kernel.hlml



By 2004,various patches had appear to produce a real time version of Linux.

These were supposed to be included in the Kernel in later versions of Linux 2.6, but at the time of
writing in 2009, the ?eal time"aspect of Linux performance seems to depend more on brute proces-
sor force and vain hope than on any real design to meet lime constraints.

2002 - Mac OS X

ln 2002 Apple withdrew lhe long running original classic Mac OS series in favour ol the Unix based
Mac OS X that had been previewed since 1999. There was now no non-Unix system in the mainstream
personal computer and workstation markel.

To compensate for lhis major step backwards, Mac OS X introduced a number of small but significant,
steps forward.

For the first time on any mainstream system, the windowing was based on off-screen buf fers {c.f.

Pointer lnterface for QDOS, 1986). The display was kept up to date, not by the applications, but by a
background task, the Compositot copying from the off-screen buffers 1o the display frame buffer This
was based on the same techniques as the various patches to the QJump extended environment

{PEX, PNICE, PIE) in use from the early 1990s. As Apple was supposed 1o have control over its own
hardware platforms, it is astounding that this was not handled directly by new display hardware with
the separale window buffers being displayed directly ln tact, Apple no longer had control over its
hardware platforms for workstations: it was now in the business ol packaging and branding standard
PC hardware - how the proud are fallen. A very clever solulion was found by treating the window
buffers as large 3D textures which could be painted by games-oriented graphic processors in the
display controllers. 'Clever' is one of the worst insults in systems development and mainlenance.

The compositor also introduced drop shadows on windows {familiar to old QLers} had a patented
'dock' (QPac2 1986) and allowed for translucent windows (novel and pretty but still looking for a useful
application nearly 10 years later).

2005 and a bit - Windows NT 6
Windows Vista (NT 6) was announced in July 2005, but was not released until more than a year lale[
Howevel chronologically it belongs here. Packed full of features to make it lasler and easier to use
than earlier versions, it was, as a result, enormously larger; slowel less coherent and more difficult to
use.

Vista take-up was effectively limited to those who did not know how to avoid it - three years after it
was released, it had only reached a penetralion of 25-30% of the Windows base. lf Vista had been no
worse than Xpnormal replacement, new sales and piracy should have pushed it to well over 70% alter
three years.

The most visible feature of Vista was the windowing. Best considered as a copy of Mac OS X Quartz,
the new Desktop Window Manager (DWM), based on off-screen buffers, showed'none of the redraw
artefacts, latency, or tearing effects that you may encounter in earlier versions". 'With the Desktop
Window Manager applications do not draw directly to lhe video memory; instead, they draw their con-
tents to off-screen buffers in system memory that are then composited together by DWM to render
the final screen, a number of times per second'.

Microsoft developer Greg Schechterte explained the significance; 'when a window moves across the
screen in XP and before, the portions of background windows that are newly visible only get painted

when the background application wakes up and slarts painting ... For non-responsive background
applications, or even responsive ones that happen to be paged out, this can yield a yery poor user
experience.'
ln 2005, this had been known for decades, but the real significance is that although the 'user

experience'is very poor even if all of the applications'display dala structures are'100% correct, 100%

of the time', there is enormous cost and difticulty in ensuring that this is lrue - another major
contribution t0 software unreliability and bloatware - so why was this technique ever used?

Vista also inlroduced anolher 'new feature' just after it appeared in mainstream Unix, Linux and Mac
OS X, Address Space Layout Randomisation (ASLR).

19 http://blogs.msdn.com/greg-schechler/archivel2006l03l0515443l4.aspx



Box 11 - The Unix buffer overrun vulnerability

Why Unix in parlicular?
Because lhe Unrx environment (which includes C compiled executables) brings togelher three 'design choices',
each of which should probably have been avoided for various olher reasons, that create a unique vulnerability

1. Fixed address, virtual machine model of execution,
2. Intrinsically unbounded sking data structure.
3. Variable length data storage on lhe procedure teturn address stack.

Togethel these make it possrble for an outside agent (another computer on an internal or exlernal network, for
example) to send the target computer data which will overflow a string buffer on the stack and overwrile the pro-
cedure relurn address. The data overwriling the return address defines the point in memory where the execution
continues when the currenl procedure relurns. This could be code within the program or a dynamic library or code
'injected' into a string buffer on the slack or elsewhere in memory

1 Fixed address, virlual machine model of execulion
This model was the basis of the mulli'user MULTICS syslem. The intention was to create a virtual machine for
each user or'process', so that, each time a program execuled, on any computel the environment (including all ad-
dresses) would be idenlical. Each process, therefore, had its own fixed address space that duplicated the address
space of every other process.

This was not the execulion model used by most convenlional multitasking operating systems of lhe time, where all
programs shared the same address space: every time a program was executed, it could, potentially be loaded at
a different address in memory This meant every program had to be either'position independent' {this is explicit in

lhe MC68000 instruclion set) to execule at any address or 'relocatable' to execute at the address where it was
loaded. The shared address space execution model has the advanlages of being simpler for lhe operaling sys-
tem, potenlially cheaper in haidware terms and providing a much more eflicient operating system interface. These
are very good reasons for not choosing a fixed address execution model, even if you are not worried about
vulnerability

lf the address at which a program executes is fixed, then it is possible to have predictable results if a subroutine
return address is overwritien with any one of a very large number of values. On the other hand, if the position at
which a program execules is not fixed, lhen it is 'practically' impossible to overwrite relurn addresses on the stack
and have any sorl of predictable result,

2 lnlrinsically unbounded string data struclure
Although string variables are not intlinsically defined by the C language, string conslants are. As a result, the
whole of the C environment assumes that string variables use the same structure as strjng constants. This struc-
ture defines neither lhe lenglh of a sking nor the length of lhe bufler in which a string is stored: the end of lhe
sking is marked by a sentinel and the end of the buffer is not marked at all.

This C structure ls less eflicient than having defined length strings for any of the range of string operations that
are commonly used other than copying or concatenating short strings. Furthermore copying a short C string is
only significantly more effrcient for cerlain processor architecfures and only if no check is made for buffer ovenun.
To make it worse, variable length strings are not identilied as such in the language, they are merely a convention
so there can be no systematic checking. The C choice has been justilied on the grounds o[ efliciency: an inkinsi-
cally inefficient string representation was chosen and so bounds checking could not be considered as this ineffi'
cienl representation makes bounds checking very costly

3 Variable length dala slorage on lhe procedure return address slack.
C is nol lhe only language where local variables are stored on the relurn address stack. this is a natural conse-
quence using a recursive programming language on a stack based processor One of the 1960s programming lan-
guage dogmas was thal recursion was 'elegant' and, therefore, should be considered to be the normal päradigm
for subroutine calls ralher than an exceptional or even abenant method of handing nested data definitions.
For C and other languages ol the period, this was not too much ol a problem for fixed size data, but storing varia-
ble length data on lhe stack is, howevel a different matter if you have no idea how large the data is going to be in
advance.

C adds a twrst to this: lengths ol C skings are not just unknown in advance, but unknown even when lhey are
being processed. The usual C design philosophy was lo allocate a much larger buffer than usually necessary
{very wasteful) in the knowledge lhat bu{fer overrun would be very unlikely unless you deliberately set out to do it.

Who cares about people who deliberately set out out create bufler overruns?



2005 - Address space layout randomisalion
The arrival of address space layout randomisation in mid 2005 (Mac OS X.5, June 2005; Linux 2,6.12,
June 2005; Windows Vista, announced July 2005, but akeady longer in development than the others)
is notable for lhe vast quanlity of exaggerated claims, pseudo'mathematical nonsense and misleading
information that has been generated about a dirty little patch for a problem that should never have
existed.

The intrinsic vulnerability of the combination 0f the Unix virtual machine execution model and the C
function call mechanism to buffer overrun attacks 6ee Box 11) had been known since the 1970s. The
first malor attack {the Morris Worm on BSD Unix) took place 3 years before the version 0 of Linux was
developed, 5 years before Windows NT was released and 11 years before Mac OS X was previewed.

Why is this vulnerability so important, why would anybody produce a new operating system with this
known vulnerability and why did it take so long to patch il?
The importance of the vulnerability is twofold. Firstly buffer overrun exploils can potentially infect Unix
type computers al any poinl where they read data from lhe outside world, in parlicular via lnternet
prolocols. New exploits are close to undetectable unlil after the computer has been infecled and the
damage has been done. Viruses, on the olher hand, because they can only spread by the transfer of
infected executable code from one machlne lo another can be prevenled by simple prophylaxis.
Secondly because the vulnerability exists al the level of normal lnlernet data transfers, rather lhan
being limited to the installation of infected software, it creates the possibility of a computer being 'taken

over' and controlled 'invisibly' by a remote syslem or user whether 0r nol internal or external lirewalls
and anti-virus systems are used.
I do not think lhat Linux, Windows NT and Mac OS X were deliberately designed to be vulnerable. lt
seems more likely that their designers were suffering from the same lunnel vision as the designers of
Plan 9, who, in the early 1990s, were able to write that the maiority 0f personal compuler workstations
were running Unix when in the real world the usage of Unix was so low that it did not even figure in
the charts. There was a whole generalion of computer scientists who, although they may had the
occasional brush with teal world'operating systems, had learnt compuling using Unix {the original open
source operating system), had learnl Unix fundamenlals as'universal truths'and simply did not know
that the vulnerabilities they had learnl about were specific to Unix.
It took a long time before any patches were produced to deal with the vulnerability because it was not
the result of a simple oversighl: the problem was fundamenlal to the design of the Unix / C
environment. lt was so fundamenlal that, lor the major weakness (the fixed load address for executable
code), the patch for Windows was only effective for dynamic libraries and special executable programs
marked as relocatable and nol lor exisling programs, the patch for Mac OS X was ineffeclive for any
executable program, while the patch for Linux ...

ln lhe next issue lony explains lhe 2005ish silualion and more recent developmenls.

For some time now I've been using an eeePC
netbook, runnlng Wlndows XPas a kind of porta-
ble QL. My QL system these days consisls of
QPC2 running on any suitable Windows platform,
so as a portable QL system, it was fine even if
the 7 inch screen and tiny keyboard and slow
900MHz processor were a bit of a drag. That
said, QPC2 ran fast enough for me, and if I really
wanted lo I could plug in a full size keyboard and
external monilor:
Recently with the decreasing cosls of netbook
systems, ldecided to upgrade from the eeePC
when I saw an Argos special offer on the Zoo-

storm Freedom XL 10-270 netbook, at just t199
{part number 508-3053 - I don't know when the
special offer ends, though)
At the time of writing, l've been using this ultra"
cheap 10 inch screen nelbook for about 3
weeks and am really getting to like itl lt's some
way from being the mosl advanced Windows
netbook or small laptop you can get, but at this
price I'm not complaining as it runs QPC2 (and
from what little l've run Qemulator on it, that
seems to work fine too).
The spec is quite reasonable. lt has good



has now been shown fo successfully work with all
of the following equpment as a complete
replacement for the good old floppy disk drive'
o AnV computer/pece of equipment that uses PC

formatted floppy disks (3,5", 5.25' or even 8"

drives)
o Atari ST/STF/Falcon
r Amstrad CPC6128
o Commodore Amiga (currently write only)
r Dragon 32 I 64 (VDK or JVC disk format, which

should also therefore work with the Tandy CoCo)
o Emax and Emax ll Sampler
o Ensoniq Mirage Sampler
o Korg DSS-1 Synthesizer
. MSX2
.Oberheim DPX1 Sampler
c Oric Computer (with MicroDisk)
.PC
o PCBB
o SAM Coupe *.MGT and *,SAD formats
. Sinclair QL raw disk images
. Sinclair ZX Speclrum +3 or Sinclair ZX Spectrum

with PlusD disk lnterface
o Super Wildcard DS-SWC3201
o Thomson TOBD
o Tl99/4A
. x68000

Boots On?
Although QL Today is posted to all non-German
readers from Austria on the same day some
readers have to wait longer than others to
receive the magazine. ln fact it is delivered in

Canada earlier than any other land than Austria
itself, 3 days after posting. Next is the UK at 9
days and then next door Switzerland at 13 days.
France takes 14 days and Belgium and Norway
15 days.
Dilwyn Jones was merciless,
'Well, there we have it The ulfimate cosl-saver
for Jochen. He would be able to walk all over
Europe to drop off copies knowing that in most
cases he'd get there quicker than the postal
services could manage. You're WALKING - a
few good pau of shoes is all you need."
Clearly Dilwyn {Dylwin? Dillwyn?) has not forgiven
QL Today for spelling his name in three different
ways three issues ago.

New QL Forum
Peter Scott sent a last-second news item:
www.qlforum.co.uk
It looks great!

Objects lose out to defined data structures
2005 marks the year that Microsott's Office Open XML was proposed as a standard document format.
This was published in December 2006 as standard ECMA-376. What has that to do with objects?
Nothingl That is the point. A fundamental part of the object concept is that the structure of the data is
hidden and cannot be accessed directly. A collection of algorithms (properties and methods) is
provided to set, retrieve and manipulate data without applications needing to know aboui the structure
of the data.

One of the long standing computer science paradigms is that objects, with their hidden data struc-
tures, would displace"raw"data structures as the data carrier for data processing, storage and transfer

Objects embedded in documents

The major advantage of representing embedded elements of documents (charts, formulae, etc.) as
objects is that the data structures for these elements do not need to be pre-defined as they are
manipulated only by the methods and properties exposed by the object.

Embedding objects in documents was the primary objective of Microsoft's OLE (Obiect Linking and
Embedding) This was a nasty little patch that, according to the blurb, enabled you to embed, for
example, a pie chart in a Word document, The principle was that the embedded oblect could be
manipulated by its associated code which could, effectively be executed within the application
container The practice did not live up to the principle. Documents with embedded objects proved to be
neither very portable nor easily maintainable.



Microsoft's Office Open XML introduced the idea of nested defined data structures. Thus a DOCX text
document file (a defined data structure) can include an XLSX file (another defined data structure) with a

chart eliminating the need for OLE in most cases. Unfortunately given Microsoft's attachment to OLE,

this does not seem to happen by default.

The timing of the announcements for Office Open XML appear to have been forced by an attempt by
OASIS (a consortium of losers in the office workstation market) to hijack the process by getting a si-

milar but incompatible standard (ODF) based on Sun Microsystems's proprietary office document
format published by lSO/lEC just seven days before Office Open XML was approved by ECMA lnter-
national.

Office Open XML, like ODF has an archaic expression of the data (XML) and a document concept
based directly on the nearly 30 year old separation of word processor; spreadsheet and slide show
rather than a more easily processed binary format with separation of the content (in a common format)

from the presentation (in a coherent set of formats). Office Open XML does, however mark a major
step back towards sanity: in most cases OLE can be replaced by embedded data structures.

Objects for distributing information and processing

The advantage of using objects for distributed processing is that, since the data inside the object can-
not be accessed directly by an applications program, it does not make any real difference whether the
data is on the same machine or on the other side of the world' the operations can all be done passing

messages. There is one little difference: using an object within a program is stunningly inefficient,

whereas using an object on another machine is mind-bogglingly inefficient,

Distributed Obiects Everywhere {DOE) was Sun Microsystems's attempt to allow data to to processed
remotely by using object methods called from one machine to process obiect data on another lt was

based on the Common Obiect Requesting Broker Architecture (CORBA) which allowed clients to
retrieve objects (data and the code to process it) over networks, Five years in development, it was re-

leased as NEO in 1995 and withdrawn in 1996. lt is not at all clear whether CORBA is dead as well.

Sun replaced DOE by Java applets for clients and servlets and Javabeans for servers. More than 10

years later PHP {not really object) seems to have displaced obiect oriented server side Java for all but a
hard core of true believers. As far as transferring data to net clients, Java seems to have been reduced
to an animation niche. The bulk of data distribution over the net is nol in oblects but in defined data

slruclures: starting with html, through standard image formats, ipg,gif and png, to swf, pdf, avi, etc.

Objects in programming

The intention of oblect oriented programming was to reduce development costs and improve quality

by simplifying the process of creating software. improve the maintainability and re-usability of software,
going one stage beyond conventional modularity. From a narve point of view object oriented pro-

gramming has two advantages: applications can manipulate different types of object using common
methods, without knowing how the methods work on each particular object, and the internal data

structures can be modified or extended without any impact at all on application code.

As a consequence, since the operation of the methods depend on both the data structures (which are

not "exposed" and liable to change between versions) and classes of object (which are not necessa-
rily known in advance) methods and their side effects can only be defined in the very vaguest of

terms. Some defenders of object oriented programming claim that methods and their side effects can

be well defined but, in general, this can only be true if the methods apply only to a known class and if
the data structures are fixed. However if the class is known in advance and the internal data structures

are fixed, the only differences between using well-defined methods and well defined, old-fashioned
procedures with well defined data structures and functions are the syntax, the efficiency and the
flexibility.

Object oriented programming is extremely inefficient, reducing the performance of software while

increasing its size, greatly contributing to the bloatware phenomenon. According to computer science
dogma this is unimportant as users can always get a more powerful computer: the inefficiency is
"justified"as the approach reduces development costs and improves reliability

Does it? Over the past 25 years object oriented programming has taken over from other software
development methods while software development costs have ballooned and quality has declined.



There is a small minority view {see Box 12) that puts the peculiar flexibility of object oriented
programming as one of the causes of this decline, while the majority view seems to be that things
would have been even worse if object oriented programming had not been adopted. This majorily
view that object oriented programming has saved the world has the advantage that, since ii can
neither be proven nor disproven, it can be taken on faith anyone who believeiotherwise is clearly
demented.

Box12 - The flexible animal object
Programming using defined data structures and object oriented programming provide radically different notions of
flexibility. Wilh defined data structures, an application programmer can easily extend the range of functions and
procedures beyond the 'standard' library functions f or that data structure, but he also has the 

-flexibility 
to destroy

the integrity of the data. With object oriented programming, an applications programmer is strictly limited to the
standard methods as only programmers with inside knowledge can extend the functionality, Object oriented
programming provides, however the flexibility to use a given method to manipulate radically different obiects
without needing to know how the method works. ls this a good idea?

Searching the net for any sign of a rational justification for object oriented programming lcame across the 'animal"

object which was used in a computer science course as an example of höw the äexibility of object oriented
programming simplifies soflware development, reducing costs and improving quality.

The antmal object has a method goFaster For some animals goFaster makes them run, for others it makes them
fly. There is no "fly' method because not all animals can fly, and there is no "run' method because not all animals
can run, goFaster is, therefore, an abstraction for either: A programmer does not need to know how an animal
responds to goFaster it just works for all animals. Magic!

lmagine, for a moment, that the animalobject is used in a simulation with birds. When a bird pecking at seed on the
ground reaches a stream, we can get it across the stream with the goFaster method. This will work fine until the
system is used with flightless birds, when, except in a few remarkable cases, the flightless bird will drown.
You might say that the problem was caused by the programmer who did not know that there are llightless birds.
That is missing the point entirely: in object oriented programming, programmers are not supposed tö know what
goes on inside an obieci, so they can have no idea of the limitations on the applicability of any particular method.
You might say that the problem was caused by the programmer using the wrong method. That is missing the
point entirely: the number of methods 'exposed" by an obyect is limited änd programmers have to use the neärest
match unless write their own methods, which would negate the whole pürpose of using object oriented
programming as they would have to know about the object's internals, which they are not supp-osed to.

Why would anyone think that forcing ignorance on software developers is a good idea? Beats me.

Multiprocessing hits a brick wall
Although symmetric multiprocessing was fundamental to the 1960s systems theories that have domi-
nated systems design from the time MULTICS was designed and although symmetric multiprocessing
versions of Unix and Windows had been around for more than a deca-de, by 2005 symmetric multi-
processing was still a very restricted sector ln May 2005 AMD introduced its first multicore workstation
processors, the Opteron and the Athlon 64X2, and lntel introduced the Pentium D. Over the next year
experience of multiprocessing increased rapidly

From the 1960s the lT establishment had viewed symmetric multiprocessing as the natural choice for
performance The driving force behind Windows NT was to produce a shared memory symmetric
multiprocessing competitor to UNIX. ln the guide to Windows 2000 (NT5) Microsoft stated its position,
which corresponded roughly with the establishment view.

lf you wait long enough, perhaps your performance problems will just go away with the next
generation of computer chipsl Another proven technique is multiprocessing, building computers
with two, four or more microprocessors, all capable of executing the same workloäd in parallel.
lnstead of waiting another 18 months for processor speed to double again, you might be able to
take advantage of multiprocessing technology to double or quadruple your performänce today

The widespread adoption of multi-core processors in desktop PCs has changed the perception from
simple scalability towards doubtful benefit. Very few would now be bold enough to describe shared
memory symmetric multiprocessing as a "proven technique ... capable of executing the same work-
load in parallel ... to double or quadruple your performance (two or four microprocessors)". This is a



goal (the unachievable 'Holy Grail' of computer sclence) that has kept tens (or is it hundreds?I of

thousands of computer scientists off the streets for nearly half a century.

Multiprocessing problems

Microsoft's"Multiprocessor Considerations for Kernel-Mode Drivers''o (October 20041states by way of

introduction "future technologies mean that all new machines will eventually support more than one

processor'. The document cbncerns shared memory symmetric multiprocessing as implemented in

Windows NT There is no attempt to justify shared memory symmetric multiprocessing rather than

asymmetric architectures and there is no suggestion that single processor architectures could con-

tinue to provide a cost effective solution for a-lärge part or even the majority of systems.ln the 1960s,

multiprocessing was seen as a means to an end.for the last 25 years it has been an end in itself.

ln shared memory multiprocessing systems, the problems of memory contention are both far more

performance critical and far more-delicate than for other architectures. Whereas Microsoft was bullish

about their proven multiprocessing technology in the blurb for Windows NT5, 4 years later in in this

document they became less categoric about the reliability of their system.

However in a few situations, you must prevent or control reordering. The volatile keyword in C and

the Windows synchronization mechanisms can also enforce program order of execution in nearly

all situations

So, according to Microsoft, the memory contention mechanisms used by Windows device drivers for

multiprocessor systems will work in "nearly all situations". What happens in other situations? This is

hardly"proven technology" of the year 2000.

Mulli core performance benchmarking

The performance benefits of multiprocessing depend very strongly on the type of applications betng

run. There is a class of "embarrassingly parallel"problems that comprise a very large number of similar

independent calculations (such as calculating fractals, image generation, finite element analysis, playing

chess, etc) or similar, independent operations (such as indexing, data mining, spiders, etc). Although

they are all easily implemented as parallel processes, they are not necessarily suitable for shared

memory multiprocessing, if the algorithms are more data intensive than calculation intensive, then

memory bandwidth or tjisk bandwidth will be the limiting lactor and using computer arrays or farms

will be a far better approach than using multi-core or multiprocessor systems. Furthermore, these
problems are rarely true workstation applications in that they yield results over timescales from

minutes to days.

ln the enthusiastic rush by the press to print articles extolling the virtues of multi-core processors in

personal workstations, there was little objectivity. A typical example is the comprehensive AnandTech

report" summarising the performance on a range of siandard benchmarks {See Box 13). Not only did

the results show thät dual core processors neaily always had a worse price / performance ratio than

similar single core processors, they also showed that, on a number of important tests, the perfor-

mance of dual core processors could be improved simply by disabling one of the cores.

Three types of usage gave distinct results.

For ordinary "one thing at a time" usage, where a single operation dominated even though system

maintenance tasks woüld be working away in the background, the second core was either useless or

degraded the performance. This typ-e of usage had two g1oups 9f ?pplicatlors: sorTte potentially.em-

bailassingly parallel applications which wouldbecome parallel by 2009, and "office"applications where

a single öore system is likely to be best choice for the foreseeable future as the most important

perfdrmance criterion is not the "throughput" measured in these tests but the response time -. the

iime to carry out a single action in respönse to a single event (keystroke, mouse click, etc,) - and the
predictability.

http://download.microsoft.com/downloa dlelblalebal}S0f-a31d-436b-9281-92cdfeae4b45/MP-issues.doc
http;//www.anandtech.comiprintarticle.asp x?i=24l0
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Box 13 - Multi-core processor benchmarks

4 eoo,g example of independent benchmarking in 2005 of the new dual core processors was published by
AnandTech. The set of benchmark results included twg {MD processors with identical technology änO cioi1
speed {Athlon 64 4000+,jingle core and Athlon 64 x2 4800+, dual core} but twice as much high spöd cache for
the dual core processor: The benchmarks were carried out for three difierent types of workloäd. 

'

1 One thing at a time workstation usage
o For 8 

^straight 
offrce applications (Business Winstone, PC Worldbench and WinRAR) the dual core was 0.gg

to 1.00 times as fast as the single core processo[ i.e the dual core processor woulä have performed better
if one of the cores had been disabled.

o Fo^r the single-threaded computer generated image test {with two different sets of data), the dual core was
1.01 and 1.03 times as fast as the single core processor

o For 6 graphics intensive games, the dual core was 1.01 to 1.04 times as fast as the single core processor
For all of these, an equivalent cost single core processor would clearly be a better choice for performance.

2 Embarrassing parallel multi-threaded applications
o For I.straight media encoding tests, the.re were three groups of results. Three of the tests {image and

sound processing) gave no signifrcant difference between dual and single core despite the fact inat-two oi
the three programs_were explicitly multi-threaded (more recent tests F'ave shown'some"improvement"in
these applications). For three of the tests (video encoding) the dual core was 1.16 to 1.38 times as fast as
the^ single core processor For the other two tests (DivX anO WHAvg HD video encoding) the dual core *äs
1.73 and 1.91 times as fast as the single core processot:

o For the sieie-3D image generation test {repeated five times with different data) the dual core was an
average of 1.82 times faster than the single core processot:

The median speed advantage of the dual core processor was 1.24. However the test conditions were biased
against the single core processor by using the same number of threads for the single core processor as was
used for the dual core processor introducing unnecessary overheads on the single pöcessor system.

3 Multitasking user
The third group of tests simulated users carrying out background tasks while working with a principle application
in the foreground. Aggregate speed is a very poor measure of perceived performanc"e.

o For 3 office applications where the user 
-w-a_s 

performing several tasks simultaneously {sysmark 2004) the
aggregate speed for the dual core was 0.95 to 1.27 times the single core processor ipe'eO.

' For 5 media creation activities with the user generating or encoding images (1) or videos (4) while carrying
out other operations the aggregate speed for the dual core was 120 to-t.ss times the singie core proöes:
sor speed.

There were a number of tests showing the difference in background task speeds, but only in one case were both
speeds given. This showed that the Windows XP scheduler was lairly effective in that the execulion speed of ihe
foreground task was very similar for single and dual core, but that, with a single core processor; Windows NT
sacrificed the speed of the background task(s) to maintain the foreground task s'-peed.

The results were very different for the embarrassingly parallel applications. Multi-threaded image
generation.and video processing should give the mosl favourable iesults for multi-core processois.
But, even if as many as 570 of workstations are used for these applications an average of 10yo of the
time, they would currently represent less than 1% of workstation usage. Despite this tFey figured in 16
out of the 36 straight benchmark results, which indicates the level-ot bias in this and bthör reports.
Even so, an equivalent cost single core processor with correctly configured applications would'have
givq.n a: good.or better performance on 4 or 5 out of the 9 tests dedicäted to'embarrassingly parallel
applications. The other tests gave genuinely better results for the dual core processor bu"t'tÄey fell
very far short of the "expected" doubling of performance. The principal reason is that the standard
"desktop" workstation configuration is very ill-suited to these types of äpplications: using two separate
computers, each with a silgle core processor and half the mah memoiy could have pövided a'much
higher performance, at little extra cost, than the dual core processor tested.
The third type of usage was the "multitasking. user". These tests rarely measure anything meaningful
Where a user is working with an application while, for example, fetching e-mails in tfrö nait<ground,"the



speed of the application in the foreground is important, but the speed of the background task is not.
Measuring aggregate speed (or even worse, just the speed of the background tasks as in most of
these benchmarks) gives results that are very favourable to multiprocessor architectures, but rarely
applicable to the real world. The only test that measured the foreground task speed showed no ad-
vantage for the dual core processor

All these benchmarks taken together indicate that, although there are certain cases where the dual
core processor performed bettet, the dual core processor would certainly underperform a single core
processor with similar technology similar total cache and similar cost (and, therefore, higher clock
speed and more"cache per processor") under typical workstation conditions."Power users"might find
that when they are running a number of tasks simultaneously the dual core might give a higher perfor-
mance, and this higher performance might offset the lower performance of the dual core processor on
a more mundane workload - but it is not certain and much will depend on the effectiveness of the
operating system's scheduling algorithm and the prioritisation of the foreground and background tasks.

Multicore processors 4 years on

ln 2009 AnandTech published another benchmark report22 featuring multi-core processors. As the
report set out to compare quad core processors, ordinary workstation use was excluded. Even so, the
performance improvement in embarrassingly parallel applications was only about a factor 2 in the four
years since the previous benchmark cited above, very much below the previous rate of a factor of 2
every 18 months for applications in general Furthermore, even under the very favourable benchmark
conditions, the report pointed out that the migration from dual core processors to quad core proces-
sors only increased the perlormance by about 3070, the largest contribution to performance improve-
ment was the new cache architecture in both lntel and AMD processors.

Hardware for parallel processing in workstalions

One of the notable features of benchmark reports from 2005 onwards was the absence of critical
comments pointing out that, even for embarrassingly parallel problems where the work can easily be
divided into a number of independent tasks, the new generation clearly failed to approach the"proven'
2 or 4 times increase in processor power using 2 or 4 processors.

Fundamentally multi-core processing is a loser technology for workstations (see Box 14), as was the
earlier RISC architecture. One of the common features of the applications where the benchmarks gave
multi-core processors a significant advantage was that they carried out intensive processing on
relatively small datasets

lntensive processing on relatively small datasets is ideal for 'computer farms' where an 'intelligent"

controller "farms" out the work to not very intelligent, but very fast, calculating units, ideally with
"calculator" instructions (fixed point arithmetic, table interpolation, etc.) and graphical data handling (pixel
masking, anti-aliasing, etc. as in GPUs). A calculating unit could be packaged as a modest quantity of
fast RAM tightly coupled to a processor that occupied much less chip space than one core of an

equivalent technology xB6 processor while delivering several times the calculating power Moreovel
for the type of applications concerned, the processing speed would be almost proportional to the
number of calculating units,

The Transputer the first single chip computer specifically designed for farms and similar architectures,
was released 25 years ago in 1984. lt was an unconditional failure. lntensive calculation is the only
application for which parallel processing is of clear interest, but the technologicallimitations of the time,
coupled with the firm belief in the dogma that symmetric multiprocessing was the only true way for all

computing, meanl that the Transputer was not well targeted for intensive calculation and too
expensive for anything else. Asymmetric (one controller for many calculators) computer farms have
since become fairly commonplace for a variety of seriously intensive calculations. Why not in a

workstation?

The simple answer is that intensive calculation is a tiny minority interest (l am in that tiny minority) and
apparently cannot justify the development costs. But if it is only a tiny minority interest, why does this
type of computing dominate current workstation benchmarks and why were multi-core processors

22 http://wwwanandtech.com/printarticle.aspx?i=3492



Box 14 - Multi-core, a loser technology

While it should be fairly obvious that on dominantly single task workloads, multi-core processors willnot provide
a better performance than.an equivalent cost single öore processor: why can disabling cores on a multi-core
processor improve the performance and why is the speed increase for ldeally parallei-process6g uery rucÄ
less than the number of cores? The answer to both questions lies in the main memory bandwidth and caching.

l Caching
At the limit, a compute.r's performance will be limited by the main memory access time: the speed at which the
processor can move data in and out of memory. This is masked, to a cerfain extent, by using processor cäches
to hold data to improve the speed of repeated accesses to the same data items and niOeTde write back time
from the processor

The largest contribution to benchmark performance increases since 2005 has been improved caching with the
introduction of three level caching. The 2009 AnandTech article cited gave claimed, measured and"estimated
access times for the three levels of caches in lntel and AMD processors.
The fast (multi-ported, prefetched) Ll caches nearest the execution unit had access times (latencies) of 3.4
cycles, the L2 caches had access times of 11-15 cycles and the large shared L3 caches had'access iimes of
40-50 cycles. External RAM accesses took 200-250 cycles. The tinrrngs are fairly balanced with about a four
times increase in access time at each level. An increase in the overall cäche miss rate of 1% could increase the
average data access times by about 50%.

With a multi-core processor the largest cache is usually shared between the cores. When all cores are
executing,,the largest cache will see continuous accesses by all the cores, with each of the tasks executing
concurrently "stealing" cache continuously from the other tasks,
For a dominantly single task workload on a single core processor; this cache stealing still occurs but is limited in
effect as the processor only switches tasks at well spaced intervals. W1h a- multi-core processor the
continuous cache stealtng by the background tasks can significantly increase the number of cache misses by
the dominant task, reducing its performance by more thän the imall advantage gained O17 executing thö
background tasks on other cores. This can be seen in the 2005 benchmarks. "
Fo1 a1 ideally parallel workload on a multi-core processor the cache stealing can be far more serious as it nol
only directly increases the cache miss rate, it also increases the risk that the-processor falls near or into "cache
thrashing" where the miss rate increases dramatically and the performance'drops. While cache ihr;;ÄtnÄ-;;;
occur with lust one core, the more cores that are accessing a shared cache, the more likely it necomei. ünäer
strain, therefore,lhe performance of a multicore processor may degrade more quickly than'an equivalent singie
core processor Because this is an"occasional' phenomenon, it will not show up very clearly in benchmarks tflat
test only average speeds, but it should rule out the use of multi-core processors in response critical systems.

2 Main memory bandwidth
25 years ago, memory bandwidth was the brick wall limiting processor performance. The introduction of caches
has cushioned Jhis performance barrier but not removeilii. There wiil always be instructions that cannot be
executed entirely from cache.

But, if there are two cores, one core can be executing from cache while the other core is wa1ing for the
external memory. Can this provide a doubling of perfoimance under an ideal parallel workload? Th"e simple
answer is no. Not only is it very unlikely that the cache misses (which are randomrsh) will interleave nicely, cache
stealing will increase the cache miss rate and so the performance of each core w1i be severely degraäed. For
each additional core, there will be less memory bandwidth available for any of the cores, red"ucing their
performance and there will be more cache stealing, further reducing their periormance. With each adäitional
core, the performance gain is less and the performance loss greater
Even for ideal parallel workloads, unless you can guarantee that nearly all the data required for the execution of
all tasks on all cores can be held in private cachei or in a multi-ported cache shared between the cores, there is
a limit to the number of cores that can be used before the overall performance actually drops. For ordinary
workstation benchmark tests in 2005 (Box 13), this limit was one.
The dream of massively multi-core processors (04, 128 etc.) is just a nightmare.



developed for workstations when their only advantage over single core processors is for this tiny

minority interest?

The emergence of multi-core processors in workstations has nothing to do with performance, it is iust
the pursuit of a 40 year old dogma.

More than 20 years ago, the designers of Plan 9 (and Unix) based their whole concept on the eagerly

anticipated'coming wave of shared-memory multiprocessors'.

More than 20 year- ago, Windows NT was designed to support shared memory symmetric multiproces-

sing which was, at the time, a 20 year old, pasl-sell-by-date concept based on a 1960s misreading of

thJfuture of computer hardware in the 1970s. As a result, it was astoundingly slow complex and over-

size, the size did not matter because RAM prices were dropping and the speed did not matter because
you could always use "two or tour microprocessors., to double or quadruple your performance"!

Software for multiprocessing

One remarkable feature of the arrivalof multi-core processors for ordinary workstations that seems to

have escaped comment is that existing software actually worked on these new platforms. The reason

is very simple' designing all software specifically for symmetric multiprocessing has been a central

computer science dogma for very long time, This could be viewed in two ways.

The conventional view is that this vindicates the 1960s dogmas of symmetry and transparency for
paratlel applications and the amazing foresight of the academics that developed the theories

underlying these dogmas and the even more amazing foresight of the industry in developing suitable

software well in advänce of the arrival of mass-market, shared memory multiprocessing systems.

The minority view is that this is result of an astounding collective madness that, for 40 years, has

compromiseO tfre performance and quality of software that should have been written for the single

processor systems that were actually in use rather than for a hypothetical computer architecture

which was to become close to a reality some time in the distant future.

The contention between processors in a symmetric multiprocessing system creates problems that

need to be handled in software. The conventional methods, principally synchronisation, used to deal

with the problems of shared memory symmetric multiprocessing reduce systems' performance and

increase their complexity Dealing with the increased complexity further reduces the performance

while reducing the quality and inöreasing both the size and developmenl costs. ls this really a sane

approach forlingle processor or asymmetric sysiems where symmetric multiprocessing problems

cannot occur?

On the other hand, can a system such as Domesdos or Stella, designed specifically for a single

processot, work on a multi-core or multiprocessor shared memory computer? Yes it can. But can it

work more efficiently than a system specifically designed for shared memory symmetric multiproces-

sing? Yes it can. lt is a question of scalability.

An ideally scalable system would have constant overheads per processor (core), per active task and

per task. Domesdos and Stella were not ideally scalable. ln particular the basic operating system over-

heads had a tiny scalable component and a potentially larger (N-1) component where N is the number

of symmetric processors or cores sharing the same main memory. This second componenl is zero for

a siÄgle processor and lumps as soon as there is more than one processo[ leading to the accusation

that t-hese types of systems cannot be used for shared memory symmetric multiprocessors.

The reality is different. The {N-1) component for Stella is so much lower than the constant overhead of

conventional shared memory symmetric multiprocessing systems (two to three orders of magnitude)

that, for a modest number of processors or cores (less than 100?), Stella would maintain its advantage.

Furthermore, it is finally being accepted that conventional shared memory symmetric multiprocessing

systems based on syÄchronisation are themselves far from ideally scalable as the cost of waits and

cöntext switches that are forced by the synchronisation mechanisms increases rapidly with the

number of tasks that are executing concurrently.

The question is not whether Stella would outperform BSD, Linux or NT on a symmetric 16 core

processor system but whether prolonging the life of an archaic systems architecture that is totally

irrelevant to current and foreseeable fufure requirements would be morally iustifiable.

ln the next issue, Tony looks at 2009 and will be "Gazing into the future"



The past 25 years have brought a more or less continuous decline in software performance
(efficiency reliability predictability) coupled with ballooning software sizes and development costs,
What does the future have in store?

The view from1984
Perspectives on fiflh generation computing", by Brian R Gaines, is a retrospective view of the maior
developments in computing, lt was published the year that the QL was launched. The paper includes
Withington's 1974 tuturology slighlly modified to tit the circumstances,

Withington's analysis describes the first three generations of computers and predicts the fourth and
fifth.

1 1953-1958 Gee whiz - computers can do anything, technological curiosities, thermionic valves
and mercury delay lines.

2 1958-1966 Paper pushers, business machines: transistors and magnetic core memory

3. 1966-1974 Communicators, LSI and leletypes, operating systems and communicalions protocols.

4. 1974-1982 "lnformation custodians": central databases and salellite iimesharing systems

5. 1982-xxxx 'Action aids': distributed intelligent systems

References to the fourth generation had appeared from the mid 1960s onwards: Withington's bold
stoke was to predict that it was about to appear in 1974, the same year as he published. lt did not,

Seven years after Withington's article, in 1981, with the fourth generation slill nowhere in sight, a Japa-

computing world.

Gaines' bold stroke in 1984, was to announce that the fifth generation was already in place, which it
was not, except as vague, impractical concepls in research laboratories isolated from reality His vision
of the future was more of the same.

Gaines' concepts are firmly anchored in a 1960s view of computing architectures, time-sharing clus-
ters or clouds, usually with some form of centralised administration, serving terminals, In his 1984 pa-
per, very little weight is given to personal computers and workstations and none at all to embedded
systems both of which were emergent, His 'distributed intelligent sysiems'did not consider the possibi'

lity of distributing the inielligence to independent units that might have only limited communications, as
has been the dominant form of computing since the 1980s, but clung to the 1960s idea of interdepen-
dent units working closely togethel
Time sharing sharing systems serving terminals had some advantages over tolally independent sys-
tems, Within the "original" computing environment, university campuses, any sludent or any member of
staff could access "their" data by logging in to any lerminal * they did noi all need their own work-
staiion, The terminals had negligible intelligence so, quite naturally they had to share the central pro-

cessing power as well. Since the early 1980s, howevel the main requirement for sharing lT resources
has become sharing information, not processing power

ls applying the campus time-sharing architeclure 1o all computing systems just another case of
"generalising from one example"(see X Window System, Vol14, 13, Pag 36) where an architecture
d-esigned for one application luniversity campuses) was applied to other pplication regardless of the
individual requirements?
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Not at all. By 1984 it should have been obvious ihat, even for a campus environment, having terminals
r or cloud of processing units was not a sensible approach where the distributed
the termrnals would far outweighed the processing power of the central cluster
time-sharing architeclure was obsolescent even in its original environment.

In 1984, the new requirement was independenl processing and, to a lesser extent, the central manage-
ment of shared and private data, but the entire edifice of the 1960s theories was based on the now
irrelevant concept of 'competing processes'on shared computers. From 1984, large system architec-
tures should have moved towards independent processing, on independent machines, accessing
shared data. Furthermore, the new requirement for shared data was for 'transactional' [asynchronous)
access to long term data storage, giving rise to a totally ditferent set of problems to those addressed
by the seriously flawed 1960s 'synchronisation' theories,

The crilical difference between the new approach required and the old approach is that the 1960s
theories were algorithm based and conflated data with processing. This conflation reached its apogee
in object oriented programming where data and processing of that data are made indivisible. For an

independent processing / shared data approach, the data, and the management of that data, mu t be
rigorously separated from the processing of that data. This already tends to happen by default, a it is
often the only practical approach, lt should be done by design.

The view from Berkeley (California) 2008
Parallel Computing: A View From Berkeley'o sets out the Berkeley view of the future of mainstream
computing. The title is slightly ambiguous. Does the title imply that the paper is only concerned with
the futursof parallel computing or does it imply that parallel computing is the future?

ln a world where the arrival of lhe massively parallel fifth generation of computing had been an-

nounced 24 years betore but was still not even vaguely on lhe horizon, this paper takes the position

that the only way forward is parallel processing,

The importanc of this paper is not in the content, but the in extent to which, like Withington's and
Gaines'papers it has been adopted, quoted and recycled within the computer science community

The paper sets out its stall in two ways, one approach considers "conventional wlsdoms'and how
these need lo change and the other considers the state of the art and the future of computer hardware,

Berkeley's conventional wisdoms

The paper sets out a number of "old convenlional wisdoms'on syslem design with corresponding
'new conventional wisdoms'. These terms are very slranger for"old conventional wisdoms"a betler
term would be 'parody of reality' and the "new conventional wisdoms" would be better described as
"old dogma",

The firsi few "conventional wisdoms" merely repeat the 1960s dogma that processors cannot be
improved significantly. Then lhere is a group of "conventional wisdoms" (CWs) that represent a total
denial of reality.

9. Old CW Don't bolher parallelizing your application, as you can wait a little while for a faster
sequential computer

9. New CW: A faster sequential computer won't arrtve for a long time

11. Old CW, Increasing clock frequency is the primary method for improving processor
performance

11. New CW Increasing parallelism is the primary method for improving processor performance

12, Old CW, Less than linear scaling for a multiprocessing application is a failure

12. New CW Any speedup via parallelism is a success

These are surreal,
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The old Berkeley conventional wisdom, for the past 40 years, was 'don't bother about making your
application efticient, you can always parallel the processors lor more speed', whereas, in reality rapidly
increasing processor speed has been the practical means of compensating for rapidly declining soft-
ware performance, ln lhese conventional wisdoms, they are claiming that parallel processing, lhe fun-
damental basis of the fourth generation which was due to arrive about 1974, is THE NEW IDEA for
2008.

Berkeley's start of the art
It would be too easy to dismiss the View From Berkeley as merely an attempt to put a 21st cenlury
gloss on a 1960s tracl in favour ol parallel processing, but there is more to it than that.

The papel starts off wilh a graph showing that, up to 2002, processor benchmark perlormance dou-
bled every 18 months but that the rate is now much lower This corresponds roughly to the introduc-
lion of multi core processors, first for RISC processors, then for CISC processors. This shows that the
generalisation of these multi core processors did not maintain the upward kend in performance.

This is lollowed by a glimpse of reality 'Parallel processing is nothing new ln the pasl, research in pa-
rallel processing was driven by new breaklhroughs which opened design space, with uniprocessors
always prevailing in the end," This seems to accept that forty years of systems development concen-
trated almost enlirely on symmetric multiprocessing had totally failed to displace single processor sys-
tems as the dominant torm of computing.

So Berkeley's siate of the art in 2008 was that processor performance was running into a brick wall
and parallel processing had hit a brick wall years before.

Berkeley's hardware fulure
The whole ol Berkeley's hardware luture is based on their 10'n'conventional wisdom'. Their conclu-
sion from this is that the future is in massively multi core processors with'thousands of cores on chip".

10. OId CW Uniprocessor performance doubles every 18 months

10. New CW Power Wall + Memory Wall + ILP Wall = Brick Wall. Uniprocessor perlormance now
only doubles roughly every tive years

Once again, the 'Old Conventional Wisdom'is not - it is just an observation lhat was true for skictly
delined and not very useful condilions between about 1984 and 2002. The'New Conventional Wis-
dom'is just an idiocy plus a deliberately misleading statement,

It is lrue that the graph of processor benchmark performance shows that ihe performance used to
double every 18 months but now the improvement rate is much slower The misleading statement,
howeve[ dissimulates two important factors. The first is that the gap between real performance and
benchmark performance has widened over this period and the second is thal the tail end of the graph
represents the introduction of multi core processors, not lhe stalling of single processor performance.

The idiocy shows how even the most stupid propositions gain an air of veracity if they are repeated
olten enough. The well known, frequenlly cited, and totally wrong 'Power Wall + Memory Wall + ILP
Wall = Brick Wall'is raised as an argument in lavour of mulli core processors.

The "Pnwer Wall" is a ridiculous simplificaiion of the problems of reducing the cycle time of the proces.
sor core. Power is a facton but in the 1970s, IBM was already delivering water-cooled processors, so
this is not a barrier it is just a one of a whole series ol physical limitations on lhe processor cycle time.
These limitations have, howevel not stopped processor core execution speeds increasing far fasler
than overall processor execution speeds as processors have become more and more limited by the
"Memory Wall".

The "lLP Wall'(instruction level parallelism) simply does not exist. The gains that can be obtained using
ILP are extremely limited but these gains are proportional lo the processor clock speed. lf a given ILP
strategy can double the effective speed of a 1 GHz core lo 2 GHz {two instructions per cycle), then
the same ILP strategy will double the effective speed of a 2 GHz core to 4 GHz. At the processor
core level, ILP is purely scalable but not very useful: at best ILP is iust ä quick patch to get around the
problems of primitive instruction sets with excess serialisation, The reason that ILP does not yield its



theoreticäl scalability in real processors is that an increase in instruclion execution speed does not
translate directly into an increase in overall processor speed because, since the early 1980s,
processors have been running inlo the'Memory Wall'.

The "Memory Wall' is a real problem. Elsewhere in the paper the author states 'The gap between
memory access speed änd processör speed increases by 50% per year'. over this period, main
memory access times have increased by about a factor of 5 and memory bandwidth has increased
even more with wider buses and larger burst accesses, but lhis is still much less than the 10,000 times
increase in processor core speeds.

The most important thing about the "Memory Wall" is that it imposes the same ultimate performance
limit regardless ot the numbü or speed of lhe processor cores. lt does nol add to the core perfor-
mance limils, as would be suggesled by lhe ridiculous'Brick Wall'formula, it ovenides them.

The'Memory Wall'is the multi core killer

The paper has a big title "Multicore Not the Solution' that acknowledges the failure of multi core
technology (which had ran into the memory wall even before it even became widely available) but
proposes adopting it in an exlreme form '1000s of cores per chip', lotally ignoring the memory
access problems. lt is difficult lo see any logic in lhis,

Berkeley's sof tware fulure
This paper does mark two distinct 'advances'on the 1960s approach to parallel processing.

By the end of the 1960s, lhe computer science establishment believed that il had lhe whole solution
to parallel processing problems, largely based on the twin concepts of synchronisation and symmetric
multiprocessing. Later Berkeley was one of the prime movers in putting synchronisation back into Unix
for symmetric multiprocessing. This paper is, maybe a mea culpa, as it advocates finding alternatives
to synchronisation.

Locking (synchronisatlön) is rrOtöriously difficult to progräm for many reasons (deadlock, noncom-
posability). Locking is also wasteful in that it busy-waits or uses inlerrupts/context switches.

So, in plainspeak, synchronisalion increases software development cost, while making systems less
reliable and less efficient, lt has lust laken Berkeley 40 years to realise this fundamental tru{h,

Switching from sequential programming to moderately parallel programming brings with it great
difficully withoui much improvement in power-performance. Thus this paper's posilion is that we
desperately need a new solution for parallel hardware and software.

Finally accepting, after 40 years of development of the 1960s multiprocessing theories for parallel exe;
cution, lhal a new solulion is desperately needed might be considered some form of advance, even if
the proposal is to wind the clock back to 1962 and start again in the same direction. Since it would
appear that there is no intention of challenging the false premisses on which the whole multiprocessing
edifice was built, it would seem likely that the same mislakes will be repeated all over again.

The view from cloud-cuckoo land
Since the early 1960s one of the unshakeable dogmas underlying systems archiiecture development
has been that single processor systems were doomed as they could never meet increasing perfor-
mance expeclations and the only way forward was to distribute the processing across thousands of
processors using a well organised symmelric multiprocessing model. ln practice, processing has been
been distributed but, instead of all processing being carried out on organised systems with thousands
of processors working in parallel, as envisaged in the 1960s, the bulk of processing is now carried out
by a tolally anarchic mass of independent PCs, embedded compulers and hand-helds.

From a computer science point of view this is wrong. From a user perspective, the current anarchy is
certainly better than the fourth generation / fifth generation hörror that it has successfully kept ät bäy
The challenge is not to bring the anarchy under control, it is to make it work better by working with it
rather than against it.



lmproving soltware quality (efficiency predictability reliability) on thÖ individual computers would be a
good starl.

Wirth's law on bloalware is not theoretically iustified, il is merely an observalion which seems to be as
true today as when it was formulated. There is no justification at all for the ballooning costs, size, and
inettichncy thät häs thrown away the performance thai has been gained by the exträordinäry
developmenl ol computer hardware over the pasl 25 years.

The computer science world has taken perverse pride in promoting software inefficiency as an implicit
aim, anyone who challenges this is treated with utter disdain. For 25 years 'you can always get a more
powerful computer" has been the 'convenlional wisdom", efficiency is just a dirty word used by grub-
by little hackers.

Recovering the processing power gains that have been achieved since 1984 is, however: not neces-
sarily the mosl serious long lerm problem to be addressed. 0n lhe one hand, workstation and server
hardware architectures have been compromised by trying to fit in with 1960s symmetric multipro-
cessing, on the other hand, system architectures have been compromised by ä mindset on realising
the fourth generation or even the fifth generation.

ln 25 years, this 1960s mindset appears to have become only more rigid so that, to achieve any signi-
licant deployment in the short term, any new development will have to be within the existing archaic
hardware änd lnfrastructure architectures.

The cheapest route to long term gains in system performance is not increasing clock speeds or
paralleling processors, it is improving the software quality This cannot be done relrospectively: the
quality must be built in by designing for reliability predictability and etficiency. lmproved software quality
brings with it reduced hardware demands, lower power consumption, reduced size, longer battery life
as well as more predictable performance' are these really as unimportant as conventional compuler
science would have us believe?

The argument against a revolulion in systems software is that compatibility must be maintained at all
cost. This is nonsense, although there have been outstanding failures to revolutionise a market (the

Apple Mac lnto the PC markel in 1984 and Linux in the PC märket ten years later), the probiem was
that the 'new' syslems were promoted as being different (which they were, superficially) rather than
being significantly better for the larget applicalions (which they were not). On the other hand, the PCs
of 25 years ago were completely incompalible with mainframe computers, but they wiped them out,
Palm Pilots were incompatible with everything else but they were a great success. The pocket com'
puters that wiped out the Palm Pilot were incompatible with anything that went before,

It is possible to make systems that are significantly betiel but this cannot be done without making
them significantly different, buill in a significantly different way We know it can be done. We can be
sure that mosl of lhose setting out to do it will just recycle all the old junk lheories and end up with
just another Unix, Who will be bold enough to break the cycle?

ln the 1970s and early 1980s, the developmenl time for an operating system used to be about l year
The development of an application program (a word processol for example) used to be about 1 year
The development of a programming method used to be about 1 year

It is true that we ask more of applications now than 25 years ago. But it is also true that we should be
starting from a more advanced position with more advanced tools so lhat lhe core development
should be much fasler: The additional functions that we have come to expecl do not have much effect
on the core structure, so they can be developed in parallel, lt should, therefore, be possible with a
modest outlay (about 0.0i% of the estimated true devei-:ment cost of Linux) to develop, within one
year a complete system with all the applications required of a data server: workstation or personal
computer and with a responsiveness and reliability that does nol make you wish for your 1980s
system.

There are three problems with this scenario,

The first is that the development would not be starting from a significantly more advanced position
than 25 years ago because there has been almost no significant advance - lust lots of hot air and
recycling. lt would be possible to leverage some peripheral technologies such as 16 bil (or morS
character sets, glyph delinitions and image and video file formats, Howeve[ unlike 25 years ago, the
system would be constrained by not be able to set its own standards but having to cope with
"industry slandards" that have gone completely off the rails, making development significantly more
ditf icull,



The second is that there do not seem to be any tools that are significantly more advanced than those
available 25 years ago: if they do exist, it would probably take longer to {rack them down and evaluate
them than to create suitable tools from scraich,

The next problem is building a market outside ihe esiablished workstation markel. There is no point in

attacking established systems head-on in their own market, so systems musl be targeted new
applications and markets that will be made posslble by a "quantum leap" in price/performance, ome-
thing that has been done many times over the pasi 25 years in many domains, and can be done again,

even in the computer world. Already there is visible discontent with the feature overloading thai eveR
cell phones now suffer from and there is a growing demand lor a more lightweight approach ('less is
more") in the developed world. More radically the dramatic reduction in hardware cosls and power con-
sumption and dramatic mprovement in systems accessibility that would come from adopting a more
rational software techn logy opens up vast possibilities on the olher side of the digital divide.

Finally lhere is the problem of finding the funding, not so much for the development, but tor the marke-

equivalent system could not be implemented on a hobby computer: He bet his own money and was
proved io be right. In the computer science world, challenging orlhodoxy and being proved wrong is
a forgiveable aberration, challenging orthodoxy and being proved right is totally unforgivable.

I recenlly wrote a PE program allowing a user lo
pick three points, A, B and C which were dis'
played on lhe screen with lines ioining them,

Then the angle ABC was calculated and shown.
This seems simple enough. This is what I did,

Finding the Points
The first step was to find the positions of A, B
and C. This was done by allowing the user to
move the pointer to the position he wanted to
choose and then clicking the mouse button, This
was achieved by reading the pointer with the
f unction BRPTR

The aciual inslruction was:
ptl' = BRPTR(10, o1dk,r+vd)

The number 10 causes the pointeis position t0
be returned either if the pointer has moved from
the original position, oldk, or if the mouse key
was pressed, The ilem "wwd" is the address of
the window working definition.
The function nnrrnis part of TurboPTR but you

can use the trap u3 rortlnu ToP.RPTR to do the
same thing in assembier if you want to do it that
way.

Printing the Letters
When the user has chosen a position, the appro-
priate letter is printed at that position. Since the
posiiion of the pointer is given in absolute co-or-
dinates these have to be corrected to the rele-
vant co'ordinates before printing can occur The

adjustment is made by subtracting the absolute
position of the top lett of the main window from
the absolule pointer posilion and then, furthel
subtracting the origin of the sub-window in which
the points appear The informatiort is found easily
enough from the window worklng definition,
Once the position of the point is found, in pixel
co-ordinates, the appropriate letter A, B or C can
be printed there, There is one problem here
though. lf the point is chosen too near the edge
ol the sub-window an out of range error will oc-
cur when I try and position the cursor Thus,
since I decided t0 print the letters so that their
midpoint coincided with the point in question, I

restricted the search for points to an area smaller
ihan the sub-window in which the search is tak-
ing place by a margin o[ three pixels horizontally
and five vertically at each edge,
I did this by means of the procedure sEr-prR
which seis the pointer to a particular position,
This procedure is based on rop.sprR

Drawing the Lines
An interesting problem arose when I tried to print
lines from A to B and from B to C, lassume it is
obvious thal lhese should be drawn by using the
graphics procedure lrun Howeve[ although the
keyword cuRsoR and the underlying sD-cotrR
allow the pixel positioning of the cursor relative
to a graphics point, there seems no easy means
of tinding the graphics coordinate of a given
pixel position,


