-

COMPUTER ONE MONITOR

for the Sinclair QL computer

A USER GUIDE

2 Copyright Computer One Limited 1985,

No part ol this manual may be adapted or reproduced in any form without the prios
written approval of Computer One Limited.

All the information is given in good fuith, Computer One can accept no respensibility for
any loss or Jamage arising {rom the information contained in this manual or from the use
of this product.

Computer One reserves the right to alter the specilication of the product without warming.

Computer One welcomes ideas and comments. These and any bug reports or {urther
enquiries should be sent en the report form at the back of this manual to:

Technical Enquigies,
Computee Oune Lid.,
Soience Park,

Milion Road,
Cambridge CB4 4BH.

Sinclair & QL are registered Trude Marks of Sinclair Research ad,

TABLE OF CONTENTS

Introduction ...

Chapter

Chapter

Chapter

l.
1.
L.

Backing up
Overview
Loading and running

et fd =

Command format
Channels

Parumeiers

.1 Value specifications

1 Address specifications
I Ambiguitics in paramcters
2.4 Flaps

2.5 Example program

2
2
2
2
2
2.

> s i ba o

(%]
(5]

I Examination
1.7 Disasscmbling code
1.2 Dumping memory
1.3 Displaying regisicis
2 Modification

2.1 Allering memory
3.2.2 Moving memory
3.3 Verification and search
3.3.1 Comparing memory
3.3.2 Scarching memaory
3.4 Miscellaneous Commands
341 Loading jobs
3.4.2 Queue tracing
3.4.3 Leaving the monitor
3.4.4 Refreshing the screen
3.4.5 Evajuating expressions
3.4.6 Saving arcas of memory
3.4.7 Sering flags
3.4.5 Alflocating heap
3.4.9 Managing channel ids

Using the MODIEAT iieiiiarie e eseetions e ree s ss e e

The ComnanUs .o iiieies e eeeeee e seserssessaaesnes

e rrrer s s : Page 1
I Getting S1aT1ed v Bt

Page 2

. Page 5

TABLE OF CONTENTS (confinued)

3.5 Program debugging

3.5.1 Tracing code

3.5.2 Unconditivnal exceution

3.5.3 Breakpoints

354 Watchpoints

155 Skip tracing

3.5.6 Program crroes

3.6 Channet management

1.7 Job management

3.7.1 Listing jobs

3.7.2 Altering current monitor job

3.7.3 Suspending jobs

3.7.4 Releasing jobs

3.7.5 Altering job’s priority

3.7.6 Killing jobs

3.8 Cloning monitor commands
Chapter 4 SUMMACY coeniirminrminrnens v Page 36
4.1 General command siructure
4.1.1 Paramecter syntax
4.2 Channels
4.3 Flags

INTRODBUCTION

The Computer One Monitor is an invaluable toof for anyone developing
software for the QL. 1t has been designed ta take full advantage of the QDOS
opcrating sysiein, aad can handle several jobs at once.

[t has a large and powerlul set of instructions, mast of which can be invoked
with only one or two key depressions. Users can dump and disassembie
memory, trace programs, and control jobs. Memory can be modified. moved

and searched. When tracing you can set breakpoints and wateh for particulai ~ -

cvents. There is also an extensive sct of channel management commands 1o

_allww user definition of screen layout, and output 1o any QL device, for

example,.a printer or file. The sophisticated user will be able to take advantage
of the Maoaitor’s ability to clone itself to menitor several jobs at once.

This user guide assumces that the user has a knowledge of 68000 assembly
funguage, o bagic knowledge of QDOS, the QL operating system, including the
usc of TRAPs to make sysiem calls aad the concept of QDOS jobs.

USING THIS GUIDE

This section contains a brief overview of cach chapter.

CHAFTIER | describes how to backup the monitor cartridge, gives a gencral
overview of the monitor and explains how to start the monitor.

CHAPTER 2 deseribes how to use the monitur, explaining the syntax of
moniter commands by working through a short debugging session using one of
the example pragrams ou the system microdrive cariridge.

CHAPTER 3 desenibes cach command in detail, giving examples of the usc of
cach command.

CHAFTER 3 contains a summary of the commands, giving the full syntax of
vach command.

CHAPTER ONE
GETTING STARTED

1.1 BACKING UP

The supplied microdrive cartridge should be backed up immediately on receipt,
This cartridge should be treated as a Master copy. 1t is recommended that you
make two backup copies using the Master cartridge only as i cmergency
backup and not to run the software. Backing up may be done by running the
supplied "CLONU" progiain as foilows:

L. Place the Master copy in microdsive 2 (the right hand side drive).
2. Place a blank cartridge in microdrive 1.
3. Enter the following command:

LRUN mdv2_clone <ENTER>

4. The QL will respond with various instructions to name the new cartridge and
iniligte the copying, MAKE SURE THE MASTER IS IN DRIVE 2.

3. 'The “cioned’ system may be used as soon as the microdrives hiave stopped
running.

Repeat the procedure with another cartridge, and store the master and one of
the copies in a safe place. Use the remaining capy as your working saster —
only usc the others in an emergency. Please note that you may only copy the
software for your own use.

< OVERVIEW

The Monitor is designed 10 give you an understandable view of the machine's
current state. It does so mostly by giving you dumps of memuory in various forms
(dump fos dato. disassembiy for programs}, plus a copy of the maching’s internal
registers, i.¢. the data registers DU to D7, address registers AD to A7, the
program counter PC, system stack pointer SS, and status register SR.

‘The data/program/register displays are kept in separate windows for clarity,
and the form of each can be altered to suit your own taste. To keep things
simple. a small region in the machine is considered as the “main™ arcs under
congcern, and its addresses are simpler to specify and normally appear as

U progeam counter” relative, »

tn actual Fact, since the program counter tends to change duning tracing ete.,
another pseudlo-register is used to keep the bettom address relative 1o which
common addresses ase taken — it is called BP (base pointer). The top of the
area is held in a pseudo-repister called TP (top pointer). In addition there are 8
other pscuda registers called RO to R7 which you may use for your own
purposes, they are useful for storing temporary results, especially addresses, for
subsequent use,

Under normal circunstances you will probably be interested in debugging 2
single program, and it is this which will be held between BP and TP, The
progran will need some stack-space, and also has 10 be leaded into the machine
into a “safe” area of memory, Tius is where the concept of a “job™ is uselul. The
operating system on the QL {QDOS), can allocate arcus of memory which will

not conflict with other programs or data. Scctions of such - memory are often - -

referred to as jobs, and can be referenced via a special number or “job_id”, The

Monitor's load command is responsible for asking QDOS to allocate an arca of

memory, as a job, for your program (or data). Once loaded BP, TP, A7 (the
stack pointer), PC cte. are set to seasible valucs to allow you to start analysing
your program and the memory which it affcets.

‘The monitor can run severat jobs simultanecusly. Only the “current” menitor
job would normally be traced, but any other job loaded and started from the
maonitor will be suspended by the monitor whenever a breakpoint or program
error in that job occurs. The monitor can then be used to examine the job,
including the registers which are set to their values when the crror occurred.

1.3 LOADING AND RUNNING

In this and all subsequent sections it will be assumed that the program is in
microdrive 1. [t could equally well be stored on any device, ¢.g. floppy disks,
and may be referred to as, say, fipl_clmon, in such cases,

The Monitor runs as a QDOS job and is initiated by the superBASIC command:

exec mdvi_cimon <ENTER>

When the monitor has been loaded a number of windows appear on the screen
and vou may have to press CTRIL.-C before you start entering monitor
commands. To re-enter supctBASIC or other jobs which have an active
prompting cursor, press CTRL-C again. The monitor can take its input from any
channel; usually this will be from the keyboard, but you may wish 10 cxecule a
particular set of commands every timie you start the monitor. When the monitor
has just been EXECed, you can use the down arrow or up arrow keys to open
the tiles ‘mdv1_boot_mon’ (down arrow) or ‘fipl_booi_mon’ (up arrow) and
the mounitor will take its initial commands {rom onc of these files, Sce section 3.6
for more information on channel management.

A typical session might start and end as follows:

exec mdvl_cimen (start Monitor)

{CTRL-C) (if necessary to switch

trom BASIC to Maoaitor)
(et program to be debugped
INto fcmory)

Load mdvZ_myprog

dis (disussemble from start)
: (et}

{dcbugging your program here)
lzi LL 20003 (get rid of job (i necessary))
quit (exit monitor)

When you EXEC the monitor. there is nio current job to be moenitored, so the
monitor is sct to look at SuperBASIC.

Remember when using the monitor that you are working with the machine at a
very low level and that it can be easy to crash the OL unless you are very
careful, particularly when poking values into memory, or moving biocks of
memory in the machine.

CHAPTER TWO
USING THE MONITOR

This chapter describes how to start using the Computer One monitor, giving a
deseription of the general format of commands, the types of parameters
accepted by commands and some cxamples of the use of the more common
cammands,

2.8 COMMAND FORMAT . - - - - >

The gencral format of a command is:
Command [#chainel[,]] [¢parameters>§ [{i] flagy]

where “[|" is used to denate optionai jtems, Some of the commands will

demand that their parameceters are wriiten explicitly, but most use a “default” to
save you having to eater them. All commands can be abbreviated. To obtain a
list of the comimands available type: '

help (ENTER) (or simply h (ENTER))

in responsc to the C1MON> prompt. (Al command lines nced ENTER at the
end, and this will be omitted from now on.) More than one command can be
entered on a line by using a ¢olon as a command separator,

If two commands start with similas scts of letters then the figst command in this
list will be chosen. (For clarity commands are always written in fuil in this
manual.) :

2.2 CHANNELS

When (he monitor is loaded a screen appears in the following format:

Dis

0
2 Dump

1

Regs fnput

The screen has five channels open, numbered 0 to 4. Channei 1 1s the input
channel and it is in this window that the monitor command prompt appears. All
commands have a default channel which is used if no channel is specified. Most
commands usc channel O as their default. The concept of channels is very similar
to that in SuperBASIC and new channels can be opened to allow disassembly,
memory dumping etc. to other devices, such as priaters or microdrive files.
More detailed inforination on channel management is given in chapter 3, section
3.6.

2.3 PARAMETERS

Most of the commands have some parameters fotlowing the channel number.
These parameters, depending on the command, can be colours (for channel
management}, line counts, values, addresses, ranges of addresses, or job or
channel ids.

Culours
A colour is specified as in SuperBASIC and can include values to produce
stipples. It is easier 1o specifiy stipples using binary or octal valucs.

Line counts
A line specifier is a decimal integer which specifics the number of lines to be
autput to the screen in a dump or disassembly command.

Job and channel ids .

A job-id is a 32-bit value, which identifies a monitor job, for example 26003, A
chanuel id has a similar format and identifies a channcl. Note that if the id starts
with a hex letter it must be preceded by a zeio (or S).

2.3.1. Value Specifications

Values can be specificacd as numbers (any base) or combinations of numbers
using the operatiors +, —, %, /, 1, &, <{, >, "and %. A value can also be an
ASCII string, the conlents of an address or the value of an address. There is a
special null operator (.) which can be used {o resolve ambiguities. See section
2.3.3

The syntax for a valuc can be formally speeified as follows (a vertical bar
indicates alternative selection):

[$3i<hex number> | &<decimal number> |
a<pctal number> | %<binary number> |
"estring>" | <string>' | ~ <value> |
+<yvalue> | =<value> | <value>+<value> |-
<value>=<value> | <value>%<value> |
<value>/<value> | <value>!<value> |
<value>B<value> | <value><<value> |
<value>><value> | <value>*<value> |
<base n>4<n—ary number> | - - - - o - o
?<address> | a<address>

<value> =

The operators above which are not self-explanatory are ;

! (bit or) & (bit and) < (shift left)
> (shift right) ~ (not) A {mod)
% (allows the given value io be specified in the given base)

A number defauits to the hex value if it is not preceded by a §, &, % or ™ Hex -
numbers must start with a digitora $ (i.e. puta 0 ora $ in front of the number

if it starts with a letter). The preeedence of operators is essentially left to right
{monadic operators have higher precedence than diadic), but can be altered by
surrounding values in square brackets. Note that if a string is used in an
arithmetic cxpression iis value is considered 1o be the long word made up of the
ASCII codes of the rightmost four characters of the string.

The operator ‘7" in front of an address returns the long word at the specified
address, The operator ‘@’ is used Lo convert an address type into a valuc type.

Example : Using indirect addressing

825(a0) - address found by adding $25 to contents of Ad.
This could be written 25 + 2A0, Le. the value $25 added to the contents of AO.
If all this scems a bit confusing the best way to find out about values is to ﬁse the

eval command which displays the 32-bit hex form of a value. Below are-some
cxampdes, but we sugpest that you try mare examples yourself using the mouniter,

S VR —)

LI

.. i ; "
N

.\.‘

A

e et Bk

B N T T T - g]

P

Ll (I ST

S TR

Examples:
cval O+& 20 = 500000023 (15 + 20 in hex)
eval §+{473| = 506000014 :
cval ‘a’ = 500000061
eval ‘dcha’ = 564636261
eval §i—% 10 = S0000007f
cval 7HP = contents of base pointer
eval (a6} = address in a6 as a value
cval 7ab = value in ab (same as abouve value)
eval§ "6 = S00000062 (8 mod &)
eval 44 - = 500000024 (44 in base 8)

2.3.2 Address Specification

A lot of commands need an address as one or mote of their parameters.
Normally addresses specificd are taken relative to an internal register called BP.
However absolute addresses can be specificd by following ihe relevant address
with 2 £ sign. Registers can also be considered as addresses. Think of a0 as being
were the vadue of the register a0 is held. In addition addresses like (20) 6{a2)
22(al,d2) or even 12(28064) may be given, with the usual assembly language
interpretation, (12(28064) means $12+longword contents of 28064.)

The formal specification for an address is as folows (curly brackets followed by
* indicate that the part in brackets may be repeated zero or more times).

<address> = <yaiue> | <value>£f 1 register |
C<value>] (<address>[.w | .11 {,<address>[.w | .113%)

<register>= d0...d7 | aG...a7 | rO...r7 |l pc | sr | bp 1 tp
The last part of the address specification may look rather impesing but is just a

formaid specification of the indirect addressing modes. Examiples of ailowable
indirect addresscs are:

{a0) — contents of register ad)

{000} — contents of location 31000

10{a,d 1w} — S10 plus contents of all + siga extended contents of di
(a0,d1,d2} _— contents of all + contents of d1 + contents of d2

Where a command takes an addsess range this is specificd as

<addr range> = <addressi» | <addressi>,<addressz2> | = |
<address1>\<value>

This means that an address range is as follows

1. a single address

2. all the addresses in the range <address1» to caddress2>—1

3.if *="is specified then the range used wilt be from the base of the current job
to the 1op of the current jab, i.e. (BP), (TP)

4. i a «valuer is specified then the copmand using the range will operate on
«value» addresses starting at the given address,

Examples:
& 100 the single address 100(BP) |
0d0,0f0 addresses in the range 0dO{BP) to 0f0(BP)-1)
d0\20 { all the data registers = § longwords |
ul,al) { same as above, since address regisiers follow data

registers in job hcader)

The registers t0. .r7 arc a set of regisicrs which can be used for any purpose. For
example you may wish to temporarily store all the data registers in the r

registers.

Again the best way to find out about addresses is to practise using them. You _ .

can use the eval command with the & operator o get addresses and convert
them to value types. \

]

Examples:
cval 430 = 830 + contents of BP
eval 308 =530
eval £25{a6,d0.w) = $25 + coatents of dO + sign extended contents of d0
cval €BP = address where BP is held

2.3.3 Ambiguities in parameters

A large number of the monitor commands can take default values and this can
lead to ambhiguitics when specifying parameters of these commands with
operators which are both monadic and diadic. For example the command

poke 4 ~3

can be taken to mean ‘poke the address 4(bp) with the value -3” or “poke the
address 1 (bp) with the default value’. The monitor syntax checking would take
the sccond meaning, To resolve ambiguous cases you can use the null operator
*." 10 force the diadic operator to be taken as monadic, i.e. use

poke 4 -3

to force the first meaning. There are very few cases where ambiguitics are likely
to arise, but this operator wili allow you to foree the required meaning.

TrFaat e .

:
"

2.4 FLAGS

The flags control the precise action of certain commandds, and are moslly
defauited. They can be set globally vsing the flags command, but can he
overridden by specifying he flag with a specific command. Each flag can be
preceded by ‘no’ to turn it off.

Flap
rel

pe

hex

asc
an
dn
m

dis
regs

trap
1

st
break
walch

job

Commandf(s)
dis, dump, reg, jobs

dis, dump, regs

dis, dump

dump
TCgs

regs

race, job, foad

{race

tracc

trace, go

trace

commands which
outpul addresses

Action

Output addresses in BP
relative format

Qutput addresses for lines
displayed. For reg displays
PC, status register and BP

display hex code or
hex memory dump.

display ascii memory dump
display addrcess registers
display data regisiers
display user registers

display disassembled code
while tracing

display register dump after
command

trace through traps

trace through jse/bsr
subroutines

sct breakpoints before
cxeculing instruction

set watchpoints before
exccuting instruction

displays address in form

xxxxtjob, not xxxx(bp). Where
“job™ is base of current joh, (Sce

section 3.1.1 for usc of fiag)

10

Default
On
On

On

On

Off

Examples:

dump 28000 ;nohex
regs #3 ;rn nopc

trace ;notrap nojsr

2.5 EXAMPLE PROGRAM

This section gives an informal iniroduction to the basic commands of the
monitor. Chapter three gives a detailed description of all the commands.

The system microdrive cartridge has two files — example_asm and
example_cde. We shall use the _cde file as an example program. It increments
repister d0 50000 times and then makes a call to one of the QDOS traps to get
the version of the operating stsiem. The program has aa error in i1, which we

can fix while monitoring it.

In this cxample it is assumed that the monitor cartridge is in‘microdrive o~ T

First start up the moniior

EXEC mdvi_cImon

and press CTRL-C to get the flashing cursor in the monitor window with
CIMON> prompt. To load the program mlo the monitor use the load

command:

load mdv1_example_cde

When the monitor has loaded this file it wiil have set up a job for it, but the job
will not have started to exccutce. If you now type in the command

jobs

with no paramcters, information about the current jobs on the QL is displayed
in window 0. There should now be two jobs, assuming there were no other jobs
running when you started the monitor; the job with job-id 0 is SuperBASIC, the

Memory dump in ASCIT form only.

Display registers including user registers, no PC
or BP register,

Treat execution of traps and jsrs as single
instructions.

other job is the one you have just loaded.

To look at the first few disassembied instructions of the job we use the dis
command, whicl has the form:

dis [#channell,]1laddress1l,lines]l[;1]flags]

11

i S nae g

T T £k W

B A

TRt e

i, sarin

“The default disassembly address is the onc after the last address examined, ot
the start of the current job, if it has not yet been disassembled. The default
number of lines to display, i.e. instructions to disassemble, is 8, since the
disassembly window is eight characters high. So we can now enter

dis or
dis 0,8

and the first eight instructions are disassembled in window 3. The display shows
the address, the hex code and the disassembled code for each instruction. The
output of the addresses and the hex code can be turned off using the nopc and
nohex flags. Remeinber that if you are trying 0 disassembie an arca that
contains data rather than code, the output wiil be mecaningless. Areas of ata
can be cxamined using the dump command. which has ihe same paramcters as
the dis command. Each line of dumped memory consists of eight bytes giving
the hex values, followed by eighi bytes giving the equivalent ASCH characters.
Nan-printable ASCII characters are displayed as dots. The nohex and noasc
fiags can be used to turn off part of ihe display, for example

dump 0,8 noasc

When you are using the dump, dis o trace comaiands you can use the down
arrow fo repeat the last command from the last used addruss. Thus to
disassemble a large number of instructions from the start of the program usc

dis 0,8

followed by repeated presses of the down arrow. The up arrow key can be used
to disassemble the few instructions before the current one or to dump the picee
of memory just before the currcat address. With the trace command ihe up
arrow key will skip the next instructien, i.e. it will not be exceuted.

We can now start tracing our job vsing the trace command. This command has a
simliar format to dump and dis:

trace C#channetl,]iCaddressC],lines]if;1flags]

the default lins for this command is one, allowing single step tracing casily.
Enter the command

trace" or
trace 0,1

“The first instruction has now been executed and the disassembled code of the
next one has been displayed. Note that a dump of the registers has automatically
been done. You can now use the down arrow to trace through single
instructions. The first few instructions of this program make up a loop which
exits when d{ reaches 50000 and since we don’t want to single step through this

12

we can sct a break point at the first instruction past the end of the loop. The go
command can then be used to execute until a break point or crror conditions is
encountercd. The first instruciion past the loop is SOC{bp), so sct a break point
a1 this address: L

break Oc *
If you now type

breaks

all current break points are displayed in window 0. Now type

The program will stop running when the breakpoint is reached. If you now issue
the reps command all registers are displayed. You can see that d] now has the
value 50000 (=SC350). Although we won't trace this piece of code again we
can remove the break point by typing :

-

nobreak Oc i
|
If you disassemblc the piece of code from the break point by typing i

dis Dc
you can see that 1he code sets up some registers and uses a trap call. This trap
returns the version of the QDOS operating system in d1. We now waat to
exccute the next instruction, To do this we can enter

trace (¢,
or just

trace
since the PC is at the correct instruction. If you now cxamine the registers you
will sce that dO has the value 1. The value should be O if the trap is 1o work
correctly. To change the value of a register, or indeed of any memory location,
you can usc the poke or . command. Both commands are the same, but poke
uses a default length of a byte, . uses a defauls length of a long word and
redisplays the registers. The formats of the command arc:

pokel_<size>] <addr range> <value>

.[_<size>] <addr range> <vatue>

13

S L e £, 358 ki - e

B T P

S
4
:

X

P

SRR PP

¢size> = b or w or |. The command fills all bytes, words or longwords in the
specificd address range with the given value.

Since we want to poke d0.1 we shall use . :
.d0 0

We can now continue tracing. The next instruclion to be traced is the teap.
When tracing, a trap is usually treated by the monitor as a single instruction, so
that you doa’t have to trace through the whole trap. This nicans that after
tracing the trap instruction the rext one will be the one after the trap in the wser
code. However, if you do want to trace through traps you can nse the trap flag
when issuing the trace command. The same applics to subroutines called using
jst or bsr. The jsr flag can be used to trace through subroutines, (The default for
subroutine tracing is on.)

We shall assume that we are not tracing the trap, so just press the down arrow or
use the trace command to continue tracing, Register d1 shoutd now contain the
four ascii characters giving the operating system version, for example '1.02°,

If you now press the down arrow key twice more the last two instructions of the
program will put the value in d2 into the arca of memory just beyond the end of
the code. To exasiiine this area of memory usc the dump command

dump (a0},
The first 4 bytes displaycd will give the operating system version number,

Having traced through this small program we can now kill the job using the
monitor kill command:

kill <job-id>

The <ob-id> can be obtained by using the jobs command. The current job is the
one whose base is given in BP relative form. Another way of killing the job is to
have code in the program o explicitly kill a job. You would normally have code
10 do this if the program you are developing is eventually going to be 1 QDOS
ijob.

Adtthough this is a fairly trivial example, it helps to iflustrate some of the more
commeniy used commands in the monitor. Chapter three conlains a detailed
description of these commands and all the other monitor commands, including
memory searching, memory moving, watching for particular events, job control
- commands and channel management commands,

CHAPTER THREE .
THE MONITOR COMMANDS

This chapter gives the full dscription of each of the monitor commands, giving
the full syntax, the default output channel, the relevant flags and the default
values of parameters not entered. The flags cannot be abbreviated ard are
switched “off” by preceding the name with “no”. All flags except trap, rn and
job are “on™ at system start-up, Note that the default channe! for any command
can be altered by issuing the command name followed by a channel number and

full-stop. Several commands can be entered in a single line by separating them — = =~ = =

with a colon (2).

i
i

Example:

reg #0. {set defauit register dump to channel 0}

3.1 EXAMINATION
3.1.1 Disassembling code
Command: dis [#chanl,]] [<address>][,<lines»] [L;Jflags]

Defanlt Channel: 3

Defuult Address: current PC in job header or address after last code
disussembled

Default Lines: Iast clines: specified or if dines» is 0 the height of the current
window (or 8 if cutput is not to a window).

Flags: {no]hex [no]pe [no|rel [no]job

Once this command has been issued the up-arrow and down-arrow keys
{without being followed by ENTER) can be used to scan upwards and
downwards through code rapidly. -

Action: an arca of memory, from the given or default address, is disassembied
in standard Mctorola format. Bad code is disassembled as far as possible, or
ends with *?” if found to be meaningicss. The number of instructions
disassembled is given by the number of dines>. It is advisable to use a «ines»

15

e

¥
CE
. L
o
i
3

;

value which will allow all the disassembly to fit into a window. The output for
cach instruction shows the address in BP relative format (ualess the rel flag is
“off” or the address lics outside the current job, i.c. outside the vange (BP),
(T1)), the hex code for the nstruction (unless the hex flag is “off"y and the
disassembled code. If the pe flag is “off” ke address is not ouiput. Note that
instructions are always on word boundaries and that code disassembled may be
initially incorrect if the address given is not at the start of an instruction.

Note that the job flag is uscfol if you want to produce output which can be
reasscmbied. The job flag causes relative addresses to be output in the form

xxxx + job

where xxxx is the offset from the start of the job and “job” is a label which
would have to be declared at the start of the file containing the cede. To output
the code 10 a file in this form you should open a {ile as one of the monitor
channels (say #5) and disassembie to this file as follows:

dis #5, 0,<any number> ; nopc nohex job

Repeated presses of the down arrow key would then continue to output code to
the given channel.

Examples:

dis 12 (disassemble window-height lines from 12(bp))

dis #0, 100£,6 ;nohex
(disassemble 6 lines from absolute address 100 vutpuitiog to
chanael (F with no hex codce)

dis ({a7)) (disassemble code whose address is on top of the stack.
Usefui if the value on sop of the stack is a return address.)

dis ??a7 (same as above example)

3.1.2 Displaying memory
Command: dump C#chanl,]] (<address>]1(,<lines>] EL;]flags]

Default Channel: 0

Default Address: 0 (BP) or address after last code dumped

Default Lines: last <ines» specified or if <lines> is O the height of the current
window (or 8 if output is not to a window).

Flags: [no|hex {no]asc [no]rel [no]pe [no]job

Once this command has been issued the up-arrow and down-arrow keys

{without being followed by ENTER) can be used to scun upwards and
downwards through memory rapidly.

16

Action: an area of memory is dumped in the normally accepted manner i.c.
address, hex contents, ascii contents). 1f the rel flag is “off” the address is
absolute; if the bex flag is “of™ the hex dump is not outpat; if the asc flag is
“off” the ascii dump is not output.
Examples: b
dump 0,6 {dump 6 lines of ouiput from address O(BP))
dump 6{al) (dump window height lines from address 6

: + contents of register aQ)

3.1.3 Displaying registers

Command: regs C#chanl,1] IL;Jflags]

Defauli channel: 2
Flags: [nojan [no]dn [no]ra [no]pc [no]rel [no]jeb

Actinn: displays the current job’s address and data registers, the status register,

the program counter and job’s base pointer {BP). These registers are used’
during tracing. if the pe flag is “off” then only the address and data registers are
dispiayed. if the an or dn tlags are “off” then the address or dasa registers are
not cutput, H the ra flag is "on” then the monitor's set of user repisters is
displayed.

Examples:
regs {output to default channcl all registers except rn)

regs #0;rn nopc (output a, d, r registers to channe])

3.2 MODIFICATION
3.2.1 Poking memory

Command; pokel_<size>] <addr range> [<value>] o

Default size: b (bytes)
Default valpe: O

Nole: The size can be one of *b”, *w” or “I”, indicating byte, word or longword
poking rcspectiv(,ly Note that using the status register SR causes the size to be
sct to “w" and using SR in forms of this command, other than to poke a
constant value, may give unpredictable results.

17

ENP-TIRIE L Q. YO ST

Pk ae A it

A -

MR

S-S

TR

Vine el N g Yo L W b

T e mrw

Action: the memory specified (cither by single address or a range) is poked to
the valug given. If a range of memory is to be set then the address increments by
1, 2 or 4 or the length of a string, if a string is supplicd, unsil the sccond address
is reached. Remember that poking memory must be done with great care.

Examples:

poke B1 46 (sct lacation $81{bp) to $46 (byte valuc))
poke 200,300 (clear all locations from S200(bp) to S2FF(bp))
poke_w 20000,21000 23 .

(set all words frum 20000 to 20FFE 1o 50023)
(set the long word at address 8 + contents of
register a6 to SC0000001)

(set 16 bytes to O starting at ({BP))

(poke Lhe string at S20(BP))

poke_1 8(ad) 1

poke O\1Q O
poke 20, "hello'

“.* is an alternative to poke which is more likely to be used on registers.
Command: .[_<size>] <addr range> [valuel

Default size: 1 (longword)
Default value:
Flags: [nojregs

Action: Same as poke, except that a register dump is done automatically at the
end of the command. Note that this can be used 10 set a range of registers to Lhe
given value,

Examples:
pc a0 (set PC register to start of current job)
.d6 3456 (set register db to S00003456)
.a2,ad ?bp (set a2, a3, a4 to the job basc register)

.d0\2D (clear all data registers 8 longwords)

._W 6{ab,d2.w) (ciear word at address 6(a6,d2.w))

.0dD 23 (set longword at 0dO(BP) to S06606023)
3.2.2 Moving memory

Command;” move <addr range> <address>

Action: copies a block of memory byte by byte from the range specified to the
address» specified.

18

" compare command. If a siring is given as the vatue then the comparisen js case-

Examples:

move 0£,8000£f 20000 {copy bottom S8000 bytes to 20000,
the screcn)
(save registers a0, .a4 in (0. .r4)
» .

move a0,a5 r0

3.3 VERIFICATION AND SEARCH

3.3.1 Comparing memory
Command: compare (#chank, 11<addr range> <address> [[;1flags]

Default channel: G
Flags: [no]asc [nojhex [no]pc [nojrel {no)job

Action: compares the range specified with the area starting at «address». The
first mismatch is reported (in a form similar to dump, giving what was found/
what it shouid be). Aficr a move no mismatch shoudd be found unless memory
has altered since it was moved. If no mismalch is found the message ‘ok’is
displayed. Note that the specified flags apply 1o the dumped output. =~ = 7 777 = 7 %
Examples:

To check that the two moves abave worked correctly use

compare O£, 8000£ 20000
compare #3,a0,a5 r0 .
compare hcO 100 (compare 520 bytes of memory from

(bp) with 256(bp))

N
"

3.3.2 Memory search

Command: find[_<size>] [#chanl,]] <addr range> <value>
CL;1flags]

Drefaunlt size: b (byte)
Defanit channel; 0

Action: scarches the range for the given value, reporting using a dump, as in the

independent, the step size for comparisons being one byte. The specified string <, .
may use the character *?' as a wild card to match with any other single character.
Otherwise adding _b to the main command compares bytes tocated at every :
byte, _w compares words, with word spacing, and _1 compares longwords, also
with word spacing. Note that “=" can be uscd for the caddr range» 1o search
through the whole of the current job.

19

LT, TR

i T e LT B S

LY

Exampies:

(scarch at memory for CIMON string)

(look for “break™ instruction from (bp} 1o

$2000(bp))

(find, within the current job, SFFFFFFFF

word aligned)

(scarch 2000 decimal byics starting at

0(bp) for $30) j

find OF,40000 "“¢imon"
find_w 0,2000 4AFB

find L = =1
find 0N\&20C0 30

3.4 MISCELLANEOUS COMMANDS il'
~ 3.4.1 Loading jobs

Command: Lload <device> [<address>]
Defauit zddress: job base set up by monitor.

Action: foads the file named at the address piven (if supplied). 1f no address is
given then the file is loaded as a job. (Fhis happens even if the {ile is only really
a data file — the monitor will allocate a dataspace of $S100 bytes for any code
containt in the file.) The internal Monitor registers, bp (base pointer) and ip
{Lop pointer}, are set to the bottom and top of the job created.

This arca will have addresses output in the form ?7??(bp), and, since bp is
added to certain forms of address in any case, are the addresses which are most
cusily referenced {and probably the enc most frequently used). The register set
used is that of the now job’s header (g.v. jobs}, so that they reflect the valnes
which would normally be set when the job is activated, The job's priority is sct v
10 zero, but the job is aot suspended — if you wish 1o start the job, without
tracing i, then use the go command, (N 3. do not start jobs which are only
datal)

-y

Examples:

Load mdvi_myprog_exe (load this filc and set it up as a job)
load flp2_my_dat (r0) (load this file into memory at the specified
address)

In this last example you should ensure that the memory at the address specificd
is available, probably by using the heap command and using the address
returned as the lead address. Loading a file at an absolute address shouid only
be used for data fites, since the monitor will not sct up a job for .

20

3.4.2 Queue tracing
Command: queue [#chanl,1] [<address>(,<lines>]]

Default channel: 0

Default address: No default addrest except to continue tracing the remainder of
a queue,

Default lines: the previous «hines» value, or the height of the window if no
previous diness value. (8 lines if output not to window).

Action: traces round a “queuc” of addresses, outputing 8 bytes of memory for

_each address in the qucue. The listing stops if the queue wraps round on ijtself

(i.e. address: is met again), it O is cncountered, or if the number of lines
specificid have been output {the rest of the quene can be traced by re-issuing the
queuc command),

3.4.3 Leaving the monitor

Command: quit

Action: kills the monitor job, plus any clones started with the clone command
(see section 3.8). Any jobs loaded with the loud conunand will not be removed
— use kil to remove these if necessary. If you quit the monitor while there are
still jobs running which have been started or examined by the monitor, the
systent may crash if any of the jobs cacounter a breakpoint ot program error
after the monitor job has been deleted.

3.4.4 Screen refresh

Command: mode [<mode>]

Action: [f no «mode is specilied refreshes all current monitor windows. 1f
«modc is U sets the screen to default startup screcn.

3.4.5 Eval
Command: eval [<value>[[\[<base>]]
Defoult channel: O

Default value: ?hp
Default base: hex

21

I
| .
+
N -

Carman e R

1,

R

Fia. oE

wlen

e i Yo A A e

3
a

-
»

Action: evaluates the expression supplied, cutputting the result ag a 32-bit hex
number, if no base is given, or as a signed number in the given base. Note that
the default will 1cll you the address of the basc of your currens job, and that

eval @<address>
car: be used to evalyate address expressions,

Examples:

eval A12345\2 (convert octal 12345 to binary)
eval QefB\8 (convert $0¢f8 to octal)

Sections 2.3.1 and 2.3.2 show more cxampies of this command,

3.4.6 Saving code

Command: save filename <addr range> [<datasize>)

Aclion: saves the given range of memory to the given file, If a data sizc is
specificd the given file is made an EXECable job, with ihe given value as its

data size. Note that the data size given will be subtracted from the top value in
the address range, since this is assumed to be the current data space of the job.

Exarﬁp]c:
save mdvZ_myjob exe = 100

would save from the current job's base painter to $100 bytes from the top of the
job.

3.4.7 Setting flags

Command: flags {CnoJ<ftlag»}*

Action: sets the default values for Bags on all subsequent commands. The

default can always be overridden by specifying the fiags on the command being
used.

Examples:

flags nohex norel rn (output from dump or dis will suppress hex
patis. All addresses wilt be absolure, Regs
command will display user registers)

22

—

3.4.8 Allocating heap

The heap ;i]loczliion commands allow you to allocate space on lh(f con?.mnn
heap, saving the base address of the allocated memory, and to dc‘altl'octuc the
space. You can aiso display all the heap allocated to the current job.

»

Command: heap <address> <value>

Aetion: allocates cvalues bytes of common heap and stores the base address at
the given address. T

Command: noheap <address>

Action: returns to the common heap the arca of memory whose !?asc acc!ldfress is
stored at the given address. Note that this area must have been allocated from

the heap.

Command: heap

Actiom: displays the base address and length of.a]] areas of memory a_]locz'nled}r
from tihe heap to the current job, Be wary of using the clone comp_mnd \"-’ll'lnlfls
comanand, since the heap may be changing while the clone is looking at 1l: is
may cause an address trap error in the clone. |

Examples:

This cxample shows how the screen could be saved on an area of heap and then
restored from the heap.

¢ d store base in reg) B
heap rQ 8Q00 (allocate 32k an 000 fthe screen)
\8000 (r@) (move 32k from address $20000 (
move 20000 gmd store at base address) :

I:nove (r0Y\80D0 20000 (restore screen)
noheap (deallocate heap)

3.4.9 Managing channel ids

Command: Channels

Action: displays the channel ids of alt channels open for the current job and the Lt

address of the channel block on the heap.

23

B I

R T R

e ,A,'ﬂfﬁﬁ"v“"_-wr "-Lﬂ_? rl‘-k. -

ey

e

Command: nge hannel <chan-jd>

Acﬁun:cbsesthechannelﬁamd.ThechannehmisaazdﬁtnumbersmHMr
in format {o job-id.

3.5 PROGRAM DEBUGGING
3.5.1 Tracing code

Command: Trace C#chanl, 3] [<address>If,<lines») EC;3flags]

Default address: current Program counter (PC).
Default lines; 1

Flags: [no]pe [no]hex [nojab [nojrel [no)an [nojdn [no]rn [no)dis [nolregs
[no] watch [no]break {nojjsr [nojtrap

Action: The first seven flags arc present as trace normally automatically issues
implicit dis and regs commands (unless told othenvise by adding nodis and
noregs). The instruction at the address given is disassembled, along with gl
other instructions just prior 10 their execution. At the end of the batch of
structions being executed {normally only one for single-stepping), a register
dump is produced and you are then able to examine/alter registers as usual. The
down-arrow key is set to continug tracing (the disassembly of the first instruction
is suppressed to join the display scnsibly). The up-arrow key can be used to skip
over a single instruction should you not wish to execute it, When tracing the
monitor will report program creors (see section 3.5.6), break poinrs {sce section

3.5.3) and waich points (sce section 3.5.4). For details of the jsr and trap flags
sce scctions 3.5.5,

Exampgles:

trace {single step current instruction, with disassembly

before and after, plus register dump)

trace 400,6 nohex (trace through 6 instructions starting at S400(bp)
with register dump at end of trace, Dont output
hex code with disassembled instructions. Number
of instructions to execute is 6 from now an)

3.5.2 Unconditional execution
Command: go [<address>]

Default address: current job's program counter (PC).
Flags: [no]break

24

A T At e ey -

Action: releases the current job, sctiing the priority to $20 lf t‘hg }Obqhals (;md o
: riority, i.c. is inactive, The job will continue ta exccute untif it is S p;}n5 ; s
al:hrcuk‘p(;inl (sce section 3.5.3.) or program cIror occurs (sce scgtian .5.8).

Break and Yatch points -
I3 N " [k 1
To simplify the process of debugging programs you are allowed to set “Dreaks

i : . You
in Lhe program {to save single-stepping through large amouats of cc;(écl}ﬂrr
can akso make the trace mechanism watch for certain events (e.g-areg

reaching a certain valuc).

3.5.3 Bréakpoiuts

Command; break <address>

Action: Sct a break point at the specified address. When using the trace or go
& -

command cxccution will stop at this address. Note ih‘at‘lhc Izjrcakpmnt is nlol
actually set in the code until a2 go or trace command is issued. !

Command: nobreak <address>
Action: cicer the break point at the specified address.
Command: breaks [H#chanl

Defaalt channel: 0 .
Action: display ali current break points. -

Command: nobreaks
Action: clear all breakpoints
Examplics:

with the code (nohex)

0C00(Lp) moveq K10,d0
0002(bpd moveq #7,d?2
0004 (bp) add. 1 d0,d3
C006¢bp3 dbra d0,0004(bp)

" you could issue the following commands:

: k 4 set a breakpoint at 4(bp) 3 ;.

Ei:gks tist break points (1004(bp) will be listed) e t

trace 0,10 start cxccution of 1) instructions the tracc will stop a
’ 0004{bp) with a message of the form

25

ATy

LI

e e e b D e
- !
1
|

ETR Y -

c o ey

Breakpoint
JB=<job-id> PC=0004(bp) SR=Qop
trace conbinue trace from break
another break will occur when the program loops
nobreak 4 cancel the break point
trace 10 instructions will be traced withoyt interruption

Note: Breakpoints cannot be se
(see section 3.5.4).

The down-arraw command set for tracing sets alf breakpaints, inctuding the one
at the current instruction (if any). To continue from a breakpoint when single-
stepping the trace command must be issued; down-arrow will not werk. (trace
scts all breakpoints except at the current pe).

3.5.4 Watchpoints

Connnand; watchl_<size»>] <addr range> <valye>

Defanlt size: | (long word)
Action: watches for 4 location at the specified address or in i
addresses being set to the given valuc. Note that longwords are watched for at

four byte intervals, not on all even addresses, Watchpoints can only be used wiih
the trace tommand; the go command does not waich them,

12 range of

Commands: nowatchl_<size>] <adgr range>
. Action: removes watches at the given address or fange of adresses,
Command: watcheg
Action: lists the addresses of al] current watch points,
Command: nowa tches
Action: removes all watch potints

Examples;

watch_w d0o -1

would watch for the valye of register g becoming $7999 FFF| and would be
suitable as a watchpoint on the Program above to stop tracing when the loop has
terminated {(dbra decremens the bottom word of do eatit it reaches =1} Tao
‘cancel the watchpoint the command

tin ROM, but they can be simulatcd'using watch

A ey Sy

—ar

nowatch_w df)

would have to be issued (the size extension to the basic command ml:js: match
for a register watchpoint), A breakpoint in ROM can be implemented using

»
watch pc <address»> :

Warchpoints terminate exceution prior to executing an instr_uct;)on (ll‘c. fu:: after
the disassembly). The note on the use of the down-arrow with brea poin
(section 3,5.3) also applics to watchpoints.

3.5.5 Skip Tracing

It is uscful to skip certain instructions, especially trap cails, whose ifgc‘itslifi
weil known and assumed to be correct. Nurmaliy the trace (]:ofnm: v p
the inner code of a trap calt, pmc?ucmg no d:sgsscmhly for the c[;Jm_::r:o“[immS
cffectively treating the seap as a single instruction. Full' mmr{lgllu e s
again one instruction past the caik. if vou do wish 1o trace thro I

traps then the trap flag should be turned on when the trace consmand is being . -

used. ;_
Example:
trace (pc),5 trap

[t is also possible to have the Monitor sct a temporary brqakpoin:}jusiipast;;:r

or bs7 instruction to allow the inner code of these mstrucnm‘ls to DCOSS tpped as

well. However, care should be taken when skipping any of the Q o

subroutine vectors, which ean return to addressc; o;];er Ithzu]l‘:rnmc 12:1: gan .

i i jst i i le vector §122). In this case :

following the jsr instruction (for cxamp. ' diressea1f com

; rakpoints atchpoints at all possibie rcturn a .

your own breakpoints or w . ‘ ks waitng for the toouriey

tor (because it is waiting

that you have lost control of the monit CAPSLO e Dorar

ing i iately i an press the y
eakpoint immediately following the jsr) you ¢ 3 .
?inr'ncs l?o regain control. This can also be tried at other times when the monitor
appears to have “locked”,

Example:
With the following code
0026(bp) jsr Q0B4(bp)

002A(bpY moveq #6,d0
002¢Cbp) subg.l #2,d0

27

it g

A= i e

the rrace command
trace 26 nojsr
-will only produce output of the form

0026Cbp) jsr D084<bn)
Q02A{bp) moveq #6,d0

(assuming the jsr completes correctly)
rather than

0026(bp) jsr 0084(bp)
G084(bp)

Note that these flags do not apply when tracing in ROM, so if you decide 1o
trace 4 QDOS vector using the jst instruction, then all wraps used by this
subroutinc will be traced.

If you start tracing a subroutine and wish to sKip the rest you can easily set a
breakpoint, assuming you are nor in ROM, by issuing the commands

break ((a7)) (sct break point at rouiine return address)
go (continue until break point)

3.5.6 Program Errors

The 68008 is eapable of gencrating certain sorts of “exception” (error), some of
which QDOS allows the user to trap. The exceptions can be annoying when
developing machine-code on the QL as normalty the program tends to crash,
slowing down the QL considerably, or stopping the machine altogether. The
motitor will report the excepiion which has occurred in order 1o allow you to
correct it and continue exceution, The monitor can detect errors on any jobs that
have been loaded and stasted using the moaitor or have bees EXECed since the
monitor was started. Thus, you may get errors on jobs other than the current
one. The following are messages which will be issued, with an explanztion of the
reasons why the exception may have occurred, and possible corrective action.
The format of the message output 0a a program emor is shown below, using an
illegal instruction error as the example error message.

Message: Iltegal instruction
JB=<job~id> PC=<address> SR=<status>

JB=<job-id>» => the job-id of the jub in which the error occurred.
This can be any QDOS job which has been started

or examined using the monitor and need not be
the eurrent job,

TEICA=M o+ o e T e, —

PC =<address> => value of program counter when exception occurred.

i 55 1 ive
Note that in all excepiions and the register dump the <address is quoted refative

H bi
to bp if its value is between the contents of bp and tp, unicss the flag re_ 3

permanunily sct off. .

SR=<status> =» valuc of status register when the exception occurred,
in hex plus flag valucs.

i its) indicz i he interrupt mask
: second nibbie (4 bits) indicates ttlc setting oft !
zt:z:;: :::;L;Een;:ﬁ?;]yl;;c 0} zEnd that the first nibble indicates the setting of the

trace and supervisor-mode bits (8=£racc,2==s_;upc;,A==both).

i job i e
[f an error occurs in a job that is not being lracfcc:, t}_lcgohhls s?;ge;?g?;:ci:l}_led
] i > register values of the job when C .
ob header is set to reflect the regis f the ! I o
J‘x’ou could then use the job command to make this job the cgrrcm monit
job, since the error gives the job-id, so that it can be exmained.

Message: Address Trap Error B
fese FC=xxx XY @<address> IR=yyyy
/ xx= 001=>> user data memory access
wherex 010 => user program mMemory access
{01 =>> supcervisor data memory Access
110 =>> supervisor program memory access
111 =>> interrupt acknowledge

X= [=>> instruction in progress
E =>> exception processing

Y= R =>> read cycle aborted
W =2> write cycle aboricd

@ «address: == address generated
yyyy=instruction in [nstruction Register

The program counter may not be at the start of an iastruction (this is why the
value in the instruction register is also quoted).

If tracing is in progress then the offending instruction sh_oula{ b;:;r::;::l:m;nd
mhcn\'i;c to find the instruction it is suggested that you issue th

dis ~10(pc?

29

e g F o

ur
e —ae

e e ann, A

IR W e

)

Reason: word and longword data addresses must be at a word aligned (cven)
address, Hence

move. 1 #1,a0

move. 1 (a0)+,d0

move label, a3 (label not word aligned}

will cause this exception.

Corrective action: alter the conients of the offending address register, or rewrite
the program! If you alter the register to its correct value using the puke or.
command, you can set the program counter to the instruction that cause the
errer and continue execation,

Message: Privi Lege Violation

Reason: certain instructions Ccan only be executed i
andi.w #SDFFF,SR or rie,

N supervisor-mode, c.g.
Corrective action: set the supervisor-mode bit

it the status register, or add the
instruction trap#0 to your program (the QNOS

call to enter supervisor-mode),
Message: Illegal Instruction

Reason: an unrecognised opcode has been met

suspect). (An rts may cause this or other errors
mismanaged.)

(its disassembly is likely 1o he
if the stack has been

Message: Division by Zero

Reason: something like divs d1,d0 has occurred when d1 contains zero,

Corrective action: ensure that the first argument for diys or divu is non-zero
(test first if necessary),
Messages: CHK Instruction Trap

Unrecognised Trap

Unimplemented Opcode

Reasons: other cvents which oceur in instruction-specific circumstances. Cnly

the sophisticated user s likely to meet these! {no doubt they can cape). it is
possible that these will occur as an aiternative to Illegal Instruction, if something
has gone wrong, causing execution to continue at the wrong address, for
example when the correct return address for an rts instruction is not on top of
the stack,

30

[

i S has some
NB Unimplemented opcodes may not always b‘? spom;d _sl:nl;t:y?cléi(;n ha
code on top of the relevant vectors. Any of these events i

Messape: Unexpected Trace T;ap

i the trace
Reason: the trace bit in the status regisier has been set, but not I:.uy
cummand.

3.6 CHANNEL MANAGEMENT

g p bu: not

| h(: (:ha['[n{:l ma . Omsa d are SI[‘lllldI 1 B SIC

nagement ¢ ands O super A 5

ld{ZIlIlcal. B}' dCfault []IC.‘.L CO]]IIIIEIIIdS al“di’s ICILI to “lc [aSI Cllal‘lncl ICfCI{:Ilccd,

e

regs
cls

- rs€ as
will clear the register window (#2). (Specific channels can be used of course as

! : US¢ e
ith all commands.} To change the defauit channel for a c:ljlmznand use t "

“tlinr:aifd name followed by the required channel and a full-stop. ‘.

& H .

Examplec:
dump #3. (dump output defaults to channel 3)
Command: c¢ls L#chanl
Default channel: last channel used
Action: clear last screen used, or given channel,

X t i #chan,] C<colour>]

Commands: ;gzeE Eé:hgn,] C<colour>]
strip C#chan,} L<cotour>l
border [¥chan,] E<cotour>]

Default channel: last channcl used.

- Defauits: ink 7
_ . paper 0
strip 2
border 2

i aper sets the
A ctions: set the colours of various parts of a window. Nole that pap ets the

strip colour teo, Only border widihs of 1 are supported.

31

Tkt I gt 1T e o i

PTG S T

i
g

NN e e g e e

-'.r- etw, T . S L -'-;!'- i e Bt -
e B B o

BRidnne

Commands: open #chan, <device>»

close Kchan

Actions: open/close a QDOS device. Up io 16 channels can he used, numbered

0 to 5. Channel 1 §s always opened for input and is the chanael from which
commands are taken. Thus channel 1 could be opencd as a microdrive file to
take a sct of initial commands when the monitor is EXECed. If a {ile read error
oceurs, the file is closed and a standard console device is opened, and no error is
reported. Bad comumand lines will be ignored by the monitor, so files of
commands should be carefully constructed

Command: window [#chan]

Default channel; last channel used

Action: this command allows you to alter the position and size of the last
window accessed, using the cursor contro] keys. A flashing cursor appeirs in the
channel 1 window when the command is catered. Use the up-arrow, down-
arrow, left-arrow and right-arrow keys to mave the relevant window. Use the
CTRL key with these keys 1o move the window by 10 pixels at a time. When
you have {inished meving/altering the window just press ENTER o return to
the monitor. The sizc of the window will then be displayed.

Exampley:
To output disassembled code 0 a printer you could use

open K10, serlc
dis #10,0,20

To open 4 file from which the mogitor takes commands you could use
open #1, mdvi_boot_mon
This could be useful if you wanted to de

command files are supplic
and demo_maon).

SIgN your owa screen layout. Two
d with the moniter microdrive cartridge {boot_mon

Note that the open command always im

plicitly closes the previous device open
on the channel — the device can be clos

vd with the close command if necessary.

To open a new window and change its size

cpen #5, scr

window {can now aiter/ move new window to suit)
{use cursor keys here)
(ENTER)

{return 1o monitor prompr)

32

3.7 JOB MANAGEMENT

i ajobi in this manual
i ; : ~xplain the coacept of a job in full in wnual,
ere is not enough space 10 xp cept of a s manual
1)rlccrtain parts of this chapter will assume th.uI tht,l:;,flu_dcr ﬁ}ng‘ﬁzﬁrﬁfﬁj:|:§c
: ion i ied i cerview. in addition §
1e explanation is supplicd in the oy : there
Sﬁ: shourl‘d realize that jobs are normally programs, a,nd :lt:a‘(::::fﬁni;mg ams
E;&ccutcd “concurrently” by QDOS. (i.e. you could start the
supcrBASIC program :

repeat loop:at 0,0:print date$

yet still be able to use the menitor without apparent interruption.)

3.7.1 Listing jobs

Command: jobs [#chanl

Defauli channel: O -
Flags: [nc]rel [no]job e

i i iving the job_id, the owner,
ion: lists all jobs not dependent on the monitor giving jol ;
:hf,llb(:::c i:fft?c?l: [jthc job header is $68 bytes back from the base in QDOS version

1.03 and earlicr vorsions), the priority and the job length.

3.7.2 Altering the “current” mo.nitur job

Command: job <job-id>

Flags: all those that apply to a register dump and [no}regs

Action: Makes the given job the “current” moritor job. Automaticagygll;;p]ays

the cur'rcr-.t state of the jobs registers. This ;llllo\f\'s t]lcl}]-(l}‘t; t(cj:-bger;::;c;rs N e that
i 1 i d will refer to this j J .

sgister dumps using the regs comman i to t ’

tr;;gliu;d cnmpmand automatically sets the “current “ij to the O?tfc“'t:zat?)sbe

Making a job that is currently running the “currcnt Job causg:iSlC]mnm €

suspended. BP and TP are also set. Note that because super SIC motes Bom

timg to titne BP and TP arc continuously updated and will not be alter

current job is superBASIC (job-id = 0).

3.7.3 Suspending jobs . N
Command: suspend [<job-id>] : =

Defaulls current monitor job

33

UL

i

Wt R TR Btk g et o el T

5

P . &‘1 ;d-!ﬂ_‘.r‘%-

]

T

oyt

Lot hgp®

Action: Suspend the job with the given Gob-ids.

3.7.4 Releasing jobs
Command: release {<job-id>]
Default: curreny monitor job

Action; rc!_casr; the job with the given <job-il>. Notc that i the job has priority 0
then releasing it wilt not cause it 1o start exccuting, hut witf on]; rcm;w ?T:Dfmy
tts suspended state. In this case use the priority command (0 increase ll:cl' ;?m
priority. Noie also that if you are releasing the current moniter job you an us
the go command, which also sets the priority to $20, if it is found tgbc t{-)al'l e

3.7.5 Altering the priority of jobs

Command: priority L[<value> C<job-id>1]

Default value: $20
Befanlt job-id: current job

:::ij":}m _sctt's'thc priority of the given job to the given value, If the priority was)
d the jobr is not in a suspended state it will start excenting, Similarly, if the
priority is sct to @ while the job s running, this will stop it. '

Examiple:
job 40006 (suspend/examine job and registers)
-d0 0 (alter registers)
go (start job again)

3.7.6 Killing jobs
Comxmand: kill <job-id>

Action: abort exceution of the job stared (any job waiting for the completion of
the job named will receive a “not complete” error). This command shci))u!d bg °
used, before exiting the monitaor, to force remove all jobs loaded wsing the load
command, unless the jobs contain code 1o delete themsclves, If yot; kigi] the *
current job lhu‘n certain commands, including regs and trace will give an “invalid
job™ error, until you change to a new job by using the foad or job con ds I
Note that k . can be used to kill the current job, e

34

FETTECT I R e

T T T A

. period of time, ¢.g. during clone jobs.)

3.8 CLONING MONITOR COMMANDS
Command: clone [<command>] {:<command>}

Action: if no «command> is specified this command lists all clones in a form
similar to the jobs command. Otherwise it scts up a job to repeatedly execute the
given command(s). This command can be extremely usefui for monitoring the
progess of jobs without explicitly tracing them. For example, if you suspected
that a joh was looping somewhere, you could clone the regs command so that
the registers for the job were continually updated on the screen.

Examples:

(stop all impiicit register dumps)

flags noregs
(start up continuous display of registers)

clone regs

scts up a job which continuously issues the regs coramand. This means that

window 2 (assuming this is stifl the register window), is effectively “jammed” for

all other purposes, since it is homed and writtcn to by the clone on a never-'

ending basis. (The bottom of the window is always cleared just beforé the™ &~ = — =
window is homed to cater for command whose output varies in length over a

clone jchs #5

would give an up-to-date picture of all ihe jobs to channel 3, which you might
have opened as a sereen which docsn’t interfere with the rest of the monitor

SCrecns.
clone dump #5,(a1),2

would continually display the memory pointed at by the register al. This would
be useful for monitoring the contents of a buffer.

clone eval #5,80(a6,a1)

would continually cuput to channel 3 the address of the top of the superBASIC
stack, if the job-id is 0.

" To control clones you can use the norinal job-controt commands, i.e. suspend,

release, priority, kill. The clone command supplics a list of job-ids, which are
used in the normal way. Clones are sub-jobs of the monitor and are therefore
automatically deleted when the quit command is issued.

35

CHAPTER FOUR
SUMMARY

4.1 GENERAL COMMAND STRUCTURE

command [#(channeL>[,]][<parameters>[[;]<fLags>]

All commands can be abbreviated (an ambj
the following list to be take). (Relevant §
4.3.) If more than one command Is speci
should be used as a command scparator,

guous abbreviation causes the firse in
ags are listed in more detail in section
fied on a single input line, a colon

Comimnand:; Defaule;
help

dis £<address>JE,<Lines>] dis #<dis_chan>,

<Last—address>, <last~i{ines>
(lines=0 =>> use window height)
dump [<address>]£,<lines>] dump #<dump_chan>,
<Last-address>, <last=1{ines>
(up- and down-arrow set up afier
dis/dump)
trace [<address>3[,<tiﬁes>] trace (pc),1 notrap
(down-arrow =>> pext instruction(s))
(up-arrow =>> skip instruction)
(stops on lines, breakpoint or

watchpoint)
regs regs #<regshchan>;norn
jobs - :
job <job-id»
go C<address>] go (p¢)
Load <device> L<address>]
. Save <device> <range>
L<value>]
36

Ty

flags

Comemand;

findl_<size>] <range>
<value>
oke[_<size>] <range>
¥ C<value>] »
-[_<size>] <range>
C<value>]
queue [<address>I(,<lines>]

quit

move <range> <address>
campare <range> <address»
breakfs] [<address>]

nobreakls] [<address»]

watchles3[_<size>1l<range>
<value>]

nowatchlesl[_<size>]

{<range>3
suspend [<job~id>]
release fsyobm1d

iorit value
priemty C<job-id>]]
kill <job-id>
Window
cls)
open <device>
close
ink C<colours>}
paper " I<colour>]
strip [<cotour>]
border [<colour>]
mode L<mode>]
clonefs) [<command>]
channels

nochannel <channel-id>
heap [<address> <value>]

noheap <address»
eval [<value»]
E\[<base>»]]
{ [nol<flag> 2=

[<job-id>] T

Drefault: -

find_b
poke_b <range> 0
-_L <value> 0 regs

queue <last-address>,)
<last-Llines>

watch_L

nowatch_L

priority 20 <current job>

window #<last-chan>

ink #<last-chan>,?

paper #<last-chan>,0
strip #<last=chan>,2
border #<last-chan>,2

eval ?bp \$10

37

e w e e m b — e e

i

R G TR VOISR LIS S

o

P N ST

e

oy

s

. - - R T '_'.. - . . . -
- 3 - : :) . £ e NPT i .
%ﬁma;h e a5 ol T T bR L A

4.1.1 Parameter Syntax

The constructs used above are defined as follows:

<value> =[$1<hex_number> | B<decimal_number>

:<oct§l_nHmber> | %<binary_numbers
<string>™ | '<string>' | ~<value>
<value>| -<valpe> | <value>+<value>
<value>=<valuye>» { <value>w<yvalye>
<value>/<vatye> | <value>! <yalye>
<value>&<valuye> | <value><<valye>
<vatuer><valuer | <value>A<yalye>
<base>¥<value> | ?<address> | @<address>

The operators above which are not self-

explanziory arc;
! (bit-or) & (bit and < (shi
-or) shift le
> (shift right) ~ {not) : A Emc’:d) 0

% (allows the given value to be specified in the given base)

[and | are used 1o altes precedence, levels are as follows:

+, - (monadic),-—,&,s ALY
b] A% (value operand
+,~ (dyadic),%,/,1,& {diadic),<,>,4 ghiégfg),% (diadic)

7, (value operands)
(address operands)
<address> =<value> {==<y .
==<value>(bp) if <value> <
- I<valuedf {==forced absolute) ue $10G00%

I<register>
IE<vaLue>J(<address>{,<address>5.ul.Li*)
(last of these includes (rn) xxxx(rn) xx

throughout, cxcept before the
commands.)

{rn,rm) ete. Spaces are stri
rn,] pped
(" in, say 99(a0) which causcs ambiguity in somc

<register> =d0.,d?la0..a?lpclsrlr0..r?lbpltp

<range> =<address1>[,<address2>] |
<address>\<value> | =
(= mcans from job base to top of jub) :
<size> =blwll

<channel> | <lines> =

<decimal_number>
<mode> | <colour> | <j -

cb=id> | <channel-id> | <hase> =

<value»

38

A

T ey

A, ———— Ty

. C e e b

4.2 CIHHANNLLS

‘The main text of this manual probably pives the impression of a set of aciual
defaukt chasncls for each command. Tt is more correct 1o say that a logical
chamnel is attuched to each commana, and that an actual chunnel is then
associated with cach logicai channel:
Logical Channel Actual channel on startup
ast_chan>
«lump_chan»
<regs_cham
«dis_chan»

[PLN S R

Most commands use «dump_chan. To alter the logical 1o actual relationship,

issue any command directed to the ogical channe] with a trailing full-stop. e.g.
dis #0. or help #3. (these would force even implicit references to the relevant
windows to alter, i.c. the implicit disassembly within a trace would now be
directed to chanacl 0.) .

i
1
A
1
i
i

4.3 FLAGS ;

i
These can be set globally using the flags command, or locally on the command
itsclf. Flag names cannot be abbreviated (ambiguity with parameters would
oceur if this was allowed).

R . AT i BB i e 50

|Izt.
s
e

Flag Commands Contruls

rel any command which output of address in bp-relative form .
cuiputs-addresses

job ditto output addresses as xxxx + job not

xxxx(bp} -
pc dis,dump,regs output of location/ program counter |
hex dis,dump output of code/hex i
asc dump output of ascii S
an regs output of address registers !
dn regs output of data registers
™m regs oulput of user registers {normally off} -
dis trace implicit disassembly '
regs trace, load, job implicit register dump U
trap trace skip-tracing of trap calls (normally off) - - .
Jsr " trace skip-tracing of jst/bsr instructions ~
break tracc,go sctting of breakpoints
waich trace examination of watchpoints

39

INDEX

Address specifications
Address trap error

Backing up
Base pointer
Border command
Break command
Breakpoints

in ROM

CAPSLOCK key
Channel management
Channels '
opening, closing
Channcl ids
Clane command
Colours
Command formar
Command parameters
Command scparaior
Compare commund
Current job

Data size for jobs
Debupeging

Dcfault channel, changing

Disassemble command
Displaying memory
Displaying registers
Dump command

tval command
"Errors, program

8 Find command
29 Flags
Flags commang
2
3 Go command
31

13,25 Heap allocation
13,25 Heap cummand

Ink command
27 Hlegal instruction error

4, 39 Job flag, use of
32 Jabs

23 . loading
35 - managing
6, 31

5, 36 Kill commangd

6, 38 Killing jobs

15, 36
[9 Leaving the monitor
33 Loading and Funning

Load command
21 Locked manitor

31 Mcmory
11, 15 compare

16 move

17 modify
12, 16 search

Move command

28 Open command

40

Paper command

Poke command
Priority comaind
Privilege violation crror
Program citors

Pscudo registers

Quit command
Queue command

Refreshing the scroen
Regs command
Relcase commandd

Save command
Skip tracing

Startup

Status register
Strip commainl
Summary
Supervisor mode
Suspend commund

Trace command
Trace bit

Value speaifications

Watchpoints
Window command

Zero divide error

17, 29
3l
36
29, 10
33

12,24
29,31

26
2

30

R T T

A

Lwar

L VY A

L e

R p—

ZOI et ar A miis e e T e L Rk

