Published in the United Kingdem by:
Adder Publishing Limited,
P.0.Box 148, Cambridge CBl 2BQ

Copyright (c)1985 Adder Publishing Limited
Second edition January 1985

all rights reserved. No part of this book may be copied or stored by any
neans whatsoever whether mechanical, photographic ar electronic, except
for private study use as defined by the Copyright Act. All enquiries
s?mldteaddr&e:ltnthepublism.m While every precaution has been
taken in the preparation of this book, the publisher assumes no
responsibility for errors or amissions. Neither is any liability assumed
for damages resulting fram the use of information contained herein.

QL, QDOS and SuperBASIC are trademarks of Sinclair Research Limited.

Because of reliability problems with microdrive cartridges, we have made
it very easy to produce backup copies of our assembler. You are
aucmraqedmnakeabadmpcupybeforestamngtomeueassarb]er.
However, we would like to remind you that it is illegal to copy
programs for use by friends.

1 Introduction

1.1

1.2

General overview
The editor
The assembler
The commands

’

Loading the editor/assembier fram microdrive

2 COMMAND MODE

2.1

Summary of all commands and their uses

3 EDITING FILES

W
Vs WN -

General introduction to the editor
Available editing modes

Simple editing with examples
Block MOVE and QOPY

Error correction after assembly

4 ASSEMBLING FILES

R

s
:
smmqmu‘aww-—

E-

>

General introduction to the assembler
Syntax

Dynamic debugging tcols

Addressing modes

Expressions

Directives

Macros

Conditional assembly

Patching errors in large programs
larger files and space management

Errors list
68008 instruction set summary

VU oas

[=2]

16
16
16
18
18

19
19
20
21
22
23
26
28
28
29

31
35

1 Introduction

The ADDER editor/assembler is a complete 68000 development package for
the Sinclair QL computer. It allows assembler programs to be edited,
assembled and run in a convenient manner. The entire system of editor,
assembler and debugger all resides in memory together, so there is no
slow accessing of microdrives to worry about. Rapid development of small
assembler programs is therefore very quick and easy, and much larger
frograms can be supported by the ability to include external library
files and macros. This assembler provides a full specification Motorola
compatible MACRO assembler.

Programming in 68000 assembler allows many exciting possibxlxties to be
explored However, because the 68008 is such a powerful mcrq:rmsor
it is impossible to provide full technical information about programming
it in a manual like this. Two other bocks should therefore be considered
as essential reading and reference material. The MO68000 16/32 Bit
Microprocesor Programmer ‘s Reference Marnual (4th edition, ISBN 1 356
6795X) published by Prentice-Hall covers the 68008 microprocessar in
depth. It is also necessary to understand the operating system
environment on the QL computer. All the required information about QDOS
can be found in QL Advanced User Guide by Adrian Dickens (lst edition,
ISBN 0 947929 00 2) published by Adder Publishing Limited, Cambridge.

1.1 General overview

The entire development package resides in memory together, but the
functional aspects can be split into three distinct categories:

The Editor

The assembler source program needs to be entered mtotheot.beforethe
assembler can be invoked. Programs are entered as rormal text using the
integral full screen editor. Itmnbe\sedasaq\uckgeneralp.zrpose
text editor in its own right if required. Either of the QL's screen
modes (4 colour or 8 colour) are supported, as are the TV and monitor
style displays. The following cammands are provided:

normal characters characters you type are inserted in the text

left/right/up/down - cursor keys move cursor by ane space/line
SHIFT left/right - move to beginning or end of current line
SHIFT up/down - move to previous/next page
ENTER - split current line or start a new line

- move to next TAB colum
CIRL left/right - delete left/right character or join lines
CIRL up/down - delete/undelete lines (allows blocks of text

to be moved around within the file).
QOPY line of text into deletion buffer
redraws the screen

2
:
f

F2 - move to next error and redisplay error
message (makes finding errors effortless)
F3 linenumber - move directly to a numbered line (entered by

itself moves to first line)

F4 filename - insert named file in text at cursor position
FS string - search for string in source text

SHIFT FS - find next occurance of the string

ESC - exit back to command mode

SHIFT ESC - exit editor without emptying deletion buffer

The Assembler

Once the source text for an assembler program has been entered intc the
QL, it must be assembled into an object code file. The assemoler is
conmpatible with Motorola’s standard, although there are same deviations.
The assembler makes a single pass over the source text so as to reduce
the assembly delays. In spite of this, all problems concerned with
forward references are resolved correctly. Included within the assembler
is the facility for full symbol arithmetic using relative and absolute
32 bit symbols. All 68008 instructions’and addressing modes can be
assembled, and error messages are displayed as they are located by the
assembler. The position of errors are recorded so that these can easily
be located at a later time from within the editor. The assembler fully
supports MACROs and CONDITIONAL ASSEMALY.

Command mode

In this mode, the user can select the editor, assemble and run programs
and perform various useful debugging tasks. The main commands are:

E - enter the editor
A ~ assemble the current text
R - run the assembled program

Other commands allowing various auxiliary operations:

- switch to 8 colour QL screen mode (large characters)

= switch to 4 colour QL screen mode (small characters)

- save the text in the current filename

new name for current text

- switch to editing a new file

- print a value or expression, including assembler symbols, on

the screen or printer (or any other channel)

- dump a portion of the compiled program (or any other part of
memory) onto screen or printer. Dumping one of the registers
causes all registers to be dumped for debugging purposes.

- type the current text

- produce a listing with line numbers and hex code

- change output file for P, D or T operations

- set the baud rate for the serial line

- quit the assembler system and return to BASIC

- update (POKE) memory locations or modify registers

= LOCK or UNLOCK symbol table (use with “patch’ directive)

C mwRZuax
|

TCcowmOotr A

The whole system is presented in a number of screen windows which make
it very clear which mode the system is operating in.

1.2 Loading the editor/assembler fram microdrive

The remainder of this User Guide acts both as a reference and tutorial
guide. In order to obtain the greatest benefit fram the information
which follows, you are advised to load up the assembler and try out the
various features as they are discussed. You are also strongly advised to
MAKE AT LEAST ONE BACKUP COPY of the assembler before proceding.
Backup copies should be made as follows:

1. Place a blank cartridge in drive 2

2. FORMAT MDV2 ASSEMBLER

3. Place master cartridge in drive 1

4. COPY MDV1_ASM TO MDV2_ASM

5. QOPY MDV1_ASMTEXT TO MDV2_ASMTEXT

6. COPY MDV1_ASMHELP TO MDV2_ASMHELP

Saretimes, the master may fail to load if the microdrive read heads
cut of alignment. If the master fails to copy in this way, try the
mocedure as before, but copying the master fram miv2_ to mdvl . Now pu
the original master in a safe place where it will not be used, and wor

fran the copied cartridge. First of all, the assembler needs to
initialised. To do this, type:

ghefe

exec_w mdvl_asm

The assembler/editor will load into memory, then a large ADDER LOGO will
appear on the screen. Wait for a few seconds whilst the entire system
initialises itself, then you are ready to start programming. Note that
the assembler could also have been entered using exec mdvl asm. This
would cause BASIC and the assembler to exist concurrently, CTRL-C being
used to toggle between BASIC and the assembler.

The display which you should now see will consist of some five different
windows. Initially, the system starts off in the command mode, so a
flashing cursor should be visible in the command window (across the base
of the display). The exact layout of the display depends on the mode
(TV, monitor, 4 colour or 8 colour). The five windows are:

1. Command window - for entering cammands

2. Text window - takes up most of the screen - this is where
the text editor operates

3. Line number display - always displays the line number which the
editor is at, or the number of the line which
tas been reached by the assembler during an

assembly.
4. Filename display - always indicats the current filename
5. Memory free - indicates number of spare bytes of memory.

On a standard QL, this starts at about 40000
bytes. This space is used for the program text,
assembler ‘s symbol table and the assambled
program.

The filename display will show ‘mivl_asmtext". This file is always
loaded in at initialisation. If there is no such file on the microdrive,
an empty file with this name will be set up.

The most important functions of the whole package are to edit text and
to assemble 68000 programs. Other minor tasks can also be carried out,
such as loading or saving files, producing assembler listings on a
printer etc. These minor tasks are all carried out in command mode.

2 COMAND MODE

This section explains all of the cammands available in command mode.
when the cursor is visible in front of the >>> prampt, this means that
the system is in command mode. Cammands are given by pressing a single
key. Since there are quite a lot of commands, it is sametimes difficult
to remember them all. A full list can be obtained by pressing either 'H’
or "?°. The ‘HELP command simply prints out the contents of file
‘mdvl_asmhelp”. This is supplied with a list of the commands, but can
easily be edited to suit an individual's own preferences.

A - Assemble the current text

This runs the assembler on the current text object (more about this
later) and produces:

a symbol table
a list of error messages for the text editor
a code object

As the assembler runs, the current line number, space remaining and the
source file currently being scanned are constantly displayed at the top
of the screen. If you wish to abort an assembly, press ESC and hold it
down until the assembler grinds to a halt with the message **BREAK.

puring assembly, error messages may be produced, and these are printed
on the main text window. Do not worry about making a note of the
offending lines because the editor remembers them. This makes it very
easy to enter the editor after assembly and move to each of the errors
in turn simply by pressing F2. If the assembler encounters more than 20
errors, it will autcmatically abort the assembly to allow the programmer
to correct them.

The assembler is supplied with a very simple one line program in the
default file ‘mdvl_asmtext”. This should be displayed on the screen at
initialisation, and contains the following text:

Example to multiply register dl by 42
leaves the result in d2

> % »

MULU dl,d2

You can see how the assembler operates simply by typing A. The prompt
‘Assembling mdvl_asmtext’ appears in the main text window, and the line
count rapidly increments until ‘No errors’® appears to indicate that
assembly of the file was completed without any errors.

Syntax: Assemble

B - set the serial baudrate

This command sets the baud rate for the serial lines. It is normally
used to set up the printer for output using the O command. The
baudrate is selected using a single numeric digit (the first digit of
the standard baud rate required). Hence the following should be used:

for

300 baud
600 baud
1200 baud
2400 baud
4800 baud
9600 baud
19200 baud

O\OhNHC\H%

Syntax Baudrate: n
Bample Baudrate: 3

D - dump an area of memory or reqisters

This command has two different modes of operation:
MEMORY DUMP

Type D followed by address,n where n is the number of words to dump.
Both parameters should be expressions in a form acceptable to the
assembler. The address may be relative or absolute. The corresponding
area of the QL's memory is dumped to the screen or printer in hex and
character forms. This feature allows the user to examine the hex of an
assembled program, or other areas of the QL's memory (see also the L
command) . Pressing ESC during a dump will interrrupt the dump operation
and return the system to command mode.

The hex of an assembled program can easily be typed out by putting a
label at the beginning and end of the program. If these labels were
startlab and endlab respectively then the program could be dumped as
startlab, (endlab-startlab)/2. The division by 2 is required to give the
parameters in words rather than bytes. Note that the start address must
therefore be even so that a dump always starts from an even word
boundary. Alternatively, it is possible to print the value of *, which
points to the end of the program, and dump startlab,(*-startlab)/2.

The width of the dump is determined by the width of the screen,
regardless of whether the output is being sent to the screen, printer or
a microdrive file. Putting the screen into 4 colour mode causes nore
bytes to be dumped per line than 8 colour mode. Same experimentation is
probably worthwhile to find the optimum width for your printer.

Syntax Dump: address,number of words
Baple Dump: $C44,15

fote that addresses are assumed to be in decimal unless preceded by a
‘$°, in which case they are in hexadecimal.

REGISTERS DUMP

If a register is given in place of the address parameter, all of the
68008 registers (excluding the stack register A7) will be displayed on
the screen. This facility is extremely useful for trying out shart
programs. The update U command can be used to modify the values of the
registers before a piece of code is executed, then the dump command can
be used to examine the register contents on return.

Syntax: Dump: register
BExample: Dump: d0
E - enter the EDITOR

This causes the editor to take over control, allowing text files to be
typed in and modified. Bditing programs in the editor is explained in
nore detail later on. You can get back into command mode fram the editor
by pressing the ESC key.

Syntax: Edit

F - enter new Filename for current text file

This command should be used with care because it DISCARDS THE CURRENT
TEXT and loads in the named file. Loading of new text will occur as soon
as the source file name has been entered. If you press the P command
key by mistake, simply type ENTER and no new text will be loaded and the
old text will still be there.

Syntax: Filename: new filename

BExample: Filename: mdvl_scratch

H - HELP

The H command is synonamous with the ? command, and will cause the
file ‘mdvl_asmhelp” to be loaded fram microdrive and displayed on the
screen. This file usually contains a summary list of the commands which
are available. However, individual users may find it helpful to put

different comments in this file, so it can be edited in the normal way
using the editor.

Syntax: H (gives message ‘Getting Help..')

10

L - Generate assembly Listing of program

Te L command allows assembled programs to be printed on a printer,
complete with line numbers and hex codes.

Because this assembler is a single pass type of assembler, the L
conmand requires both a text source file and and object code file. If
the abject code file does not yet exist on the microdrive, the required
text file should be assembled and then saved using W command. The L
command can then be invoked. You will be asked to provide the 'Binary
input file: which has just been saved on the microdrive.

A complete listing of the assembled program is then produced. Output
will appear on the screen as default, but can be redirected to the
printer using the O command.

Note that each MACRO definition will be expanded, and that line numbers
within a MACRO will always start from 1. The LIST and NOLIST directives
can be used effectively in such cases. Whenever the NOLIST (or NOL)
directive is encountered, the listing is suppressed. The assembler text
following the NOLIST is therefore not printed out. Printing out of text
can be recommenced by inserting a LIST directive at the relevant point
within the text.

Syntax: L (gives message "Assembly Listing.)
Binary input file: object file name

Example: A
W mdvl_testfile obj
L

Assembly Lasting.
Binary input file: mdvl_testfile obj

M - LOCK or UNLOCK the symbol table

Wwhenever a file is assembled, the assembler generates a ‘symbol table’.
This table contains the type and value of all the symbols, like labels
and variables, which were used in the assembled file. Normally, the
symbol table is deleted whenever the file is assembled. This ensures
that the assembler will not be confused by the old values which were
assigned on the previous assembly.

When very long files are being assembled, the assembly time can be
appreciable, especially if most of the source text is stored on a
microdrive cartridge. This is where the “patch’ directive becomes
uwseful. Small modifications, like the condition for a branch instruction
can easily be modified without re-assembling the entire file (see
4.9).

Te ‘patch’ directive requires that the original symbol table should
remain intact between assemblies. The symbol table can therefore be

I0CKed using the M command. Once locked, the original symbol table
cannot be deleted until it is unlocked again using the M command.

Syntax: M

if unlocked: L to Lock syMbol table:
if locked: U to Unlock syMbol table:

11

N - New Name for the current text

This changes the name under which the current text file will be saved
LsingtheSaxmarﬂ.'meuxrrenttextismtmangedinanyuay.Usmg
this method it is possible to duplicate files on microdrives by loading
me in, changing its name and saving it again. Alternatively, the new
version number for a particular file can be substituted for the old ane.
This will then ensure that a different file is saved, so in the event of
a microdrive cartridge failure, there will still be an uncorrupted
version available.

Syntax: New name: file spec,
Bample: New name: mdvl_test5_asm

O - select new Output stream

Output from the D, P, L and T commands normally goes to the
screen text window. Using this command, the output can be redirected to
a microdrive file or device such as a printer. After an O has been
typed in command mode, the system prampts for a new cutput filename. The
possible responses are:

Just press ENTER - has no effect (keeps original output)
type ‘*° then ENTER - returns output to default text screen

ar alternatively attempt to open a new output channel to which all
future output will be directed.

Syntax: 0 (giveg prampt ‘spool Output to:”)

spool Output to: file spec.
BExanples: 0

spool Output to:ser2 (serial port)
ar spool Output to:* (screen console)

bbtethatd:ebaudratefortheserialmrtcanbedmsgedming&
P - Print a value

This is like a sophisticated desk calculator. Type a value or
expression: any value can be specified, relative or absolute, making
full use of the assembler symbol table and expression facilities. The
value will be printed on the screen in hex, decimal (and if appropriate
ASCII character representation). A list of values can be specified,
separated by commas (but no spaces).

Syntax: Print: numeric expression
Examples: Print: 65

Print: $EES6,78

Print: varl
Q - Quit the assembler system

This command returns control to BASIC. In case you press the Q key by
mistake, you are asked ‘sure?(Y/N)°. An ‘N” in response to this question
sinply cancelsmeomxﬂandteumxstomeasse!blersystan. An Y
in response to the question closes down the assembler, enters BASIC and

12

returns all memory used by the assembler to QDOS. The only way to
re-enter the assembler is to reboot fram microdrive. If the option to
switch between BASIC and the assembler is required, the assembler should
be initialised with EXBEC mdvl asm. CTRL-C then toggles between BASIC and
the assembler.

Syntax: Quitting - sure?(Y/N): Y or N
R - Run the code object

This runs the assembled program. It is wise to save the original source
text to microdrive before running a program to ensure that any recent
edits to the source text are safe. If there are any errors in the
assembled code, the entire machine could possibly crash.

The assembler automatically inserts an RTS instruction at the end of an
assembled object file. The single line example program to multiply two
rumbers together (see under A command) can be run in this way. Note
that the values to gultiply should first be set using the U command.

Certain types of assembled programs are unsuitable for running directly.
Those which are designed as additional BASIC functions and procedures
for example will have to be saved on microdrive initially, then loaded
later under BASIC. Programs which are completely self-contained are
often suitable for multi-tasking. Such programs need to be EXECed fram
BASIC and can be stored using the EXBEC option of the W command.

The register values which are given to the assembler program at ‘run
time " can be set using the U command. Before returning to the

assenbler, the returned values of the registers are saved so they can be
examined using the D command.

Syntax: Run
S - Save the current text object to microdrive

This causes the current text to be saved to microdrive. The filename
used is displayed on the screen under the heading 'FILE: . This name can
be changed using the N command. Use the S command regularly to
ensure that there is always a current version of the program on
microdrive, otherwise a crash may cause all the current text to be lost.

Syntax: S
responds with “Text saved as mdvl_asmtext "

T - Type out the current program

This causes the current program to be listed to the currently selected
autput channel. It is normally only used with the printer selected as
autput because it is generally much easier to lock at files using the
editor. ESC can be used to terminate the typing of a program.

Mote that the L command also produces listings, but these listings
contain line numbers and hex codes. Typed programs are just the straight
text file as seen by the editor.

Syntax: Type text

13

U - Update the QL's memory or regisi:ers

This command has two functions. The first function allows memory to be
changed directly, in a similar way to the BASIC POKE cammand. The secand
function allows the values in the registers when the assembled program
is run to be modified.

After U has been pressed, the computer will ask you if you want to write
a byte, word or long word. Type B, W or L as appropriate.

‘The computer then responds with the query ‘ad,values: °.
Memory modification

For the first type of POKE operation, type in the first address to be
modified followed by the value at that address and as many subsequent
addresses as are required, all separated by commas.

Biai 3i Ficati

To change a register, simply type the standard register code, like d2°
followed by data separated by commas. If more than one data parameter is
mrovided, it will be put into the next register in order. The assembler
remembers these values for the registers until the assembled code is
run. These values are then passed to the assembled program just before
it is entered. The sequential order for entry is:

do,d1,d2,d3,d4,4ds5,d6,d7,a0,al,a2,a3,ad,a5,ab
The demonstration multiplication px:ogram can now be tried ocut. Type:

Update Byte/Word/Long: L
ad,values: dl1,2,3

This will load dl with 2 and d2 with 3. Dump the registers using the D
command to show this. Now run the program using R command. Then dump
the registers again using D. You will notice that the register d2 now
contains the value ‘6°. The program has multiplied two numbers together.
Typing R again will cause d2 to be multiplied by dl again. Looking at
the registers will then reveal that d2 contains the hexadecimal value $C
which is equivalent to decimal '12° (a $§ before an argument indicates
that the number is in hexadecimal, otherwise decimal is assumed).

The ability to set up all the registers, try out a small piece of code
and then look at the results is a valuable tool for use in debugging
programs.

All assembler arithmetic and symbol table facilities can be used with
this cammand. The overall result is very similar to the DC directive in
the assambler, except that the values go to a position in memory that
starts at the stated address rather than in the program space.

Symtax: Update Byte/Mord/Long: size specifier

ad,values: address,valuel,value2,....
BExaple: Update Byte/Word/Long: W

ad,values: $20000,$AA,34,56 (loads into screen memory)
o ad,values: dl,4,5 (puts 4 in dl and 5 in d2)

14

W - Write the assembled program to a named file

This command writes out the assembled code to a named file. The command
will prompt you for a filename and then write to that file.

Machine code routines which are designed as additions to BASIC, or as
executable programs in their own right as Jobs can be saved with this
command. Multi-tasking programs can be saved using the W cammand by

specifying the data space required.)
Syntax: W filename (saves object code in a file)
ar W filename,dataspace (saves as EXBCable file)
Bample: W responds with
Save in file: mdvl_code
ac Save in file: mdvl_mon_exec,100

> - Print status of symbol table and version number

This command prints out information about the assembler version and
informs the user whether the symbol table is LOCKED or UNLOCKED.

Bxample: > responds with
ADDER QL Assembler
Version: 20th November 1984
o symbol table
? - HELP
‘This cammand operates identically to the H command.
Syntax: ?

4 - Reinitialise the screen in 4 ocolour mode

This resets the assembler to use small characters. This is highly
preferable for serious work because it provides more characters across
the screen than the equivalent 8 colour mode. The exact number of
charcters displayed across the screen in mode 4 depends on whether the
monitor or TV type of display was selected at power up.

Sare displays are capable of displaying the smaller characters clearly,

mtmdlaractersarelostofftheedqeofﬂxescteen.Ifthisisthe
case, you should select the TV option at power up.

Syntax: q

8 - Reinitialise the screen in 8 colour mode

This screen mode uses larger characters than mode 4, which may appear
mich clearer on same televisions. Unless it is difficult to read the
mde 4 characters, it is unusual to use mode 8 for any serious work.

Syntax: 8

15

3 EDITING FILES

3.1 General introduction to the text editor

The assembler source program text needs to be entered into the QL bhefore
the assembler can be used. Programs are entered as normal text using the
integral full screen editor. This editor can be used as a quick general
purpose text editor in its own right if required. Either of the QL’s
screen modes (4 colour or 8 colour) are supported, as are the TV and
monitor style displays. The following commands are provided:

normal characters - characters you type are inserted in the text
left/right/up/down - cursor keys move cursor by one space/line
SHIFT left/right - move to beginning or end of current line
SHIFT up/down - move to previous/next page

- split current line or start a new line

TAB - move to next TAB column

CIRL left/right - delete left/right character or join lines
CIRL up/down - delete/undelete lines (allows blocks of text

to be moved around within the file)

CIRL SHIFT down CQOPY line into deletion buffer

Fl redraws the screen

F2 - move to rext error and redisplay error
message (makes finding errors effortless)

F3 linemmber - move directly to a numbered line (F3 enter
moves to top of source file)

P4 filename - insert named file in text at cursor position

FS string - search for string in source text

SHIFT FS - search for next occurance of string

ESC - exit back to command mode

SHIFT ESC - exit editor without emptying deletion buffer

3.2 Available editing modes

Befare you start editing, the optimum screen layout for your system
should be selected. This will be determined by a number of factors.
First of all, the monitor or TV type of display should be selected at
power up. Take care with the monitor display. Same monitors cannot
display the full width of the QL’s screen, and have to be operated in
the TV display mode. Now decide whether you require as much text on the
screen as possible (mode 4) or the largest characters possible (mode 8).
Mode 4 should normally be used unless you are using a television, in
which case mode 8 may be more suitable. Select the correct mode by
typing either 4" or ‘8" from command mode (see previous section).

3.3 Simple editing with examples

The commands available on the editor were summarised at the start of
this section. We are now going to try out some of these features.

First of all, clear the text memory by creating a new edit file, called

‘mdvl_temp” for example. This is created using the F command in
command mode. The text window should now be cleared of any text.

16

Type E to enter the editor. The cursor (not flashing) will appear in
the top lefthand corner of the screen. Try typing some text to get a
feel for the editor s operation.

(haracters typed at the keyboard will be inserted directly into the text
at the current cursor position. The ENTER key inserts a newline
character at the cursor position.

The arrow keys move the cursor left, right, up and down. The cursor will
ot move to any position where there is’no text. Try moving the cursor
to the middle of one of the lines of text which you have just typed. Now
hit the ENTER key. The line is split at that point due to the
insertion of a carriage return character. The lines can be joined again
by CTRL-backarrow.

SHIFT-arrow keys can be used to move the cursor up a page, down a page
ar to the start or end of the current line.

The TAB key moves to the start of the next column of characters (each
mlumn is 8 characters wide). This is extremely useful for entering
programs, because each type of entry can be put in a separate column,
leading to neat program layout.

CTRL-left and CTRL-right delete a character forwards or backwards as is
normal on the QL. CIRL-up, CIRL-down and CTRL-SHIFT-down can be used to
move or copy blocks of text. The operation of these facilities is
covered in the next section.

Lines can be of any arbitrary length, but the latter parts of the lines
are not displayed if they protrude beyond the right hand edge of the
screen. Characters there can be seen by splitting a line with the ENTER
key.

The function keys are also used in the editor.
Fl redraws the text

P2 noves the cursor to the suspected location of the next error fram
the previous run of the assembler, and prints the relevant error
messages on the screen. This 1s covered in a later section entitled
‘BError correction after assembly .

F3 number moves the cursor to the specified line. This can be used to
move rapidly to anywhere in the file. For example, F3 1 ENTER will
move to the start of the file and F3 1000 ENTER will move to the end
of the file and so on. This function really becomes useful when editing
fairly long files.

P4 filename inserts the contents of a named file into the text. This
can be used to concatenate text files, or to copy blocks of text.

FS string searches through the source text fram the current position
of the cursor until the designated ‘string’ is found.

SHIFT-FS searches through the source text for the next occurance of
string”. This is used in conjunction with the FS search facility.

CTRL-FS can be used in the normal way to temporarily halt output
during listings, so that the text can be read.

17

The editor is exited by ESC. This causes the deletion buffer to be
anptied and returns control to camand mode. Return to command mode can
also be effected using SHIFT-ESC, but the deletion buffer remains
intact. Text stored in the deletion buffer can then be used when the
editor is entered again.

There is no ‘cancel edits’ cammand - exiting the editor causes the
updates to occur. This is because everything is being done in store, so
there is not usually enough space for both old and new texts to coexist.
The only way of cancelling edits is to back up to the last disc version
(using the P command in command mode).

3.4 Block MWWE and QOPY cammands

Moving blocks of text is performed by ‘deleting” lines into a deletion
buffer, moving the cursor to the new destination and then ‘undeleting’
the lines at this new position. large blocks of text can easily be moved
around in this way.

To ‘delete” a line into the deletion buffer, position the cursor on that
line and type CIRL-downarrow. The line will disappear. Now move the
cursor and type CTRL-uparrow and the line of text will pop up fram the
deletion buffer onto the screen. Any number of lines can be deleted and
undeleted, providing a powerful block move facility.

the line

Text can be copied in a similar manner. Position the cursor on

to be copied and type CIRL-SHIFT-downarrow. The line will be entered
into the deletion buffer, but the original will also remain. The copied
line can then be undeleted anywhere in the text with CIRL-uparrow.

3.5 Error correction after assembly

The use of this facility will become clearer after you have read the
section on assembling files. When a program is assembled, any syntactic
ar other errors are printed on the screen as the assembler finds them.
After the assembler has located all of the errors, it is up to the user
to edit and correct these errors.

Normally, this would require a note to be made of the offending line
rumbers and the type of error present. However, the Adder assembler
records all occurances of errors during the assembly for you. In the
editor, it is then simply a matter of pressing function key F2 to
search for the next error.

Pressing F2 causes the cursor to be moved to the position of the next
error, and also causes the error message for that error to be printed
cut on the screen. The programmer will then have to assess the cause of
the error, correct it, and go on to the next error. This fast search
facility allows programs to be debugged very rapidly.

18

4 ASSEMBLING FILES

4.1 General introduction to the Assembler

Te ADDER assembler is a 68000 MACRO Assembler compatible with the
Motorola standard. Its basic function is to convert an assembly language
program, written in normal text into machine code suitable for direct
execution by the 68008 microprocessor ms.xde the QL.

The assembler is started by the A camand fram command mode. It then
performs a single pass over the input text, generating code as it

. Forward references are remembered and filled in as they becane
known. Unless otherwise specified, the assembler behaves- according to
the Motorola standard for 68000 assemblers. It was based on the
information contained in the 3rd edition of the Motorola 68000 User's
Manual .,

4.2 Syntax
The general format of each line of input text must conform to:

ETTHER optional label
optional colon following label
e ar more spaces
the opcode, possibly with size modifier
e ar more spaces
the cperands, with NO SPACES!
e or more spaces

caments.

R
asterisk in column 1
camments.

R

blank line (like comment has no effect on assembly)

Labels may be of any length. They should start with a letter, and
continue using letters, dots, underscores and digits. The case of
letters is not significant.

Opcodes consist of the legal 68000 instruction opcodes, or the
directives listed in section 4.6. Case is not significant. Same opcodes
may include size modifiers, which are of the form:

.L 32-bit (Long word) modifier

W 16-bit (Word) modofer (this is the default size)
.B 8-bit (Byte) modifier

S B-bit offset in branch instruction. If this is not

specified, branch instructions generate 16bit offsets.
.W may be quoted explicitly on branch instructions, to
amphasise the 16-bit offset.

Same opcodes have several different forms. For example, ADD also has the
versions ADDA, ADDI and ADDQ. As a general rule, the ...A and ...I forms
of such instructions need not be specified because the assembler will
automatically choose the correct form for the instruction. However, it
is necessary to explicitly state the ...Q form since the assembler will
mot otherwise produce this form.

19

Example lines:
FRED MOVEQ K3.dl
.

* This 1s a comment
RTS this comment follows an instruction

MILS dl,d2 colums don’t have to line up, but it looks neater

clr.l dl lower case 1is equally valid

4.3 Dynamic Debugging tools

The Adder assembler provides several useful tools to aid in program
develogment.

The first of these is the automatic error search facility within the
editor. After a program has been assembled, producing a list of errors,
the programmer can simply enter the editor and press function key F2.
This moves the cursor to the first error and prints the relevant error
message on the screen. Subsequent errors can be located in a similar
manner by continually pressing F2.

Another powerful debugging aid is provided by the U (update registers
or memory) and D (dump out register or memory contents) commands.
These two commands allow the memory and registers to be configured in a
special way, to try out specific bits of code. Memory contents and the
values of all the registers can be preset to any desired values using
the U command (see Cammand Mode section).

Upon return from running a particular routine, the registers and/or
memory contents can be examined to ensure that the routine had the
desired effect. An example of this was provided in the command mode
section.

Other useful facilities include the P (print value) command, which
allows any expressions from the symbol table to be printed out, T
(type) and L (list with assembled codes) which allow the entire
program to be printed out for examination.

puring the edit/assemble/run cycle, it is often inconvenient to
re-assemble the entire source file just to check a minor alteration. The
‘patch’ directive allows minor alterations to be tried out without
re-assembly (see section 4.9)

20

4.4 Addressing modes

The operands which are provided in the source text are separated by
commas (see assembler syntax), and are either expressions or addressing
modes. The following forms of addressing modes are allowed:

form eample addressing mode name
mn Dl data register direct
An A3 address register direct
(An) (SP) address register indirect
(An)+ (AL)+ address register indirect with postincrement
-(An) -(A4) address register indirect with predecrement
a(An) 24*2(Al) address register indirect with displacement
afAn,Xn) 12(A3,Dl.L) address register indirect with index
(An,Xn) (A3,A2) address register indirect with index

(zero offset assumed)
a lab3 absolute address (long or short)
r relval program counter relative with displacement
r{FC) relval (PC) program counter relative with displacement
r(Xn) relv(D2) program counter relative with index
r(PC,Xn) relv(PC,D2) program counter relative with index
fa #23 immediate data

In the forms described in the above table, the following conventions are
used:

means any address register, AO-A7 or SP (same as A7)

means any data register

means any register, with a possible .L or .W size modifier
means any absolute value of expression

means any relative value or expression

n"Egg

With PC index mode using an address register, the index size must be
specified. This is because ’

MOVE.L fred(A3),Dl

is mistakenly read as an address register with displacement, even if
fred is a relative value. If fred is a relative value and PFCindex was
intended, say:

MOVE.L fred(A3.w),D1
ar MOVE.L fred(PC,A3),Dl

The syntax for long and short absolute modes i1s ambiguous. If there are
mo forward references then the smallest one that fits will be used. If
there are forward references then only short absolute can be used,
otherwise the value turns out to be too big and an error results.

21

4.5 Expressions

These may consist of symbolic names, operators, numeric constants and
the * symbol. The following forms of constant are allowed:

Decimal

A sequence of decimal digits such as 1245

Hexadecimal

A dollar sign, followed by a sequence of hex digits such as $FF3
Character

Up to four characters enclosed in smgle quotes. A in the string

oounts as a single quote mark. Example: "3

The character constant generates the corresponding ASCII code. All
arithmetic is to 32bit accuracy, thus the limit to 4 charcters.

Symbolic names are values set using the BEQU or SET directives and
program labels. Forward references to values not yet defined may be used
freely.

The * symbol gensrates a relative value, equal to the current position
in the code.

All values are either relative or absolute. A relative value is an
offset into the (relocatable) code section. There are limits on the ways
in which relative and absolute values may be combined, as (for instance)
multiplication on a relative value is unlikely to be useful.

relative + absolute =-> relative value
absolute + relative -> relative value
relative — absolute -> relative value
relative - relative -> absolute value

These are the only ways in which relative values may be combined - all
other arithmetic is constrained to be between absolute values.

The following operators are available:

+ 2s camplement addition

= subtraction or negation

» signed multiplication

/ signed division

« shift left - a<<b is "a” shifted to the left by b’
places. "a” is zero-filled fram the right.

> shift right - ©>>d is ‘c’ shifted to the right by “d”
places. ‘c” is zero-filled fram the left.

! or | bitwise R (either will do, ! is Motorola standard)
c|d is each bit in ‘c” ORed with each bit in ‘d”

& bitwise AND
c&d is each bit in ‘c” ANDed with each bit in "d”

22

These operators may be used to combine values anywhere that an
expression is allowed. The operators are evaluated according to the
following precedence table:

tightest binding monadic - (minus)
then << >

then & !

then * /)

loosest binding + -

With equal precedence, evaluation is from left to right. Brackets may be
used to change this if required.

If you wish to find out quickly whether or not a given expression is
valid, it is very easy to ‘try it out’ using the P command.

4.6 Directives

The following Motorola compatible directives are supported by the
assembler: BQU, SET, END, DS, DC, LIST, NOLIST, NOL, IFEQ, IFNE, ENDC,
MACRO, MEXIT, ENDM. The assembler does not have any cross reference
facilities. However, for compatibility reasons the directives PAGE, SeC,
NOPAGE, LLEN, TTL, NOOBJ and G are ignored by the assembler and do not
produce error messages. These directives are used by other assemblers to
convey listing control inforation, and have no effect on the code
produced by those assemblers.

In addition to those directives listed above, BQUR, CNOP, DISCARD,
PATCH and GET have been added. The effect of each directive is now
covered in more detail.

EHU and SET

BU is used to declare a symbolic name for an absolute or relative
value.

Bxample:

fred B 23
Joe BQU 17+fred

SET is used to redefine a symbolic name. Note that the argument to SET
should not contain forward references, or the results may be samewhat
confusing.

Bample:

pos SET 0

pos SET pos+1

pos SET pos+2

23

—

—————

BAR

BQUR means ‘equate register . It is used to give a symbolic name to a
register.

Bample:
P EQUR A3

This allows P to be used instead of A3. Thus, registers may be
referred to by their use rather than by their number. This mechanism can
also be used to give a symbolic name to any addressing mode.

Bample:

NEXT BUUR (A3)
DATA BQUR 4(A3)

This allows access to structures to be organised in a more helpful way.

s

DS is used to reserve an area of storage. It takes a single argument,
which is the number of storage units to be reserved. The default unit
size is a word (16 bits), but .L or .B can be used to adjust this. The
store units reserved will be aligned to a word boundary unless the size
modifier is .B, when it will be aligned to a byte boundary. Zero bytes
will be added beforehand if necessary, and if the instruction is
labelled then the label indicates a position just after these extra

bytes.
Example:

array: DS.L asize reserves asize long words of store, and defines
. “array" as a relative symbol which points at
- the first one

DS 0 can be used to align memory to a 2 byte boundary.

Note that the precise behaviour of DS and DC on correcting alignment of
data objects may vary slightly between different 68000 assemblers.

oc
DC is used to reserve an initialised area of store. It may take any
rnumber of arguments. Each one is used to initialise a storage unit (a
word by default, but can be changed using .B or .L). An exception to
this is that if an argument is a charcter constant, then it may contain
any number of characters and they will be placed in consecutive bytes of
storage. Each entry made from a DC is alxgned to a byte or word
boundary, however, so that extra bytes may be inserted to retain the

alignment.

24

The store units allocated will be aligned on a 1 or 2 byte boundary
depending on the size modifier of the directive. Zero bytes will be
added beforehand if necessary. If the instruction is labelled then the
label indicates a position just after these extra bytes.

Bxamples:

DC.L 3 aligns to a word boundary, then leaves
» a long word containing the value 3
[C.B ‘hello” leaves 5 bytes °
-

aee

This ‘Conditional NOP® directive is an extension fram the Motorola
standard and allows a section of code to be aligned on any boundary.
Such a facility can be useful in certain types of programming
applications.

The first argument is an offset, while the second argument is the
alignment required for the base. The code will be aligned to the

specified offset fram the nearest required alignment boundary.
Syntax: aNop offset,alignment
Bxample: awop 0,4 (align to nearest long word boundary)
oP 2,4 (align to word boundary 2 bytes after the
nearest long word boundary)

LIST, NOLIST and NOL

These listing control directives allow different parts of an assembly
listing to be printed out. All text following a NOL or NOLIST directive
is not be printed. Printing recommences when a LIST directive is
encountered. Text after a LIST directive will be printed out. The LIST
option is selected by default.

Bo

This directive indicates the end of the assembly. It is not necessary,
and is implied by the end of the input text file. If encountered in the
middle of a file, assembly will terminate at that point.

This can be useful for trying ocut very short pieces of code. With the
main body of text still in the memory, short pieces of code can be
inserted at the top of the text file, followed by end. This is
especially useful when used in conjunction with ‘patch’. The assembler
will then only assemble this short piece of code and allow it to be
debugged effectively.

25

e — e

4.7 MACROs

Programs often contain coding of a repeated pattern of instructions
which within themselves contain variable entries each time the code is
used. Macros provide a shorthand notation for handling these repeated
patterns within a program. Once a programmer has recognised a repeated
mttern, he can designate any fields within the macro as variable. Once
set up, the macro can be invoked many times over, substituting different
parameters for the variable portions of the statements.

When the macro is defined, it is given a label. This label becomes the
memonic by which the macro is subsequently called. To avoid confusion,
the name of a macro definition must not be the sane as an existing
instruction or assembler directive.

An example of a typical MACRO definition might be:

.
o A typical MACRO example
-
TRP MACRO
MOVEQ #\2,D0
TRAP 1
ENDM

End of MACRO definition

~

This particular example would add the special MACRO called TRP. Two
arguments would be required, so

TRP 1,0
would cause the instructions:

MVEQ §0,D0
TRAP §1

to be inserted into the text of the assembling program. The advant.age 1s
clear, Several memonics have been replaced by one. For larger pieces of
oode, the savings are even greater. We will now look at how this works.

MACRO definition

Each MACRO is defined by a label followed by MACRO. In the example
above, this label was ‘TRP’. Subsequent uses of this label as an operand
will musetheoont.entsofthemcmtolxexparﬂedandmsertedmthe
source code. The end of the MACRO is then defined by ENDM.
Alternatively, the MACRO can be exited prematurely using the directive
MEXIT. This would normally be used within the conditional assembly
directives IFBQ or IFNE and ENDC.

26

When a macro name is used, it can be followed by a number of arguments,
separated by commas. These arguments can then be inserted into the macro
definition by the use of \ followed by the argument number. Hence, \1
and \2 in the example were replaced by arguments one and two. Up to ten
such arguments can be used. Note that \0 has the special meaning of the
size modifier (if any) appended to the macro label.

When an argument’s value has multiple parts, or contains spaces, the

value must be enclosed within angled brackets. The bracketed value must

still be enclosed by the conventicnal Commas. If a null argument is

required, the arqument can simply be left out, but the commas must still
-~ be provided to delimit the arqument's position.

It is often useful to include labels within a macro definition, for
example in a simple counting loop. However, since macros can be used
over and over again, if the label were the same in each case then
multiple label errors would be generated. This problem can be avoided by
using assembler generated labels in the label field. Such labels have
the form "@nnn" where “nnn" is a decimal number from 001 to 999
inclusive. The assembler will generate a new number for each rew macro
expansion. Subsequent labels encountered in subsequent macro expansions
will therefore be unique.

Within the macro definition, \@ is used to represent such an assembler
generated label.

The following exanple illustrates many of the points raised above:

EXAM MACRO
ADD \1

\e NOP
DBRA DO,\@
DC.L \2M\3~
MEXIT

this generates the following expansions:
EXAM <D3,D4>, ,NN

ADD D3,D4
€001 NoP

DBRA DO, €001

DC.L ‘MIN

EXAM W-JIDDILIN
ADD VAR-3,D2

€002 NOP
DERA D0, @002
DC.L M

27

4.8 Conditional assembly

When producing large programs, it is often useful to be able to assemble
certain parts only for debugging purposes,-or only for a particular 1/0
application. Conditional assembly allows such alternatives to be
szlected by setting a flag to a particular value before assembly.

IFEQ and IFNE are the directives which enable or disable assembly,
depending on the value of the expression in the operand field. The value
is BEQUAL if it is zero, and NOT EQUAL otherwise. The conditional
assembly remains in force until the ENDC operand is encountered, at
which point normal assembly resumes. It is possible to nest conditional
assembly statements arbitrarily, but each level of nesting must be
teminated by a matching ENDC.

The macro MEXIT directive is often used in conjunction with conditional
statements to terminate the generation of a macro. For example,

TRY MACRO
MOVEQ #56,D0
IFNE \1-0 IS THE ADD REQUIRED?
ADDY #\1,D1 -
MEXIT DON'T DO THE SUBTRACT
ENDC
SUBQ #1,D1
ENDM

The above macro will add the argument to D1 if non-zero, or subtract 1
fram D1 if the argument is zero, so

TRY 4 adds 4 to DI
but TRY 0 subtracts 1 fram D1

4.9 PATCH and debugging large files

When very large files are being assembled and debugged, it can be very
time consuming if the entire source file is re-assembled after every
minor correction has been made.

For this reason, the ADDER assemwbler has been provided with a novel
feature called patching. This procedure allows small changes to be made

to an assembled file without re-assembling from the original source
text. The operation of ‘patch’ is perhaps best illustrated by an

example.
Example:
Original text in source file was:

e

suBQ 41,01
LABEL MOVEQ ¢1,D0
RAP 1

RTS

28

Debugging the program indicates that TRAP #0 should have been used
in place of TRAP #l. Instead of re-assembling the modified file, the
following patch can be inserted at the front of the file:

PATCH LABEL42
TRAP #0
END

“ee

When this piece of code is assembled, the binary code for TRAP #0 is
inserted into the cbject code in place of the ariginal code for TRAP §1.
Jhe file has been ‘patched” and can be run for further debugging.

Several points should be noted. If the assembler operated in its normal
mode during the above procedure, the symbol table which was generated on
the first camplete assembly of the source file would have been scrapped.
The value for LABEL as used in the PATCH definition would not be known
without re-assembling the entire file. This problem is overcame by
IOCKing the symbol table after the first complete assembly. The M
command is used for this. Once locked, the symbol table cannot be
deleted until it is unlocked. .

The symbol table should be kept in the locked state whilst PATCHing is
in progress. As soon as too many patches are being used, it is advisable
to update the relevant parts of the original source text and
re-assemble. Before this operation, the symbol table must be UNLOCKed
again using the M command. If this isn’t performed, ‘redefinition of a
symbol * errors will be generated when assembly is restarted.

To summarise, the symbol table must be LOCKed using the M command
before patching a file. The PATCH directive is followed by a label and
optional offset (default of 0). This defines the position of the
instructions which are to be corrected. The corrected instructions then
follow the PATCH directive on subsequent lines in standard assembler
format. These are terminated by the END directive. Assembly then
modifies the ocbject code for testing. When the entire file needs to be
re-assembled again, the symbol table must be UNLOCKed.

4.10 Larger files and space management
whilst the general philosophy of this assembler develogment package has

hinged around the ability to write and debug small programs, facilities
for coping with larger programs also exist.

The assembler has a fairly complex space management scheme. The major
problem with larger files is that the source text, symbol table,
assembler, editor, assembled code etc. just don’t fit into memory
together. There are three areas of memory which could run cut:

the stack - this should never happen

the nodeheap - caused by too many forward references

the heap — probably caused by too much code, too many symbols
or too much text.

The amount of remaining heap, which is the main memory store, is
constantly displayed on the screen.

29

The problem of running out of mefiory can be circumvented to a large
extent by keeping large chunks of text on microdrive. For example,
suppose that the main body of a program has been saved in the microdrive
file ‘mivl_main’. We can use the assembler directive GET to load this
section of text into our program residing in memory.

The form of this directive is:
GET “filename

The filename should be in single quotes, just like a character constant
in DC. The named file is opened and included in the source of the
assembly. It is through this mechanism that a source of several files
can be read. GET directives can be nested to any depth.

Bample:
GET ‘mdvl_main’

The use of GET allows standard library files to be built up for certain
common tasks. This means that definitions of standard functions do not
have to be retyped whenever they are used.

Another method of saving memory is by econamising on the use of the
symbol table space. The DISCARD directive can be used to delete
entries from the symbol table. This directive is non-standard for
Motorola assemblers, which are mainly ‘two pass assemblers”. The Adder
assembler is a single pass assembler, so using discard is possible.

The form of this directive is:
DISCARD <list of variables>
Using discard allows large programs to be assembled without using all of

the symbol table space, since local variables can be deleted when they
are no longer required. It also allows local label names to be reused.

Bample:
vi: e

BRA vl

DISCARD V1,V2,fred
vi: ...

BEQ vi

If the system still runs out of memory, try saving and rebooting the
entire system, especially if it has been in use for an extended period.
This may solve the problem, because the heap sometimes suffers fram
“fragmentation" whereby it is unable to use the available free space for
arganisational reasons. If after saving and rebooting the system still
runs out of memory then you probably require an extra half-megabyte
plug-in memory expansion!

30

A - Errors

The assembler quotes errors by an error number, and a suitable message.
This appendix lists all possible error messages. All errors are
remembered, and passed on to the editor so that it can move rapidly to
the location of each error in turn. If twenty errors are found then
assembly is aborted, as samething is obviously very wrong.

Sare of the errors also produce additional information, which may or may
mot be informative. Errors involving files (for instance, not being able
to open a file) may produce a small negative number - this is the QDOS
error code and can be looked up in QDOS documentation. It may be of same
help in deciding what has gone wrong.

Sametimes the error message is not helpful, and merely implys that
“something is wrong with this line". Do not panic! Follow this
procedure:

(1) check that there are some spaces in front of the opcode, and NO
SPACES IN THE ARGUMENTS (except in quoted literals).

(2) Check the instruction carefully in the microprocessor reference
manual. Have you used it correctly? e.q., check which sizes are allowed,
and which addressing modes.

(3) Check all the symbol definitions of symbols used in the operands.
(it may be useful to leave the editor, reassemble, and use the P
command) .

(4) Correct all the other errors and reassemble - this one could have
been caused by an earlier error.

Assembler Error Codes and their Associated Meanings:

1 run out of heap space
too many symbols, or too much text held in memory
run out of stack space
shouldn“t ever happen
data error
run out of node space
too many symbols, or too many forward references
internal error
unexpected end of input
error fram filing system
frequently caused by a file not being found
frequently followed by a negative number, which is an
error code fram QDCS
8 end of file in macro body
A macro body may not span more than one file
Probably caused by missing ENIM at end of a macro definition
9 badly formed size modifier
a size modifier is of the form .L, .W, ar .B for data values
ard .S for short branches. No other form is allowed
10 no closing quote in string/character constant
11 character constant with no characters in it

~

~N v EoR)

31

12

14
15
16
17
18
19
20
21

KRENER

s8B88 Y

32

i3
35

37

39

41
42
43

45
47

48
49

misplaced # =
is used to denote immediate data
and must be followed by a constant absolute expression
ledding - not followed by (An) or expression
bad object in bracketed expression
argument missing or garbage found
misplaced <
misplaced >
bad object found in bracketed expression
size modifier on bogus abject?
bogus address register in a(An) form?
address mode mal formed
bad index modifier, or comma or bracket expected
coma or close bracket expected in index mode
bad operator arguments
subtract with bad arguments
register range mismatch
reg-reg argument form (only legal as argument to MOVEM)
used with two inappropriate registers
garbage found after arquments

arguments must be separated fram camments by spaces or tabs

wrong number of arguments for this opoode
close bracket expected
opcode not recognised

The opoode on this line is not accepted by this assembler
Check that there is space before and after it on the line

case 1s not significant, and bad usage or size
modifiers will not cause this error.
absolute value needed
sametimes caused by illegal use of
the program counter relative addressing mode
mismatched arguments for plus
the only operations allowed for plus are:
abs + abs (yielding abs)
rel + abs (yielding rel)
abs + rel (yielding rel)
mismatched arguments for minus
mismatched arguments for minus
attempt to divide by zero in constant calculation
shift count or ADDQ/SUBQ argument won't fit
the value must be in the range 1 ..8
even address expected
usually caused by DC.B yielding an odd number of bytes,
followed by instructions or word/long word data.
even address expected
internal SA expansion error
the value must be in the range -32768..32767
the value must be in the range -32768..65535
the value must be in the range -128..127
offset of zero in short branch not allowed
the value must be in the range -128..255
redefinition of a symbol
usually caused by a label being used twice
bad argument for BQU
BQU with no label
bad argument for SET
SET with no label
BQUR with no label

ARLDIV2BBRIYRGR 28

9

IN=S388

-~ ~J
=

SREX2TR2BIIS

2E8R2838

BQUR symbol has other definitions
BQU and BQUR may not be used on the same symbolic name
bad argument for DISCARD
bad arqument for DISCARD
DISCARD should be given a list of names, as previously
been defined using SET, BQU or BQUR
bad object as DC argument
not enough arguments for UPDATE operation
bad cbject as UPDATE argument
SR may not be UPDATEd, only CCR s
too many arguments for UPDATE operation
data value expected
bad argument for GET
bad argument for GET
bad argument for PRINT command
bad address arqument
bad arquments for DUMP operation
DUMP must start at an even address
this addressing mode cannot be used for this operation
(heck the user’s manual for exactly how to use this
instruction - frequently caused by writing to a program
relative location or some similar mistake.
bad use of PC mode
PC may only be used in the form label (PC) or value(FC)
bad arqument for branch instruction
bad second (destination) argument to DBcc instruction
too many arquments for shift operation
bad arguments for register shift operation
bad first arqument for bit operation
the given size specifier is not allowed for this operation
check the assembler manual for exactly what combination
of arguments is allowed for the instruction on this line
move to USP is only allowed from an address register
move fram USP is only allowed to an address register
a byte sized value may not be moved to an address register
an address register can only be a destination
in a word ar long word move
the first argument to MOVEQ must be immediate data
the second argument to MOVEQ must be a data register
MOVEP only works with word or long word arguments
MOVEP is only allowed to ar fram a data register
MOVEP needs address register with displacement addressing mode
MOVEM expects a register list argument
MOVEM.B not allowed
bad args for ABCD/SBCD
bad args for ABCD/SBCD
P must be to a data register
bad for ADD/SUB/AND/OR/BECR
ADD/SUB/AND/CR must be to or from a data register
BR must be from a data register
ADDA/SUBA/CMPA not to an address register
ADDA.B not allowed
immediate opcoode without immediate first operand
immediate data expected as first argument
ADDQ.B/SUBQ.B not allowed to address register
bad arguments for OMPM
second argument of CHK/MUL/DIV must be a data register

33

95

97

100
101
102
103
104
105
106

107
108

109

110

EXG only allowed between registers
EXG only allowed between registers
EXT may only take a data register argument
EXT.B rot al lowed
SWAP may only take a data register argument
first argument to LINK must be an address register
second argument to LINK must be a 16 bit immediate data value
LEA second argument must be an address register
size modifier on TRAP not allowed
TRAP argument must be in the range 0..15
UNLK expects address register argument
MACRO found in macro body
Nested macro definitions are not allowed.
‘This error is usually caused by forgetting ENDM
at the end of the previous macro definition.
macro definition redefines name
bad macro expansion key
Samewhere in the body of the macro called on this line
is a \ not followed by a digit or an @ sign.
-garbage found after macro arguments
arquments must be separated fram comments
by spaces or tabs
unclosed argument bracket in macro call

34

Appendix B — 68008 Instruction Set

Summary
Instruction Set
MnemOn Description Mnemoec Descrphion
ADBC Acd Decxmal Wiih Extena MOVE Move
ADD Agd MOVEM Move Multiple Regrsien
AND Logical And MOVEP Move Penpheral Data
ASL Arithmenc Shlt Lelt MULS Signed Mulliply
ASR Arithmetic Shitt Right MULY Unsgned Mullioly
Bre Branch Conditonally NBCD Negate Decsmal with Extend
BCHG Bit Test and Change NEG Negate
B8CLA Bit Yest and Clear NOP No Operanon
BRA Branch Always NOT One’s Complerment
BSET Bit Test and Sel oR Togeal O
:.f;' ::m“’ Sl PEA Push Ellectve Address
RESET Reset External Devces
ey g:""or" Aipiey Boads AOL Rotate Left without Extend
e) end AOR Rotate Right without Exiend
ROXL Rotate Lelt with Extend
D8cc Test Condiion. Decrement and Branch ROXA Rotate Right with Exiend
pvs Signed Dwwide RTE Retuen from Exception
owu Unsigned Onade RTR Retum and Resiore
tOR Exciusive Or RTS Retuen from Subroutine
EXG Exchange Regaiers SBCO Sublract Deckral with Extend
X7 Sign Extend Scc Set Conditonal
ImP Jump sTop Stop
JSR Jump 10 Subrouting sue Subuact
LEA Load Ellectve Address SWAP Swap Data Register Hatves
LINK Link Stack TAS Test and Set Operand
LSL Logcal Stelt Lelt TRAP Trap
LSR Logeeal Stelt Raght TRAPV Trap on Overliow
TsT Test
UNLK Unhink
Variations of Instruction Types
Instruction Inetruction
Type Variation Description Type Vaciation Description
ADD ADD Aod MOVE MOVE Move
ADDA Aod Adacess MOVEA Move Address
ADDQ Add Quick MOVEOD Move Queck
ADDI Add Immedaate MOVE lrom SR| Move lrom Status
ADDX Add with Extend Regeter
AND AND Logical And MOVE to SR | Move 10 Status Aegeater
ANDI And Immedate MOVE 10 CCA | Move 10 Condition Codes
ANDI 10 CCR | And Immedsie 1o MOVE USP_ | Move User Stack Pointer
Condion Codes NEG NEG Negate
ANDI 10 SR And Immediate 1o NEGX Negate with Extend
? Status Regrster on OR Logical Or
our CmP Compare of Or lmmeduate
CMPA Compare Address ORI 10 CCR Or Immediale 10
CMPM Compars Memory Condtion Codes
CMPy Compare immedale ORI 10 SA Or Immediate 10
EOR EOR Exchmve Or Sutus Regeter
EoRt Exchuseva Or Immediale sus suB Subtract
EORI 10 CCR | Excluseve Or Immedate SuBA Subtract Address
1o Condition Codes suat Subtract Immediie
EORI to SA Exchusve Or Immedate susa Subteact Ouch
10 Status Register susx Subtract with Extend

35

