
CONVERTING OTHER BASICS TO QL SUPERBASIC
Copyright (C) 2016 David Denham
This document is released as FREEWARE. It may be freely copied on a no-profit basis.

This document lists some suggestions for how to approach
converting some of the keywords and structures in Microsoft-
style BASICs which differ from QL SuperBASIC. Sometimes, the
differences are major. Sometimes, only a slight change in syntax
is required.

This list is not definitive - BASIC even on 1970s and 1980s
computers differed greatly from machine to machine. However,
this article should help you with the most common things.

In many cases, no simple conversion method is possible, so the
document lists how the original command works so that you can
devise your own conversion routines appropriate for what the
program concerned tries to do.

The term 'QL BASIC' is collectively used to refer to either or
both of SuperBASIC on QDOS systems and SBASIC on SMSQ/E systems.
SMSQ/E is the successor operating system for QL compatible and
derivative hardware systems and emulators. The term 'PC BASIC'
is collectively used to refer to Microsoft BASIC (TM) and
compatibles and derivatives on PC systems.
' comment
The apostrophe ' can be used as shorthand for REM in many cases.

Example:

100 'comment

can be converted to

100 REMark comment

The apostrophe comment can also appear after some commands
without a colon to separate statements:

Example 1:

900 END 'comment

Convert it like this (END is equivalent to STOP on the QL):

900 STOP : REMark comment

Example 2:

900 DIM A(10)'setup an array of numbers
1

Convert it like this:

900 DIM A(10) : REMark set up an array of numbers

<> <= and >=
While all of these operators have the same meaning as in
SuperBASIC, some older BASICs do not mind if a space is placed
between the two characters - this must be removed for
SuperBASIC.

I have come across one instance (only) of a BASIC which does not
mind which order the symbols are placed in - that BASIC allowed
you to use =< and => in place of <= and >=. QL SuperBASIC
insists on >= and <=.

+ String Concatenation
Microsoft-style BASICs generally use the '+' operator to join
together two or more strings. This must be converted to use a
'&' ampersand symbol for SuperBASIC.

Example:

LET A$=B$+C$

is converted to SuperBASIC as

LET A$=B$&C$

?
The query symbol ? is sometimes used as a shorthand for the
PRINT command in some versions of BASIC.

200 ?"Hello"

can usually be converted as

200 PRINT"Hello"

^ Exponentiation.
A value raised ot the power of another. For example, PRINT 2^3
gives 8. Same as the equivalent QL operator.

\ Integer Division
Integer division is denoted by the backslash symbol in some
versions of BASIC, as opposed to the forward slash symbol to
denote ordinary floating point division. Use the INT function in
QL BASIC, or the DIV operator in SBASIC, to replace an integer
divide statement.

2

3 \ 2 gives 1, whereas 3/2 gives 1.5.

Abbreviation Of Commands
Some BASICs allow you to abbreviate command names, e.g. P. for
PRINT or L. for LIST. These must be entered in full on the QL.

Example:

P."Hello world" convert as PRINT"Hello world"

Labels
Some versions of BASIC permit named labels to be used in place
of line numbers in GOTO and GOSUB statements. These labels may
look similar to variable names and either enclosed in square
brackets or followed by a colon symbol, e.g.

GOTO [label1]
GOSUB label2:

The labels themselves are placed at the start of a line
delimited with the relevant punctuation for the version of BASIC
concerned, or after a line number if used. For example:

100 GOSUB [label2]
110 ...
1000 [label2]
1010 ...
1020 RETURN

or:

100 GOTO label1:
110 ...
1000 label1:
1010 ...

There is no direct equivalent in QL BASIC - you need to use
either line numbers or variables with the values of the line
numbers concerned. It may help to place a REM statement at the
destination line to help clarify what the original program did,
e.g.

100 GOTO 1000 : REMark label1
110 ...
1000 REMark label1
1010 ...

Scope Of Variables
Some versions of BASIC such as QBASIC allow you to define
variables to be local to a given part of a program, or to be

3

variables to be local to a given part of a program, or to be
'global'. This varies between versions of BASIC on different
systems.

The area of a program that a variable is accessible from is
called its "scope".

In general, variables are local to procedures and functions by
default (called "local scope"). However, there are times when it
is useful to be able to share a variable between a number of
procedures or functions. You can make a variable named in a
subroutine identical to a variable of the same name in the main
program by including a SHARED statement in the subroutine.

This is essentially the opposite to QL BASIC, where variables
are generally global in scope unless explicitly declared to be
local to a given routine by the use of a LOCal statement.

SUB sub1
 SHARED total
 ...
END SUB

In QBASIC, a variable may be made global in scope (i.e.
accessible from all parts of a program including procedures and
functions) by proceding the name in the main program body with a
COMMON SHARED statement, e.g. COMMON SHARED total

As well as the scope of a variable there is also the question of
when it exists. A variable defined in a subroutine is by default
local and only accessible within that subroutine. Not only is
access restricted to the subroutine, it is only brought into
being when the subroutine is started and vanishes again when the
subroutine ends. By using a STATIC statement you can ensure that
a variable exists for the life of the entire program even when a
subroutine isn't being run. A STATIC variable is still local in
the sense that it doesn't have anything to do with a variable of
the same name elsewhere in the program but it now also has a
life of its own independent of the subroutine.

The keyword STATIC may also be appended to the end of a
subroutine definition in QBASIC to make all of its local
variables static.

Here is a summary of the scope keywords in QBASIC.

Type Accessible From Existence
local subroutine that it is while subroutine is

declared in running
shared main program and any sub- always

routine with SHARED name
global main program and every always

subroutine
dynamic one subroutine while subroutine is

4

running
static one subroutine always

ABS
ABS(X) returns the absolute value of the expression X. Works the
same as the QL BASIC function of the same name.

AND
AND is a logical operator which performs tests on multiple
relations. Used in a statement such as IF x=1 AND y=2 THEN...
its use is exactly the same in QL BASIC. If the tests are
positive, it returns a "true" (non-zero) result, otherwsie a
"false" value of 0.

Some BASICs allow its use as a bitwise operator where the
outcome depends on a comparison of individual bits in two
values. AND comparisons return a set bit value where the
corresponding bit values are set in both values compared. For
example, x = 255 AND 1 returns a value of 1, because that is the
only bit set in both values when compared as binary values. Use
a double ampersand in QL BASIC for this operator:

LET x = y AND z

would become LET x = y && z in QL BASIC.

Arrays
Arrays are generally dimensioned with the DIM command as in
SuperBASIC. Mostly, arrays are dimensioned to have the zero
subscript as the first entry in an array, but beware of versions
of BASIC where the first element in an array is 1. Not all
BASICs zero an array when redimensioning a second or subsequent
time in the same run. Some BASICs will clear out arrays when
programs stop or start, others may need explicit CLEAR
statements to remove values from past runs - do not assume an
array will always start zeroed and cleared if it has been run
once already.

String arrays may require an extra dimension in SuperBASIC, as
the maximum length of string array elements may not be specified
in some BASICs. For example, DIM A$(10) would set up an array of
10 or 11 (depending on whether element 0 is allowed) strings,
but without specifying the maximum length, so you would have to
try to work out what the maximum length of text this array might
be expected to hold and add it as an extra dimensions in
SuperBASIC, e.g. DIM A$(10,50) if the strings needed to hold up
to 50 characters of text.

Beware of versions of BASIC which have case sensitive variable
and array names. In this case, DIM A(10),a(10) might create two

5

and array names. In this case, DIM A(10),a(10) might create two
separate and distinct arrays called A() and a() - in other
words, A(1) and a(1) are not the same things! There is no easy
way around this in SuperBASIC, where names are case insensitive,
other than to use different variable and array names, or doing
something like keeping the upper case names as they are and
adding a '_' to the lower case equivalents, e.g. DIM
A(10),_a(10)

ASC
Returns a numerical value that is the ASCII code for the first
character of the string given. Corresponds to the function CODE
in QL BASIC. For example: 10 PRINT ASC("A") corresponds to 10
PRINT CODE("A"). Within the range of character codes up to 127,
most characters have the same code value on the QL, although a
few symbols vary - see ASCII Codes below.

ASCII Codes
Not all computershave the same character sets. The same symbol
may have a different character code on different computers. That
said, letters and numbers and most symbols are the same, but you
should be wary of some characters:

QL code 35
[\] ^ _ QL codes 91 to 95 inclusive
£ QL code 96, often a 'back-tick' character found on the
key above TAB on a U.K. keyboard. To get a Pound symbol when
printing, some printers may require you to send character code
163 for a Pound symbol, e.g. PRINT CHR$(163)

Arrow symbols may be another source of confusion. On TRS-80
Level 2 BASIC they are at the following code locations:

TRS-80 QL
Left 93 188
Right 94 189
Up 91 190
Down 92 191

Some computers may not have a lower case character set as such,
both cases look the same - printing the CHR$ codes for A and a
may both result in a capital A. But if sent to a printer they
may actually print as separate upper and lower case characters
even though they look the same on screen.

If you get stuck with character sets, especially in programs
where symbols are printed with something like PRINT CHR$(n) you
will need to compare the character sets of the original machine
and the QL to see which codes correspond. If the manual has no
information, or you don't have access to the manualof the
original computer, try looking up character sets online, such as
Code Page 437 or CP437, PC-8 or MS-DOS Latin US, espcially if
the program uses an American character set.

6

ASCII codes below 32 and above 127 may have differences between
computers. Those below 32 are often called 'control codes' and
may have certain screen functions, e.g. CHR$(9) may be a tab
function, a Carriage Return for CHR$(13), a Linefeed for
CHR$(10), or a Form Feed for CHR$(12), a CHR$(7) may sound a
beep... Additionally, codes below 32 may be used as various
symbols, sometimes called 'dingbats'. All these control codes
may vary - it can be hard to work out what does what!

Similarly, the high ASCII codes above 128 may vary from computer
to computer. You will need to look up the relevant information
for the computer and version of BASIC in question.

AT
This may be used on its own, like the QL AT command or used in a
PRINT command as a PRINT position modifier. Used by itself, AT
X,Y can simply be converted to AT Y,X on a QL. Note that the QL
takes y coordinate first, followed by x coordinate. Most BASICs
have the Y coordinate first, followed by the X, but a few have
the X coordinate first.

In cases where there is no ambiguity caused, no punctuation is
usually required after the parameter(s) of AT, for example PRINT
AT Y,X"Hello" may be perfectly acceptable even if less readable.

If used in a PRINT modifier context, AT may take one of three
forms:

PRINT AT P;A$ position from start of screen - usually
(y*screen_width)+x. The AT statement must be made a separate
command and P resolved down to Y and X coordinates, such as AT P
DIV screen_width, P MOD screen_width : PRINT A$
PRINT AT Y,X;A$ Change to AT Y,X : PRINT A$
PRINT AT X,Y;A$ Change to AT Y,X : PRINT A$
PRINT AT Y,X"OK" Change to AT Y,X : PRINT"OK"

The stand-alone version of AT may appear as a command called
LOCATE in some dialects of BASIC.

The version of AT used in a PRINT statement to position the
cursor may take additional forms in the various versions of
BASIC. Some dialects use the '@' symbol in place of the AT
keyword, e.g. PRINT @Y,X; or both commands may be combined into
a single parameter which represents the number of text
characters from the top left of the screen, e.g. PRINT
@position; where "position" is (Y*line_width_in_characters)+X.

Some dialects of BASIC replace the PRINT AT Y,X; version with a
TAB command with two parameters: PRINT TAB(Y,X); or PRINT
TAB(X,Y); - you will have to check which way around the
particular version of BASIC expects the parameters.

7

ATN
ATN(X) retuns the arctangent of X in radians. The result will be
in the range -PI/2 to PI/2. The ATN function corresponds to the
ATAN function on the QL.

AUTO
Used for automatic line numbering and entry of lines of BASIC.
Generally works in the same way as AUTO on the QL. Allows both
initial line number and step vaue to be specified. Unlike the QL
version, on some machines it displays a '*' if the line already
exists, so that you are aware you may be about to overwrite an
existing line and so give you a chance to break out of the
command.

BEEP
BEEP just issues a short medium pitched bleep from the
computer's speaker. Just use any fairly short BEEP in QL BASIC,
e.g. BEEP 2000,20

BLOAD
BLOAD filespec,offset loads binary data (such as a machine
language program) into memory, rather like LBYTES in QL BASIC. A
knoeledge of system data structures, memory layout and machine
language is needed to convert such code.

BSAVE
BSAVE filespec,offset,length saves binary data to disk. Its use
is similar to that of SBYTES in QL BASIC.

CALL
CALL calls a machine language subroutine. The syntax is CALL
numvar [(variable [,variable]...)]

numvar is the name of a numeric variable. The value of the
variable indicates the starting memory address of the subroutine
being called as an offset into the current segment of memory (as
defined by the last DEFSEG statement)

variable is the name of a variable which is to be passed as an
argument to the machine language subroutine.

Example:
100 DEF SEG=&H8000
110 OZ=0
120 CALL OZ(A,B$,C)

The CALL statement is one way of interfacing machine language
programs with BASIC. The other way is by using the USR function.

8

Machine language code varies greatly from processor to
processor, and even from machine to machine with similar
processors.

The CALL statement on the QL differs slightly in terms of
parameters. Its syntax is CALL address [,registers] where
'registers' means the values to be placed into registers D1-D7
and A0-A5 in that order.

CDBL
CDBL(X) converts X to a double precision number. This has
nodirect equivalent in QL BASIC, since SuperBASIC and SBASIC do
not support two levels of numeric precision. In most programs,
this can simply be omitted. Be aware of the possibility of
differently formatted numbers when the QL's exponential number
formatting kicks in.

CHAIN
This command may be similar to a QL BASIC LRUN or MRUN command.

CHAIN "filename" generally works like an LRUN "filename" command
in QL BASIC, while CHAIN MERGE "filename" generally works like
an MRUN "filename" command in QL BASIC. Both versions allow an
optional line number to be specified, at which execution
continues after the merging. This is not generally possible in
QL BASIC. If no start line number is specified, execution begins
at the first line.

CHR$
CHR$(X) Returns a string whose one character is ASCII character
X. Equivalent to the same function in QL BASIC, but see ASCII
Codes above.

CINT
CINT(X) converts X to an integer by rounding the fractional
portion. X must be in the range -32768 to 32767. CINT will
return 2 for CINT(1.6), or -2 for CINT(-1.6), for example. In QL
BASIC, use an equivalent function such as:

1000 DEFine FuNction CINT(X)
1010 IF X>=0 THEN RETurn INT(X+0.5): ELSE RETurn INT(X-0.5)
1020 END DEFine CINT

CIRCLE
This keyword draws a circle or sllipse on the screen with centre
(x,y) and radius r. The full syntax is:

9

CIRCLE (x,y),r [,colour [,start,end [,aspect]]]

(x,y) are the coordinates of the centre of the ellipse. The
coordinates may be given in either absolute or relative form.

r is the radius (major axis) of the ellipse in points.

colour is a number which specifies the colour of the ellipse.
The default is the current foreground (ink) colour.

start,end are angles in radians and may range from -2*PI
to 2*PI, where PI=3.141593

aspect is a numeric expression.

start and end specify where the drawing of the ellipse will
begin and end. The angles are positioned in the standard
mathematical way, with 0 to the right and going
counterclockwise:

 PI/2
 -
 / \
PI | | 0,2*PI
 \ /
 -
 3*PI/2

If the start or end angle is negative (-0 is not allowed), the
ellipse will be connected to the centre point with a line, and
the angles will be treated as if they were positive (note that
this is not the same thing as adding 2*PI). The start angle may
be greater or less than the end angle. For example, this short
listing will draw a three quarter circle with the top left cut
out and joined to the centre of the circle by two straight lines
from 12 o'clock and 9 o'clock.

10 PI=3.141593
20 SCREEN 1
30 CIRCLE (160,100),60,,-PI,-PI/2

aspect affects the ratio of the x-radius to the y-radius. This
may be used to adjust the circularity of the shape to suit the
screen aspect ratio of the graphics mode in use at the time.

If aspect is less than one, the r is the x radius. That is, the
radius is measured in points in the horizontal direction. If
aspect is greater than one, then r is the y-radius.

In many cases an aspect of 1 (one) will give nicer looking
circles. This will also cause the circle to be drawn somewhat
faster.

The last point referenced after a circle is drawn is the cente

10

The last point referenced after a circle is drawn is the cente

of the circle. Points that are off screen are not drawn by
CIRCLE.

As graphics commands like this one tend to vary from computer
system to system, it is not possible to give a singular method
of conversion. QL BASIC supports drawing of circles and ellipses
using the CIRCLE and synonymous ELLIPSE commands.

CIRCLE x,y,major_radius, ratio, rotation

Rotation is not used in the Microsoft BASIC version, so you will
generally require to draw the ellipse horizontally
(rotation=PI/2) or vertically (rotation=0).

x, y and radius will be broadly the same, although dependent on
units and screen resolution. The QL BASIC version does not
support the 'start, end' options for drawing part of a circle,
so you may need to use the ARC command in QL BASIC to achieve
this. Aspect ratio is defined as the ratio of minor to major
axis in QL BASIC, and x axis to y axis in Microsoft BASIC.

CLEAR
As in SuperBASIC, CLEAR by itself clears the values of all
variables. Numeric variables are all reset to a value of 0,
strings to nulls or 'empty'.

CLEAR n
When used with an argument n (n can be a constant or an
expression), this statement causes the Computer to set aside n
bytes for string storage. In addition, all variables are set to
zero. When the TRS-80 is turned on, 50 bytes are automatically
set aside for strings.

The amount of string storage CLEARed must equal or exceed the
greatest number of characters stored in string variables during
execution; otherwise an Out of String Space error will occur.

Example:

100 CLEAR 2000

makes 2000 bytes available for string storage. By setting string
storage to the exact amount needed, the program can
make more efficient use of memory on older systems with smaller
memories. A program which uses no string variables
could include a CLEAR 0 statement, for example. The CLEAR
argument must be non-negative, or an error will result.

CLOAD and CLOAD?
Load a program from cassette tape, broadly equivalent to a LOAD
command on a QL. Some systems will let you specify a blank

11

command on a QL. Some systems will let you specify a blank
filename, which allows the computer to load the first BASIC
programit comes across on the tape. On some systems, if a part
filename or a single letter is specified the computer will only
load a program whose filename starts with the given letter or
letters. There is no direct equivalent to either version on the
QL.

Some computers have a variant which uses a question mark to ask
the computer to verify that a file on cassette matches that in
the computer's memory (in other words, that it is not faulty).
This usually takes the form CLOAD ?"filename". If no filename is
given, the first program found on the cassette will be compared.

CLOSE
Closes a file channel which is already open. Works much like the
QL version of the command, except that multiple channels may be
closed by a single CLOSE command with channel numbers (called
file numbers in the MS BASIC manuals) separated by commas.

CLOSE #channel is similar to the same command in QL BASIC
CLOSE #chan1, #chan2 is equivalent to CLOSE #chan1 : CLOSE
#chan2 on QL.

A third version of the command with no parameters is able to
close all open file numbers. There is no direct equivalent in
SuperBASIC, unless you have Toolkit 2 which extends the CLOSE
command to close all open channel numbers if no parameter is
given to the CLOSE command.

CLS
Where implemented (some versions of BASIC just clear the screen
automatically when the program starts to run), the
implementation is similar to the QL CLS command. This may just
clear the whole screen, not a given window number as in QL
BASIC, if no parameter is given, otherwise CLS 1 clears the
graphics viewport, while CLS 2 clears the text window.

COLOR - Colour Values
This may vary from system to system, of course. Older style 16
colour systems often use the following colour numbers, with the
closest QL colour number (8 colours - the QL does not have a 16
colour mode).

Number PC Colour QL Number QL Colour
0 Black 0 Black
1 Blue 1 Blue
2 Green 4 Green
3 Cyan 5 Cyan
4 Red 2 Red
5 Magenta 3 Magenta
6 Brown 6 Yellow

12

7 White 7 White
8 Grey 0 Black
9 Light Blue 1 Blue
10 Light Green 4 Green
11 Light Cyan 5 Cyan
12 Light Red 2 Red
13 Light Magenta 3 Magenta
14 Yellow 6 Yellow
15 Bright White 7 White

Once you have established the relationship between PC and QL
colours, you may find it easier to set up a colour translation
table in an array and indirectly reference the colours rather
than trying to amend all colour commands in a program. So, set
up an array with the list of colour numbers in the third column,
then instead of using INK 0 to convert the statement COLOR 0,
for example, you could use INK colour(0). The keyword COLOR
(note American spelling) is often used to set the colour of both
ink and paper, so you have to use INK or PAPER as appropriate.

COM
The COM command enables or disables trapping of communications
activity to the specified communications adapter. The format of
the command is COM(n) ACTION, where:

n number of the communications adapter (1 or 2)

and ACTION is a one word parameter describing the action to be
taken:

ON A COM(n) ON statement must be executed to allow
trapping by the ON COM(n) statement. After COM(n) ON, if a non-
zero line number is specified int he ON COM(n) statement, BASIC
checks to see if any characters have come in to the
communications adapter every time a new statement is executed.

OFF If COM(n) is OFF, no trapping takes place and any
communication activity is not remembered even if it does take
place.

STOP If a COM(n) STOP statement has been excuted, no
trapping can take place. However, ay communications activity
that does take place is remembered so that an immediate trap
occurs when COM(n) ON is executed.

There is no equivalent command in QL BASIC.

COMMON
This command passes variables to a chained program. The command
takes a series of parameters which are either simple variable
names, or if brackets are appended to the variable name, it is
regarded as the name of an array.

13

100 COMMON A,B(),C$
110 CHAIN "A:PROG2"

This example chains to a program called PROG2 on the A: drive of
the PC, and passes to it the variable A, the array B() and the
string variable C$.

There is no equivalent command in QL BASIC, although the use of
MRUN in place of LRUN (i.e. merging a second program instead)
may achieve the same purpose as long as you are careful about
line numbering.

CONST
The CONST command in QBASIC fixes a value so that it cannot be
changed within the program. The full syntax is:

CONST name [AS type]=expression or value

'name' is a name given to the value (like a variable name)

'type' indicates the type of constantand may be INTEGER or
STRING.

'value' may be an expression, variable, or a number.

Examples:

CONST PI=3.1415926 assigns the value shown to the
variable PI.

CONST WHITE AS INTEGER=15 assigns the value 15 to the
colour name 'white'

INPUT"What is your name? ";N$ Fix the constant NAME$ as the
CONST NAME$=N$ name first entered.

There is no direct equivalent in QL BASIC, although simple LET
statements could be used as long as you bear in mind that the
assignments are not permanently fixed. You could possibly use
environment variables to create such constants if those are
implemented on your system.

CONT
Similar to CONTINUE on a QL, to resume program operation
following a break or error.

Control Codes
Control codes are mostly keypresses corresponding to character
codes 0 to 31. Sometimes they produce symbols known as
'dingbats', but were originally (as the name implies) used to

14

'dingbats', but were originally (as the name implies) used to
control printers and terminals, possibly via modems. They may
also act as control codes to control screen output in some ways
on some machines.

This is a list of control codes, their 2 or 3 letter symbol and
a brief description. Many of these codes may vary in their use
on different computers while some, such as 8(BS), 9(HT), 10(LF),
12 (FF), 13(CR) and 27 (ESC) generally work similarly on most
systems. Many of these codes have no direct QL equivalent, you
may have to be rather inventive!

 0 NUL Null char
 1 SOH Start of Heading
 2 STX Start of Text
 3 ETX End of Text
 4 EOT End of Transmission
 5 ENQ Enquiry
 6 ACK Acknowledgment
 7 BEL Bell
 8 BS Back Space - move back and erase last character.
Generally, this just means move one space back to the left.
 9 HT Horizontal Tab - move to the right to the next tab stop
(usually every 8 or 10 characters, although it can vary)
10 LF Line Feed - move the cursor down to the next line. On
older terminal based system, this was equivalent to moving the
paper up one line, without moving the cursor left or right
horizontally at all. One some systems, a LF is sometimes
interpreted as LF (move down one line) then CR (move to left
hand column of screen or printer), as it would at the end of a
line of text. By and large, the QL uses just an LF to signify
the end of a line.
11 VT Vertical Tab
12 FF Form Feed - move to the start of the next sheet of paper,
or clear the screen like a CLS command.
13 CR Carriage Return - move the print head or text cursor to
the start of the line. Some systems treat this as being
equivalent to a CR+LF.
14 SO Shift Out / X-On. On some systems, when a CHR$(14) is
sent to the screen, it turns on the cursor, like a CURSEN
command on a QL with Toolkit 2.
15 SI Shift In / X-Off. On some systems, when a CHR$(15) is
sent to the screen, it turns off the cursor, like a CURDIS
command on a QL with Toolkit 2.
16 DLE Data Line Escape
17 DC1 Device Control 1 (oft. XON)
18 DC2 Device Control 2
19 DC3 Device Control 3 (oft. XOFF)
20 DC4 Device Control 4
21 NAK Negative Acknowledgement
22 SYN Synchronous Idle
23 ETB End of Transmit Block. On a TRS-80 this code switches the
screen to 32 characters wide mode.
24 CAN Cancel. On some systems this backspaces the cursor (move
one to the left) without erasing the current character.

15

25 EM End of Medium. Move the cursor one position to the right.
26 SUB Substitute. Also, move the cursor down the screen one
line on some systems such as TRS-80.
27 ESC Escape - used for expanded code sequences, where ESC
signifies this is the start and at least one more code must
follow. On a TRS-80, sending ESC to the screen acts as an upward
linefeed (move the cursor up one line).
28 FS File Separator. Sent to the screen on some computers this
acts as a 'Home' command to force the cursor to move to the top
left origin, to text coordinates 0,0, like an AT 0,0 statement
on the QL. May also be used to switch a TRS-80 into 64
characters per line screen mode.
29 GS Group Separator. On some computers, sending a CHR$ 29 to
the screen moves the cursor back to the beginning of the current
horizontal line.
30 RS Record Separator. On some computers, sending a CHR$ 30 to
the screen erases text to the end of the line, rather like CLS 4
on a QL.
31 US Unit Separator. On some systems sending a CHR$ 31 to the
screen is interpreted as a command to clear to the end of the
form, in other words, clear the screen from the cursor position
to the bottom, although it varies as to whether this includes
the current line or not. Replicate as either CLS 3 : CLS 2 (to
clear both the current line and below) or just CLS 2 (to clear
below the current line).

COS
COS(X) returns the cosine of X in radians, similar to COS(X) in
QL BASIC.

CSAVE
Saves a BASIC program with the given filename to cassette tape,
similar to a SAVE command on a QL. On some computers, the
filename may consist of a single character only. The filename
should be in quotes, or expressed as a string variable.

CSNG
CSNG(X) converts the value of X to a single precision number.
Since the QL BASIC does not support different precisions of
floating point values, no conversion is required.

CSRLIN
This function returns the vertical coordinate of the cursor. On
most systems, the top line of the screen is line number 1,
although some may start at 0.

There is no direct equivalent in QL BASIC, although the
information required to convert this function is contained
within the channel definition blocks for the window channel
concerned and may be read using the DIY Toolkit function CHAN_W%

16

concerned and may be read using the DIY Toolkit function CHAN_W%
for a given channel number. The vertical cursor position in
pixels may be read from offset 36 decimal (hex 24). This starts
from 0 and is in pixel units, so to get a text character
position across, divide by the number of pixels per character in
the current character size, e.g. 6 for CSIZE 0,0 text. The
character spacing for a given window channel may be checked with
CHAN_W%(#channel,40), so to read the current text position as
characters across the screen, use something like:

LET pos=CHAN_W%(#channel,36) DIV CHAN_W%(#channel,40)

On computers where the POS function starts from 1 for the
leftmost position, you should add 1 to this result:

LET pos=1+(CHAN_W%(#channel,36) DIV CHAN_W%(#channel,40))

or write it as a function in QL BASIC:

1000 DEFine FuNction CSRLIN(chan)
1010 RETurn 1+(CHAN_W%(#chan,36) DIV CHAN_W%(#chan,40))
1020 END DEFine CSRLIN

CVI CVS CVD
These three functions convert string representation values to
numeric values, e.g. values that are read in from a random disk
file. CVI converts a two byte string to an integer. CVS converts
a 4-byte string to a single precision number. CVD converts an 8-
byte string to a double precision number.

The exact conversion method depends on how the program created
the file, and is likely to be specific to the BASIC concerned.
It is better to rewrite the routines which create the file to
create QL-specific data files.

DATA
Similar to the QL BASIC DATA command, so usually no change
required as long as string data is quoted. If the version of
BASIC concerned supports unquoted strings in DATA statements,
something like DATA name1, name2, name3 may need to be converted
as DATA "name1","name2", "name3". Unquoted text data is allowed
in some versions of BASIC unless the string contains commas,
colons, or significant leading or trailing spaces.

DATE$
DATE$ returns a ten character string, which is the system date,
in the form mm-dd-yyyy. In QL BASIC, the information is
contained in the first 11 characters of the string returned by
DATE$ in QL BASIC, although the month is returned as a three
character month name dependent on the system language
configured., e.g. QL BASIC DATE$ returns 2016 Jan 03 whereas the
same date in Microsoft-style BASICs might be 01-03-2016

17

To translate this to an approximate equivalent in QL BASIC, you
could write a function which looks up the month names and
converts them to a numeric value. Here, the function name is
changed to DATE_$ t avoid a clash with the QL BASIC function
name DATE$.

7000 DEFine FuNction DATE_$
7010 m$ = DATE$: m$ = m$(1 TO 11)
7020 y$ = m$(1 TO 4)
7030 d$ = m$(10 TO 11)
7040 m$ = m$(6 TO 8)
7050 t = m$ INSTR 'JanFebMarAprMayJunJulAugSepOctNovDec'
7060 m$ = (t+2) DIV 3 : IF LEN(m$) < 2 THEN m$='0'&m$
7070 RETurn m$&'-'&d$&'-'&y$
7080 END DEFine DATE_$

DEF
The DEF keyword may appear in several contexts.

1. DEF FN
Define a function - similar to the QL BASIC's DEFine FuNction.

2. DEF USR
Specifies the start address of an assembly language subroutine.
The syntax of this command is:
DEF USR [<digit>]=<integer expression>
where digit may be a number from 0 to 9 (0 assumed if not
specified) and <integer expression> is the starting address of
the USR routine. Broadly equivalent to a CALL command in QL
BASIC, but since any assembler code is likely to be processor
specific, you are unlikely to be able to easily convert a DEF
USR statement.

DEFDBL letter range
Variables beginning with any letter in the specified range will
be stored and treated as double-precision floating point, unless
a type declaration character is added to the variable name. A
variable defined as double-precision allows 17 digits of
precision, with 16 being printed in most cases.

Examples:

200 DEFDBL A Variable names starting with A are double
precision, unless ending in ! % or $. So A becomes a double-
precision variable, but A$ remains a string variable.

300 DEFDBL A,C Variable names starting with A or C are double-
precision, unless ending in ! % or $.

400 DEFDBL C-E Variable names startin with C, D, or E are
double-precision, unless ending in ! % or $

18

DEFDBL and the other DEFxxx commands are generally placed near
the beginning of programs for clarity.

DEFINT letter range
Variables beginning with any letter in the specified range will
be stored and treated as integers, unless a type declaration
character is added to the variable name. A variable defined as
integer can only take on values between -32768 and +32767
inclusive.

Examples:

200 DEFINT A Variable names starting with A are integers,
unless ending in ! # or $. So A becomes an integer variable, but
A$ remains a string variable.

300 DEFINT A,C Variable names starting with A or C are
integers, unless ending in ! # or $.

400 DEFINT C-E Variable names startin with C, D, or E are
integers, unless ending in ! # or $

DEFINT and the other DEFxxx commands are generally placed near
the beginning of programs for clarity.

DEFSNG letter range
Variables beginning with any letter in the specified range will
be stored and treated as single-precision floating point
variables unless a type declaration character is added to the
variable name. A variable defined as single-precision are
usually stored with 7 digits precision, although printed to 6
digits of precision.

Examples:

200 DEFSNG A Variable names starting with A are single-
precision, unless ending in # % or $. So A becomes a single-
precision variable, but A$ remains a string variable.

300 DEFSNG A,C Variable names starting with A or C are single-
precision, unless ending in # % or $.

400 DEFSNG C-E Variable names startin with C, D, or E are
single-precision, unless ending in # % or $

DEFSNG and the other DEFxxx commands are generally placed near
the beginning of programs for clarity.

DEFSTR letter range
Variables beginning with any letter in the specified range will

19

Variables beginning with any letter in the specified range will
be stored and treated as strings, unless a type declaration
character is added to the variable name. A variable defined as
string can usually store up to 255 characters, although some
BASICs allocate only a fixed small string space which may have
to expanded by a command such as CLEAR n

Examples:

200 DEFSTR A Variable names starting with A are strings,
unless ending in ! # or %. So A becomes a string variable, but
A% remains an integer variable.

300 DEFSTR A,C Variable names starting with A or C are
strings, unless ending in ! # or %.

400 DEFSTR C-E Variable names startin with C, D, or E are
strings, unless ending in ! # or %

DEFSTR and the other DEFxxx commands are generally placed near
the beginning of programs for clarity, since they change the
meaning of variable references without type declaration
characters (variable names not ending in ! # % or $).

DELETE "filename"
Deletes a file from disk, just like DELETE on a QL. You may need
to make changes to "filename" if the drive or file name syntax
is different to that of the QL, e.g. '.' separators which
correspond to the use of '_' in a QL filename.

DELETE line_no-line_no
Using a DELETE command with a line number or range of line
numbers , rather like DLINE on the QL, except that '-' is used
for the range rather than ' TO ' as on the QL.

Examples:

DELETE 100 Delete line 100 only: DLINE 100
DELETE 300-400 Delete lines from 300 to 400 inclusive.
Equivalent to DLINE 300 TO 400 on a QL.
DELETE -200 Delete all lines up to and including 200.
Equivalent to DLINE TO 200 on a QL.

Device Names
QL device names are usually one or three letter names such as
MDV, FLP, WIN and N. Computers running Microsoft-style BASICs
generally use PC-style device names, usually a short sequence of
letters, a drive number and a colon delimiter.

KYBD: Keyboard. Input only. Equivalent to CON for input.
SCRN: Screen. Out put only. Equivalent to SCR or CON for
output on the QL

20

LPT: Parallel port printer. Equivalent to PAR on QL.
LPTn: Parallel port number (n is usually a low number such as
1 or 2). Equivalent to PAR1 or PAR2 on QL.
COMn: Communications or serial port number. Equivalent to
SERn on QL.
CAS1: Cassette tape port.
A: or B: Floppy disk drive, like FLP1_ or FLP2_ respectively.
C: etc Hard disk drive name. C: usually corresponds to WIN1_,
although some QL emulators and compatibles allow the WIN drives
to be assigned to any drive letter, so it does not necessarily
follow that C: is WIN1_, D: is WIN2_ and so on.
PRN: Printer device. On the QL, it might be SER1, SER2, or
PAR for example.

DIM
Like on the QL, DIM sets up an array. On most BASICs the arrays
start with the subscript zero as the first element of the array,
but some BASICs start from 1 - this should make no difference
when converting to SuperBASIC which always starts with element
zero, apart from wasting a little memory an unused '0' element
perhaps.

Where the DIM statement may differ from SuperBASIC is with
strings, which may be defined without an explicit maximum length
specifier as the last part of a DIM statement.

DIM A$(10) generally sets up a 10 or 11 (depending on whether
subscript zero is used by the computer in question) element
string array - 10 or 11 lines of text for example. To convert
this, you'd need to try to work out from the rest of the program
what the length of maximum string to be stored is, and add this
maximum length as an extra dimension at the end of the
definition.

Examples:

DIM A$(10) convert as DIM A$(10,50) assuming you have
established that the strings in the array need to be able to
hold up to 50 characters each.

Beware of case sensitive variable and array names where DIM
A(10) and DIM a(10) may refer to two separate and distinct
arrays - in this case, A() and a() may be completely separate
arrays and you'd have to work around this in SuperBASIC by
creating different array names, or doing something like adding
an underscore '_' to the array name.

Example:

DIM A(10),a(10) could be converted as DIM A(10),_a(10)

DO...LOOP

21

This is a conditional loop structure similar to the REPeat/END
REPeat loops in QL BASIC, and also similar to the WHILE/WEND and
REPEAT/UNTIL loop structures in other versions of BASIC.

DO/LOOP may have a pre-test with WHILE or UNTIL clauses at the
DO end of the loop, or a post-test with a WHILE or UNTIL clause
at the LOOP end of the loop structure.

REM press any key loop - Post-Test
DO
 a$=INKEY$
LOOP WHILE a$=""

The above example loop keeps going until you press a key. In QL
BASIC, it could be written like this. Note that unless you are
using SBASIC, REPeat loops needs a control variable name, and
you may need to invert the test condition - the easy way to do
this is to use NOT as in this example.

REPeat loop
 a$ = INKEY$
 IF NOT(a$="") THEN EXIT loop
END REPeat loop

REM increment with Post-Test
x=0
DO
x=x+1
LOOP UNTIL x=10

in QL BASIC:

x=0
REPeat loop
 x = x + 1
 IF x=10 THEN EXIT loop
END REPeat loop

The tests can be done at the DO end of the loop to prevent
execution of any of the loop content if the test is already met
by the time the loop starts:

DO WHILE INKEY$=""
LOOP

These can be converted to QL BASIC by placing the test just
inside the REPeat end of the loop.

REPeat loop
 IF INKEY$<>"" THEN EXIT loop
END REPeat loop

DRAW

22

DRAW "string" draws an object as specified by "string". The text
contained in "string" is a simple graphics definition language,
where the action is specified by a single letter followed
possibly by a space and a value.

U n Move up
D n Move down
L n Move left
R n Move right
E n Move diagonally up and right
F n Move diagonally down and right
G n Move diagonally down and left
H n Move diagonally up and left

n in each of the preceding commands indicates the distance to
move. The number of points moved is n times the scaling factor
(set by the S command)

M x,y Move absolute or relative. If x has a plus sign (+) or
a minus sign (-) in front of it, it is relative. Otherwise, it
is absolute.

The following two prefix commands may precede any of the above
movement commands.

B Move, but don't plot any points
N Move, but return to the original position when
finished.

The following commands are also available:

A n Set angle n. n may range from 0 to 3, where 0 is 0
degrees, 1 is 90, 2 is 180 and 3 is 270.

C n Set colour n

S n Sets scale factor. n may range from 1 to 255. n divided
by 4 is the scale factor. For example, if n=1, then the scale
factor is 1/4. The scale factor multiplied by the distances
given with the U D L R E F G H and relative M commands gives the
actual distance moved. The default value is 4 so the scale
factor is 1.

X var; Execute substring. This allows you to execute a second
string from within a string,

In all of these commands, the n, x, or y argument can be a
constant like 123 or it can be =variable; where variable is the
name of a numeric variable. The semicolon after the variable
name is required when you use a variable this way, or int he X
command. Otherwise a semicolon is optional between commands.
Spaces are ignored int he string. For example, variables could
be used in a move command this way:

23

M+=X1;,-=X2

Variables can also be specified inthe form VARPTR$(variable),
instead of =variable; . This is useful in programs which were to
be compiled later. For example:

One Method Alternative Method

DRAW "XA$;" DRAW "X"+VARPTR$(A$)
DRAW "S=SCALE;" DRAW "S="+VARPTR$(SCALE)

The X command was commonly used for two pruposes. The first and
most obvious was to allow command string sof longer than 255
characters. The second was to split up complex drawings into
simpler parts, e.g. if drawing a person, the arms, head, legs
and body could be separate strings.

When coordinates which are out of range are given to DRAW, the
coordinate which is out of range is given the closest valid
value. In other words, negative values become zero and and
points to the right or below the screen are changed to the
screen edge values.

There is no direct equivalent to this DRAW command in QL BASIC,
although it might be possible to write a very simple parser
which breaks up the string and calls suitable LINE and LINE_R
commands or turtle graphics commands such as MOVE, TURN, TURNTO,
PENUP, PENDOWN

EDIT
Equivalent to the same command on a QL - the command just enters
the BASIC line editor at the given line number.

ELSE
Similar to the ELSE command in an IF...THEN clause in QL BASIC.
Note that in a single line definition, the QL version will
require a colon before the ELSE keyword, so something like
IF X=2 THEN PRINT"Two" ELSE PRINT"Not two"
becomes
IF X=2 THEN PRINT"Two" : ELSE PRINT"Not two"

ELSE within a multiple line IF...THEN...END IF clause works in
the same way as ELSE in that construct in QL BASIC.

Note that if the statement does not contain the same number of
THEN and ELSE clauses, each ELSE is matched with the closest
unmatched THEN. This may cause some worry in conversion as to
whether the QL version will work in the same way in such cases.
Here is an example:

IF A=B THEN IF B=C THEN PRINT"A=C" ELSE PRINT "A<>C"

24

will not print "A<>C" when A<>B.

ELSEIF
Used as an alternative to starting multiple IF THEN ELSE
statement for complex or cascaded condition checks, ELSEIF
[conditional] THEN provides a means of making more efficient
multiple conditional statements in QBASIC. Here is an example.
Instead of this:

IF C=1 THEN CALL routine1
IF C=2 THEN CALL routine2
IF C=3 THEN CALL routine3

you could write:

IF C=1 THEN
 CALL routine1
ELSEIF C=2 THEN
 CALL routine2
ELSEIF C=3 THEN
 CALL routine3
END IF

Unfortunately, there is no direct equivalent in QL BASIC other
than multiple multi-line IF THEN ELSE statements, although with
a bit of effort a SELect clause can sometimes be used where
simple values and ranges are used.

Here is an example of how to convert the above with multiple IF
clauses.

IF C=1 THEN
 routine1
ELSE
 IF C=2 THEN
 routine2
 ELSE
 IF C=3 THEN
 routine3
 END IF
 END IF
END IF

This particular example is also easily converted using a SELect
statement:

SELect ON C
 =1:routine1
 =2:routine2
 =3:routine3
END SELect

END
25

Terminates program execution, closes all files and returns to
command level. An END statement at the end of a programis
optional. END is broadly equivalent to a STOP command in QL
BASIC, although STOP does not necessarily close any open files -
you would need to add explicit CLOSE statements just before the
STOP command in this case. Usefully, if you have Toolkit 2 on
the QL system, the CLOSE command is extended such that a CLOSE
with no parameter will close allopen BASIC channels with numbers
higher than 2. So, END is broadly equivalent to CLOSE:STOP in
this case.

EOF
Returns the value -1 (true) if the end of a sequential file has
been reached. Broadly equivalent to the QL EOF function,
although the QL version returns a value of 1.

EOF(file_number) is roughly equivalent to EOF(#channel) in QL
BASIC.

EQV
EQV is an equivalence operator, where the result of the logical
expression is true if both values are true or both values are
false, but false if one operand is true and the other false.
Here is the truth table:

X Y X EQV Y
True True True
True False False
False True False
False False True

You could write an approximate equivalent in QL BASIC like this.
In Microsoft-style BASICs the expression would be written as LET
R=X EQV Y whereas the QL BASIC version would be LET R=EQV(X,Y)

1000 DEFine FuNction EQV(X,Y)
1010 IF (X<>0 AND Y<>0) OR (X=0 AND Y=0) THEN
1020 RETurn 1
1030 ELSE
1040 RETurn 0
1050 END IF
1060 END DEFine EQV

ERASE
This command erases arrays from a program. The command takes a
list of array names as its parameter. It can be used to free up
memory taken by an array, or to allow an array to be
redimensioned on systems where this would normally lead to a
Duplicate Definition error. The array name parameter does not
require brackets after it as would be needed in some commands.

26

There is no direct equivalent in QL BASIC, the closest being to
redimension an array to a smaller size, e.g.

100 DIM array(100,100)
200 REMark use the array
300 DIM array(0)

ERL
Returns the line number at which an error occurred. Normally
used in error trapping routines. Broadly equivalent to the ERLIN
function in QL BASIC, although please note that ERLIN does not
work on pre-JS ROM QLs.

ERR
Returns the error code for an error which occurred while running
a BASIC program. Broadly equivalent to the QL ERNUM function,
although the error codes and messages are different.

ERROR
ERROR number is used to simulate the occurrence of a BASIC
error, or to allow error codes to be defined by the user. Can be
used to test how a program copes with a specific error
situation. There is no direct QL equivalent, although sometimes
something like REPORT number:STOP may sometimes be used (note
that REPORT may not work on pre-JS ROM QLs).

EXIT
Allows the immediate exit from a subroutine or loop, without
processing the rest of that subroutine or loop code. The command
EXIT in versions of BASIC such as QBASIC is followed by a second
word which signifies the type of structure to be exited.

EXIT DEF exits from a DEF FN function
EXIT DO exits from a DO loop, execution continues

with the command directly after the LOOP
command

EXIT FOR exits from a FOR loop, execution
continues with the command directly after
the NEXT command

EXIT FUNCTION exits a FUNCTION procedure, execution
continues with the statement directly
after the function call

EXIT SUB exits a SUB procedure, execution
continues with the statement directly
after the procedure call

In QL BASIC you will need to convert this as either an EXIT
command (if a looping structure such as a FOR or REPEAT loop) or
a RETURN statement in the case of a function or procedure.

27

EXP
EXP(X) returns e (base of natural logarithms) to the power of X.
Equivalent to the same function in QL BASIC.

FIELD
FIELD allocates space for variables in a random access file
buffer. It is used to define the field widths associated with
given variable names.

FIELD #file_number,field_width AS string_variable_name

This allocates "field_width" bytes to data held in the given
variable name, and the "field_width AS string_variable_name"
part may be repeated as required.

To calculate the total record size, add up the widths of each
field defined in this command, e.g.

FIELD #file_no,10 AS A$,20 AS B$

is 10+20 or 30 bytes wide.

There is no direct equivalent in QL BASIC. You will need to
manually allocate field widths within the appropriate record
size and use a file positioning command to move the file pointer
around as required, then use something like PRINT
#file_number,string_variable_name$; (note the semi-colon at the
end to prevent an extra linefeed being sent to the file which
might overwrite the start of the next field). If you have
Toolkit 2 on your QL system, you can use the BGET or BPUT
commands with backslashes to set the file pointer to move around
records and fields.

FILES
FILES displays the name of files residing on a diskette. The
FILES command in Microsoft BASIC is similar to the DIR command
in DOS.

FILES [filespec] where filespec is a string expression for the
file specification (drive name etc). If filespec is omitted, all
the files on the DOS default drive will be listed.

In QL BASIC, use the DIR command.

FIX
FIX(X) returns the truncated integer part of X. FIX(X) is
equivalent to SGN(X)*INT(ABS(X)). The major difference between
FIX and INT in MS BASIC is that FIX does not return the next
lower number for negative X. For example, PRINT FIX(-58.75) will

28

lower number for negative X. For example, PRINT FIX(-58.75) will
return -58, whereas on the QL PRINT INT(-58.75) will return -59.
So we need to write a small function which takes the integer
part of the absolute values then changes the sign if negative:

DEFine FuNction FIX(X)
 IF X<0 THEN RETurn -INT(ABS(X)): ELSE RETurn INT(X)
END DEFine FIX

FN
Used when defining functions, FN is pretty much like the
equivalent keyword in QL BASIC. In MS BASIC, the definition is
that of a single line function definition only, whereas in QL
BASIC it extends over multiple lines. Also, when called, in MS
BASIC the function name must be preceded by FN, whereas only the
function name is required in QL BASIC.

100 DEF FNDOUBLE(X)=2*X
200 PRINT FNDOUBLE(8)

On a QL, you would need to rewrite this over multiple lines:

100 DEFine FuNction DOUBLE(X)
110 RETurn 2*X
120 END DEFine DOUBLE
200 PRINT DOUBLE(8)

FOR
Defines a FOR/NEXT loop, broadly equivalent to the QL version of
the command.

100 FOR A=1 TO 11 STEP 2
110 PRINT A
120 NEXT a

QL BASIC will generally support ending of FOR loops with a NEXT
command, although it is better to use END FOR in place of NEXT
to indicate the end of a loop:

100 FOR A=1 TO 11 STEP 2
110 PRINT A
120 END FOR A

Note that FOR loops may have an integer index variable, so
allows something like:

200 FOR X%=1 TO 4
210 PRINT X%
220 NEXT X%

Minerva and SBASIC may allow integer loop control variables,
some Sinclair QL ROM versions may not, in which case you'll have
to use a floating point control variable (use X instead of X% in

29

to use a floating point control variable (use X instead of X% in
this example). Beware of non-integer calculation results where
programs modify the loop control variable value within the loop.

If you plan to compile the converted BASIC program, you may wish
to try using an implicit type definition for a variable name as
an indirect method of converting FOR/NEXT loops which use
integer variables. For QLiberator you will need a DEF_INTEGER
statement to declare a variable with a conventionally floating
point name type (e.g. X) as actually to be compiled as an
integer. For Turbo compiler, the corresponding directive is
IMPLICIT%

Inline FOR loops on a QL do not necessarily require a NEXT
clause. The MS BASIC loop

100 FOR Y=0 TO 19 : PRINT Y : NEXT Y

could be converted as just:

100 FOR Y=0 TO 19 : PRINT Y

When loops are nested in MS BASIC, the NEXT clause can specify
more than one variable name, whereas an explicit NEXT or END FOR
is required for each variable name in QL BASIC:

100 FOR X=0 TO 31
110 FOR Y=0 TO 10
120 PRINT" ";
130 NEXT Y,X

Convert that to:

100 FOR X=0 TO 31
110 FOR Y=0 TO 10
120 PRINT" ";
130 END FOR Y
140 END FOR X

You may encounter NEXT statements with no variables specified.
In this case the most recently executed FOR loop counter is
updated.

100 FOR X=0 TO 31
110 NEXT

The loop control variable must be explicitly stated in QL
SuperBASIC:

100 FOR X=0 TO 31
110 END FOR X

FRC
Returns the fractional part of a supplied value, the part left

30

Returns the fractional part of a supplied value, the part left
after removing the whole number part. In other words, the
complementary function to INT.

QL BASIC has no direct equvalent to FRC, so we need to write
one. Note that as INT generally rounds down negative number, it
is wise to use ABS in this function to ensure that FRC works
correctly for negative numbers.

200 DEFine FuNction FRC(x)
210 RETurn ABS(x)-INT(ABS(x))
220 END DEFine FRC

FRE
There are two forms of this function. FRE returns the amount of
free memory.

PRINT FRE(0) just returns the amount of free memory in bytes

PRINT FRE("") does a garbage collection before returning the
amount of free memory.

Both can be replaced by the Toolkit 2 FREE_MEM function in QL
BASIC. If the FREE_MEM function is not implemented on your
system, you may be able to use the following PEEK as an
approximation, which only works on a standard QL:

PRINT PEEK_L(163856)-PEEK_L(163852)

FUNCTION and END FUNCTION
This command is used in QBASIC to define a multi-line function,
broadly equivalent to DEF FN is QL BASIC.

Such a function is essentially the same as a subroutine which
returns a value. The return value is created by using the
function name as a variable - the return value is then passed to
the calling expression.

FUNCTION name (parameters)
 REM shared variables declarations here
 rem ...
 name = result
 REM ...
END FUNCTION

This corresponds to:

DEFine FuNction name(parameters)
 REM ...
 RETurn result
 REM ...
END DEFine name

31

QBASIC lso supports an older form of multi-line function
definition, as defined with the DEF FN command.

DEF FNname(parameters)
 REM ...
 FNname = RESULT
 REM ...
END

This would be converted using the same code in QL BASIC.

GET
GET #file_number,record_number reads a record from a random
access file into the random access file buffer. file_number is
similar to a channel number in QL BASIC. record_number is
usually the nth record stored in a file, up to a highest value
of 32767. If record_number is not specified, the next record is
fetched from the file.

The conversion method will depend on the way in which the
program concerned works and how the file is saved in the first
place. Remember that GET (and the opposite, PUT) works via the
buffer.

You may be able to convert the program by PRINTing variables to
file and using INPUT to retrieve them, although it's possible
that fixed width fields may be involved in which case a large
rewrite may be needed for QL BASIC which does not handle files
in quite the same way.

GET (x1,y1)-(x2,y2),arrayname
This version of GET is a graphics command which reads points
from a given area of the screen. It is used together with the
PUT command (q.v.) to eprform an action similar to a cut and
paste.

x1,y1 coordinates of top left corner of the block to be
copied.
x2,y2 coordinates of bottom right corner of the block to be
copied.
arrayname numeric array to hold colour values of each
pixel in the block grabbed. The array must have the same
dimensions as the block to be grabbed.

GET and PUT can be used for animation, for example, where an
object is grabbed from the screen to be redrawn in a different
position.

An approximate QL BASIC adaptation of GET relies on having a
function to read the colour of a pixel on the screen. Such
functions are available in some toolkits - we shall assume here
you are using such an extension called PIXEL to check the colour

32

you are using such an extension called PIXEL to check the colour
of a pixel.

1000 DEFine PROCedure GET2(x1,y1,x2,y2)
1010 w = x2-x1+1 : REMark width of block in pixels
1020 h = y2-y1+1 : REMark height of block in pixels
1030 DIM array(w-1,h-1)
1040 FOR x = 0 to w-1
1050 FOR y = 0 TO h-1
1060 array(x,y) = PIXEL(x,y)
1070 END FOR y
1080 END FOR x
1090 END DEFine GET2

The procedure is called GET2 to avoid a clash with the file
handling procedure called GET in Toolkit 2. The block is read
into an array imaginatively called array(). This block can then
be restored with the PUT2 procedure listed under PUT below.

Some versions of this command store the width and height of the
block in the first two entries of the array.

GOSUB
GOSUB is generally used in exactly the same way as the GOSUB
command in QL BASIC. Additionally, some versions of BASIC allow
GOSUB to a label within the program rather than a line number.
Either substitute the actual line number for the label, or
define a variable of same or similar name to the label name.

GOTO
GOTO is generally used in exactly the same way as the GOTO
command in QL BASIC. Additionally, some versions of BASIC allow
GOTO to a label within the program rather than a line number.
Either substitute the actual line number for the label, or
define a variable of same or similar name to the label name. In
an IF THEN line involving GOTO lines, the keyword GOTO may
sometimes be omitted, but must be included in QL BASIC:

1000 IF X=20 THEN 2000

Convert as

1000 IF X=20 THEN GOTO 2000

HEX$
v$ = HEX$(n) returns a string which represents the hexadecimal
value of the decimal argument. n is a numeric expression in the
range -32768 to 65535. If n is negative, the two's complement
form is used. That is, HEX$(-n) is the same as HEX$(65536-n)

You could convert this function using the HEX$ function in
Toolkit 2, although you'd need to specifiy the 'width' of the

33

Toolkit 2, although you'd need to specifiy the 'width' of the
value by giving the number of bits to use to represent the
value. Here is a function written in QL BASIC which more closely
mimics the HEX$ function as described here.

3000 DEFine FuNction HEX$(dec)
3010 LOCal x,c,c$
3020 x = dec : IF x < 0 THEN x = 65536-x
3030 c$ = ""
3040 REPeat loop
3050 c = x - (INT (x/16) * 16)
3060 IF c < 10 THEN
3070 c$ = CHR$(48+c) & c$: REMark 0-9
3080 ELSE
3090 c$ = CHR$(55+c) & c$: REMark A-F
3100 END IF
3110 x = INT (x/16)
3120 IF x = 0 THEN EXIT loop
3130 END REPeat loop
3140 RETurn c$
3150 END DEFine

IF
IF clauses in MS BASIC are generally single line clauses, and
are generally the same as the equivalent single line IF
statements in QL BASIC, albeit with minor variations possible
mostly involving the ELSE part.

1000 IF X=2 THEN GOTO 2000 ELSE GOTO 3000

would need to be converted as having a ':' before the ELSE
keyword:

1000 IF X=2 THEN GOTO 2000 : ELSE GOTO 3000

The 'THEN' before the 'GOTO' may sometimes be omitted in MS
BASIC:

1000 IF X=2 GOTO 2000

Convert by adding a THEN:

1000 IF X=2 THEN GOTO 2000

IMP
The IMP or Implication operator is a logical operator, with the
following truth table for results. Basically, the result of x
IMP y is false only if x is true and y is false.

X Y X IMP Y
True True True
True False False
False True True

34

False False True

An approximate equivalent in QL BASIC could be written like
this.

2000 DEFine FuNction IMP(X,Y)
2010 IF X<>0 AND Y=0 THEN RETurn 0 : ELSE RETurn 1
2020 END DEFine IMP

Whereas the original expression would be written as LET R=X IMP
Y, the QL BASIC equivalent is a function written as LET
R=IMP(X,Y)

INKEY$
Works like the equivalent INKEY$ function in QL BASIC, but does
not allow channel numbers or timeouts.

INP
INP(I) returns the byte value read from port number I, which
must be in the range 0 to 255. There is no direct equivalent in
QL BASIC. INP is the opposite to the OUT statement (q.v.)

INPUT
Like the INPUT command in QL BASIC, this receives input from the
keyboard during program execution.

INPUT[;]["prompt";] variable[,variable]...

When the program sees an INPUT statement, it pauses and displays
a question mark on the screen to indicate that it is waiting for
data. If a "prompt" is included, the string is displayed before
the question mark. You may then enter the required data from the
keboard.

INPUT can use a comma instead of a semicolon after the prompt
string to suppress the question mark. For example, the statement
INPUT"ENTER BIRTHDATE",B$ prints the prompt without the question
mark.

As there is no equivalent to this in the QL BASIC version of
INPUT, the question mark must be explicitly included in the
prompt string if required.

Different versions of BASIC may or may not print spaces before a
variable, so you may come across something like INPUT"ENTER";A
where you would have to add a space to the prompt string in QL
BASIC - INPUT"ENTER ";A

The data that is entered is assigned to the variable(s) given in
the variable list. The data items supplied must be separated by
commas, and the number of data items must be the same as the

35

commas, and the number of data items must be the same as the
number of variables in the list.

The type of each data item that you enter must agree with the
type specified by the variable name. Strings entered in response
to an INPUT statement need not be surrounded by quotation marks
unless they contain commas or significant leading or trailing
spaces.

Some versions of BASIC allow you to press ENTER with no
characters inputted in response to INPUT of a numeric variable -
the value of zero (0) is then given to the numeric variable.

Some versions of BASIC allow a single quote mark to be included
between prompts to indicate a newline between prompt strings,
e.g. INPUT "HELLO"'"THERE";A - this can be replaced by a
backslash (\) character in QL BASIC:

INPUT"HELLO"\"THERE";A

INPUT #
Reads data items from a sequential device or file and assigns
them to program variables.

INPUT #filenum,variable [,variable]...

This is similar to INPUT #channel,variable in QL BASIC, although
for string items, the first character encountered that is not a
space, carriage return or linefeed is assumed to be the start of
the string item. If this first item is a quotation mark ("), the
string item will consist of all characters read between the
first quotation mark and the second, so a quoted string may not
contain a quotation mark as a character.

INPUT$
INPUT$(X,#Y) is a function which returns a string of X
characters from the terminal (keyboard) if the file number (#Y)
is not from specified, or from file number Y if specified.
Unless you have an equivalent toolkit extension such as INPUT$
of Turbo Toolkit (parameters in reverse order - INPUT$(#Y,X) in
the Turbo Toolkit version), the easiest way to replace this is
to write a function which uses INKEY$ to fetch a string of a
given number of bytes from a specified channel:

1000 DEFine FuNction INPUT_STRING$(X,Y)
1010 LOCal counter,string$
1020 string$ = ""
1030 FOR A = 1 TO X
1040 string$ = string$ & INKEY$(#Y)
1050 END FOR A
1060 RETurn string$
1070 END DEFine INPUT_STRING$

36

INSTR
INSTR([I,]X$,Y$) is a function which searches for the first
occurrence of Y$ within X$ and returns the position at which the
match was found, starting from 1, or returns 0 if no match was
found. An optional first parameter allows the start position of
the search within X$ to be specified.

The QL BASIC version of INSTR is broadly similar, although the
parameters are given differently. LET P=INSTR(X$,Y$) may be
replaced by LET P=Y$ INSTR X$.

The version with three parameters is a bit more difficult and
fiddly to convert, but may be done using string slicing once we
know how the MS BASIC version works, here's an example:

10 X$="ABCDEB"
20 Y$="B"
30 P=INSTR(4,X$,Y$)

This returns a value of 6 into the variable P. In other words,
start searching from the fourth character, return the position
at which a match was found in the full string - in this case,
the last character position (sixth character of Y$).

QL BASIC version:

10 X$ = "ABCDEB"
20 Y$ = "B"
30 P = Y$ INSTR X$(4 TO LEN(X$) : IF P > 0 THEN P = P+4-1

INT
Exactly the same as the INT function on the QL.

KEY
Sets or displays soft keys, similar to altkeys or hotkeys in QL
BASIC. This command lets you assign a string to any of the 10
function keys.

KEY n,x$ assigns the string expression x$ to function key number
n. In QL BASIC, the function keys take the following key codes,
bearing in mind that F6-F10 are SHIFT F1-SHIFT F5 respectively
on a QL, as it only has 5 function keys.

KEY 1 to 5 are QL key codes 232, 236, 240, 244, and 248.
KEY 6 to 10 are QL key codes 234, 238, 242, 246, and 250.

So, KEY 6,x$ would be translated to QL basic as ALTKEY
CHR$(234),x$ for example.

Other variations of this command are KEY ON, which displays the
key definitions on the 25th line of the screen. KEY OFF turns

37

key definitions on the 25th line of the screen. KEY OFF turns
off this display. KEY LIST displays all the key definitions,
rather like a HOT_LIST command in QL BASIC.

KILL
KILL "filename" is the same as DELETE "filename" in QL BASIC.

LEFT$
LET A$=LEFT$(X$,J) returns a string comprising the leftmost J
characters of X$. This is equivalent to LET A$=X$(1 TO J) in QL
BASIC. If J is 0, a null string is returned, while a value of J
greater than the length of X$ means that the full length of X$
is returned. Both of these cases may cause an error in QL
SuperBASIC. So the safest way is to control the range of values
J can take in this example:

REM convert LEFT$(X$,J)
IF J=0 THEN
 A$=""
ELSE
 IF J>LEN(X$) THEN J=LEN(X$)
 A$ = X$(1 TO J)
END IF

LEN
LEN(A$) is a function which returns the length of the string
given as a parameter. It works the same as the equivalent
function in QL BASIC.

LET
The use of the LET command is broadly the same as in SuperBASIC.
LET is optional in many BASICs, where you can use either 100 LET
A=0 or 100 A=0.

Some BASICs permit multiple assignments to be made with one LET
statement, e.g. LET A=1,B=2,C=3 so you need to break these apart
into multiple statements such as LET A=1 : LET B=2 : LET C=3

LINE INPUT
LINE INPUT [;] [<"prompt string">;] <string variable>

Its purpose is to input an entire line of up to 254 characters
to a string variable, without the use of delimiters. The prompt
string works broadly like that on a QL BASIC INPUT command.
Unlike standard MS BASIC INPUT, a '?' is not auotmatically
printed. The optional ';' between LINE INPUT and the prompt
string suppresses the carriage return typed by the user to end
the input line is not echoed at the terminal.

LINE INPUT is broadly similar to string INPUT on the QL, except
38

LINE INPUT is broadly similar to string INPUT on the QL, except
that the use of the semi-colon to suppress the carriage return
may be simulated by adding a semi-colon at the end:

100 INPUT ;"Enter something";S$

becomes

100 INPUT "Enter something";S$;

LINE INPUT#
LINE INPUT# file_number,string_variable$ is used to fetch a line
of up to 254 characters of data from a sequential data file to a
string variable. LINE INPUT# is similar to INPUT# in QL BASIC,
although you may need to be careful about how the data is
organised and what end of line characters are used if you work
directly from the original MS BASIC data files.

LINE INPUT #file_number,S$ corresponds to INPUT#channel,S$ in QL
BASIC.

LIST
Lists the given line number or range of line numbers to the
screen. Equivalent to LIST on the QL, but uses '-' to specify
range of line numbers instead of ' TO '.

Examples:

LIST List all of the program to screen. Use the same
command on a QL.
LIST n Lists line number n to the screen. Use the same
command on a QL.
LIST m,n,o Lists the given line numbers only to the
screen. Use the same command on a QL.
LIST m-n Lists all line numbers from m to n inclusive to
the screen, like LIST m TO n on a QL.

LLIST
Like LIST, but sends output to a printer device, or sometimes to
a file. Use the OPEN/LIST#/CLOSE equivalent on a QL, e.g. to
list program to SER1, use:

OPEN #3,"SER1":LIST #3: CLOSE #3

On a QL you could also use SAVE SER1, interestingly!

LOAD
The LOAD command corresponds to the QL BASIC LOAD command, apart
from syntactical differences in the filename itself of course.
The LOAD command may take a ",R" additional parameter, which
signifies that the program should start running after it has

39

signifies that the program should start running after it has
loaded, so LOAD "filename",R corresponds to LRUN "filename" in
QL BASIC.

LOC
LOC file_number returns the record number just read or written
from a GET or PUT statement with random files. If the file was
opened but no disk I/O has been performed yet, LOC returns a 0.
With sequential files, LOC returnsthe number of sectors (128-
byte blocks) read from or written to the file since it ws
OPENed. Such files do not work in the same way on the QL so
there is no directly equivalent method of converting this.

LOCATE
LOCATE [row][,[col] [,[cursor] [,[start] [,stop]]]]
Positions the cursor on the active screen. Optional parameters
turn the blinking cursor on and off and define the size of the
blinking cursor.

row is a numeric expression in the range 1 to 25 (or as
many lines as fit on the screen in this version of BASIC). It
indicates the screen line number where you want to place the
cursor. Note: some versions of BASIC may use 0 to 24 instead of
1 to 25.

col is a numeric expression in the range 1 to 40 or 1 to
80, depending on which screen width. It indicates the screen
column number where you want to place the cursor. Note: some
versions of BASIC may use 0 to 39 or 0 to 79 instead of 1 to 40
or 1 to 80.

cursor is a value indicating whether the cursor is visible or
not. A 0 (zero) indicates off, 1 (one) indicates on.

start is the cursor starting scan line. It must be a numeric
expression in the range 0 to 31.

stop is the cursor stop scan line. It also must be a numeric
expression in the range 0 to 31.

cursor, start and stop do not apply when the computer is in
graphics mode.

A LOCATE command with just two parameters can be converted using
an AT command in QL BASIC. So LOCATE y,x would become AT
y-1,x-1.

The "cursor" parameter could be emulated in QL BASIC by using a
separate command such as CURSEN (cursor enable) or CURDIS
(cursor disable) from Toolkit 2. The "cursor" parameter can be
used with the "row" and "col" parameters, or without - either of
these examples would be valid:

40

LOCATE row, col, cursor
LOCATE ,,cursor

There is no way to emulate the "start" and "stop" parameters.

LOF
LOF(file_number) returns the length (number of bytes) allocated
to the file identified by "file_number". With communications
files, LOF returns the amount of free space in the input
buffers. If you have Toolkit 2 on your QL system,
FLEN(#file_number) will perform an approximately equivalent
function.

LOG
LOG(X) returns the natural logarithm of X. X must be greater
than zero. Corresponds to LN(X) in QL BASIC.

LOWER, UPPER and MIXED
These functions alter the case of a given string. LOWER converts
the string entirely to lower case, UPPER converts it to upper
case and MIXED converts the first character too upper case and
the remainder of the string to lower case. Similar to what is
sometimes called 'Sentence case'

LOWER('HELLO') returns "hello" (without the quotes)
UPPER('Hello') returns "HELLO"
MIXED('hELLO') returns "Hello"

Some BASICs may append a '$' symbol to the names (i.e. LOWER$,
UPPER$, MIXED$) to indicate that they are type string.

QL BASIC has no direct equivalent to these, so we have to write
equivalent functions such as these.

2350 DEFine FuNction LOWER (u$)
2360 LOCal t$,a,c
2370 REMark convert u$ to lower case
2380 t$ = u$: REMark working copy of u$
2390 FOR a = 1 TO LEN(t$)
2400 c = CODE(t$(a))
2410 IF c > 64 AND c < 91 THEN t$(a) = CHR$(c+32)
2420 END FOR a
2430 RETurn t$
2440 END DEFine LOWER
2450 :
2460 DEFine FuNction UPPER (u$)
2470 LOCal a,c,t$
2480 REMark convert u$ to upper case
2490 t$ = u$: REMark working copy of u$
2500 FOR a = 1 TO LEN(t$)
2510 c = CODE(t$(a))

41

2520 IF c > 96 AND c < 123 THEN t$(a) = CHR$(c-32)
2530 END FOR a
2540 RETurn t$
2550 END DEFine UPPER
2560 :
2570 DEFine FuNction MIXED(u$)
2580 LOCal a,c,t$
2590 REMark convert string to have upper case first letter
only
2600 t$ = u$: REMark working copy
2610 c = CODE(t$)
2620 IF c > 96 AND c < 123 THEN t$(1) = CHR$(c-32)
2630 FOR a = 2 TO LEN(t$)
2640 c = CODE(t$(a))
2650 IF c > 64 AND c < 91 THEN t$(a) = CHR$(c+32)
2660 END FOR a
2670 RETurn t$
2680 END DEFine MIXED

LPOS
Returns the current position of the print head within the
printer buffer for the parallel port number given as a parameter
in the function vall v=LPOS(n).

There is no equivalent function in QL BASIC.

LPRINT
Similar to the PRINT command, except that it sends output to a
printer instead of the screen. To convert this, a channel should
be open to a printer so that you can use PRINT#channel to ensure
output is sent to the printer. You could also write a simple
procedure called LPRINT to open a temporary channel to the
printer to send output to the printer as a quick and dirty
conversion method if it's only the occasional single item,
instead of a range of items as might be the case with the full
allowed PRINT-style syntax.

DEFine PROCedure LPRINT(text$)
 OPEN #3,"SER1": REMark printer port- change as required
 PRINT #3,text$
 CLOSE #3
END DEFine LPRINT

An extnded version, LPRINT USING "string_expression",item$
allows formatting of printed output in a similar way to the
PRINT USING command.

LSET
LSET <string_variable>=<string_expression>
RSET <string_variable>=<string_expression>

42

The purpose of this keyword is to move data from a random file
buffer (in preparation for a PUT statement).

If <string_expression> requires fewer bytes than were FIELDed to
<string_variable>, LSET left-justifies the string in the field,
and RSET right-justifies the string. (Spaces are used to pad the
extra positions). If the string is too long for the field,
characters are dropped from the right. Numeric values must be
converted to strings before they are LSET or RSET. See MKI$,
MKS$ and MKD$

Examples: 1000 LSET A$=MKS$(AMOUNT)
 1010 LSET D$=DESC($)

LSET or RSET may also be used with a nonfielded string variable
to left-justify or right-justify a string in a given field. For
example, the program lines

110 A$ = SPACE$(20) : RSET A$=N$

right-justify the string N$ in a 20-character field. This can be
very handy for formatting printed output.

There is no direct equivalent to this in QL BASIC, but it is
fairly easy to approximate its function via QL string handling
functions.

The basic idea is to try to force strings to a given length so
that they will fit in a field of a random access file with that
length. So if the field is designed to hold a 20 character
string, you would need to pad out or truncate a string to
exactly 20 characters long by either adding the required number
of spaces, or chopping characters off the appropriate end of the
string if it is already too long.

So we could write procedures like this:

1000 DEFine PROCedure Lset(variable$,length,expression$)
1010 variable$ = expression$
1020 IF LEN(variable$) < length THEN
1030 variable$ = variable$ & fill$(' ',length -
LEN(expression$))
1040 ELSE
1050 IF LEN(variable$) > length THEN variable$=variable$(1
TO length)
1060 END IF
1070 END DEFine Lset

In order to write an Rset procedure, you would have to work out
if the string is to be right justified by adding spaces between
words in the string, or merely byadding spaces to the left of
the string.

LTRIM$
43

This function strips any leading spaces from a string whose name
is given in the function's paramater, which may be a text
constant or a string variable or a single array element.

n$ = LTRIM$(" Hello"

returns "Hello" (without the quote marks).

n$ = LTRIM$(s$) returns a copy of s$ but without any spaces at
the start of the string.

LTRIM$ may be written as a function in QL BASIC like this:

1000 DEFine FuNction LTRIM$(s$)
1010 LOCal t$,a
1020 REMark return copy of s$ minus any leading spaces
1030 t$ = "" : REMark in case s$ is all spaces
1040 FOR a = 1 TO LEN(s$)
1050 IF s$(a) <> " " THEN t$ = s$(a TO LEN(s$)) : EXIT a
1060 END FOR a
1070 RETurn t$
1080 END DEFine LTRIM$

The corresponding function RTRIM$ (q.v.) strips any spaces from
the right hand side of the string.

Stripping spaces from both sides of a string is achieved by
combining the two functions.

PRINT LTRIM$(RTRIM$(s$))

MAX and MIN
These functions return the maximum or minimum respectively of
the two values supplied as parameters. Some forms of these
functions may only handle numeric values, while others may also
handle strings.

100 LET value=MAX(2,4) would return the value 4, the higher of
the two values given. In the case of equality, such as LET
value=MAX(3,3) the value of the first parameter is returned, in
this case 3.

MIN works in a similar way for the minimum value, e.g. value =
MIN(2,4) returns the value 2.

The paramters may be numbers or numeric variables. Some versions
of BASIC allow for expressions too, e.g. LET
value=MIN(VAL("1"),VAL("2")).

QL BASIC has no direct equivalents, although it is easy to write
similar functions.

44

100 DEFine FuNction MAX(val1,val2)
110 IF val1 > val2 THEN
120 RETurn val1
130 ELSE
140 RETurn val2
150 END IF
160 END DEFine MAX
170 :
180 DEFine FuNction MIN(val1,val2)
190 IF val1 < val2 THEN
200 RETurn val1
210 ELSE
220 RETurn val2
230 END IF
240 END DEFine MIN

MERGE
Similar to the MERGE command in QL BASIC, except that the format
of the filename parameter may obviously vary in line with the
differences between the operating systems.

MID$
MID$(S$,N,M) is a string slicing function which returns a
section of the string S$ which is M characters long starting at
subscript N. If M is not specified, it defaults to the last
character of S$.

Examples:
A$=MID$("HELLO",2,3) returns the three letters ELL
A$=MID$("HELLO",4) returns LO

The best way to convert this is to write a function like this:

DEF FN Mid$(S$,N,M)
 RETurn S$(N TO N+M-1)
END DEF Mid$

That example doesn't cater for the case where the third
parameter is not specified.

MKD$ MKI$ MKS$
These three functions convert numeric values to string values.
Any numeric value that is placed ina random access file buffer
with LSET or RSET statements must be converted to a string. MKI$
converts an integer to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$ converts a double
precision number to an 8-byte string.

The syntax is:

LET I$=MKI$(integer_expression)

45

LET S$=MKS$(single_precision_expression)
LET D$=MKD$(double_precision_expression)

There is no direct equivalent to these functions in QL BASIC,
and QL BASIC doesn't distinguish between single and double
precision numeric values, so you will have to try to figre out
exactly what the program is doing and write appropriate code to
handle the program code concerned.

If it is simply a matter of making strings of fixed length to
write to data files, you may be able to write code based on the
BPUT and PUT keywords from Toolkit 2 to write QL data values to
files in fixe dlength formats (2 bytes for integers, 6 bytes for
floating point values on QL).

MOD
MOD gives the integer value that is the remainder of an integer
division. Its use is the same as MOD in QL BASIC.

MOTOR
The MOTOR command turns the cassette player motor off (0) or on
(non-zero). Not required on the QL.

NAME
Changes the name of a file on disk.

NAME <old_filename> AS <new_filename>

is broadly equivalent (apart from differences in filename
syntax) to

RENAME old_filename TO new_filename

in QL BASIC. Note that RENAME is a Toolkit 2 extension and not
built into original unexpanded Sinclair QL BASIC.

NEW
Like NEW on a QL, this clears out an existing program and resets
all variables. Usually, the only difference to the QL version is
that the string space allocated by CLEAR N is not reset.

NEXT
NEXT is used as the closing statement in a FOR/NEXT loop,
corresponding broadly to the use of END FOR in QL BASIC,
although in most cases the QL BASIC NEXT statement may be used
as an equivalent too. In some versions of BASIC, in nested
FOR/NEXT loops the NEXT keyword may take more than one loop
variable name, for example:

46

FOR x=1 TO 10
FOR y=1 TO 2
REM any code here
NEXT y,x

In QL BASIC, NEXT y,x should be replaced by NEXT y:NEXT x or
(better) END FOR y: END FOR x

In some versions of BASIC, the loop variable name may be
omitted, in which case the most recently executed FOR loop
counter is incremented. QL SuperBASIC has no equivalent for this
- FOR loop names must be specified, although SBASIC does allow
such omission of loop names:
FOR x=1 TO 10
PRINT x
NEXT
is perfectly valid in SBASIC, but not in SuperBASIC.

NOT
The logocal NOT is broadly the same as the use of NOT in QL
BASIC. A bitwise NOT such as x=NOT y corresponds to the use of
the double tilde in QL BASIC: x= ~~ y
where the two's complement of an integer is the bit complement
plus one, or NOT x=-(x+1)

OCT$
v$=OCT$(n) returns a string which represents the octal value of
the decimal argument. n is a numeric expresion in the range
-32768 to 65535. If n is negative, the two's complement form is
used, i.e. OCT$(-n) is the same as OCT$(65536-n).

Here are a pair of functions written in QL BASIC to convert
decimal numbers into octal (OCT$) and vice versa (DECIMAL).

8000 DEFine FuNction OCT$(dec)
8010 LOCal x,c$
8020 x = dec : IF x < 0 THEN x = 65536-x
8030 c$ = "" : REMark octal character string
8040 REPeat loop
8050 c$ = CHR$(48+x-(INT(x/8)*8)) & c$
8060 x = INT (x/8)
8070 IF x <= 0 THEN EXIT loop
8080 END REPeat loop
8090 RETurn c$
8100 END DEFine OCT$
8110 :
8120 DEFine FuNction DECIMAL(bs$)
8130 LOCal d,l,n,v
8140 d = 0
8150 l = LEN(bs$)
8160 FOR n = 1 TO l
8170 v = CODE(bs$(n))-48

47

8180 d = d + 8^(l-n) * v
8190 END FOR n
8200 RETurn d
8210 END DEFine DECIMAL

ON
The ON keyword may be used in ON ERROR GOTO <line_number>
clauses, or in ON...GOTO and ON...GOSUB selection clauses.

ON ERROR GOTO has no direct equivalent in QL BASIC, although it
may be possible to use WHEN ERRor to provide an approximation of
the function, but be aware that early QL ROMs do not include
support for the WHEN ERRor structure and it is also bugged in
some early ROM versions. Basically, when an error occurs
(indicated by the value of ERROR becoming non-zero) program flow
jumps to an indicated line number to provide an action to handle
the error condition.

100 ON ERROR GOTO 1000

may be converted as:

100 WHEN ERRor
101 GOTO 1000
102 END WHEN
1000 PRINT"An error has occurred."

In Microsoft-style BASICs an ON ERROR GOTO clause may be turned
off by executing something like ON ERROR GOTO 0. In QL BASIC, an
empty WHEN ERRor clause is an approximate equivalent for turning
off WHEN ERRor error trapping.

ON x GOTO and ON x GOSUB are equivalent to the same structures
in QL BASIC. The value of x (starting from 1) decides which line
number in the list after GOTO or GOSUB is jumped to. Microsoft
BASICs can handle a list withvalues from 1 to 255 for the line
number selection and if the value given is out of range (less
than 0, greater than 255, or higher than the amount of line
numbers given) the program continues from the next executable
statement, whereas a QL BASIC program will stop with an error
message.

OPEN
Command format:
OPEN <mode>,[i]<file number>,<filename>[,<reclen>]
Purpose: To allow I/O to a disk file.

A disk file must be OPENed before any disk operation can be
performed on that file. OPEN allocates a buffer for I/O to the
file and determines the mode of access that will be used with
the buffer.

48

<mode> is a string expression whose first character is one of
the following:
O Specifies sequential output mode.
I Specifies sequential input mode.
R Specifies random input/output mode.
<file number> is an integer expression whose value is between 1
and 15. The number is then associated with the file for as long
as it is OPEN and is used to refer other disk I/O
statements to the file.
<filename> is a string expression containing a name that
conforms to the operating system's rules for disk filenames.
<reclen> is an integer expression which if included, sets the
record length for random files. The default record length is 128
bytes.
Note
Example: A file can be OPENed for sequential input or random
access on more than one file number at a time. A file may be
OPENed for output, however, on only one file number at a time.

It is difficult to convert this precisely to QL BASIC, although
the OPEN command and its variants, for example, the use of
OPEN_NEW to open a new file for output, or OPEN_IN to open a
file just for input.

OPTION BASE
OPTION BASE n declares the minimum value for array subscripts. n
is 0 or 1 and OPTION BASE should be used before any arrays are
declared. There is no equivalent in QL BASIC - arrays always
start from a 0 subscript.

OR
The use of the logical OR is the same as that in QL BASIC,
whereas the bitwise operator OR corresponds to the use of the
double bar operator in QL BASIC. In other words, x = y OR z
corresponds to x = y || z in QL BASIC.

Order Of Arithmetic Operations
This refers to the order of priority in whch the elements of
calculations are carried out. this may vary somewhat between
versions of BASIC and some adjustment by hand may be required,
e.g. adding parentheses (brackets) to force the order of
precedence.

Operations in the innermost level of parentheses are performed
first, then evaluation proceeds to the next level out, etc.
Operations on the same nesting level are generally performed
according to the following hierarchy:

Exponentiation: A ^ B
Negation: -X
*, / (left to right)

49

+, - (left to right)
<, >, =, <=, >=, <> (left to right)
NOT
AND
OR

OUT
Format: OUT I,J
Where I and J are integer expressions in the range a to 255, OUT
I,J sends an integer value J to the output port I.

There is no direct equivalent in QL BASIC, although where memory
mapped devices are concerned it may be possible to use POKE I,J.

PAINT
Fills an area of the screen with the selected colour. The
command syntax is:

PAINT (x,y) [,paint [,boundary]]

(x,y) are the coordinates of a point within the area to be
filled in. The coordinates may be given in absolute or relative
form. This point is used as a starting point.

paint is the colour to be painted with. The default is the
foreground colour.

boundary is the colour of the edges of the figure to be filled
in.

The figure to be filled in is the figure with edges of
"boundary" colour. The figure is filled in with the colour
"paint"

The starting point of PAINT must be inside the figure to be
painted. If the specified point already has the colour
"boundary" then PAINT will have no effect.

There is no direct equivalent to PAINT in QL BASIC (the closest
being the FILL command which works in a different way), although
a few add-on toolkits may have a PAINT or equivalent command.

PEEK
PEEK(a) reads a byte value from the address 'a'. The value read
may be from 0 to 255. Although this function is the same as the
PEEK function in QL BASIC, the memory locations read from are
unlikely to be the same - some knowledge of the system will be
needed to work out how best to convertthis, e.g.where colours or
characters are read directly from screen memory on different
computers.

50

Some versions of BASIC allow the address value to be specified
as a hexadecimal number by the use of &H as a prefix to the hex
value, e.g. PEEK(&H5A00)

PEN
This keyword is used for reading a light pen connected to the
PC. There is no equivalent in QL BASIC.

PLAY
PLAY "string" plays music as specified by "string". The command
implements a concept similar to DRAW by embedding a "tune
definition language" into a character string.

string is a string expression consisting of single character
music commands

The single character commands in PLAY are:

A to G with optional #, +, or -
Plays the indicated note in the current octave. A

number sign (#) or plus sign (+) afterwards indicates a sharp, a
minus sign (-) indicates a flat. The #, +. or - is not allowed
unless it corresponds to a black key on a piano. For example, B#
is an invalid note.

O n Octave. Sets the current octave for the following
notes. There are 7 octaves, numbered 0 to 6. Each octave goes
from C to B. Octave 3 starts with middle C. Octave 4 is the
default octave.

N n Plays note n. n may range from 0 to 84. In the 7
possible octaves, there are 84 notes. n=0 means rest. This is an
alternative way of selecting notes besides specifying the octave
(O n) and the note name (A-G).

L n Sets the length of the following notes. The actual note
length is 1/n. n may range from 1 to 64. The following table may
help explain this:

Length Equivalent
L1 whole not
L2 half note
L3 one of a triplet of three half notes (1/3

of a 4 beat measure)
L4 quarter note
L5 one of a quintuplet (1/5 of a measure)
L6 one of a quarter note triplet
.
.
.
L64 sixty-fourth note

51

The length may also follow the note when you want to
change the length only for the note. For example, A16 is
equivalent to L16A

P n Pause (rest). n may range from 1 to 64, and figures the
length of the pause in the same way as L (length).

(dot or period). After a note, causes the note to be
played as a dotted note. That is, its length is multiplied by
3/2. More than one dot may appear after the note, and the length
is adjusted accordingly. For example, "A.." will play 9/4 as
long as L specifies, "A..." will play 27/8 as long, etc. Dots
may also appear after a pause (P) to scale the pause length in
the same way.

T n Tempo. Sets the number of quarter notes in a minute. n
may range from 32 to 255. The default is 120.

MF Music foreground. Music (created by SOUND or PLAY) runs
in foreground. That is, each subsequent note or sound will not
start until the previous note or sound is finished. You can
press Ctrl-Break to exit PLAY. Music foreground is the default
state.

MB Music background. Music (created by SOUND or PLAY) runs
in background instead of in foreground. That is, each note or
soundis placed in a buffer allowing the BASIC program to
continue executing while music plays in the background. Up to 32
notes (or rests) may be played in the background at a time.

MN Music normal. Each note plays 7/8 of the time specified
by L (length). This is the default setting of MN, ML and MS.

ML Music legato. Each note plays the full period set by L
(length).

MS Music staccato. Each note plays 3/4 of the time
specified by L.

X variable;
Executes specified string.

In all of these commands the n argument can be a constant like
12 or it can be =variable; where variable is the name of a
variable. The semicolon (;) is required when you use a variable
in this way, and when you use the X command. Otherwise a
semicolon is optional between commands, except a semicolon is
not allowed after MF, MB, MN, ML, or MS. Also, any blanks in
"string" are ignored.

Variables can also be specified in the form VARPTR$(variable),
instead of =variable; which is often useful where a program is
to be compiled. For example:

52

One Method Alternative Method

PLAY "XA$;" PLAY "X"+VARPTR$(A$)
PLAY "O=I;" PLAY "O="+VARPTR$(I)

X can be used to store a "subtune" in one string and call it
repetitively with different tempos or octaves from another
string.

As the PLAY command can be difficult to grasp and there is no
direct equivalent in QL BASIC without writing a small program to
emulate the actions of PLAY "string", here is an example to help
set you on the way.

10 REM little lamb
20 MARY$="GFE-FGGG"
30 PLAY "MB T100 03 L8;XMARY$;P8 FFF4"
40 PLAY "GB-B-4; XMARY$; GFFGFE-."

POINT
Reads a colour value from the specified co-ordinates on the
screen. For example, c=POINT(x,y) reads the colour value of the
pixel at x across and y down the screen. There is no direct
equivalent in QL BASIC, although some BASIC extensions have been
written to extract a colour value from the screen, for example
in the DIY Toolkit series.

POKE
POKE a,d writes the byte value d to the address a. The value
written may be from 0 to 255. Although this function is the same
as the POKE command in QL BASIC, the memory locations written to
are unlikely to tbe the same - some knowledge of the system will
be needed to work out how best to convert this, e.g. where
colours or characters are written directly to screen memory on
different computers.

Some versions of BASIC allow the address value to be specified
as a hexadecimal number by the useof &H as a prefix to the hex
value, e.g. POKE &H5A00,d

POS
POS(X) returns the current cursor position. The leftmost
position is 1. X is a dummy argument.
Example: IF POS(X)>60 THEN PRINT CHR$(13)

There is no direct equivalent in QL BASIC, although the
information required to convert this function is contained
within the channel definition blocks for the window channel
concerned and may be read using the DIY Toolkit function CHAN_W%
for a given channel number. The horizontal cursor position in
pixels may be read from offset 34 decimal (hex 22). This starts

53

pixels may be read from offset 34 decimal (hex 22). This starts
from 0 and is in pixel units, so to get a text character
position across, divide by the number of pixels per character in
the current character size, e.g. 6 for CSIZE 0,0 text. The
character spacing for a given window channel may be checked with
CHAN_W%(#channel,38), so to read the current text position as
characters across the screen, use something like:
LET pos=CHAN_W%(#channel,34) DIV CHAN_W%(#channel,38)

On computers where the POS function starts from 1 for the
leftmost position, you should add 1 to this result:

LET pos=1+(CHAN_W%(#channel,34) DIV CHAN_W%(#channel,38))

or write it as a function in QL BASIC:

1000 DEFine FuNction POS(chan)
1010 RETurn 1+(CHAN_W%(#chan,34) DIV CHAN_W%(#chan,38))
1020 END DEFine POS

PRINT
In general, works almost exactly the same as the QL PRINT
command, the main exception being that in cases where no
ambiguity would result, punctuation between items to be printed
(; or ,) can be omitted. These need to be included in QL PRINT
statements.

Example:

PRINT 2"Hello" Must be converted to PRINT 2;"Hello" on a QL.

There may be differences in syntax when PRINT output is routed
to a channel or device.

PRINT may take position and format identifiers - see AT, TAB and
USING.

When printing numbers, or numeric variables, some BASICs may add
a space before and/or after a number, to clearly separate
numbers from any surrounding text.

Example:

A=3:PRINT "Buy";A;"items."
prints the avriable with spaces both sides in this case
Buy 3 items.

So to convert exactly to the QL, you would need to add the extra
spaces at the appropriate sides of the variable A in the PRINT
statement:

A=3:PRINT "Buy";" ";A;" ";"items"

A bit of an extreme example, but serves to illustrate what you

54

A bit of an extreme example, but serves to illustrate what you
need to do.

Some versions of BASIC allow you to use a query symbol as a
shorthand way of entering a print command in the BASIC editors.
Often this is expanded to a PRINT keyword, but not always, so
you may come across listings with lines such as 100 ?"Hello"
which is obviously the same as 100 PRINT"Hello"

PRINT @
This is a version of PRINT which allows you to locate the cursor
at given text coordinates. The value after the '@' symbol may in
some cases be a pair of coordinates (X,Y or Y,X - both forms
exist). or a single coordinate which specifies the total number
of characters from the top left of the screen - (Y times
line_width)+X.

For example, a Tandy TRS-80 can have a 64 column or 32 column
screen width. So PRINT @64 could refer to the start of the
second line down in 64 column mode (like AT 1,0 on a QL) or to
the start of third line down in 32 column mode (like AT 2,0 on a
QL).

Some versions of BASIC may use a comma or semi-colon between the
@value and the string or variable to be printed. Some may omit
the separator completely!

See also LOCATE command.

Example 1:

The single value version is best converted after reference to
the number of characters across the screen mode of the computer
in question:

PRINT @N,"Hello" convert this as AT (N DIV screen_width), (N MOD
screen_width) : PRINT"Hello"

Example 2:

PRINT @X,Y;"Hello" convert as AT Y,X : PRINT"Hello"

Example 3:

PRINT @Y,X"Hello" (note missing separator after X)
convert as AT Y,X : PRINT "Hello"

PRINT #
PRINT #filenum, [USING v$;] listofexps writes data
sequentially to a file.

filenum is the number used when the file was opened for output
(like a channel number in QL BASIC)

55

v$ is a string expression comprised of formatting
characters as described under USING below.

listofexps
is a list of numeric and/or string expressions that

will be written to the file.

PRINT # is very similar to PRINT # in QL BASIC, except that
filenum and channel numbers may be different, and the
punctuation between items ot be printed may be more flexible in
QL BASIC - normally, you'd only use semicolons between items in
PRINT # statements in Microsoft BASIC to send numeric values or
variables ot a file - note that like PRINT a space may be sent
between two variables separated by a semicolon.

PSET PRESET
Draws a point at the specified position on the screen. The
difference between PSET and PRESET is that if no colour (third
parameter) is specified, PSET defaults to the forgeground (ink)
colour, while PRESET defaults to the background (paper) colour.
Both commands take the same two or three parameters.

PSET (x,y) [,colour]
PRESET (x,y) [,colour]

x and y are the coordinates of the point to be set, and may be
absolute or relative values depending on the system concerned.
Relative coordinates are specified by preceding the open bracket
with a STEP keyword, e.g. PSET STEP(10,-20)

colour is optional and the colour values depend on the system
concerned.

An approximate conversion is to write a short procedure in QL
BASIC to use BLOCK to colour a pixel, although you will need
some knowledge of the system concerned to know the range of
pixel sizes and colour numbers to use.

8500 DEFine PROCedure PSET(x,y,colour)
8510 BLOCK 1,1,x,y,colour
8520 END DEFine PSET
8530 :
8540 DEFine PROCedure PRESET(x,y,colour)
8550 BLOCK 1,1,x,y,colour
8560 END DEFine PRESET

Depending on which screen window you use to draw the graphics on
a QL, you may wish to add a channel number to the BLOCK commands
- without one, they default to channel #1.

PUT

56

PUT [*]<file number>[,<record number>]

Write a record from a random buffer to a random disk file.
<file number> is the number under which the file was OPENed. If
<record number> is omitted, the record will assume the next
available record number (after the last PUT). The largest
possible record number is 32,767. The smallest
record number is 1.

As the QL filing system is so different to that used on these
other computer system, it is hard to give a definitive
conversion method. Best to study how the filing system works and
devise an individual conversion based on that.

PUT (x,y) , array [, action]

As a graphics command, PUT writes a block of pixels onto the
screen, with the colour information and block size specified by
'array', and action may be PSET, PRESET, AND, OR, XOR. The array
is likely to have been grabbed into the array originally by the
GET command (q.v.)

x,y Coordinates of top left corner of image to be
transferred.

array Two dimensional array with colour value for each pixel.

action PSET - draw pixel (see PSET and PRESET above)
PRESET - draw pixel (see PSET and PRESET above)
AND - used when you want to transfer the image only if

an image already exists under the transferred image.
OR - is used to superimpose the image onto the existing

image (like OVER 1 in QL BASIC)
XOR - a special mode which may be used for animation.

XOR causes the points on the screen to be inverted where a point
exists in the array image, so if the image is PUT against a
complex background twice, the background is restored unchanged,
which allows you to move an image around without obliterating
the background. A bit like OVER -1 on a QL.

Note that the default is XOR for the fourth parameter.

Here is a simple QL BASIC equivalent, slightly renamed to avoid
a name clash with the other use of the PUT command. The
bracketing around the parameters has to be different, the word
used for action must be in quotes, and there is no equivalent to
the AND action.

1000 DEFine PROCedure PUT2 (x,y,array,logic$)
1010 w = DIMN(array,1)
1020 h = DIMN(array,2)
1030 IF logic$ == 'OR' THEN OVER 1
1040 IF logic$ == 'XOR' THEN OVER -1
1050 FOR a = 0 to h-1
1060 FOR b = 0 TO w-1

57

1070 BLOCK 1,1,b,a,array(b,a)
1080 END FOR b
1090 END FOR a
1100 OVER 0
1110 END DEFine PUT2

RANDOMISE
RANDOMISE [<expression>] reseeds the random number generator.
If <expression> is omitted, Microsoft BASIC suspends program
execution and asks for a value by printing:

Random Number Seed (-32768 to 32767)?
before executing RANDOMIZE.

If the random number generator is not reseeded, the RND function
returns the same sequence of random numbers each time the
program is RUN. To change the sequence of random numbers every
time the program is RUN, place a RANDOMIZE statement at the
beginning of the program and change the argument with each RUN.

This command is broadly the same as that in QL BASIC, although
if <expression> is omitted in QL BASIC, the random number
generator is reseeded with a value based on the current clock
value.

Note that the sequence for a given seed value is not likely to
be the same in QL BASIC as the same seed in other BASICs.

READ
READ <list of variables>

As in QL BASIC, with minor differences this reads values from
DATA statements assigns them to variables. The variable used for
READ must be of the same data type as the data value contained
in the DATA statement, although some BASICs allow unquoted
strings to be used in DATA statements. Such strings must be
quoted in QL BASIC.

1000 DATA HELLO

must be altered like this for QL BASIC:

1000 DATA "Hello"

Some versions of BASIC only allow one data type in a READ
statement, or even only single variables, which is why you may
come across something like:

1000 READ a : READ b : READ c$

It is possible to join these together into a single clause in QL
BASIC:

58

1000 READ a,b,c$

REM
The comment command REM is the same as the command REMark in QL
BASIC. Some versions of BASIC allow REMark to be abbreviated to
an apostrophe:

1000 LET a=b 'assign b to a

is the same as

1000 LET a=b : REMark assign b to a

REPEAT UNTIL
REPEAT and UNTIL form a kind of repeat loop where a test
expression to determine the termination of the loop is performed
at the REPEAT statement.

1000 X=0
1010 REPEAT
1020 X=X+!
1030 UNTIL X=10

This can be converted to a REPEAT / END REPEAT loop in QL BASIC,
but the test condition will need to be written as an EXIT
statement test just before the END REPEAT, and the loop given a
name (unless you are using SBASIC, which permits unnamed loops).

1000 X=0
1010 REPEAT loop
1020 X=X+1
1030 IF X=10 THEN EXIT loop
1040 END REPEAT loop

RESET
The RESET command closes all diskette files and clears the
system buffer. There is no direct equivalent in QL BASIC, other
than a CLOSE statement for all open file channels.

On some systems, a RESET command is a graphics command which
resets the colour of a pixel to the screen background colour -
see the SET command for further details.

RESTORE
RESTORE [<line number>]

To allow DATA statements to be read from a specified line. After
a RESTORE statement is executed, the next READ statement
accesses the first item in the first DATA statement in the

59

accesses the first item in the first DATA statement in the
program. If <line number> is specified, the next READ statement
accesses the first item in the specified DATA
statement.

Equivalent to the RESTORE command in QL BASIC.

RESUME
RESUME continues program execution after an error recovery
procedure has been performed. Up to four formats may be
encountered:

RESUME Execution resumes at the statement which
caused the error.

RESUME 0 Execution resumes at the statement which
caused the error.

RESUME NEXT Execution resumes at the statement
immediately following the one which
caused the error.

RESUME line_number Execution resumes at line_number.

For RESUME or RESUME 0, use a WHEN ERRor statement with a RETRY
command to resume execution at the line which caused the error:

100 WHEN ERRor
110 PRINT'Oops'
120 RETRY
130 END WHEN
140 INPUT'Enter a number:';num%
150 REMark reset error processing
160 WHEN ERRor
170 END WHEN

For RESUME NEXT, use a similar structure, but use the CONTINUE
command in place of the RETRY command in line 120.

For RESUME line_number, use a GOTO line_number in place of the
RETRY or CONTINUE commands in line 120.

RETURN
The RETURN statement(s) in a subroutine cause Microsoft BASIC to
branch back to the statement following the most recent GOSUB
statement. A subroutine may contain more than one RETURN
statement, should logic dictate a return at different points in
the subroutine. The use of the RETURN statement in subroutines
in Microsoft-style BASICs is the same as the use of RETURN in QL
BASIC.

REVERSE$ or REVERSE

60

REVERSE$("string") is a function which reverses the characters
of a string, for example, PRINT REVERSE$("Hello") prints
"olleH". In some versions of BASIC the function is called
REVERSE (i.e. without the '$' symbol).

QL BASIC has no equivalent function, but it is easy to write a
similar function as shown in this example. This version can
reverse the digits of a number as well as strings thanks to
typeless QL parameters (n in this case, which can be a number or
a string).

100 DEFine FuNction REVERSE$(n)
110 LOCal a,t1$,t2$
120 t1$ = n : t2$ = n
130 FOR a = 1 TO LEN(t1$)
140 t2$(a) = t1$(LEN(t1$)-a+1)
150 END FOR a
160 RETurn t2$
170 END DEFine REVERSE$

RIGHT$
RIGHT$(X$,I) is a function which returns the rightmost I
characters of string X$. If I is equal to the number of
characters in X$ (LEN(X$)), returns X$. If I=O, the null string
(length zero) is returned.

To create an equivalent function in QL BASIC, you can write a
function called RIGHT$ like this:

3000 DEFine FuNction RIGHT$(x$,i)
3010 IF i < 1 THEN RETurn ""
3020 IF i > LEN(x$) THEN RETurn x$
3030 RETurn x$(LEN(x$)-i+1 TO LEN(x$))
3040 END DEFine RIGHT$

RND
RND returns a random number between 0 and 1 (the next number in
the pseudo-random sequence of random numbers) when used without
a parameter, or with a parameter value of greater than 0, e.g.
RND(2). RND(0) repeats the last random number generated. In some
versions of BASIC, RND followed by a positive whole number
returns a random integer in the range of 1 up to the value
given, e.g. RND(9) returns a random number between 1 and 9
(inclusive). In QL BASIC, replace RND(10) with either RND(1 TO
10) or RND(10)+1

RND*10 will generate a random decimal number from 0 to 9
inclusive. Convert that with exactly the same code in QL BASIC.
An expression like (RND*10)+1 will generate a random decimal
number from 1 to 10 inclusive (that may also be converted with
identical code in QL BASIC), while an expression such as
INT(RND*10)+1 will generate a random integer from 1 to 10

61

INT(RND*10)+1 will generate a random integer from 1 to 10
inclusive. While the latter example may be written using the
same code in QL BASIC, you may find it clearer and more brief to
use RND(1 TO 10) instead. In QL BASIC, the statement RND(n)
generates a random whole number from 0 to n inclusive.

In QL BASIC, RND without a parameter gets a floating point
random number in the range 0 to 1. RND(n) gets an integer
between 1 and n inclusive. RND(m TO n) gets an integer between m
and n inclusive.

So, to convert the version of RND with a positive number
parameter, i.e. RND(n) which generates a random number from 1 to
n inclusive, use RND(1 TO n) in QL BASIC.

Summary:

PC Basic QL BASIC Notes
RND RND Random number from 0

to 1

RND(0) no equivalent Repeat last random
number

RND*n RND*n Random decimal number
from 0 to n-1

(RND*n)+1 (RND*n)+1 Random decimal
number

from 1 to n

INT(RND*n)+1 RND(1 TO n) or Random integer from 1
INT(RND*n)+1 to n

RND(n) RND(1 TO n) Random integer from 1
to n (in some early
BASICs may be 0 to
n-1)

RSET
see LSET.

RTRIM$
This function returns a copy of a string minus any trailing
spaces at the right hand side of the string. It is related to
the LTRIM$ function (q.v.) which strips spaces from the left
hand side of a string.

An equivalent funtion to RTRIM$ may be written like this in QL
BASIC.

3350 DEFine FuNction RTRIM$(s$)
3360 LOCal t$,a
3370 REMark return a copy of s$ minus any leading spaces

62

3380 t$ = "" : REMark in case s$ is all spaces
3390 FOR a = LEN(s$) TO 1 STEP -1
3400 IF s$(a) <> " " THEN t$ = s$(1 TO a) : EXIT a
3410 END FOR a
3420 RETurn t$
3430 END DEFine RTRIM$

RUN
Equivalent to the QL RUN command, except that in most BASICs the
RUN command also does the equivalent of a CLEAR command to reset
all variables. So you may have to do something like CLEAR:RUN on
a QL. RUN can take an optional line number.

RUN "filename"
Equivalent to LRUN "filename" on a QL.

SAME
SAME is a function which tests if two supplied numbers or
strings are the same. This sounds very similar to a simple '='
statement and in some cases it is. The main difference is that
when comparing strings, the case of text characters does not
matter - "hello" is considered to be the same as "HELLO"

The function returns a TRUE value (1 or -1, depending on the
system concerned) if the two parameters match, or 0 if not
matched.

The easiest way to write a similar function in QL BASIC is to
use the PARTYP function of Toolkit 2 to establish if the
parameters are numbers or strings, then use either '=' for
number comparison or '==' for case insensitive string matching.
The QL BASIC functions returns a TRUE value of 1 for a match.

3750 DEFine FuNction SAME(x,y)
3760 IF PARTYP(x) > 1 AND PARTYP(y) > 1 THEN
3770 REMark both numbers
3780 RETurn (x=y)
3790 ELSE
3800 REMark not both numbers, compare as strings
3810 RETurn x == y
3820 END IF
3830 END DEFine SAME

SAVE
SAVE <filename>[{,A!,P}]

Save a program file on disk.

<filename> is a quoted string that conforms to your operating
system's requirements for filenames. (Your operating system may

63

system's requirements for filenames. (Your operating system may
append a default filename extension if one was not supplied in
the SAVE command). If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII format. Otherwise,
Microsoft BASIC saves the file in a compressed binary format.
ASCII format takes more space on the disk, but some disk access
requires that files be in ASCII format. For instance, the MERGE
command requires an ASCII format file, and some operating system
commands such as LIST may require an ASCII format file.

Use the P option to protect the file by saving it in an encoded
binary format. When a protected file is later RUN (or LOADed),
any attempt to list or edit it will fail.

The SAVE command does the same function in QL BASIC, although
SAVE always saves in ASCII format, and does not automatically
overwrite existing files. Also, there is no QL BASIC equivalent
for the P option.

SCREEN
This command sets the screen attributes to be used by subsequent
statements. It is system-specific, so often would not be
required in QL BASIC conversions, although some features may be
relevant.

SCREEN [mode] [,burst] [,page] [,vpage]

mode is a numeric expression resulting in a low integer
value which describes the text (0) mode or graphics mode.

burst is a numeric expression resulting in a true or false
value. It enables colour. In text mode (mode value = 0) a false
(zero) value disables colour (black and white only) and a true
(non-zero) value enables colour.

apage (active page) is an integer expression in the range 0-7
for width 40, or 0 to 3 for width 80. It selects the page to be
written to by screen output statements and is valid in text
modes only.

vpage (visual page) selects which page is to be displayed on
the screen, in the same way as apage. The visual page may be
different to the active page. vpage is valid in text mode
(mode=0) only. If omitted, vpage defaults to apage.

Here are some standard values for "mode", taken from a QBASIC
manual.

Mode Resolution Colours/Palette Adapters
0 Text only 16/16 (64 EGA) All
1 320x200 4/(16 EGA VGA) CGA EGA VGA
2 640x200 2/(16 EGA VGA) CGA EGA VGA

64

3 720x348 2/2 HGA
4 640X400 2/16 Olivetti

M24/M28
7 320x200 16/16 EGA VGA
8 640x200 16/16 EGA VGA
9 640x350 16/64 EGA VGA
10 640x350 4/9 (monochrome) EGA VGA
11 640x480 2/262144 VGA
12 640x480 16/262144 VGA
13 320x200 256/262144 VGA

SELECT CASE
This is a structure very similar to the QL BASIC SELect ON
clauses, allowing selection of actions on the basis of
individual values or ranges of values. A multi-way conditional
branching structure if you like. Broadly speaking, the two
structures are similar with only minor variations, although one
major difference is that SELECT CASE can handle strings, whereas
QL BASIC SELect ON can only handle numbers.

SELECT CASE x
 CASE 2
 ...
 CASE 3,6
 ...
 CASE ELSE
 ...
END SELECT

In QL BASIC, this corresponds to

SELect ON x
 =2
 ...
 =3,6
 ...
 =REMAINDER
 ...
END SELect

Note that if the selection variable (x in this example) is an
integer such as x% you may find that some QL ROM versions such
as AH and JM don't allow the use of an integer variable name in
a SELECT ON clause. SBASIC does, many QDOS ROM versions will
allow the use of integer variables in compiled BASIC programs
but not interpreted BASIC programs. For compatibility purposes
allow you to imply that a variable is floating point when
interpreted (for compatibility) and treated as integer variables
when compiled. The Turbo compiler allows the use of IMPLICIT% x
for this purpose, and the QLiberator compiler allows the use of
DEF_INTEGER x for this purpose.

The string selection version is a little more complex to

65

The string selection version is a little more complex to
reproduce in QL BASIC. Here is an example of a string SELECT
CASE structure:

SELECT CASE n$
 CASE "Fred"
 ...
 CASE "Joe"
 ...
 CASE ELSE
 ...
END SELect

Probably the easiest way to achieve a similar coding in QL BASIC
is the use of multiple IF...THEN statements:

IF n$ = "Fred" THEN
 ...
ELSE
 IF n$ = "Joe" THEN
 ...
 ELSE
 REMark CASE ELSE
 ...
 IF
END IF

If the version of BASIC concerned allows for case independent
string matching, you may prefer to use the '==' equivalence
operator in the QL BASIC version to allow upper case lower case
to be matched.

SET
SET and RESET are commands used in some versions of BASIC having
low resolution graphics. SET x,y sets a pixel x pixels across
the screen and y pixels down the screen. A corresponding
function POINT interrogates the screen to return the colour
value, or on a monochrome screen TRUE or FALSE values for a set
or reset pixel respectively.

In general, a SET command may be converted using a BLOCK
command, but you will need to know the resolution of the screen
to know how to scale the BLOCK size per pixel. As an example,
older computers with low resolution screens may have graphics
based on 2 pixels across and three down per text character, so
if using CSIZE 0,0 on the QL you will need to use a BLOCK
2,3,x,y,colour_value command to convert a SET command, and a
BLOCK 2,3,x,y,paper_colour for a RESET command.

SGN
This is a function which returns the sign of a number. It
returns -1 if the value is less than 0, 1 if greater than 0 and
zero if the value is 0. The QL does not have a SGN function, but

66

zero if the value is 0. The QL does not have a SGN function, but
it is easy to write a QL BASIC function to provide this keyword,
using a couple of logical tests to compare the range of values.

1000 DEFine FuNction SGN(value)
1010 RETurn -1*(value<0)+(value>0)
1020 END DEFine SGN

SIN
SIN(angle) returns the sine of the angle specified in radians,
as in QL BASIC. If the version of BASIC works in units of
degrees, use SIN(RAD(angle)) in QL BASIC. To convert degrees to
radians without using the RAD function, multiply the angle value
in degrees by PI/180:
LET sine=SIN(degrees*PI/180)

SLEEP
SLEEP n suspends execution of a program for n seconds. May be
simulated with a PAUSE command in QL BASIC (although an
extension such as SUSPEND_TASK from Turbo Toolkit may be
better). Note that PAUSE works in units of frames, so n seconds
should be converted to 50*n on the QL. That is, SLEEP n is
converted as PAUSE 50*n.

SOUND
This command generates sound through the speaker.

SOUND freq, duration

freq is the desired frequency in Hertz (cycles per second).
It must be a numeric expression in the range 37 to 32767.

duration is the desired duration in clock ticks. The clock ticks
occur 18.2 times per second. duration must be a numeric
expression in the range 0 to 65535.

QL BEEP duration is measured in units of 72 microseconds
compared to 5495 microseconds for SOUND. QL BEEP pitch values
are not directly related to musical notes or particular pitch,
but here is a table showing approximate relationships between
note and the pitch parameter of BEEP duration,pitch in QL BASIC.
Outside this range the pitch values become less reliable.

Note Pitch Note Pitch
A 41 A 15
A# 38 A# 14
B 36 B 12
C 33 (middle C) C 11
C# 31 C# 10
D 28 D 9
D# 26 D# 8
E 24 E 7

67

F 22 F 6
F# 20 F# 5
G 19 G 4
G# 17 G# 3

When the SOUND statement produces a sound, the program continues
to execute until another SOUND statement is reached. If duration
of the new SOUND statement is zero, the current SOUND statement
that is running is turned off. Otherwise the program waits until
the first sound completes before it executes the new statement.

If no SOUND statement is running, SOUND x,0 has no effect.

The tuning note, A, has a frequency of 440. The following table
correlates notes with their frequencies for two octaves on
either side of middle C.

Note Frequency Note Frequency
C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 987.770
C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500

* middle C. Higher (or lower) notes may be approximated by
doubling (or halving) the frequency of the corresponding note in
the previous (next) octave.

To create periods of silence, use SOUND 32767,duration.

The duration for one beat can be calculated from beats per
minute by dividing the beats per minute into 1092 (the number of
clock ticks in a minute)

The next table shows typical tempos in terms of clock ticks:

Tempo Beats/Minute Ticks/Beat
very slow Larghissimo
. Largo 40-60 27.3-18.2
. Larghetto 60-66 18.2-16.55
. Grave
. Lento
. Adagio 66-76 16.55-14.37
slow Adagietto
. Andante 76-108 14.37-10.11

68

medium Andantino
. Moderato 108-120 10.11-9.1
fast Allegretto
. Vivace
. Veloce
. Presto 168-208 6.5-5.25
very fast Prestissimo

SPC
The function SPC(n) skips n spaces in a PRINT statement. n must
be in the range 0 to 255. If n is greater than the defined width
of the device (e.g. a 60 column screen or 80 column printer),
then the value used is n MOD width. SPC may only be used with
PRINT, LPRINT and PRINT # statements. If the SPC function is at
the end of the list of data items, then BASIC does not add a
carriage return, as though the SPC function had an implied
semicolon after it. Also, see the SPACE$ function below.

Dependent on whether the version of BASIC concerned uses SPC
like a TAB statement or a SPACE$ function, this could be
converted to QL BASIC using a PRINT TO n; statement for the
former, or a FILL$ function for the latter as described under
SPC$ and SPACE$ below.

SPC$ SPACE$
These two functions return a string consisting of n spaces. Both
versions are the same, just different names used in different
versions of BASIC.

In QL BASIC, the FILL$ function can be used to return n spaces:
FILL$(" ",n), or write a function with a similar name to the
source BASIC like this, dependent on whether the source BASIC
uses SPC$ or SPACE$:

1000 DEFine FuNction SPC$(n)
1010 RETurn FILL$(" ",n)
1020 END DEFine

SQR
Returns the square root of a given value. Equivalent to the SQRT
function in QL BASIC. You could write a function called SQR to
provide a function of the same name.

2000 DEFine FuNction SQR(value)
2010 RETurn SQRT(value)
2020 END DEFine SQR

STEP
Part of the FOR / NEXT loops structure, used the same way as
STEP in QL BASIC.

69

STICK
Returns the x and y co-ordinates of two joysticks. The syntax is
v=STICK(n) where

n is a numeric expression in the range 0 to 3 which
affects the result as follows

0 - returns the x coordinate of joystick A
1 - returns the y coordinate of joystick A
2 - returns the x coordinate of joystick B
3 - returns the y coordinate of joystick B

Note: STICK(0) retrieves all four values for the
coordinates, and returns the value for STICK(0). STICK(1),
STICK(2) and STICK(3) do not sample the joystick - they get the
values previously retrieved by STICK(0).

The range of values for x and y depends on your
particular joysticks.

Since the QL has no specific commands to read such joysticks, a
direct conversion is not possible. QL joysticks work by
emulating the keyboard - the arrow keys for joystick 1, and the
function keys for joystick 2, both of which may be read with
INKEY$ to provide joystick control for programs.

STOP
The use of STOP is broadly equivalent to the same command in QL
BASIC. Other BASICs tend to have both a STOP and an END command,
the main difference between them being that STOP does not close
files on return to command level.

STR$
STR$ is a function which returns a string version of a supplied
value, e.g. LET x$=STR$(y).

In some versions of BASIC, the string return may contain a
leading space, reserved for the sign of the number. A positive
value may omit the sign, so that it is returned as a space,
whereas the space becomes a minus sign for negative numbers.
PRINT STR$(3.5) might return " 3.5" whereas PRINT STR$(-3.5)
might return "-3.5".

In QL BASIC, this function is replaced by string coercion
whereby numeric and string values are converted implicitly. So
the above example would simply be replaced by LET x$=y although
you could write a function in QL BASIC to provide a function of
the same name for simplicity of conversion:

3000 DEFine FuNction STR$(value)
3010 RETurn value
3020 END DEFine STR$

70

The function type is denoted by the '$' symbol at the end of the
function name in QL BASIC. If this is not sufficiently explicit,
a simple coercion using a local string variable could be used
prior to the RETurn statement:

3000 DEFine FuNction STR$(value)
3010 LOCal t$
3020 t$ = value
3030 RETurn t$
3040 END DEFine STR$

If you wish to emulate the leading space feature, simply do a
test for positive or neagtive values and add a leading space if
not negative:

3000 DEFine FuNction STR$(value)
3010 LOCal t$
3020 if value < 0 then t$ = value : ELSE t$ = " "&value
3030 RETurn t$
3040 END DEFine STR$

STRIG
STRIG returns the status of the joystick buttons (triggers).

STRIG(n) ON must be executed to enable trapping by the ON
STRIG(n) statement. After STRIG(n) ON every time the program
starts a new statement, BASIC checks to see if the specified
button has been pressed.

IF STRIG(n) OFF is executed, no testing or trapping takes place.
Even if the button is pressed, the event is not remembered. If a
STRIG(n) STOP statement is executed, no trapping takes place.
However, if the button is pressed, it is remembered so that an
immediate trap takes place when STRIG(n) ON is executed.

The values of n for the statements above may be 0, 2, 4, or 6
and indicates the button to be trapped as follows:

0 button A1
2 button B1
4 button A2
6 button B2

Used as a function v=STRIG(n)

n is a numeric expression in the range 0 to 3. It affects
the value returned by the function as follows:

0 Returns -1 if button A1 was pressed since
the last STRIG(0) function call, returns

0 if not.

71

1 Returns -1 if button A1 is currently
pressed, returns 0 if not.

2 Returns -1 if button B1 was pressed since
the last STRIG(2) function call, returns
0 if not.

3 Returns -1 if button B1 is currently
pressed, returns 0 if not.

Some systems allow four buttons to be read from the joystick,
using the values 4 to 7 for buttons A2 and B2. Same return
values.

STRING$
Returns a string of length n whose characters have the ASCII
code m or the first character of x$. So you may encounter two
versions:

v$ = STRING$(n,m) or
v$ = STRING$(n,x$)

Either version can be replaced by the FILL$ function in QL
BASIC, with parameter type adjusted accordingly. v$ =
STRING$(n,m) would become v$ = FILL$(CHR$(m),n) while v$ =
STRING$(n,x$) would become v$ = FILL$(x$,n)

If a program uses both forms of the command, you may be able to
write a function which tests the type of the second parameter
using the Toolkit 2 function PARTYP to test the type of the
second parameter and adjust the action of the function
accordingly:

4000 DEFine FuNction STRING$(n,m)
4010 IF PARTYP(m) > 1 THEN
4020 REMark numeric
4030 RETurn FILL$(CHR$(m),n)
4040 ELSE
4050 REMark null or string
4060 RETurn FILL$(m,n)
4070 END IF
4080 END DEFine STRING$

SUB and END SUB
The SUB command is used to create a named subroutine, rather
like DEF PROC in QL BASIC. END SUB corresponds to END DEF in QL
BASIC

SUB name
 ...list of instructions
END SUB

72

corresponds to:

DEFine PROCedure name
 ...list of instructions
END DEFine name

The named subroutine defined by SUB is called either by name
alone or by using the CALL command followed by the subroutine
name (CALL name using the example above). The call command is
optional, but its use makes it clearer that the code is calling
a named subroutine.

SWAP
This command swaps the values of two variables, as you might
need to do when sorting or reordering data. The syntax of the
command is SWAP variable1,variable2.

Any type of variable (integer, string, single precision, double
precision, array element) may be swapped, but both must be of
the same type or a Type Mismatch error is caused.

A simple procedure can be written in QL BASIC to emulate this
command, thanks to typeless procedure parameters this should
cover all data types, although you will need to change tmp to
tmp$ if swapping strings, although if you have Toolkit 2 you
could probably adapt it using PARTYP to check the type of one of
the parameters and an IF...THEN to provide separate versions for
strings and numbers, but remember that coercion could mean you
could just use tmp$ which would happily hold numeric values,
albeit a little slower.

2000 DEFine PROCedure SWAP(variable1,variable2)
2010 LOCal tmp
2020 tmp = variable1
2030 variable1 = variable2
2040 variable2 = tmp
2050 END DEFine SWAP

SYSTEM
Puts the computer into Monitor mode for calling and examining
machine code programs. On some computers this enters an
operating system "shell" mode. No direct equivalent on the QL
without additional software to provide a QDOS or SMSQ shell. QL
emulators may have a command to quit the emulator and return to
the host operating system, e.g. QPC_EXIT on the QPC2 emulator.

TAB
Used with PRINT, this moves the cursor to the specified position
across the current line. TAB is followed by a number from 0 to
255 representing the horizontal psotion to move to. If the value
given is greater than the screen width, it is reduced modulo the

73

given is greater than the screen width, it is reduced modulo the
screen width.

No punctuation is usually required after TAB, although it may
make PRINT TAB commands which include items to be printed easier
to read. Some BASICs insist that the TAB value is enclosed in
brackets, e.g. TAB(3)

The equivalent modifier on a QL is the TO separator, e.g. PRINT
TO 10; is the same as PRINT TAB(10);

Examples:

PRINT TAB(10) Move to column 10 across the screen line.
PRINT TAB(10); Same.
PRINT TAB 10; Same.
PRINT TAB(10);"OK" Move to column 10 across the screen
line and print the letters OK there.

TAN
Returns the tangent of x. The angle x is specified in radians
normally, although in QL BASIC you could use the RAD function to
convert an angle specified in degrees, or multiply the angle in
degrees by PI/180. Used in the same way as the function TAN in
QL BASIC.

THEN
Part of the IF...THEN structure in most versions of BASIC. In
most cases the same as the use of THEN in QL BASIC, although an
IF...THEN GOTO ... statement in some versions of BASIC may omit
the keyword THEN:
IF...GOTO...
The keyword THEN is always required in this structure in QL
BASIC, although in some cases it may be replaced by a colon in
single line IF clauses, or omitted in multi-line IF structures.
So, IF x=2 GOTO 1000 would be replaced by IF x=2:GOTO 1000

TIME$
TIME$ sets or retrieves the current time.

Its format may vary from system to system, the most common
format is a function to return the time as an 8 digit string of
the form hh:mm:ss which can be replaced by a slice of the last 8
ditis of the DATE$ function in QL BASIC.

5000 DEFine FuNction TIME$
5010 LOCal t$
5020 t$ = DATE$
5030 RETurn t$(13 TO 20)
5040 END DEFine TIME$

When used as a command to set the time, the format is TIME$=x$,

74

When used as a command to set the time, the format is TIME$=x$,
where x$ may be given in one of the following forms:

hh Set the hour in the range 0 to 23. Minutes and
seconds default to 00.

hh:mm Set the hour and minutes. Minutes must be in the
range 0 to 59. Seconds default to 00.

hh:mm:ss Sets the hour, minutes and seconds. Seconds must be
in the range 0 to 59.

There is no direct equivalent to this command in QL BASIC, as
you can only set the time and date together using the SDATE
command with all six parameters specifying date and time.

TO
Part of the FOR/NEXT loop structure, used in the same way in QL
BASIC.

TROFF
Turns off the line number Trace system, whereby the currently
executing line number is displayed on the screen to help you
diagnose program flow.

TRON
Turns on the line number Trace system, whereby the currently
executing line number is displayed on the screen to help you
diagnose program flow. There is no direct equivalent command on
the QL unless you use add-on software.

UBOUND
UBOUND is a QBASIC function to find the upper limit of an array
passed to it (the highest subscript of that array). For example,
DIM A(100):PRINT UBOUND(A,1) prints the value 100.

The second parameterspecifies which dimension of the array is to
be checked.

UBOUND corresponds to DIMN in QL BASIC.

USING
PRINT USING statements allows you to specify a format for
printing string and numeric values. It can be used in many
applications such as printing report headings, accounting
reports, cheques ... or wherever a specific print format is
required.

The PRINT USING statement uses the following format:

75

PRINT USING string; value

String and value may be expressed as variables or constants.
This statement will print the expression contained in the
string, inserting the numeric value shown to the right of the
semicolon as specified by the field specifiers.

The following field specifiers may be used in the string:

This sign specifies the position of each digit located
in the numeric value. The number of # signs you use establishes
the numeric field. If the numeric field is greater than the
number of digits in the numeric value, then the unused field
positions to the left of the number will be displayed as spaces
and those to the right of the decimal point will be displayed as
zeros.

The decimal point can be placed anywhere in the numeric field
established by the # sign. Rounding-off will take place when
digits to the right of the decimal point are suppressed.

The comma - when placed in any position between the first digit
and the decimal point - will display a comma to the left of
every third digit as required. The comma establishes an
additional position in the field.

** Two asterisks placed at the beginning of the field will
cause all unused positions to the left of the decimal to be
filled with asterisks. The two asterisks will establish two more
positions in the field.

$$ Two dollar signs placed at the beginning of the field
will act as a floating dollar sign. That is, it will occupy the
first position preceding the number.

**$ If these three signs are used at the beginning of the
field, then the vacant positions to the left of the number will
be filled by the * sign and the $ sign will again position
itself in the first position preceding the number.

^^^^ Causes the number to be printed in exponential (E
single-precision or D double-precision) format.

+ When a + sign is placed at the beginning or end of the
field, it will be printed as specified as a + for positive
numbers or as a - for negative numbers.

- When a - sign is placed at the end of the field, it
will cause a negative sign to appear after all negative numbers
and will appear as a space for positive numbers.

% spaces % To specify a string field of more than one character,
% spaces % is used. The length of the string field will be 2
plus the number of spaces between the percent signs.

76

! Causes the Computer to use the first string character
of the current value.

Any other character that you include in the USING string will be
displayed as a string literal.

If you have access to the original BASIC interpreter for which
the program was written, a simple three line program can be used
to test how the various options work:

100 INPUT A$, B
110 PRINT USING A$;B
120 GOTO 100

The USING modifier can have subtle differences and sometimes
additional facilities on different computers, so some degree of
familiarisation with the BASIC in question (or at least access
to manuals) will be required.

The nearest QL equivalent command is the PRINT_USING command in
Toolkit 2. While there is some considerasble overlap of
formatting, there can be differences too and some care will be
required to get a close match in functionality. You are advised
to read the Toolkit 2 manual section 13 for a full description
of the PRINT_USING command to ensure you understand how it works
so that you can use the equivalent formatting string in cases
where the QL version differs slightly from the other version.

Another way of using the PRINT USING statement is with the
string field specifiers "!" and % spaces %.

Examples:
PRINT USING "!"; S$
PRINT USING "% %"; S$

The "!" sign will allow only the first letter of the string to
be printed. This would be quivalent to PRINT S$(1) or
PRINT_USING "#",S$ in SuperBASIC.

The "% spaces %" allows spaces +2 characters to be printed. In
other words, 1 character for each of the % symbols plus the
number of spaces. Again, the string and specifier can be
expressed as string variables. This would be equivalent to PRINT
S$(1 TO 1+spaces+1) or PRINT_USING FILL$('#',1+spaces+1),S$

This can get really complicated when multiple values or strings
are to be printed using more complex forms. Here is one example,
where by using more than one ! symbol, the first letter of each
string in the PRINT list will be printed with spaces
corresponding to the spaces inserted between the ! symbols in
the USING string. In this example, the first character of each
string is printed with spaces between them:

77

PRINT USING "! ! !";"ABC","DEF","GHI"
results in
A D G

To cope with this, you may need to split multiple parameters to
single commands:

PRINT_USING "#","ABC"
PRINT_USING "#","DEF"
PRINT_USING "#","GHI"

or become inventive with the format string, so that it contains
a format pattern or field for each of the following elements of
the command:

PRINT_USING "# # #","ABC","DEF","GHI"

USR
USR [<digit>] (X) is a function which calls the specified user
assembler routine numbered from 0 to 9 (0 assumed if not
specified), passing the value of X to the routine.

LET A=USR(0,B) calls user assembler routine number 0, and passes
the value of B to it.

There is no direct equivalent in QL BASIC - the user assembler
code will be processor specific and the nearest equivalent is
likely to be writing an extension function in 680x0 assembler
code to do the same job.

VAL
VAL(X$) returns the numerical value of string X$. The VAL
function also strips leading blanks, tabs and linefeeds from the
argument string. String coercion in QL BASIC means this command
is not needed - LET A$="-3":LET B=VAL(A$) is simply converted as
LET A$="-3":LET B=A$

The opposite function to convert a number to a string is STR$.

In QL BASIC, this function is replaced by string coercion
whereby numeric and string values are converted implicitly. So
the above example would simply be replaced by LET y=x$ although
you could write a function in QL BASIC to provide a function of
the same name for simplicity of conversion:

3000 DEFine FuNction VAL(value$)
3010 RETurn value$
3020 END DEFine STR$

The function type is denoted by the lack of a '$' symbol at the
end of the function name in QL BASIC. If this is not
sufficiently explicit, a simple coercion using a local variable

78

sufficiently explicit, a simple coercion using a local variable
could be used prior to the RETurn statement:

3000 DEFine FuNction VAL(value$)
3010 LOCal v
3020 v = value$
3030 RETurn v
3040 END DEFine VAL

VARPTR
This command may take two forms.

1. LET AD=VARPTR(X)
This function returns the address of the first byte of data
associated with the given variable name. There is no direct
equivalent in QL BASIC.

2. LET F=VARPTR(#file_number)
This function returns the starting address of the disk I/O
buffer assigned to the given file number (or channel), or for
random files returns the address of the FIELD buffer assigned to
file_number. No direct equivalent in QL BASIC.

VARPTR$
Returns a character form of the address of a variable in memory.
It is promarily for use with PLAY and DRAW in programs that were
later compiled. The command syntax is LET v$=VARPTR$(variable).
All simple variables should have been assigned before calling
VARPTR$ for an array element, because addresses of arrays change
whenever a new simple variable is assigned. VARPTR$ returns a 3
byte stringin the form:

Byte 0 Byte 1 Byte 2

type low byte of high byte of
variable address variable address

type indicates the variable type:

2=integer
3=string
4=single precision
5=double precision

The returned value is essentially the same as:

CHR$(type)+MKI$(VARPTR(variable))

There is no direct equivalent in QL BASIC. The above information
shuld help you understand what's going on if you come across
VARPTR and VARPTR$ in a program, so that you can write suitable
conversion code on a case-by-case basis.

79

Variable Names
In some early BASICs, only the first few characters of a
variable name are significant, for example in TRS80 level 2
BASIC only the first two characters of a name are significant.
This means that the variables SUM, SUB, SUPER, and SU are
treated as though they are one and the same.

This restriction does not apply in QL SuperBASIC obviously,
although poorly written old BASIC programs which use different
lengths of the same variable name (e.g. SUPER in one part of the
program, abbreviated to SU in another part) can cause havoc when
ported to the QL, where the two variations of the same variable
name will be treated as different variables. On the QL, LET SU=0
is not the same as LET SUPER=0. Unfortunately, there is no hard
and fast rule on this, other than reading the manual for the
BASIC in question if you have access to it (many BASIC manuals
are available to download from the internet these days).

Some BASICs may have four distinct types of variable names:

(1) Integer - whole numbers from -32768 to + 32767. Variable
names end with '%' as on the QL

(2) Single Precision floating point - usually to 6 significant
figures. Names end with the ! symbol. In most cases just use
ordinary QL floating point variables, but remove the ! type
declaration symbol.

(3) Double Precision floating point - usually up to 16
significant figures. Variable names end with the hash # symbol,
e.g. ZZ# is such a variable. In most cases you will be able to
replace these with ordinary QL floating point values just be
removing the # symbol from the variable name.

(4) String variables end with a '$' symbol like in QL
SuperBASIC. Strings may be limited to just 255 characters in
length, and in some cases only about 50 characters may be
available by default for a given string.

In some early BASICs, only variable names starting with A or B
may be used to hold strings (e.g. TRS80 BASIC level 1).

Variable names such as A or DE which appear to be floating point
may in fact be overriden with implicit type definition commands
such as DEFINT. See the entries for DEFINT, DEFSTR, DEFSNG and
DEFDBL above.

Beware of versions of BASIC which have case sensitive variable
and array names. In this case, 'A' and 'a' might be two separate
and distinct variables - in other words, A and a may not the
same variables! There is no easy way around this in SuperBASIC,
where names are case insensitive, other than to use different
variable and array names, or doing something like keeping the

80

variable and array names, or doing something like keeping the
upper case names as they are and adding a '_' to the lower case
equivalents, e.g. LET A=0:LET _a=0

WAIT
This command suspends program execution while monitoring the
status of a machine input port. The command syntax is WAIT port,
n [,m]

port is the port number, in the range 0 to 65535

n, m are integer expressions in the range 0 to 255

The WAIT statement auses execution to be suspended until a
specified machine port develops a specified bit pattern.

The data read at the port is XORed with the integer expression m
and then ANDed with n. If the result is zero, BASIC loops back
and reads the data at the port again. If the result is nonzero,
execution continues with the next statement. If m is omitted, it
is assumed to be zero.

There is no direct equivalent in QL BASIC and the different
hardware configuration of various computers means that a
conversionis unliekly to be meaningful, but if you really wanted
to try with a memory mapped peripheral, you could probably write
a piece of code like this:

1000 DEFine PROCedure WAIT (port,n,m)
1010 LOCal waiting,value
1020 REPeat waiting
1030 value = (PEEK(port) ^^ m) && n
1040 IF value <> 0 THEN EXIT waiting
1050 END REPeat waiting
1060 END DEFine WAIT

WHILE / WEND
loop structure whereby a series of statements in a loop are
executed as long as the given expression is true. The condition
is evaluated at the WHILE statement and if that condition is not
true (i.e. it is FALSE, or 0) program execution continues at the
statement following the WEND keyword.

6000 x=0
6010 WHILE x < 10
6020 x=x+1
6030 WEND

This is distantly related to REPeat/END REPeat statements in QL
BASIC, although the REPeat and END REPeat commands do not in
themselves perform the expression test - you need to write the
test as a separate line within the loop and use an EXIT
statement to exit the loop if the expression is false.

81

6000 x=0
6010 REPeat loop
6020 IF NOT(x<10) THEN EXIT loop
6030 x=x+1
6040 END REPeat loop

Note the inversion of the expression test result using the NOT
operator in line 6020.

WIDTH
Sets the output line width in number of characters. Similar to
the WIDTH command in QL BASIC, but QL BASIC needs a channel
number.

WRITE
This command writes out a list of expressions, much like PRINT,
except that WRITE inserts commas between the items as they are
displayed and delimits strings with quotation marks. Also,
positive numbers are not preceded by blanks. This example shows
how WRITE displays numeric and string values.

10 A=80: B=90: C$="Hello"
20 WRITE A,B,C$
RUN
80,90,"HELLO"
OK

As this is mainly used as a variable value dump to help debug
programs, you may not need to convert it to QL, although easily
done by writing it like this:

PRINT A;",";B;",";'"';C$;'"'

WRITE #

WRITE #filenum,list_of_expressions writes data to a sequential
file.

filenum is the number under which the file was opened for
output, like a channel number in QL BASIC.

list_of_expressions
is a list of string and/or numeric expressions,

separated by commas or semicolons

The difference between WRITE # and PRINT # is that WRITE #
inserts commas between the items as they are written and
delimits strings with quotation marks. Therefore, it is not
necessary for the user to put explicit delimiters in the list.
Also, WRITE # does not put a blank in front of a positive
number. A carriage return/linefeed sequence is inserted after

82

number. A carriage return/linefeed sequence is inserted after
the last item in the list is written.

Example:
LET A$="CAMERA" : LET B$="93604-1"
WRITE #1,A$,B$

writes the following image to the file.
"CAMERA","93604-1"

A subsequent INPUT # statement, such as:

INPUT #1,A$,B$

would input "CAMERA" to A$ and "93604-1" to B$.

There is no direct equivalent in QL BASIC, so you would rewrite
WRITE #filenum,A$,B$ as
PRINT #filenum,'"';A$;'","';B$;'"'

XOR
The XOR operator tests for an Exclusive Or condition, whereby
the result is true if either of the conditions tested is true
but not the other. Here is the truth table for this operator.

X Y X XOR Y
True True False
True False True
False True True
False False False

The use of XOR in QL BASIC is the same.

83

